1
|
Ji Y, Zheng J, Geng Z, Wang X, Hou Y, Tian J, Hu J, Zhang Y, Zhang L. Fluorocarbon Nanodroplets: Their Formation and Stability in Complex Solution Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9108-9119. [PMID: 38632937 DOI: 10.1021/acs.langmuir.4c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Perfluorocarbon (PFC) nanodroplets (NDs) are expanding in a wide range of applications in biotechnology and nanotechnology. Their efficacy in biological systems is significantly influenced by their size uniformity and stability within bioelectrolyte contexts. Presently, methods for creating monodisperse, highly concentrated, and well-stabilized PFC NDs under harsh conditions using low energy consumption methods have not been thoroughly developed, and their stability has not been sufficiently explored. This gap restricts their applicability for advanced medical interventions in tissues with high pH levels and various electrolytic conditions. To tackle these challenges and to circumvent potential toxicity from surface stabilizers, we have conducted an in-depth investigation into the formation and stability of uncoated perfluorohexane (PFH) NDs, which were synthesized by using a low-energy consumption solvent exchange technique, across complex electrolyte compositions or a broad spectrum of pH levels. The results indicated that low concentrations of low-valent electrolyte ions facilitate the nucleation of NDs and consistently accelerate Ostwald ripening over an extended period. Conversely, high concentrations of highly valent electrolyte ions inhibit nucleation and decelerate the ripening process over time. Given the similarities between the properties of NDs and nanobubbles, we propose a potential stabilization mechanism. Electrolytes influence the Ostwald ripening of NDs by adjusting the adsorption and distribution of ions on the NDs' surface, modifying the thickness of the electric double layer, and fine-tuning the energy barrier between droplets. These insights enable precise control over the stability of PFC NDs through the meticulous adjustment of the surrounding electrolyte composition. This offers an effective preparation method and a theoretical foundation for employing bare PFC NDs in physiological settings.
Collapse
Affiliation(s)
- Yuwen Ji
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Zheng
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanli Geng
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China
- Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lakes, Xining, Qinghai 810008, China
| | - Xingya Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangqian Hou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiakun Tian
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Hu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Institute of Materiobiology, College of Science, Shanghai University, Shanghai 200444, China
- Xiangfu Laboratory, Jiashan 314102, China
| | - Yi Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lijuan Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Bayraktar S, Üstün C, Kehr NS. Oxygen Delivery Biomaterials in Wound Healing Applications. Macromol Biosci 2024; 24:e2300363. [PMID: 38037316 DOI: 10.1002/mabi.202300363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/06/2023] [Indexed: 12/02/2023]
Abstract
Oxygen (O2 ) delivery biomaterials have attracted great interest in the treatment of chronic wounds due to their potential applications in local and continuous O2 generation and delivery, improving cell viability until vascularization occurs, promoting structural growth of new blood vessels, simulating collagen synthesis, killing bacteria and reducing hypoxia-induced tissue damage. Therefore, different types of O2 delivery biomaterials including thin polymer films, fibers, hydrogels, or nanocomposite hydrogels have been developed to provide controlled, sufficient and long-lasting O2 to prevent hypoxia and maintain cell viability until the engineered tissue is vascularized by the host system. These biomaterials are made by various approaches, such as encapsulating O2 releasing molecules into hydrogels, polymer microspheres and 3D printed hydrogel scaffolds and adsorbing O2 carrying reagents into polymer films of fibers. In this article, different O2 generating sources such as solid inorganic peroxides, liquid peroxides, and photosynthetic microalgae, and O2 carrying perfluorocarbons and hemoglobin are presented and the applications of O2 delivery biomaterials in promoting wound healing are discussed. Furthermore, challenges encountered and future perspectives are highlighted.
Collapse
Affiliation(s)
- Sema Bayraktar
- Department of Chemistry, Izmir Institute of Technology, Urla/Izmir, 35430, Turkey
| | - Cansu Üstün
- Department of Chemistry, Izmir Institute of Technology, Urla/Izmir, 35430, Turkey
| | - Nermin Seda Kehr
- Department of Chemistry, Izmir Institute of Technology, Urla/Izmir, 35430, Turkey
| |
Collapse
|
3
|
Al Mamun A, Ullah A, Chowdhury MEH, Marei HE, Madappura AP, Hassan M, Rizwan M, Gomes VG, Amirfazli A, Hasan A. Oxygen releasing patches based on carbohydrate polymer and protein hydrogels for diabetic wound healing: A review. Int J Biol Macromol 2023; 250:126174. [PMID: 37558025 DOI: 10.1016/j.ijbiomac.2023.126174] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Diabetic wounds are among the major healthcare challenges, consuming billions of dollars of resources and resulting in high numbers of morbidity and mortality every year. Lack of sufficient oxygen supply is one of the most dominant causes of impaired healing in diabetic wounds. Numerous clinical and experimental studies have demonstrated positive outcomes as a result of delivering oxygen at the diabetic wound site, including enhanced angiogenesis, antibacterial and cell proliferation activities. However, prolonged and sustained delivery of oxygen to improve the wound healing process has remained a major challenge due to rapid release of oxygen from oxygen sources and limited penetration of oxygen into deep skin tissues. Hydrogels made from sugar-based polymers such as chitosan and hyaluronic acid, and proteins such as gelatin, collagen and hemoglobin have been widely used to deliver oxygen in a sustained delivery mode. This review presents an overview of the recent advances in oxygen releasing hydrogel based patches as a therapeutic modality to enhance diabetic wound healing. Various types of oxygen releasing wound healing patch have been discussed along with their fabrication method, release profile, cytocompatibility and in vivo results. We also briefly discuss the challenges and prospects related to the application of oxygen releasing biomaterials as wound healing therapeutics.
Collapse
Affiliation(s)
- Abdulla Al Mamun
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, Qatar; Biomedical Research Center (BRC), Qatar University, Doha, Qatar
| | - Asad Ullah
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, Qatar; Biomedical Research Center (BRC), Qatar University, Doha, Qatar
| | | | - Hany E Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Alakananda Parassini Madappura
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, Qatar; Biomedical Research Center (BRC), Qatar University, Doha, Qatar
| | - Mahbub Hassan
- School of Chemical & Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
| | | | - Vincent G Gomes
- School of Chemical & Biomolecular Engineering, The University of Sydney, NSW 2006, Australia; Sydney Nano Institute, Sydney, NSW 2006, Australia
| | - Alidad Amirfazli
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, Qatar; Biomedical Research Center (BRC), Qatar University, Doha, Qatar.
| |
Collapse
|
4
|
Winuprasith T, Koirala P, McClements DJ, Khomein P. Emulsion Technology in Nuclear Medicine: Targeted Radionuclide Therapies, Radiosensitizers, and Imaging Agents. Int J Nanomedicine 2023; 18:4449-4470. [PMID: 37555189 PMCID: PMC10406121 DOI: 10.2147/ijn.s416737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/19/2023] [Indexed: 08/10/2023] Open
Abstract
Radiopharmaceuticals serve as a major part of nuclear medicine contributing to both diagnosis and treatment of several diseases, especially cancers. Currently, most radiopharmaceuticals are based on small molecules with targeting ability. However, some concerns over their stability or non-specific interactions leading to off-target localization are among the major challenges that need to be overcome. Emulsion technology has great potential for the fabrication of carrier systems for radiopharmaceuticals. It can be used to create particles with different compositions, structures, sizes, and surface characteristics from a wide range of generally recognized as safe (GRAS) materials, which allows their functionality to be tuned for specific applications. In particular, it is possible to carry out surface modifications to introduce targeting and stealth properties, as well as to control the particle dimensions to manipulate diffusion and penetration properties. Moreover, emulsion preparation methods are usually simple, economic, robust, and scalable, which makes them suitable for medical applications. In this review, we highlight the potential of emulsion technology in nuclear medicine for developing targeted radionuclide therapies, for use as radiosensitizers, and for application in radiotracer delivery in gamma imaging techniques.
Collapse
Affiliation(s)
| | - Pankaj Koirala
- Institute of Nutrition, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - David J McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Piyachai Khomein
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
5
|
He Y, Chang Q, Lu F. Oxygen-releasing biomaterials for chronic wounds breathing: From theoretical mechanism to application prospect. Mater Today Bio 2023; 20:100687. [PMID: 37334187 PMCID: PMC10276161 DOI: 10.1016/j.mtbio.2023.100687] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/09/2023] [Accepted: 06/01/2023] [Indexed: 06/20/2023] Open
Abstract
Chronic wounds have always been considered as "gordian knots" in medicine, in which hypoxia plays a key role in blocking healing. To address this challenge, although tissue reoxygenation therapy based on hyperbaric oxygen therapy (HBOT) has been performed clinically for several years, the bench to bedside still urges the evolution of oxygen-loading and -releasing strategies with explicit benefits and consistent outcome. The combination of various oxygen carriers with biomaterials has gained momentum as an emerging therapeutic strategy in this field, exhibiting considerable application potential. This review gives an overview of the essential relationship between hypoxia and delayed wound healing. Further, detailed characteristics, preparation methods and applications of various oxygen-releasing biomaterials (ORBMs) will be elaborated, including hemoglobin, perfluorocarbon, peroxide, and oxygen-generating microorganisms, those biomaterials are applied to load, release or generate a vast of oxygen to relieve the hypoxemia and bring the subsequent cascade effect. The pioneering papers regarding to the ORBMs practice are presented and trends toward hybrid and more precise manipulation are summarized.
Collapse
|
6
|
Augustine R, Gezek M, Seray Bostanci N, Nguyen A, Camci-Unal G. Oxygen-Generating Scaffolds: One Step Closer to the Clinical Translation of Tissue Engineered Products. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2023; 455:140783. [PMID: 36644784 PMCID: PMC9835968 DOI: 10.1016/j.cej.2022.140783] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The lack of oxygen supply in engineered constructs has been an ongoing challenge for tissue engineering and regenerative medicine. Upon implantation of an engineered tissue, spontaneous blood vessel formation does not happen rapidly, therefore, there is typically a limited availability of oxygen in engineered biomaterials. Providing oxygen in large tissue-engineered constructs is a major challenge that hinders the development of clinically relevant engineered tissues. Similarly, maintaining adequate oxygen levels in cell-laden tissue engineered products during transportation and storage is another hurdle. There is an unmet demand for functional scaffolds that could actively produce and deliver oxygen, attainable by incorporating oxygen-generating materials. Recent approaches include encapsulation of oxygen-generating agents such as solid peroxides, liquid peroxides, and fluorinated substances in the scaffolds. Recent approaches to mitigate the adverse effects, as well as achieving a sustained and controlled release of oxygen, are discussed. Importance of oxygen-generating materials in various tissue engineering approaches such as ex vivo tissue engineering, in situ tissue engineering, and bioprinting are highlighted in detail. In addition, the existing challenges, possible solutions, and future strategies that aim to design clinically relevant multifunctional oxygen-generating biomaterials are provided in this review paper.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Mert Gezek
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, United States
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Nazli Seray Bostanci
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, United States
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Angelina Nguyen
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, United States
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, United States
- Department of Surgery, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| |
Collapse
|
7
|
Oliveira AML, Machado M, Silva GA, Bitoque DB, Tavares Ferreira J, Pinto LA, Ferreira Q. Graphene Oxide Thin Films with Drug Delivery Function. NANOMATERIALS 2022; 12:nano12071149. [PMID: 35407267 PMCID: PMC9000550 DOI: 10.3390/nano12071149] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023]
Abstract
Graphene oxide has been used in different fields of nanomedicine as a manager of drug delivery due to its inherent physical and chemical properties that allow its use in thin films with biomedical applications. Several studies demonstrated its efficacy in the control of the amount and the timely delivery of drugs when it is incorporated in multilayer films. It has been demonstrated that oxide graphene layers are able to work as drug delivery or just to delay consecutive drug dosage, allowing the operation of time-controlled systems. This review presents the latest research developments of biomedical applications using graphene oxide as the main component of a drug delivery system, with focus on the production and characterization of films, in vitro and in vivo assays, main applications of graphene oxide biomedical devices, and its biocompatibility properties.
Collapse
Affiliation(s)
- Alexandra M. L. Oliveira
- Instituto de Telecomunicações, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal;
- iNOVA4Health, CEDOC Chronic Diseases Research Centre, NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal; (G.A.S.); (D.B.B.)
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
- Correspondence: (A.M.L.O.); (Q.F.)
| | - Mónica Machado
- Instituto de Telecomunicações, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal;
- iNOVA4Health, CEDOC Chronic Diseases Research Centre, NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal; (G.A.S.); (D.B.B.)
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
| | - Gabriela A. Silva
- iNOVA4Health, CEDOC Chronic Diseases Research Centre, NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal; (G.A.S.); (D.B.B.)
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
| | - Diogo B. Bitoque
- iNOVA4Health, CEDOC Chronic Diseases Research Centre, NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal; (G.A.S.); (D.B.B.)
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
| | - Joana Tavares Ferreira
- Ophthalmology Department, Centro Hospitalar Universitário de Lisboa Norte, 1649-035 Lisbon, Portugal; (J.T.F.); (L.A.P.)
- Visual Sciences Study Centre, Faculty of Medicine, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Luís Abegão Pinto
- Ophthalmology Department, Centro Hospitalar Universitário de Lisboa Norte, 1649-035 Lisbon, Portugal; (J.T.F.); (L.A.P.)
- Visual Sciences Study Centre, Faculty of Medicine, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Quirina Ferreira
- Instituto de Telecomunicações, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal;
- Correspondence: (A.M.L.O.); (Q.F.)
| |
Collapse
|
8
|
Zhang C, Yan K, Fu C, Peng H, Hawker CJ, Whittaker AK. Biological Utility of Fluorinated Compounds: from Materials Design to Molecular Imaging, Therapeutics and Environmental Remediation. Chem Rev 2022; 122:167-208. [PMID: 34609131 DOI: 10.1021/acs.chemrev.1c00632] [Citation(s) in RCA: 158] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The applications of fluorinated molecules in bioengineering and nanotechnology are expanding rapidly with the controlled introduction of fluorine being broadly studied due to the unique properties of C-F bonds. This review will focus on the design and utility of C-F containing materials in imaging, therapeutics, and environmental applications with a central theme being the importance of controlling fluorine-fluorine interactions and understanding how such interactions impact biological behavior. Low natural abundance of fluorine is shown to provide sensitivity and background advantages for imaging and detection of a variety of diseases with 19F magnetic resonance imaging, 18F positron emission tomography and ultrasound discussed as illustrative examples. The presence of C-F bonds can also be used to tailor membrane permeability and pharmacokinetic properties of drugs and delivery agents for enhanced cell uptake and therapeutics. A key message of this review is that while the promise of C-F containing materials is significant, a subset of highly fluorinated compounds such as per- and polyfluoroalkyl substances (PFAS), have been identified as posing a potential risk to human health. The unique properties of the C-F bond and the significant potential for fluorine-fluorine interactions in PFAS structures necessitate the development of new strategies for facile and efficient environmental removal and remediation. Recent progress in the development of fluorine-containing compounds as molecular imaging and therapeutic agents will be reviewed and their design features contrasted with environmental and health risks for PFAS systems. Finally, present challenges and future directions in the exploitation of the biological aspects of fluorinated systems will be described.
Collapse
Affiliation(s)
- Cheng Zhang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Kai Yan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Craig J Hawker
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
9
|
Charbe NB, Castillo F, Tambuwala MM, Prasher P, Chellappan DK, Carreño A, Satija S, Singh SK, Gulati M, Dua K, González-Aramundiz JV, Zacconi FC. A new era in oxygen therapeutics? From perfluorocarbon systems to haemoglobin-based oxygen carriers. Blood Rev 2022; 54:100927. [PMID: 35094845 DOI: 10.1016/j.blre.2022.100927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/14/2021] [Accepted: 01/12/2022] [Indexed: 02/09/2023]
|
10
|
Yang G, Liu Y, Li H, Tian X, Pan J. One-step double emulsion via amphiphilic Se N supramolecular interactions: Towards porous multi-cavity beads for efficient recovery lithium from brine. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Feng H, Linders J, Myszkowska S, Mayer C. Capsules from synthetic diblock-peptides as potential artificial oxygen carriers. J Microencapsul 2021; 38:276-284. [PMID: 33722172 DOI: 10.1080/02652048.2021.1903594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The design of an encapsulation system consisting of a synthetic peptide which is fully biodegradable into non-toxic constituents. This system should be capable of encapsulating perfluorinated hydrocarbons and should be a promising basis for oxygen carriers to be used as artificial blood replacement. A diblock-peptide is synthesised following a phosgene-free method and characterised by 1H-NMR. Subsequently, this diblock-peptide is self-assembled with perfluorodecalin (PFD) to form PFD-filled capsules as potential artificial oxygen carriers allowing for rapid oxygen uptake and release. The diblock-peptide Bu-PAsp10-PPhe10 is successfully synthesised and used to encapsulate PFD. The capsules have a spherical shape with an average diameter of 360 nm in stable aqueous dispersion. NMR measurements prove their physical capability for reversible uptake and release of oxygen. The resulting capsules are expected to be fully biodegradable and possibly could act as oxygen carriers for artificial blood replacement.
Collapse
Affiliation(s)
- Huayang Feng
- Institute for Physical Chemistry, CeNIDE, University of Duisburg-Essen, Essen, Germany
| | - Jürgen Linders
- Institute for Physical Chemistry, CeNIDE, University of Duisburg-Essen, Essen, Germany
| | - Sascha Myszkowska
- Institute for Physical Chemistry, CeNIDE, University of Duisburg-Essen, Essen, Germany
| | - Christian Mayer
- Institute for Physical Chemistry, CeNIDE, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
12
|
López-Diaz D, Merchán MD, Velázquez MM. The behavior of graphene oxide trapped at the air water interface. Adv Colloid Interface Sci 2020; 286:102312. [PMID: 33166724 DOI: 10.1016/j.cis.2020.102312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 02/02/2023]
Abstract
Graphene oxide is a derivate of graphene obtained by oxidation of graphite and other carbonaceous materials. The more accepted structure consists in carbonyl and carboxyl groups located at the edge of the graphene network and hydroxyl and epoxy groups attached to the basal plane. The percentage of O-groups depends on the synthesis route and the material used as carbon source. In addition, highly oxidized fragments, called oxidative debris, OD, are produced during the oxidation process. These fragments are adsorbed onto the graphene oxide network and can be removed by alkaline washing. The purified material has lower O/C ratio than graphene oxide and its properties are also quite different. Due to its structure, graphene oxide can be adsorbed at the air-water interface of the aqueous solution by diffusion, Gibbs monolayers, or by spreading on a clean water subphase resulting in a Langmuir film. This review is intended to provide information on the importance of controlling the chemical composition, structure, size, and oxidative debris, on the manufacture of graphene oxide films. To this end the review shows the influence of the synthesis route and the starting material on the structure of graphene oxide and analyzes several examples of the behavior and properties of films prepared with different types of graphene oxides. The great variability of behaviors of graphene oxide films caused by the different structure of this material provides a great opportunity to fine-tune the properties of films according to the needs of different applications.
Collapse
|
13
|
Wang S, Qiu J, Guo A, Ren R, He W, Liu S, Liu Y. Nanoscale perfluorocarbon expediates bone fracture healing through selectively activating osteoblastic differentiation and functions. J Nanobiotechnology 2020; 18:84. [PMID: 32493334 PMCID: PMC7271395 DOI: 10.1186/s12951-020-00641-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/25/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND RATIONALE Fracture incidence increases with ageing and other contingencies. However, the strategy of accelerating fracture repair in clinical therapeutics remain a huge challenge due to its complexity and a long-lasting period. The emergence of nano-based drug delivery systems provides a highly efficient, targeted and controllable drug release at the diseased site. Thus far, fairly limited studies have been carried out using nanomedicines for the bone repair applications. Perfluorocarbon (PFC), FDA-approved clinical drug, is received increasing attention in nanomedicine due to its favorable chemical and biologic inertness, great biocompatibility, high oxygen affinity and serum-resistant capability. In the premise, the purpose of the current study is to prepare nano-sized PFC materials and to evaluate their advisable effects on promoting bone fracture repair. RESULTS Our data unveiled that nano-PFC significantly enhanced the fracture repair in the rabbit model with radial fractures, as evidenced by increased soft callus formation, collagen synthesis and accumulation of beneficial cytokines (e.g., vascular endothelial growth factor (VEGF), matrix metalloprotein 9 (MMP-9) and osteocalcin). Mechanistic studies unraveled that nano-PFC functioned to target osteoblasts by stimulating their differentiation and activities in bone formation, leading to accelerated bone remodeling in the fractured zones. Otherwise, osteoclasts were not affected upon nano-PFC treatment, ruling out the potential target of nano-PFC on osteoclasts and their progenitors. CONCLUSIONS These results suggest that nano-PFC provides a potential perspective for selectively targeting osteoblast cell and facilitating callus generation. This study opens up a new avenue for nano-PFC as a promising agent in therapeutics to shorten healing time in treating bone fracture.
Collapse
Affiliation(s)
- Shunhao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 8 Shuangqing Road, Haidian District, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiahuang Qiu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 8 Shuangqing Road, Haidian District, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Anyi Guo
- Beijing Jishuitan Hospital, The 4th Clinical Hospital of Peking University Health Science Center, No. 31 East Street, Xinjiekou, Xicheng District, Beijing, 100035, China
| | - Ruanzhong Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 8 Shuangqing Road, Haidian District, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei He
- Beijing Jishuitan Hospital, The 4th Clinical Hospital of Peking University Health Science Center, No. 31 East Street, Xinjiekou, Xicheng District, Beijing, 100035, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 8 Shuangqing Road, Haidian District, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yajun Liu
- Beijing Jishuitan Hospital, The 4th Clinical Hospital of Peking University Health Science Center, No. 31 East Street, Xinjiekou, Xicheng District, Beijing, 100035, China.
| |
Collapse
|
14
|
Li J, Xue Y, Tian J, Liu Z, Zhuang A, Gu P, Zhou H, Zhang W, Fan X. Fluorinated-functionalized hyaluronic acid nanoparticles for enhanced photodynamic therapy of ocular choroidal melanoma by ameliorating hypoxia. Carbohydr Polym 2020; 237:116119. [PMID: 32241431 DOI: 10.1016/j.carbpol.2020.116119] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/29/2020] [Accepted: 03/03/2020] [Indexed: 12/11/2022]
Abstract
Photodynamic therapy (PDT) is a method for killing cancer cells by employing reactive singlet oxygen (1O2). However, the inherent hypoxia and oxygen consumption in tumors during PDT lead to a deficient oxygen supply, which in turn hinder the photodynamic efficacy. To overcome this issue, fluorinated-functionalized polysaccharide-based nanocomplexes were prepared by anchoring perfluorocarbons (PFCs) and pyropheophorbide a (Ppa) onto the polymer chains of hyaluronic acid (HA) to deliver O2 in hypoxia area. These amphiphilic conjugates can self-assemble into micelles and its application in PDT is evaluated. Due to the high oxygen affinity of perfluorocarbon segments, and the tumor-targeting nature of HA, the photodynamic effect of the oxygen self-carrying micelles is remarkably enhanced, which is confirmed by increased generation of 1O2 and elevated phototoxicity in vitro and in vivo. These results emphasize the promising potential of polysaccharide-based nanocomplexes for enhanced PDT of Ocular Choroidal Melanoma.
Collapse
Affiliation(s)
- Jipeng Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Yudong Xue
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jun Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zeyang Liu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Ai Zhuang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Huifang Zhou
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China.
| |
Collapse
|
15
|
Siemer S, Wünsch D, Khamis A, Lu Q, Scherberich A, Filippi M, Krafft MP, Hagemann J, Weiss C, Ding GB, Stauber RH, Gribko A. Nano Meets Micro-Translational Nanotechnology in Medicine: Nano-Based Applications for Early Tumor Detection and Therapy. NANOMATERIALS 2020; 10:nano10020383. [PMID: 32098406 PMCID: PMC7075286 DOI: 10.3390/nano10020383] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/03/2020] [Accepted: 02/15/2020] [Indexed: 02/07/2023]
Abstract
Nanomaterials have great potential for the prevention and treatment of cancer. Circulating tumor cells (CTCs) are cancer cells of solid tumor origin entering the peripheral blood after detachment from a primary tumor. The occurrence and circulation of CTCs are accepted as a prerequisite for the formation of metastases, which is the major cause of cancer-associated deaths. Due to their clinical significance CTCs are intensively discussed to be used as liquid biopsy for early diagnosis and prognosis of cancer. However, there are substantial challenges for the clinical use of CTCs based on their extreme rarity and heterogeneous biology. Therefore, methods for effective isolation and detection of CTCs are urgently needed. With the rapid development of nanotechnology and its wide applications in the biomedical field, researchers have designed various nano-sized systems with the capability of CTCs detection, isolation, and CTCs-targeted cancer therapy. In the present review, we summarize the underlying mechanisms of CTC-associated tumor metastasis, and give detailed information about the unique properties of CTCs that can be harnessed for their effective analytical detection and enrichment. Furthermore, we want to give an overview of representative nano-systems for CTC isolation, and highlight recent achievements in microfluidics and lab-on-a-chip technologies. We also emphasize the recent advances in nano-based CTCs-targeted cancer therapy. We conclude by critically discussing recent CTC-based nano-systems with high therapeutic and diagnostic potential as well as their biocompatibility as a practical example of applied nanotechnology.
Collapse
Affiliation(s)
- Svenja Siemer
- Nanobiomedicine Department, University Medical Center Mainz/ENT, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Désirée Wünsch
- Nanobiomedicine Department, University Medical Center Mainz/ENT, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Aya Khamis
- Nanobiomedicine Department, University Medical Center Mainz/ENT, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Qiang Lu
- Nanobiomedicine Department, University Medical Center Mainz/ENT, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Arnaud Scherberich
- Laboratory of Tissue Engineering, Universitätspital Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland (M.F.)
| | - Miriam Filippi
- Laboratory of Tissue Engineering, Universitätspital Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland (M.F.)
| | - Marie Pierre Krafft
- Institut Charles Sadron (CNRS), University of Strasbourg, 23 rue du Loess, 67034 Strasbourg Cedex, France
| | - Jan Hagemann
- Nanobiomedicine Department, University Medical Center Mainz/ENT, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Carsten Weiss
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Postfach 3640, 76021 Karlsruhe, Germany
| | - Guo-Bin Ding
- Institute for Biotechnology, Shanxi University, No. 92 Wucheng Road, 030006 Taiyuan, China
| | - Roland H. Stauber
- Nanobiomedicine Department, University Medical Center Mainz/ENT, Langenbeckstrasse 1, 55131 Mainz, Germany
- Institute for Biotechnology, Shanxi University, No. 92 Wucheng Road, 030006 Taiyuan, China
- Correspondence: (R.H.S.); (A.G.); Tel.: +49-6131-176030 (A.G.)
| | - Alena Gribko
- Nanobiomedicine Department, University Medical Center Mainz/ENT, Langenbeckstrasse 1, 55131 Mainz, Germany
- Correspondence: (R.H.S.); (A.G.); Tel.: +49-6131-176030 (A.G.)
| |
Collapse
|
16
|
Chen Y, Jiang B, Hu Y, Deng N, Zhao B, Li X, Liang Z, Zhang L, Zhang Y. Aptamer functionalized magnetic graphene oxide nanocomposites for highly selective capture of histones. Electrophoresis 2019; 40:2135-2141. [PMID: 30977149 DOI: 10.1002/elps.201900061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/10/2019] [Accepted: 03/14/2019] [Indexed: 11/11/2022]
Abstract
The binding coverage of aptamer was an important restricted factor for aptamer-based affinity enrichment strategy for capturing target molecules. Herein, we designed and prepared aptamer functionalized graphene oxide based nanocomposites (GO/NH2 -NTA/Fe3 O4 /PEI/Au), and the coverage density of aptamer was high to 33.1 nmol/mg. The high aptamer coverage density was contributed to the large surface area of graphene oxide. The successive modification of Nα,Nα-Bis(carboxymethyl)-L-lysine, magnetic nanoparticles, polyethylenimine, and Au nanoparticles ensured the histone purification with fast speed and high purity. Histones could be captured rapidly and specifically from nucleoproteins by our aptamer based purification strategy, while traditional acid-extraction could not specifically enrich histones. Compared with traditional acid-extraction method, rapid and efficient discovery of histones and their post-translational modifications, such as several kinds of methylation at H3.1K9 and H3.1K27, were achieved confidently. It demonstrated that our aptamer functionalized magnetic graphene oxide nanocomposites have a great potential for histone analysis.
Collapse
Affiliation(s)
- Yuanbo Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Bo Jiang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Yechen Hu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Nan Deng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China.,Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, P. R. China
| | - Baofeng Zhao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Xiao Li
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Zhen Liang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| |
Collapse
|
17
|
Fu X, Ohta S, Kamihira M, Sakai Y, Ito T. Size-Controlled Preparation of Microsized Perfluorocarbon Emulsions as Oxygen Carriers via the Shirasu Porous Glass Membrane Emulsification Technique. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4094-4100. [PMID: 30791688 DOI: 10.1021/acs.langmuir.9b00194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We have developed microsized perfluorocarbon (PFC) emulsions with different sizes as artificial oxygen carriers (OCs) via Shirasu porous glass membrane emulsification. Monodispersed PFC emulsions with narrow size distribution were obtained. By changing the membrane pore size, we were able to precisely control the size of emulsions and fabricate emulsions similar in size to human red blood cells. Behaviors of Pluronics with different physiochemical properties (F127, F68, P85, and P103) as surfactants were also investigated, which evidenced that the type and concentration of Pluronics have a major impact on the size of emulsions and the response to different thermal conditions. The F127-stabilized microsized PFC emulsions were stable even during autoclave sterilization. The emulsions were loaded with Ru(ddp)-an oxygen-sensitive probe-on their surfaces to indicate oxygen concentration. Finally, incubations with HeLa cells that show fluorescence in response to hypoxia cultured in 2D and 3D suggested promising potential of our emulsions for OCs.
Collapse
Affiliation(s)
- Xiaoting Fu
- Department of Bioengineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-8656 , Japan
| | - Seiichi Ohta
- Center for Disease Biology and Integrative Medicine , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-8655 , Japan
| | - Masamichi Kamihira
- Department of Chemical Engineering , Kyushu University , 744 Motooka , Nishi-ku, Fukuoka 819-0395 , Japan
| | - Yasuyuki Sakai
- Department of Bioengineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-8656 , Japan
| | - Taichi Ito
- Department of Bioengineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-8656 , Japan
- Center for Disease Biology and Integrative Medicine , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-8655 , Japan
| |
Collapse
|
18
|
Zhu H, Qin D, Wu Y, Jing B, Liu J, Hazlewood D, Zhang H, Feng Y, Yang X, Wan M, Wu D. Laser-Activated Bioprobes with High Photothermal Conversion Efficiency for Sensitive Photoacoustic/Ultrasound Imaging and Photothermal Sensing. ACS APPLIED MATERIALS & INTERFACES 2018; 10:29251-29259. [PMID: 30102025 DOI: 10.1021/acsami.8b08190] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Laser-activated bioprobes with high photothermal conversion efficiency (IRPDA@PFH NDs) based on biocompatible IR-780 doped polydopamine perfluorocarbon nanodroplets (NDs) were developed. When protected by gelatin microspheres, their near-spherical morphologies can be easily observed with transmission electron microscope. Doping IR-780 (3 w/w % of added dopamine hydrochloride) can significantly enhance near-infrared (NIR) absorption and photothermal conversion efficiency to 57.7%. The enhanced NIR absorption and nonradiative relaxation are preferred to stronger photoacoustic (PA) signals and higher PA imaging definition; ultrasound (US) signals also increase more than 2.5 times because of easier phase change of NDs. These bioprobes had sensitive PA/US imaging capability with highly effective substitute utilizations, in which polydopamine was used either as a PA contrast or a photothermal agent. Perfluorocarbon can be used as an US contrast agent and temperature indicator. More importantly, the gray value increments of US increase with temperature in a general range from 35 to 55 °C. Especially, an approximate linear increasing of gray value in the optimized photothermal therapy (PTT) range from 35 °C to 50 °C could be used for the temperature monitoring and control of PTT. During PTT, the heated regions and the extent of photothermal heating can be visualized by US imaging. These findings indicate their great potential for biosensing and PTT monitoring.
Collapse
Affiliation(s)
| | | | | | | | | | - David Hazlewood
- Bioengineering Research Center and Department of Mechanical Engineering , University of Kansas , Lawrence , Kansas 66045 , United States
| | | | | | - Xinmai Yang
- Bioengineering Research Center and Department of Mechanical Engineering , University of Kansas , Lawrence , Kansas 66045 , United States
| | | | | |
Collapse
|
19
|
Wei P, Luo Q, Edgehouse KJ, Hemmingsen CM, Rodier BJ, Pentzer EB. 2D Particles at Fluid-Fluid Interfaces: Assembly and Templating of Hybrid Structures for Advanced Applications. ACS APPLIED MATERIALS & INTERFACES 2018; 10:21765-21781. [PMID: 29897230 DOI: 10.1021/acsami.8b07178] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Fluid-fluid interfaces have widespread applications in personal care products, the food industry, oil recovery, mineral processes, etc. and are also important and versatile platforms for generating advanced materials. In Pickering emulsions, particles stabilize the fluid-fluid interface, and their presence reduces the interfacial energy between the two fluids. To date, most Pickering emulsions stabilized by 2D particles make use of clay platelets or GO nanosheets. These systems have been used to template higher order hybrid, functional materials, most commonly, armored polymer particles, capsules, and Janus nanosheets. This review discusses the experimental and computational study of the assembly of sheet-like 2D particles at fluid-fluid interfaces, with an emphasis on the impact of chemical composition, and the use of these assemblies to prepare composite structures of dissimilar materials. The review culminates in a perspective on the future of Pickering emulsions using 2D particle surfactants, including new chemical modification and types of particles as well as the realization of properties and applications not possible with currently accessible systems, such as lubricants, porous structures, delivery, coatings, etc.
Collapse
Affiliation(s)
- Peiran Wei
- Department of Chemistry , Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Qinmo Luo
- Department of Chemistry , Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Katelynn J Edgehouse
- Department of Chemistry , Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Christina M Hemmingsen
- Department of Chemistry , Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Bradley J Rodier
- Department of Chemistry , Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Emily B Pentzer
- Department of Chemistry , Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| |
Collapse
|
20
|
Fernandez-Moure J, Maisha N, Lavik EB, Cannon JW. The Chemistry of Lyophilized Blood Products. Bioconjug Chem 2018; 29:2150-2160. [PMID: 29791137 DOI: 10.1021/acs.bioconjchem.8b00271] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
With the development of new biologics and bioconjugates, storage and preservation have become more critical than ever before. Lyophilization is a method of cell and protein preservation by removing a solvent such as water from a substance followed by freezing. This technique has been used in the past and still holds promise for overcoming logistic challenges in safety net hospitals with limited blood banking resources, austere environments such as combat, and mass casualty situations where existing resources may be outstripped. This method allows for long-term storage and transport but requires the bioconjugation of preservatives to prevent cell destabilization. Trehalose is utilized as a bioconjugate in platelet and red blood cell preservation to maintain protein thermodynamics and stabilizing protein formulations in liquid and freeze-dried states. Biomimetic approaches have been explored as alternatives to cryo- and lyopreservation of blood components. Intravascular hemostats such as PLGA nanoparticles functionalized with PEG motifs, topical hemostats utilizing fibrinogen or chitosan, and liposomal encapsulated hemoglobin with surface modifications are effectively stored long-term through bioconjugation. In thinking about the best methods for storage and transport, we are focusing this topical review on blood products that have the longest track record of preservation and looking at how these methods can be applied to synthetic systems.
Collapse
Affiliation(s)
- Joseph Fernandez-Moure
- Division of Trauma, Surgical Critical Care & Emergency Surgery , Perelman School of Medicine at the University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Nuzhat Maisha
- Department of Chemical, Biochemical & Environmental Engineering , University of Maryland, Baltimore County , Baltimore , Maryland 21250 , United States
| | - Erin B Lavik
- Department of Chemical, Biochemical & Environmental Engineering , University of Maryland, Baltimore County , Baltimore , Maryland 21250 , United States
| | - Jeremy W Cannon
- Division of Trauma, Surgical Critical Care & Emergency Surgery , Perelman School of Medicine at the University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States.,Department of Surgery , Uniformed Services University of the Health Sciences , Bethesda , Maryland 20814 , United States
| |
Collapse
|
21
|
McNarry A, Patel A. The evolution of airway management – new concepts and conflicts with traditional practice. Br J Anaesth 2017; 119:i154-i166. [DOI: 10.1093/bja/aex385] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|