1
|
Jarzynska K, Gajewicz-Skretna A, Ciura K, Puzyn T. Predicting zeta potential of liposomes from their structure: A nano-QSPR model for DOPE, DC-Chol, DOTAP, and EPC formulations. Comput Struct Biotechnol J 2024; 25:3-8. [PMID: 38328349 PMCID: PMC10848030 DOI: 10.1016/j.csbj.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/09/2024] Open
Abstract
Liposomes, nanoscale spherical structures composed of amphiphilic lipids, hold great promise for various pharmaceutical applications, especially as nanocarriers in targeted drug delivery, due to their biocompatibility, biodegradability, and low immunogenicity. Understanding the factors influencing their physicochemical properties is crucial for designing and optimizing liposomes. In this study, we have presented the kernel-weighted local polynomial regression (KwLPR) nano-quantitative structure-property relationships (nano-QSPR) model to predict the zeta potential (ZP) based on the structure of 12 liposome formulations, including 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), 3ß-[N-(N',N'-dimethylaminoethane)-carbamoyl]cholesterol (DC-Chol), 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), and L-α-phosphatidylcholine (EPC). The developed model is well-fitted (R 2 = 0.96, RMSE C = 5.76), flexible (Q CVloo 2 = 0.83, RMSE CVloo = 10.77), and reliable (Q Ext 2 = 0.89 RMSE Ext = 5.17). Furthermore, we have established the formula for computing molecular nanodescriptors for liposomes, based on constituent lipids' molar fractions. Through the correlation matrix and principal component analysis (PCA), we have identified two key structural features affecting liposomes' zeta potential: hydrophilic-lipophilic balance (HLB) and enthalpy of formation. Lower HLB values, indicating a more lipophilic nature, are associated with a higher zeta potential, and thus stability. Higher enthalpy of formation reflects reduced zeta potential and decreased stability of liposomes. We have demonstrated that the nano-QSPR approach allows for a better understanding of how the composition and molecular structure of liposomes affect their zeta potential, filling a gap in ZP nano-QSPR modeling methodologies for nanomaterials (NMs). The proposed proof-of-concept study is the first step in developing a comprehensive and computationally based system for predicting the physicochemical properties of liposomes as one of the most important drug nano-vehicles.
Collapse
Affiliation(s)
- Kamila Jarzynska
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Agnieszka Gajewicz-Skretna
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Krzesimir Ciura
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Gen. Hallera 107, 80-416 Gdańsk, Poland
| | - Tomasz Puzyn
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| |
Collapse
|
2
|
Banerjee A, Kar S, Roy K, Patlewicz G, Charest N, Benfenati E, Cronin MTD. Molecular similarity in chemical informatics and predictive toxicity modeling: from quantitative read-across (q-RA) to quantitative read-across structure-activity relationship (q-RASAR) with the application of machine learning. Crit Rev Toxicol 2024; 54:659-684. [PMID: 39225123 DOI: 10.1080/10408444.2024.2386260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
This article aims to provide a comprehensive critical, yet readable, review of general interest to the chemistry community on molecular similarity as applied to chemical informatics and predictive modeling with a special focus on read-across (RA) and read-across structure-activity relationships (RASAR). Molecular similarity-based computational tools, such as quantitative structure-activity relationships (QSARs) and RA, are routinely used to fill the data gaps for a wide range of properties including toxicity endpoints for regulatory purposes. This review will explore the background of RA starting from how structural information has been used through to how other similarity contexts such as physicochemical, absorption, distribution, metabolism, and elimination (ADME) properties, and biological aspects are being characterized. More recent developments of RA's integration with QSAR have resulted in the emergence of novel models such as ToxRead, generalized read-across (GenRA), and quantitative RASAR (q-RASAR). Conventional QSAR techniques have been excluded from this review except where necessary for context.
Collapse
Affiliation(s)
- Arkaprava Banerjee
- Department of Pharmaceutical Technology, Drug Theoretics and Cheminformatics (DTC) Laboratory, Jadavpur University, Kolkata, India
| | - Supratik Kar
- Department of Chemistry and Physics, Chemometrics & Molecular Modeling Laboratory, Kean University, Union, NJ, USA
| | - Kunal Roy
- Department of Pharmaceutical Technology, Drug Theoretics and Cheminformatics (DTC) Laboratory, Jadavpur University, Kolkata, India
| | - Grace Patlewicz
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Nathaniel Charest
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Emilio Benfenati
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Mark T D Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
3
|
He S, Nader K, Abarrategi JS, Bediaga H, Nocedo-Mena D, Ascencio E, Casanola-Martin GM, Castellanos-Rubio I, Insausti M, Rasulev B, Arrasate S, González-Díaz H. NANO.PTML model for read-across prediction of nanosystems in neurosciences. computational model and experimental case of study. J Nanobiotechnology 2024; 22:435. [PMID: 39044265 PMCID: PMC11267683 DOI: 10.1186/s12951-024-02660-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
Neurodegenerative diseases involve progressive neuronal death. Traditional treatments often struggle due to solubility, bioavailability, and crossing the Blood-Brain Barrier (BBB). Nanoparticles (NPs) in biomedical field are garnering growing attention as neurodegenerative disease drugs (NDDs) carrier to the central nervous system. Here, we introduced computational and experimental analysis. In the computational study, a specific IFPTML technique was used, which combined Information Fusion (IF) + Perturbation Theory (PT) + Machine Learning (ML) to select the most promising Nanoparticle Neuronal Disease Drug Delivery (N2D3) systems. For the application of IFPTML model in the nanoscience, NANO.PTML is used. IF-process was carried out between 4403 NDDs assays and 260 cytotoxicity NP assays conducting a dataset of 500,000 cases. The optimal IFPTML was the Decision Tree (DT) algorithm which shown satisfactory performance with specificity values of 96.4% and 96.2%, and sensitivity values of 79.3% and 75.7% in the training (375k/75%) and validation (125k/25%) set. Moreover, the DT model obtained Area Under Receiver Operating Characteristic (AUROC) scores of 0.97 and 0.96 in the training and validation series, highlighting its effectiveness in classification tasks. In the experimental part, two samples of NPs (Fe3O4_A and Fe3O4_B) were synthesized by thermal decomposition of an iron(III) oleate (FeOl) precursor and structurally characterized by different methods. Additionally, in order to make the as-synthesized hydrophobic NPs (Fe3O4_A and Fe3O4_B) soluble in water the amphiphilic CTAB (Cetyl Trimethyl Ammonium Bromide) molecule was employed. Therefore, to conduct a study with a wider range of NP system variants, an experimental illustrative simulation experiment was performed using the IFPTML-DT model. For this, a set of 500,000 prediction dataset was created. The outcome of this experiment highlighted certain NANO.PTML systems as promising candidates for further investigation. The NANO.PTML approach holds potential to accelerate experimental investigations and offer initial insights into various NP and NDDs compounds, serving as an efficient alternative to time-consuming trial-and-error procedures.
Collapse
Affiliation(s)
- Shan He
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, 58108, USA
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, Leioa, 48940, Spain
- IKERDATA S.L., ZITEK, UPV/EHU, Rectorate Building, nº 6, Leioa, 48940, Greater Bilbao, Basque Country, Spain
| | - Karam Nader
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, Leioa, 48940, Spain
| | - Julen Segura Abarrategi
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, Leioa, 48940, Spain
| | - Harbil Bediaga
- IKERDATA S.L., ZITEK, UPV/EHU, Rectorate Building, nº 6, Leioa, 48940, Greater Bilbao, Basque Country, Spain
| | - Deyani Nocedo-Mena
- Faculty of Physical Mathematical Sciences, Autonomous University of Nuevo León, San Nicolás de los Garza, 66455, Nuevo León, México
| | - Estefania Ascencio
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, 58108, USA
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, Leioa, 48940, Spain
- IKERDATA S.L., ZITEK, UPV/EHU, Rectorate Building, nº 6, Leioa, 48940, Greater Bilbao, Basque Country, Spain
| | - Gerardo M Casanola-Martin
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, 58108, USA
| | - Idoia Castellanos-Rubio
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, Leioa, 48940, Spain.
| | - Maite Insausti
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, Leioa, 48940, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, Leioa, 48940, Spain
| | - Bakhtiyor Rasulev
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, 58108, USA
| | - Sonia Arrasate
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, Leioa, 48940, Spain.
| | - Humberto González-Díaz
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, Leioa, 48940, Spain
- BIOFISIKA: Basque Center for Biophysics CSIC, University of The Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa, 48940, Bizkaia, Basque Country, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48011, Biscay, Spain
| |
Collapse
|
4
|
Balraadjsing S, J G M Peijnenburg W, Vijver MG. Building species trait-specific nano-QSARs: Model stacking, navigating model uncertainties and limitations, and the effect of dataset size. ENVIRONMENT INTERNATIONAL 2024; 188:108764. [PMID: 38788418 DOI: 10.1016/j.envint.2024.108764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
A strong need exists for broadly applicable nano-QSARs, capable of predicting toxicological outcomes towards untested species and nanomaterials, under different environmental conditions. Existing nano-QSARs are generally limited to only a few species but the inclusion of species characteristics into models can aid in making them applicable to multiple species, even when toxicity data is not available for biological species. Species traits were used to create classification- and regression machine learning models to predict acute toxicity towards aquatic species for metallic nanomaterials. Afterwards, the individual classification- and regression models were stacked into a meta-model to improve performance. Additionally, the uncertainty and limitations of the models were assessed in detail (beyond the OECD principles) and it was investigated whether models would benefit from the addition of more data. Results showed a significant improvement in model performance following model stacking. Investigation of model uncertainties and limitations highlighted the discrepancy between the applicability domain and accuracy of predictions. Data points outside of the assessed chemical space did not have higher likelihoods of generating inadequate predictions or vice versa. It is therefore concluded that the applicability domain does not give complete insight into the uncertainty of predictions and instead the generation of prediction intervals can help in this regard. Furthermore, results indicated that an increase of the dataset size did not improve model performance. This implies that larger dataset sizes may not necessarily improve model performance while in turn also meaning that large datasets are not necessarily required for prediction of acute toxicity with nano-QSARs.
Collapse
Affiliation(s)
- Surendra Balraadjsing
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA Leiden, the Netherlands.
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA Leiden, the Netherlands; Centre for Safety of Substances and Products, National Institute of Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven, the Netherlands
| | - Martina G Vijver
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA Leiden, the Netherlands
| |
Collapse
|
5
|
Singh AV, Shelar A, Rai M, Laux P, Thakur M, Dosnkyi I, Santomauro G, Singh AK, Luch A, Patil R, Bill J. Harmonization Risks and Rewards: Nano-QSAR for Agricultural Nanomaterials. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2835-2852. [PMID: 38315814 DOI: 10.1021/acs.jafc.3c06466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
This comprehensive review explores the emerging landscape of Nano-QSAR (quantitative structure-activity relationship) for assessing the risk and potency of nanomaterials in agricultural settings. The paper begins with an introduction to Nano-QSAR, providing background and rationale, and explicitly states the hypotheses guiding the review. The study navigates through various dimensions of nanomaterial applications in agriculture, encompassing their diverse properties, types, and associated challenges. Delving into the principles of QSAR in nanotoxicology, this article elucidates its application in evaluating the safety of nanomaterials, while addressing the unique limitations posed by these materials. The narrative then transitions to the progression of Nano-QSAR in the context of agricultural nanomaterials, exemplified by insightful case studies that highlight both the strengths and the limitations inherent in this methodology. Emerging prospects and hurdles tied to Nano-QSAR in agriculture are rigorously examined, casting light on important pathways forward, existing constraints, and avenues for research enhancement. Culminating in a synthesis of key insights, the review underscores the significance of Nano-QSAR in shaping the future of nanoenabled agriculture. It provides strategic guidance to steer forthcoming research endeavors in this dynamic field.
Collapse
Affiliation(s)
- Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR), Maxdohrnstrasse 8-10, 10589 Berlin, Germany
| | - Amruta Shelar
- Department of Technology, Savitribai Phule Pune University, Pune 411007, India
| | - Mansi Rai
- Department of Microbiology, Central University of Rajasthan NH-8, Bandar Sindri, Dist-Ajmer-305817, Rajasthan, India
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR), Maxdohrnstrasse 8-10, 10589 Berlin, Germany
| | - Manali Thakur
- Uniklinik Köln, Kerpener Strasse 62, 50937 Köln Germany
| | - Ievgen Dosnkyi
- Institute of Chemistry and Biochemistry Department of Organic ChemistryFreie Universität Berlin Takustr. 3 14195 Berlin, Germany
| | - Giulia Santomauro
- Institute for Materials Science, Department of Bioinspired Materials, University of Stuttgart, 70569, Stuttgart, Germany
| | - Alok Kumar Singh
- Department of Plant Molecular Biology & Genetic Engineering, ANDUA&T, Ayodhya 224229, Uttar Pradesh, India
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR), Maxdohrnstrasse 8-10, 10589 Berlin, Germany
| | - Rajendra Patil
- Department of Technology, Savitribai Phule Pune University, Pune 411007, India
| | - Joachim Bill
- Institute for Materials Science, Department of Bioinspired Materials, University of Stuttgart, 70569, Stuttgart, Germany
| |
Collapse
|
6
|
Pandey NK, Murmu A, Banjare P, Matore BW, Singh J, Roy PP. Integrated predictive QSAR, Read Across, and q-RASAR analysis for diverse agrochemical phytotoxicity in oat and corn: A consensus-based approach for risk assessment and prioritization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12371-12386. [PMID: 38228952 DOI: 10.1007/s11356-024-31872-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024]
Abstract
In the modern fast-paced lifestyle, time-efficient and nutritionally rich foods like corn and oat have gained popularity for their amino acids and antioxidant contents. The increasing demand for these cereals necessitates higher production which leads to dependency on agrochemicals, which can pose health risks through residual present in the plant products. To first report the phytotoxicity for corn and oat, our study employs QSAR, quantitative Read-Across and quantitative RASAR (q-RASAR). All developed QSAR and q-RASAR models were equally robust (R2 = 0.680-0.762, Q2Loo = 0.593-0.693, Q2F1 = 0.680-0.860) and find their superiority in either oat or corn model, respectively, based on MAE criteria. AD and PRI had been performed which confirm the reliability and predictability of the models. The mechanistic interpretation reveals that the symmetrical arrangement of electronegative atoms and polar groups directly influences the toxicity of compounds. The final phytotoxicity and prioritization are performed by the consensus approach which results into selection of 15 most toxic compounds for both species.
Collapse
Affiliation(s)
- Nilesh Kumar Pandey
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India
| | - Anjali Murmu
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India
| | | | - Balaji Wamanrao Matore
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India
| | - Jagadish Singh
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India
| | - Partha Pratim Roy
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India.
| |
Collapse
|
7
|
Varsou DD, Sarimveis H. Deimos: A novel automated methodology for optimal grouping. Application to nanoinformatics case studies. Mol Inform 2023; 42:e2300019. [PMID: 37258455 DOI: 10.1002/minf.202300019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/05/2023] [Accepted: 05/31/2023] [Indexed: 06/02/2023]
Abstract
In this study we present deimos, a computational methodology for optimal grouping, applied on the read-across prediction of engineered nanomaterials' (ENMs) toxicity-related properties. The method is based on the formulation and the solution of a mixed-integer optimization program (MILP) problem that automatically and simultaneously performs feature selection, defines the grouping boundaries according to the response variable and develops linear regression models in each group. For each group/region, the characteristic centroid is defined in order to allocate untested ENMs to the groups. The deimos MILP problem is integrated in a broader optimization workflow that selects the best performing methodology between the standard multiple linear regression (MLR), the least absolute shrinkage and selection operator (LASSO) models and the proposed deimos multiple-region model. The performance of the suggested methodology is demonstrated through the application to benchmark ENMs datasets and comparison with other predictive modelling approaches. However, the proposed method can be applied to property prediction of other than ENM chemical entities and it is not limited to ENMs toxicity prediction.
Collapse
Affiliation(s)
- Dimitra-Danai Varsou
- School of Chemical Engineering, National Technical University of Athens, 157 80, Athens, Greece
| | - Haralambos Sarimveis
- School of Chemical Engineering, National Technical University of Athens, 157 80, Athens, Greece
| |
Collapse
|
8
|
Yan X, Yue T, Winkler DA, Yin Y, Zhu H, Jiang G, Yan B. Converting Nanotoxicity Data to Information Using Artificial Intelligence and Simulation. Chem Rev 2023. [PMID: 37262026 DOI: 10.1021/acs.chemrev.3c00070] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Decades of nanotoxicology research have generated extensive and diverse data sets. However, data is not equal to information. The question is how to extract critical information buried in vast data streams. Here we show that artificial intelligence (AI) and molecular simulation play key roles in transforming nanotoxicity data into critical information, i.e., constructing the quantitative nanostructure (physicochemical properties)-toxicity relationships, and elucidating the toxicity-related molecular mechanisms. For AI and molecular simulation to realize their full impacts in this mission, several obstacles must be overcome. These include the paucity of high-quality nanomaterials (NMs) and standardized nanotoxicity data, the lack of model-friendly databases, the scarcity of specific and universal nanodescriptors, and the inability to simulate NMs at realistic spatial and temporal scales. This review provides a comprehensive and representative, but not exhaustive, summary of the current capability gaps and tools required to fill these formidable gaps. Specifically, we discuss the applications of AI and molecular simulation, which can address the large-scale data challenge for nanotoxicology research. The need for model-friendly nanotoxicity databases, powerful nanodescriptors, new modeling approaches, molecular mechanism analysis, and design of the next-generation NMs are also critically discussed. Finally, we provide a perspective on future trends and challenges.
Collapse
Affiliation(s)
- Xiliang Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Tongtao Yue
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Institute of Coastal Environmental Pollution Control, Ocean University of China, Qingdao 266100, China
| | - David A Winkler
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- School of Pharmacy, University of Nottingham, Nottingham NG7 2QL, U.K
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hao Zhu
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bing Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
9
|
De P, Roy K. Computational modeling of PET imaging agents for vesicular acetylcholine transporter (VAChT) protein binding affinity: application of 2D-QSAR modeling and molecular docking techniques. In Silico Pharmacol 2023; 11:9. [PMID: 37035236 PMCID: PMC10073372 DOI: 10.1007/s40203-023-00146-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
The neurotransmitter acetylcholine (ACh) plays a ubiquitous role in cognitive functions including learning and memory with widespread innervation in the cortex, subcortical structures, and the cerebellum. Cholinergic receptors, transporters, or enzymes associated with many neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD), are potential imaging targets. In the present study, we have developed 2D-quantitative structure-activity relationship (2D-QSAR) models for 19 positron emission tomography (PET) imaging agents targeted against presynaptic vesicular acetylcholine transporter (VAChT). VAChT assists in the transport of ACh into the presynaptic storage vesicles, and it becomes one of the main targets for the diagnosis of various neurodegenerative diseases. In our work, we aimed to understand the important structural features of the PET imaging agents required for their binding with VAChT. This was done by feature selection using a Genetic Algorithm followed by the Best Subset Selection method and developing a Partial Least Squares- based 2D-QSAR model using the best feature combination. The developed QSAR model showed significant statistical performance and reliability. Using the features selected in the 2D-QSAR analysis, we have also performed similarity-based chemical read-across predictions and obtained encouraging external validation statistics. Further, we have also performed molecular docking analysis to understand the molecular interactions occurring between the PET imaging agents and the VAChT receptor. The molecular docking results were correlated with the QSAR features for a better understanding of the molecular interactions. This research serves to fulfill the experimental data gap, highlighting the applicability of computational methods in the PET imaging agents' binding affinity prediction. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40203-023-00146-4.
Collapse
Affiliation(s)
- Priyanka De
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032 India
| | - Kunal Roy
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032 India
| |
Collapse
|
10
|
Wu J, Zhu Z, Liu W, Zhang Y, Kang Y, Liu J, Hu C, Wang R, Zhang M, Chen L, Shao L. How Nanoparticles Open the Paracellular Route of Biological Barriers: Mechanisms, Applications, and Prospects. ACS NANO 2022; 16:15627-15652. [PMID: 36121682 DOI: 10.1021/acsnano.2c05317] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Biological barriers are essential physiological protective systems and obstacles to drug delivery. Nanoparticles (NPs) can access the paracellular route of biological barriers, either causing adverse health impacts on humans or producing therapeutic opportunities. This Review introduces the structural and functional influences of NPs on the key components that govern the paracellular route, mainly tight junctions, adherens junctions, and cytoskeletons. Furthermore, we evaluate their interaction mechanisms and address the influencing factors that determine the ability of NPs to open the paracellular route, which provides a better knowledge of how NPs can open the paracellular route in a safer and more controllable way. Finally, we summarize limitations in the research models and methodologies of the existing research in the field and provide future research direction. This Review demonstrates the in-depth causes for the reversible opening or destruction of the integrity of barriers generated by NPs; more importantly, it contributes insights into the design of NP-based medications to boost paracellular drug delivery efficiency.
Collapse
Affiliation(s)
- Junrong Wu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China
| | - Zhenjun Zhu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Wenjing Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yiyuan Kang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Chen Hu
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ruolan Wang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Manjin Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China
| |
Collapse
|
11
|
Li J, Wang C, Yue L, Chen F, Cao X, Wang Z. Nano-QSAR modeling for predicting the cytotoxicity of metallic and metal oxide nanoparticles: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113955. [PMID: 35961199 DOI: 10.1016/j.ecoenv.2022.113955] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/11/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Given the rapid development of nanotechnology, it is crucial to understand the effects of nanoparticles on living organisms. However, it is laborious to perform toxicological tests on a case-by-case basis. Quantitative structure-activity relationship (QSAR) is an effective computational technique because it saves time, costs, and animal sacrifice. Therefore, this review presents general procedures for the construction and application of nano-QSAR models of metal-based and metal-oxide nanoparticles (MBNPs and MONPs). We also provide an overview of available databases and common algorithms. The molecular descriptors and their roles in the toxicological interpretation of MBNPs and MONPs are systematically reviewed and the future of nano-QSAR is discussed. Finally, we address the growing demand for novel nano-specific descriptors, new computational strategies to address the data shortage, in situ data for regulatory concerns, a better understanding of the physicochemical properties of NPs with bioactivity, and, most importantly, the design of nano-QSAR for real-life environmental predictions rather than laboratory simulations.
Collapse
Affiliation(s)
- Jing Li
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
12
|
Kar S, Pathakoti K, Leszczynska D, Tchounwou PB, Leszczynski J. In vitro and in silico study of mixtures cytotoxicity of metal oxide nanoparticles to Escherichia coli: a mechanistic approach. Nanotoxicology 2022; 16:566-579. [PMID: 36149909 PMCID: PMC10266837 DOI: 10.1080/17435390.2022.2123750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 01/04/2023]
Abstract
Metal oxide nanoparticles (MONPs) are commonly found in the aquatic and terrestrial systems as chemical mixtures. Assessment of cytotoxicity associated with single and combination of MONPs can truly identify the concerned environmental risk. Thus, using Escherichia coli as a test model, in vitro cytotoxicity of 6 single MONPs, 15 binary and 20 tertiary mixtures with equitoxic ratios was evaluated following standard bioassay protocols. Assessment of oxidative stress suggested that the production of reactive oxygen species (ROS) was negligible, and the release of metal zinc ions played an important role in the toxicity of MONP mixtures. From our experimental data points, seven quantitative structure-activity relationships (QSARs) models were developed to model the cytotoxicity of these MONPs, based on our created periodic table-based descriptors and experimentally analyzed Zeta-potential. Two strategic approaches i.e. pharmacological and mathematical hypotheses were considered to identify the mixture descriptors pool for modeling purposes. The stringent validation criteria suggested that the model (Model M4) developed with mixture descriptors generated by square-root mole contribution outperformed the other six models considering validation criteria. While considering the pharmacological approach, the 'independent action' generated descriptor pool offered the best model (Model M2), which firmly confirmed that each MONP in the mixture acts through 'independent action' to induce cytotoxicity to E. coli instead of fostering an additive, antagonistic or synergistic effect among MONPs. The total metal electronegativity in a specific metal oxide relative to the number of oxygen atoms and metal valence was associated with a positive contribution to cytotoxicity. At the same time, the core count, which gives a measure of molecular bulk and Zeta potential, had a negative contribution to cytotoxicity.
Collapse
Affiliation(s)
- Supratik Kar
- Chemometrics and Molecular Modeling Laboratory, Department of Chemistry, Kean University, 1000 Morris Avenue, Union, NJ 07083, USA
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS-39217, USA
| | - Kavitha Pathakoti
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS-39217, USA
- RCMI Center for Environmental Health, Department of Biology, Jackson State University, Jackson, MS-39217, USA
| | - Danuta Leszczynska
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS-39217, USA
- Department of Civil and Environmental Engineering, Jackson State University, Jackson, MS-39217, USA
| | - Paul B. Tchounwou
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS-39217, USA
- RCMI Center for Environmental Health, Department of Biology, Jackson State University, Jackson, MS-39217, USA
| | - Jerzy Leszczynski
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS-39217, USA
| |
Collapse
|
13
|
Proposing an Adaptive Neuro-Fuzzy System-Based Swarm Concept Method for Predicting the Physical Properties of Nanofluids. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1155/2022/3345368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This paper employs dispersed nanoparticles (NPs) to build an adaptive neuro-fuzzy system (ANFIS) for predicting their thermal conductivity (TC) and viscosity according to the most important input data including concentration, size, the thickness of the interfacial layer, and intensive properties of NPs. In this regard, we gather an extensive and comprehensive data set from different sources. Here, the ANFIS model factors are optimized by using the particle swarm optimization (PSO) technique. Afterward, the obtained results are compared with previously published models which did a better job in predicting target values. In the following, to investigate the validity of our proposed model, statistical and graphical techniques are employed and it was proved that this model is efficient to evaluate the output values. Amounts of results obtained from the PSO-ANFIS model evaluation are 0.988 and 0.985 for the R2 and 0.0156 and 0.0876 for root mean squared error (RMSE) of TC ratio and viscosity ratio values, respectively, letting out a valid forecast of targets. Finally, by performing various statistical analyzes, it can be said that this model shows a high ability to predict target values and can be considered a good alternative to previous models.
Collapse
|
14
|
Forest V. Experimental and Computational Nanotoxicology-Complementary Approaches for Nanomaterial Hazard Assessment. NANOMATERIALS 2022; 12:nano12081346. [PMID: 35458054 PMCID: PMC9031966 DOI: 10.3390/nano12081346] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 12/25/2022]
Abstract
The growing development and applications of nanomaterials lead to an increasing release of these materials in the environment. The adverse effects they may elicit on ecosystems or human health are not always fully characterized. Such potential toxicity must be carefully assessed with the underlying mechanisms elucidated. To that purpose, different approaches can be used. First, experimental toxicology consisting of conducting in vitro or in vivo experiments (including clinical studies) can be used to evaluate the nanomaterial hazard. It can rely on variable models (more or less complex), allowing the investigation of different biological endpoints. The respective advantages and limitations of in vitro and in vivo models are discussed as well as some issues associated with experimental nanotoxicology. Perspectives of future developments in the field are also proposed. Second, computational nanotoxicology, i.e., in silico approaches, can be used to predict nanomaterial toxicity. In this context, we describe the general principles, advantages, and limitations especially of quantitative structure–activity relationship (QSAR) models and grouping/read-across approaches. The aim of this review is to provide an overview of these different approaches based on examples and highlight their complementarity.
Collapse
Affiliation(s)
- Valérie Forest
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, Etablissement Français du Sang, INSERM, U1059 Sainbiose, Centre CIS, F-42023 Saint-Etienne, France
| |
Collapse
|
15
|
Robinson RLM, Sarimveis H, Doganis P, Jia X, Kotzabasaki M, Gousiadou C, Harper SL, Wilkins T. Identifying diverse metal oxide nanomaterials with lethal effects on embryonic zebrafish using machine learning. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:1297-1325. [PMID: 34934606 PMCID: PMC8649207 DOI: 10.3762/bjnano.12.97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 10/28/2021] [Indexed: 06/14/2023]
Abstract
Manufacturers of nanomaterial-enabled products need models of endpoints that are relevant to human safety to support the "safe by design" paradigm and avoid late-stage attrition. Increasingly, embryonic zebrafish (Danio Rerio) are recognised as a key human safety relevant in vivo test system. Hence, machine learning models were developed for identifying metal oxide nanomaterials causing lethality to embryonic zebrafish up to 24 hours post-fertilisation, or excess lethality in the period of 24-120 hours post-fertilisation, at concentrations of 250 ppm or less. Models were developed using data from the Nanomaterial Biological-Interactions Knowledgebase for a dataset of 44 diverse, coated and uncoated metal or, in one case, metalloid oxide nanomaterials. Different modelling approaches were evaluated using nested cross-validation on this dataset. Models were initially developed for both lethality endpoints using multiple descriptors representing the composition of the core, shell and surface functional groups, as well as particle characteristics. However, interestingly, the 24 hours post-fertilisation data were found to be harder to predict, which could reflect different exposure routes. Hence, subsequent analysis focused on the prediction of excess lethality at 120 hours-post fertilisation. The use of two data augmentation approaches, applied for the first time in nano-QSAR research, was explored, yet both failed to boost predictive performance. Interestingly, it was found that comparable results to those originally obtained using multiple descriptors could be obtained using a model based upon a single, simple descriptor: the Pauling electronegativity of the metal atom. Since it is widely recognised that a variety of intrinsic and extrinsic nanomaterial characteristics contribute to their toxicological effects, this is a surprising finding. This may partly reflect the need to investigate more sophisticated descriptors in future studies. Future studies are also required to examine how robust these modelling results are on truly external data, which were not used to select the single descriptor model. This will require further laboratory work to generate comparable data to those studied herein.
Collapse
Affiliation(s)
| | - Haralambos Sarimveis
- School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou str. Zografou Campus, 15780 Athens, Greece
| | - Philip Doganis
- School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou str. Zografou Campus, 15780 Athens, Greece
| | - Xiaodong Jia
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Marianna Kotzabasaki
- School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou str. Zografou Campus, 15780 Athens, Greece
| | - Christiana Gousiadou
- School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou str. Zografou Campus, 15780 Athens, Greece
| | - Stacey Lynn Harper
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, USA
- Oregon Nanoscience and Microtechnologies Institute, Eugene, Oregon, USA
| | - Terry Wilkins
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom
| |
Collapse
|
16
|
Diéguez-Santana K, González-Díaz H. Towards machine learning discovery of dual antibacterial drug-nanoparticle systems. NANOSCALE 2021; 13:17854-17870. [PMID: 34671801 DOI: 10.1039/d1nr04178a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Artificial Intelligence/Machine Learning (AI/ML) algorithms may speed up the design of DADNP systems formed by Antibacterial Drugs (AD) and Nanoparticles (NP). In this work, we used IFPTML = Information Fusion (IF) + Perturbation-Theory (PT) + Machine Learning (ML) algorithm for the first time to study of a large dataset of putative DADNP systems composed by >165 000 ChEMBL AD assays and 300 NP assays vs. multiple bacteria species. We trained alternative models with Linear Discriminant Analysis (LDA), Artificial Neural Networks (ANN), Bayesian Networks (BNN), K-Nearest Neighbour (KNN) and other algorithms. IFPTML-LDA model was simpler with values of Sp ≈ 90% and Sn ≈ 74% in both training (>124 K cases) and validation (>41 K cases) series. IFPTML-ANN and KNN models are notably more complicated even when they are more balanced Sn ≈ Sp ≈ 88.5%-99.0% and AUROC ≈ 0.94-0.99 in both series. We also carried out a simulation (>1900 calculations) of the expected behavior for putative DADNPs in 72 different biological assays. The putative DADNPs studied are formed by 27 different drugs with multiple classes of NP and types of coats. In addition, we tested the validity of our additive model with 80 DADNP complexes experimentally synthetized and biologically tested (reported in >45 papers). All these DADNPs show values of MIC < 50 μg mL-1 (cutoff used) better that MIC of AD and NP alone (synergistic or additive effect). The assays involve DADNP complexes with 10 types of NP, 6 coating materials, NP size range 5-100 nm vs. 15 different antibiotics, and 12 bacteria species. The IFPTML-LDA model classified correctly 100% (80 out of 80) DADNP complexes as biologically active. IFPMTL additive strategy may become a useful tool to assist the design of DADNP systems for antibacterial therapy taking into consideration only information about AD and NP components by separate.
Collapse
Affiliation(s)
- Karel Diéguez-Santana
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Humberto González-Díaz
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, 48940 Leioa, Spain
- Basque Center for Biophysics CSIC-UPVEH, University of Basque Country UPV/EHU, 48940 Leioa, Spain.
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Biscay, Spain
| |
Collapse
|
17
|
Gajewicz-Skretna A, Furuhama A, Yamamoto H, Suzuki N. Generating accurate in silico predictions of acute aquatic toxicity for a range of organic chemicals: Towards similarity-based machine learning methods. CHEMOSPHERE 2021; 280:130681. [PMID: 34162070 DOI: 10.1016/j.chemosphere.2021.130681] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 06/13/2023]
Abstract
There has been an increase in the use of non-animal approaches, such as in silico and/or in vitro methods, for assessing the risks of hazardous chemicals. A number of machine learning algorithms link molecular descriptors that interpret chemical structural properties with their biological activity. These computer-aided methods encounter several challenges, the most significant being the heterogeneity of datasets; more efficient and inclusive computational methods that are able to process large and heterogeneous chemical datasets are needed. In this context, this study verifies the utility of similarity-based machine learning methods in predicting the acute aquatic toxicity of diverse organic chemicals on Daphnia magna and Oryzias latipes. Two similarity-based methods were tested that employ a limited training dataset, most similar to a given fitting point, instead of using the entire dataset that encompasses a wide range of chemicals. The kernel-weighted local polynomial approach had a number of advantages over the distance-weighted k-nearest neighbor (k-NN) algorithm. The results highlight the importance of lipophilicity, electrophilic reactivity, molecular polarizability, and size in determining acute toxicity. The rigorous model validation ensures that this approach is an important tool for estimating toxicity in new or untested chemicals.
Collapse
Affiliation(s)
- Agnieszka Gajewicz-Skretna
- Laboratory of Environmental Chemometrics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland.
| | - Ayako Furuhama
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, 305-8506, Japan; Division of Genetics and Mutagenesis, National Institute of Health Sciences (NIHS), 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa, 210-9501, Japan
| | - Hiroshi Yamamoto
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, 305-8506, Japan
| | - Noriyuki Suzuki
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, 305-8506, Japan
| |
Collapse
|
18
|
Bai Q, Wang Y, Duan L, Xu X, Hu Y, Yang Y, Zhang L, Liu Z, Bao H, Liu T. Cu-Doped-ZnO Nanocrystals Induce Hepatocyte Autophagy by Oxidative Stress Pathway. NANOMATERIALS 2021; 11:nano11082081. [PMID: 34443912 PMCID: PMC8399041 DOI: 10.3390/nano11082081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 11/17/2022]
Abstract
As a novel nanomaterial for cancer therapy and antibacterial agent, Cu-doped-ZnO nanocrystals (CZON) has aroused concern recently, but the toxicity of CZON has received little attention. Results of hematology analysis and blood biochemical assay showed that a 50 mg/kg dosage induced the increase in white blood cells count and that the concentration of alanine aminotransferase (ALT), superoxide dismutase (SOD), catalase (CAT), and Malonaldehyde (MDA) in the serum, liver, and lungs of the CZON group varied significantly from the control mice. Histopathological examinations results showed inflammation and congestion in the liver and lung after a single injection of CZON at 50 mg/kg. A transmission electron microscope (TEM) result manifested the autolysosome of hepatocyte of mice which received CZON at 50 mg/kg. The significant increase in LC3-II and decrease in p62 of hepatocyte in vivo could be seen in Western blot. These results indicated that CZON had the ability to induce autophagy of hepatocyte. The further researches of mechanism of autophagy revealed that CZON could produce hydroxyl radicals measured by erythrocyte sedimentation rate (ESR). The result of bio-distribution of CZON in vivo, investigated by ICP-OES, indicated that CZON mainly accumulated in the liver and two spleen organs. These results suggested that CZON can induce dose-dependent toxicity and autophagy by inducing oxidative stress in major organs. In summary, we investigated the acute toxicity and biological distribution after the intravenous administration of CZON. The results of body weight, histomorphology, hematology, and blood biochemical tests showed that CZON had a dose-dependent effect on the health of mice after a single injection. These results indicated that CZON could induce oxidative damage of the liver and lung by producing hydroxyl radicals at the higher dose.
Collapse
Affiliation(s)
- Qianyu Bai
- College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, China; (Q.B.); (L.D.); (X.X.); (Y.H.); (Y.Y.)
| | - Yeru Wang
- Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, No.37 Guangqu Road, Chaoyang District, Beijing 100022, China; (Y.W.); (L.Z.); (Z.L.)
| | - Luoyan Duan
- College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, China; (Q.B.); (L.D.); (X.X.); (Y.H.); (Y.Y.)
| | - Xiaomu Xu
- College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, China; (Q.B.); (L.D.); (X.X.); (Y.H.); (Y.Y.)
| | - Yusheng Hu
- College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, China; (Q.B.); (L.D.); (X.X.); (Y.H.); (Y.Y.)
| | - Yue Yang
- College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, China; (Q.B.); (L.D.); (X.X.); (Y.H.); (Y.Y.)
| | - Lei Zhang
- Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, No.37 Guangqu Road, Chaoyang District, Beijing 100022, China; (Y.W.); (L.Z.); (Z.L.)
| | - Zhaoping Liu
- Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, No.37 Guangqu Road, Chaoyang District, Beijing 100022, China; (Y.W.); (L.Z.); (Z.L.)
| | - Huihui Bao
- Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, No.37 Guangqu Road, Chaoyang District, Beijing 100022, China; (Y.W.); (L.Z.); (Z.L.)
- Correspondence: (H.B.); (T.L.); Tel.: +86-010-62733398 (T.L.)
| | - Tianlong Liu
- College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, China; (Q.B.); (L.D.); (X.X.); (Y.H.); (Y.Y.)
- Correspondence: (H.B.); (T.L.); Tel.: +86-010-62733398 (T.L.)
| |
Collapse
|
19
|
Zhang P, Guo Z, Ullah S, Melagraki G, Afantitis A, Lynch I. Nanotechnology and artificial intelligence to enable sustainable and precision agriculture. NATURE PLANTS 2021; 7:864-876. [PMID: 34168318 DOI: 10.1038/s41477-021-00946-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
Climate change, increasing populations, competing demands on land for production of biofuels and declining soil quality are challenging global food security. Finding sustainable solutions requires bold new approaches and integration of knowledge from diverse fields, such as materials science and informatics. The convergence of precision agriculture, in which farmers respond in real time to changes in crop growth with nanotechnology and artificial intelligence, offers exciting opportunities for sustainable food production. Coupling existing models for nutrient cycling and crop productivity with nanoinformatics approaches to optimize targeting, uptake, delivery, nutrient capture and long-term impacts on soil microbial communities will enable design of nanoscale agrochemicals that combine optimal safety and functionality profiles.
Collapse
Affiliation(s)
- Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK.
| | - Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Sami Ullah
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Georgia Melagraki
- Division of Physical Sciences and Applications, Hellenic Military Academy, Vari, Greece
| | | | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
20
|
Yu H, Luo D, Dai L, Cheng F. In silico nanosafety assessment tools and their ecosystem-level integration prospect. NANOSCALE 2021; 13:8722-8739. [PMID: 33960351 DOI: 10.1039/d1nr00115a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Engineered nanomaterials (ENMs) have tremendous potential in many fields, but their applications and commercialization are difficult to widely implement due to their safety concerns. Recently, in silico nanosafety assessment has become an important and necessary tool to realize the safer-by-design strategy of ENMs and at the same time to reduce animal tests and exposure experiments. Here, in silico nanosafety assessment tools are classified into three categories according to their methodologies and objectives, including (i) data-driven prediction for acute toxicity, (ii) fate modeling for environmental pollution, and (iii) nano-biological interaction modeling for long-term biological effects. Released ENMs may cross environmental boundaries and undergo a variety of transformations in biological and environmental media. Therefore, the potential impacts of ENMs must be assessed from a multimedia perspective and with integrated approaches considering environmental and biological effects. Ecosystems with biodiversity and an abiotic environment may be used as an excellent integration platform to assess the community- and ecosystem-level nanosafety. In this review, the advances and challenges of in silico nanosafety assessment tools are carefully discussed. Furthermore, their integration at the ecosystem level may provide more comprehensive and reliable nanosafety assessment by establishing a site-specific interactive system among ENMs, abiotic environment, and biological communities.
Collapse
Affiliation(s)
- Hengjie Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Dan Luo
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Limin Dai
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Fang Cheng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
21
|
Kar S, Pathakoti K, Tchounwou PB, Leszczynska D, Leszczynski J. Evaluating the cytotoxicity of a large pool of metal oxide nanoparticles to Escherichia coli: Mechanistic understanding through In Vitro and In Silico studies. CHEMOSPHERE 2021; 264:128428. [PMID: 33022504 PMCID: PMC7919734 DOI: 10.1016/j.chemosphere.2020.128428] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/23/2020] [Accepted: 09/21/2020] [Indexed: 05/25/2023]
Abstract
The toxic effect of eight metal oxide nanoparticles (MONPs) on Escherichia coli was experimentally evaluated following standard bioassay protocols. The obtained cytotoxicity ranking of these studied MONPs is Er2O3, Gd2O3, CeO2, Co2O3, Mn2O3, Co3O4, Fe3O4/WO3 (in descending order). The computed EC50 values from experimental data suggested that Er2O3 and Gd2O3 were the most acutely toxic MONPs to E. coli. To identify the mechanism of toxicity of these 8 MONPs along with 17 other MONPs from our previous study, we employed seven classifications and machine learning (ML) algorithms including linear discriminant analysis (LDA), naïve bayes (NB), multinomial logistic regression (MLogitR), sequential minimal optimization (SMO), AdaBoost, J48, and random forest (RF). We also employed 1st and 2nd generation periodic table descriptors developed by us (without any sophisticated computing facilities) along with experimentally analyzed Zeta-potential, to model the cytotoxicity of these MONPs. Based on qualitative validation metrics, the LDA model appeared to be the best among the 7 tested models. The core environment of metal defined by the ratio of the number of core electrons to the number of valence electrons and the electronegativity count of oxygen showed a positive impact on toxicity. The identified properties were important for understanding the mechanisms of nanotoxicity and for predicting the potential environmental risk associated with MONPs exposure. The developed models can be utilized for environmental risk assessment of any untested MONP to E. coli, thereby providing a scientific basis for the design and preparation of safe nanomaterials.
Collapse
Affiliation(s)
- Supratik Kar
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS, 39217, USA
| | - Kavitha Pathakoti
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS, 39217, USA; RCMI Center for Environmental Health, Department of Biology, Jackson State University, Jackson, MS, 39217, USA
| | - Paul B Tchounwou
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS, 39217, USA; RCMI Center for Environmental Health, Department of Biology, Jackson State University, Jackson, MS, 39217, USA
| | - Danuta Leszczynska
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS, 39217, USA; Department of Civil and Environmental Engineering, Jackson State University, Jackson, MS, 39217, USA
| | - Jerzy Leszczynski
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS, 39217, USA.
| |
Collapse
|
22
|
Ortega-Tenezaca B, González-Díaz H. IFPTML mapping of nanoparticle antibacterial activity vs. pathogen metabolic networks. NANOSCALE 2021; 13:1318-1330. [PMID: 33410431 DOI: 10.1039/d0nr07588d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanoparticles are useful antimicrobial drug-release systems, but some nanoparticles also exhibit antibacterial activity. However, investigation of their antibacterial activity is a difficult and slow process due to the numerous combinations of nanoparticle size, shape, and composition vs. biological tests, assay organisms, and multiple activity parameters to be measured. Additionally, the overuse of antibiotics has led to the emergence of resistant bacterial strains with different metabolic networks. Computational models may speed up this process, but the models reported to date do not to consider all the previous factors, and the data sources are dispersed and not curated. Thus, herein, we used an information fusion, perturbation-theory machine learning (IFPTML) approach, which is introduced by us for the first time, to fit a model for the discovery of antibacterial nanoparticles. The dataset studied had 15 classes of nanoparticles (1-100 nm) with most cases in the range of 1-50 nm vs. >20 pathogenic bacteria species with different metabolic networks. The nanoparticles studied included metal nanoparticles of Au, Ag, and Cu; oxide nanoparticles of Zn, Cu, La, Al, Fe, Sn, Ti, Cd, and Si; and metal salt nanoparticles of CuI and CdS. We used the SOFT.PTML software (our own application) with a user-friendly interface for the IFPTML calculations and a control statistics package. Using SOFT.PTML, we found a linear logistic regression equation that could model 4 biological activity parameters using only 8 variables with χ2 = 2265.75, p-level <0.05, sensitivity, Sn = 79.4, and specificity, Sp = 99.3, for 3213 cases (nanoparticle-bacteria pairs) in the training series. The model had Sn = 80.8 and Sp = 99.3 for 2114 cases in the external validation series. We also developed a random forest non-linear model with higher values of Sn and Sp = 98-99% in the training/validation series, although it was more complicated to use. SOFT.PTML has been demonstrated to be a useful tool for the analysis of complex data in nanotechnology. We also introduced a new anabolism-catabolism unbalance index of metabolic networks to reveal the biological connotation of the IFPTML predictions for antibacterial nanoparticles. These new models open a new door for the discovery of NPs vs. new bacterial species and strains with different topological structures of their metabolic networks.
Collapse
Affiliation(s)
- Bernabé Ortega-Tenezaca
- RNASA-IMEDIR, Computer Science Faculty, University of A Coruna, 15071 A Coruña, Spain and Amazon State University UEA, Puyo, Pastaza, Ecuador and Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, 48940 Leioa, Spain. and Biomedical Research Institute of A Coruña (INIBIC), University Hospital Complex of A Coruña (CHUAC), 15006 A Coruña, Spain and Center for Investigation on Technologies of Information and Communication (CITIC), University of Coruña (UDC), Campus de Elviña s/n, 15071 A Coruña, Spain
| | - Humberto González-Díaz
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, 48940 Leioa, Spain. and Basque Center for Biophysics CSIC-UPVEH, University of Basque Country UPV/EHU, 48940 Leioa, Spain and IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Biscay, Spain
| |
Collapse
|
23
|
Winkler DA. Role of Artificial Intelligence and Machine Learning in Nanosafety. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001883. [PMID: 32537842 DOI: 10.1002/smll.202001883] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Robotics and automation provide potentially paradigm shifting improvements in the way materials are synthesized and characterized, generating large, complex data sets that are ideal for modeling and analysis by modern machine learning (ML) methods. Nanomaterials have not yet fully captured the benefits of automation, so lag behind in the application of ML methods of data analysis. Here, some key developments in, and roadblocks to the application of ML methods are reviewed to model and predict potentially adverse biological and environmental effects of nanomaterials. This work focuses on the diverse ways a range of ML algorithms are applied to understand and predict nanomaterials properties, provides examples of the application of traditional ML and deep learning methods to nanosafety, and provides context and future perspectives on developments that are likely to occur, or need to occur in the near future that allow artificial intelligence to make a deeper contribution to nanosafety.
Collapse
Affiliation(s)
- David A Winkler
- La Trobe Institute for Molecular Science, La Trobe University, Kingsbury Drive, Bundoora, 3042, Australia
- CSIRO Data61, 1 Technology Court, Pullenvale, 4069, Australia
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2QL, UK
- Monash Institute of Pharmaceutical Sciences, Monash University, 392 Royal Parade, Parkville, 3052, Australia
| |
Collapse
|
24
|
Muratov EN, Bajorath J, Sheridan RP, Tetko IV, Filimonov D, Poroikov V, Oprea TI, Baskin II, Varnek A, Roitberg A, Isayev O, Curtarolo S, Fourches D, Cohen Y, Aspuru-Guzik A, Winkler DA, Agrafiotis D, Cherkasov A, Tropsha A. QSAR without borders. Chem Soc Rev 2020; 49:3525-3564. [PMID: 32356548 PMCID: PMC8008490 DOI: 10.1039/d0cs00098a] [Citation(s) in RCA: 338] [Impact Index Per Article: 84.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Prediction of chemical bioactivity and physical properties has been one of the most important applications of statistical and more recently, machine learning and artificial intelligence methods in chemical sciences. This field of research, broadly known as quantitative structure-activity relationships (QSAR) modeling, has developed many important algorithms and has found a broad range of applications in physical organic and medicinal chemistry in the past 55+ years. This Perspective summarizes recent technological advances in QSAR modeling but it also highlights the applicability of algorithms, modeling methods, and validation practices developed in QSAR to a wide range of research areas outside of traditional QSAR boundaries including synthesis planning, nanotechnology, materials science, biomaterials, and clinical informatics. As modern research methods generate rapidly increasing amounts of data, the knowledge of robust data-driven modelling methods professed within the QSAR field can become essential for scientists working both within and outside of chemical research. We hope that this contribution highlighting the generalizable components of QSAR modeling will serve to address this challenge.
Collapse
Affiliation(s)
- Eugene N Muratov
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Liu S, Xia T. Continued Efforts on Nanomaterial-Environmental Health and Safety Is Critical to Maintain Sustainable Growth of Nanoindustry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000603. [PMID: 32338451 PMCID: PMC7694868 DOI: 10.1002/smll.202000603] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 05/27/2023]
Abstract
Nanotechnology is enjoying an impressive growth and the global nanotechnology industry is expected to exceed US$ 125 billion by 2024. Based on these successes, there are notions that enough is known and efforts on engineered nanomaterial environmental health and safety (nano-EHS) research should be put on the back burner. However, there are recent events showing that it is not the case. The US Food and Drug Administration found ferumoxytol (carbohydrate-coated superparamagnetic iron oxide nanoparticle) for anemia treatment could induce lethal anaphylactic reactions. The European Union will categorize TiO2 as a category 2 carcinogen due to its inhalation hazard and France banned use of TiO2 (E171) in food from January 1, 2020 because of its carcinogenic potential. Although nanoindustry is seemingly in a healthy state, growth could be hindered for the lack of certainty and more nano-EHS research is needed for the sustainable growth of nanoindustry. Herein, the current knowledge gaps and the way forward are elaborated.
Collapse
Affiliation(s)
- Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States
| |
Collapse
|
26
|
Afantitis A, Melagraki G, Isigonis P, Tsoumanis A, Varsou DD, Valsami-Jones E, Papadiamantis A, Ellis LJA, Sarimveis H, Doganis P, Karatzas P, Tsiros P, Liampa I, Lobaskin V, Greco D, Serra A, Kinaret PAS, Saarimäki LA, Grafström R, Kohonen P, Nymark P, Willighagen E, Puzyn T, Rybinska-Fryca A, Lyubartsev A, Alstrup Jensen K, Brandenburg JG, Lofts S, Svendsen C, Harrison S, Maier D, Tamm K, Jänes J, Sikk L, Dusinska M, Longhin E, Rundén-Pran E, Mariussen E, El Yamani N, Unger W, Radnik J, Tropsha A, Cohen Y, Leszczynski J, Ogilvie Hendren C, Wiesner M, Winkler D, Suzuki N, Yoon TH, Choi JS, Sanabria N, Gulumian M, Lynch I. NanoSolveIT Project: Driving nanoinformatics research to develop innovative and integrated tools for in silico nanosafety assessment. Comput Struct Biotechnol J 2020; 18:583-602. [PMID: 32226594 PMCID: PMC7090366 DOI: 10.1016/j.csbj.2020.02.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/18/2020] [Accepted: 02/29/2020] [Indexed: 01/26/2023] Open
Abstract
Nanotechnology has enabled the discovery of a multitude of novel materials exhibiting unique physicochemical (PChem) properties compared to their bulk analogues. These properties have led to a rapidly increasing range of commercial applications; this, however, may come at a cost, if an association to long-term health and environmental risks is discovered or even just perceived. Many nanomaterials (NMs) have not yet had their potential adverse biological effects fully assessed, due to costs and time constraints associated with the experimental assessment, frequently involving animals. Here, the available NM libraries are analyzed for their suitability for integration with novel nanoinformatics approaches and for the development of NM specific Integrated Approaches to Testing and Assessment (IATA) for human and environmental risk assessment, all within the NanoSolveIT cloud-platform. These established and well-characterized NM libraries (e.g. NanoMILE, NanoSolutions, NANoREG, NanoFASE, caLIBRAte, NanoTEST and the Nanomaterial Registry (>2000 NMs)) contain physicochemical characterization data as well as data for several relevant biological endpoints, assessed in part using harmonized Organisation for Economic Co-operation and Development (OECD) methods and test guidelines. Integration of such extensive NM information sources with the latest nanoinformatics methods will allow NanoSolveIT to model the relationships between NM structure (morphology), properties and their adverse effects and to predict the effects of other NMs for which less data is available. The project specifically addresses the needs of regulatory agencies and industry to effectively and rapidly evaluate the exposure, NM hazard and risk from nanomaterials and nano-enabled products, enabling implementation of computational 'safe-by-design' approaches to facilitate NM commercialization.
Collapse
Key Words
- (quantitative) Structure–activity relationships
- AI, Artificial Intelligence
- AOPs, Adverse Outcome Pathways
- API, Application Programming interface
- CG, coarse-grained (model)
- CNTs, carbon nanotubes
- Computational toxicology
- Engineered nanomaterials
- FAIR, Findable Accessible Inter-operable and Re-usable
- GUI, Graphical Processing Unit
- HOMO-LUMO, Highest Occupied Molecular Orbital Lowest Unoccupied Molecular Orbital
- Hazard assessment
- IATA, Integrated Approaches to Testing and Assessment
- Integrated approach for testing and assessment
- KE, key events
- MIE, molecular initiating events
- ML, machine learning
- MOA, mechanism (mode) of action
- MWCNT, multi-walled carbon nanotubes
- Machine learning
- NMs, nanomaterials
- Nanoinformatics
- OECD, Organisation for Economic Co-operation and Development
- PBPK, Physiologically Based PharmacoKinetics
- PC, Protein Corona
- PChem, Physicochemical
- PTGS, Predictive Toxicogenomics Space
- Predictive modelling
- QC, quantum-chemical
- QM, quantum-mechanical
- QSAR, quantitative structure-activity relationship
- QSPR, quantitative structure-property relationship
- RA, risk assessment
- REST, Representational State Transfer
- ROS, reactive oxygen species
- Read across
- SAR, structure-activity relationship
- SMILES, Simplified Molecular Input Line Entry System
- SOPs, standard operating procedures
- Safe-by-design
- Toxicogenomics
Collapse
Affiliation(s)
| | | | | | | | | | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT Birmingham, UK
| | - Anastasios Papadiamantis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT Birmingham, UK
| | - Laura-Jayne A. Ellis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT Birmingham, UK
| | - Haralambos Sarimveis
- School of Chemical Engineering, National Technical University of Athens, 157 80 Athens, Greece
| | - Philip Doganis
- School of Chemical Engineering, National Technical University of Athens, 157 80 Athens, Greece
| | - Pantelis Karatzas
- School of Chemical Engineering, National Technical University of Athens, 157 80 Athens, Greece
| | - Periklis Tsiros
- School of Chemical Engineering, National Technical University of Athens, 157 80 Athens, Greece
| | - Irene Liampa
- School of Chemical Engineering, National Technical University of Athens, 157 80 Athens, Greece
| | - Vladimir Lobaskin
- School of Physics, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dario Greco
- Faculty of Medicine and Health Technology, University of Tampere, FI-33014, Finland
| | - Angela Serra
- Faculty of Medicine and Health Technology, University of Tampere, FI-33014, Finland
| | | | | | - Roland Grafström
- Misvik Biology OY, Itäinen Pitkäkatu 4, 20520 Turku, Finland
- Karolinska Institute, Institute of Environmental Medicine, Nobels väg 13, 17177 Stockholm, Sweden
| | - Pekka Kohonen
- Misvik Biology OY, Itäinen Pitkäkatu 4, 20520 Turku, Finland
- Karolinska Institute, Institute of Environmental Medicine, Nobels väg 13, 17177 Stockholm, Sweden
| | - Penny Nymark
- Misvik Biology OY, Itäinen Pitkäkatu 4, 20520 Turku, Finland
- Karolinska Institute, Institute of Environmental Medicine, Nobels väg 13, 17177 Stockholm, Sweden
| | - Egon Willighagen
- Department of Bioinformatics – BiGCaT, School of Nutrition and Translational Research in Metabolism, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| | - Tomasz Puzyn
- QSAR Lab Ltd., Aleja Grunwaldzka 190/102, 80-266 Gdansk, Poland
- University of Gdansk, Faculty of Chemistry, Wita Stwosza 63, 80-308 Gdansk, Poland
| | | | - Alexander Lyubartsev
- Institutionen för material- och miljökemi, Stockholms Universitet, 106 91 Stockholm, Sweden
| | - Keld Alstrup Jensen
- The National Research Center for the Work Environment, Lersø Parkallé 105, 2100 Copenhagen, Denmark
| | - Jan Gerit Brandenburg
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Germany
- Chief Digital Organization, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Stephen Lofts
- UK Centre for Ecology and Hydrology, Library Ave, Bailrigg, Lancaster LA1 4AP, UK
| | - Claus Svendsen
- UK Centre for Ecology and Hydrology, MacLean Bldg, Benson Ln, Crowmarsh Gifford, Wallingford OX10 8BB, UK
| | - Samuel Harrison
- UK Centre for Ecology and Hydrology, Library Ave, Bailrigg, Lancaster LA1 4AP, UK
| | - Dieter Maier
- Biomax Informatics AG, Robert-Koch-Str. 2, 82152 Planegg, Germany
| | - Kaido Tamm
- Department of Chemistry, University of Tartu, Ülikooli 18, 50090 Tartu, Estonia
| | - Jaak Jänes
- Department of Chemistry, University of Tartu, Ülikooli 18, 50090 Tartu, Estonia
| | - Lauri Sikk
- Department of Chemistry, University of Tartu, Ülikooli 18, 50090 Tartu, Estonia
| | - Maria Dusinska
- NILU-Norwegian Institute for Air Research, Instituttveien 18, 2002 Kjeller, Norway
| | - Eleonora Longhin
- NILU-Norwegian Institute for Air Research, Instituttveien 18, 2002 Kjeller, Norway
| | - Elise Rundén-Pran
- NILU-Norwegian Institute for Air Research, Instituttveien 18, 2002 Kjeller, Norway
| | - Espen Mariussen
- NILU-Norwegian Institute for Air Research, Instituttveien 18, 2002 Kjeller, Norway
| | - Naouale El Yamani
- NILU-Norwegian Institute for Air Research, Instituttveien 18, 2002 Kjeller, Norway
| | - Wolfgang Unger
- Federal Institute for Material Testing and Research (BAM), Unter den Eichen 44-46, 12203 Berlin, Germany
| | - Jörg Radnik
- Federal Institute for Material Testing and Research (BAM), Unter den Eichen 44-46, 12203 Berlin, Germany
| | - Alexander Tropsha
- Eschelman School of Pharmacy, University of North Carolina at Chapel Hill, 100K Beard Hall, CB# 7568, Chapel Hill, NC 27955-7568, USA
| | - Yoram Cohen
- Samueli School Of Engineering, University of California, Los Angeles, 5531 Boelter Hall, Los Angeles, CA 90095, USA
| | - Jerzy Leszczynski
- Interdisciplinary Nanotoxicity Center, Jackson State University, 1400 J. R. Lynch Street, Jackson, MS 39217, USA
| | - Christine Ogilvie Hendren
- Center for Environmental Implications of Nanotechnologies, Duke University, 121 Hudson Hall, Durham, NC 27708-0287, USA
| | - Mark Wiesner
- Center for Environmental Implications of Nanotechnologies, Duke University, 121 Hudson Hall, Durham, NC 27708-0287, USA
| | - David Winkler
- La Trobe Institute of Molecular Sciences, La Trobe University, Plenty Rd & Kingsbury Dr, Bundoora, VIC 3086, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia
- CSIRO Data61, Clayton 3168, Australia
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Noriyuki Suzuki
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-0053, Japan
| | - Tae Hyun Yoon
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
- Institute of Next Generation Material Design, Hanyang University, Seoul 04763, Republic of Korea
| | - Jang-Sik Choi
- Institute of Next Generation Material Design, Hanyang University, Seoul 04763, Republic of Korea
| | - Natasha Sanabria
- National Health Laboratory Services, 1 Modderfontein Rd, Sandringham, Johannesburg 2192, South Africa
| | - Mary Gulumian
- National Health Laboratory Services, 1 Modderfontein Rd, Sandringham, Johannesburg 2192, South Africa
- Haematology and Molecular Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT Birmingham, UK
| |
Collapse
|
27
|
Nymark P, Bakker M, Dekkers S, Franken R, Fransman W, García-Bilbao A, Greco D, Gulumian M, Hadrup N, Halappanavar S, Hongisto V, Hougaard KS, Jensen KA, Kohonen P, Koivisto AJ, Dal Maso M, Oosterwijk T, Poikkimäki M, Rodriguez-Llopis I, Stierum R, Sørli JB, Grafström R. Toward Rigorous Materials Production: New Approach Methodologies Have Extensive Potential to Improve Current Safety Assessment Practices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1904749. [PMID: 31913582 DOI: 10.1002/smll.201904749] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Advanced material development, including at the nanoscale, comprises costly and complex challenges coupled to ensuring human and environmental safety. Governmental agencies regulating safety have announced interest toward acceptance of safety data generated under the collective term New Approach Methodologies (NAMs), as such technologies/approaches offer marked potential to progress the integration of safety testing measures during innovation from idea to product launch of nanomaterials. Divided in overall eight main categories, searchable databases for grouping and read across purposes, exposure assessment and modeling, in silico modeling of physicochemical structure and hazard data, in vitro high-throughput and high-content screening assays, dose-response assessments and modeling, analyses of biological processes and toxicity pathways, kinetics and dose extrapolation, consideration of relevant exposure levels and biomarker endpoints typify such useful NAMs. Their application generally agrees with articulated stakeholder needs for improvement of safety testing procedures. They further fit for inclusion and add value in nanomaterials risk assessment tools. Overall 37 of 50 evaluated NAMs and tiered workflows applying NAMs are recommended for considering safer-by-design innovation, including guidance to the selection of specific NAMs in the eight categories. An innovation funnel enriched with safety methods is ultimately proposed under the central aim of promoting rigorous nanomaterials innovation.
Collapse
Affiliation(s)
- Penny Nymark
- Karolinska Institutet, Institute of Environmental Medicine, Nobels väg 13, 171 77, Stockholm, Sweden
- Department of Toxicology, Misvik Biology, Karjakatu 35 B, 20520, Turku, Finland
| | - Martine Bakker
- National Institute for Public Health and the Environment, RIVM, P.O. Box 1, 3720 BA, Bilthoven, The Netherlands
| | - Susan Dekkers
- National Institute for Public Health and the Environment, RIVM, P.O. Box 1, 3720 BA, Bilthoven, The Netherlands
| | - Remy Franken
- Netherlands Organisation for Applied Scientific Research, TNO, P.O. Box 96800, NL-2509 JE, The Hague, The Netherlands
| | - Wouter Fransman
- Netherlands Organisation for Applied Scientific Research, TNO, P.O. Box 96800, NL-2509 JE, The Hague, The Netherlands
| | - Amaia García-Bilbao
- GAIKER Technology Centre, Parque Tecnológico, Ed. 202, 48170, Zamudio, Bizkaia, Spain
| | - Dario Greco
- Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 6, 33720, Tampere, Finland
- Institute of Biotechnology, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
| | - Mary Gulumian
- National Institute for Occupational Health, 25 Hospital St, Constitution Hill, 2000, Johannesburg, South Africa
- Haematology and Molecular Medicine Department, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa
| | - Niels Hadrup
- National Research Center for the Work Environment, Lersø Parkallé 105, 2100, Copenhagen, Denmark
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, 50 Colombine Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Vesa Hongisto
- Department of Toxicology, Misvik Biology, Karjakatu 35 B, 20520, Turku, Finland
| | - Karin Sørig Hougaard
- National Research Center for the Work Environment, Lersø Parkallé 105, 2100, Copenhagen, Denmark
| | - Keld Alstrup Jensen
- National Research Center for the Work Environment, Lersø Parkallé 105, 2100, Copenhagen, Denmark
| | - Pekka Kohonen
- Karolinska Institutet, Institute of Environmental Medicine, Nobels väg 13, 171 77, Stockholm, Sweden
- Department of Toxicology, Misvik Biology, Karjakatu 35 B, 20520, Turku, Finland
| | - Antti Joonas Koivisto
- National Research Center for the Work Environment, Lersø Parkallé 105, 2100, Copenhagen, Denmark
| | - Miikka Dal Maso
- Aerosol Physics Laboratory, Physics Unit, Tampere University, Korkeakoulunkatu 6, 33720, Tampere, Finland
| | - Thies Oosterwijk
- Netherlands Organisation for Applied Scientific Research, TNO, P.O. Box 96800, NL-2509 JE, The Hague, The Netherlands
| | - Mikko Poikkimäki
- Aerosol Physics Laboratory, Physics Unit, Tampere University, Korkeakoulunkatu 6, 33720, Tampere, Finland
| | | | - Rob Stierum
- Netherlands Organisation for Applied Scientific Research, TNO, P.O. Box 96800, NL-2509 JE, The Hague, The Netherlands
| | - Jorid Birkelund Sørli
- National Research Center for the Work Environment, Lersø Parkallé 105, 2100, Copenhagen, Denmark
| | - Roland Grafström
- Karolinska Institutet, Institute of Environmental Medicine, Nobels väg 13, 171 77, Stockholm, Sweden
- Department of Toxicology, Misvik Biology, Karjakatu 35 B, 20520, Turku, Finland
| |
Collapse
|
28
|
Furxhi I, Murphy F, Mullins M, Arvanitis A, Poland CA. Practices and Trends of Machine Learning Application in Nanotoxicology. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E116. [PMID: 31936210 PMCID: PMC7023261 DOI: 10.3390/nano10010116] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/31/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023]
Abstract
Machine Learning (ML) techniques have been applied in the field of nanotoxicology with very encouraging results. Adverse effects of nanoforms are affected by multiple features described by theoretical descriptors, nano-specific measured properties, and experimental conditions. ML has been proven very helpful in this field in order to gain an insight into features effecting toxicity, predicting possible adverse effects as part of proactive risk analysis, and informing safe design. At this juncture, it is important to document and categorize the work that has been carried out. This study investigates and bookmarks ML methodologies used to predict nano (eco)-toxicological outcomes in nanotoxicology during the last decade. It provides a review of the sequenced steps involved in implementing an ML model, from data pre-processing, to model implementation, model validation, and applicability domain. The review gathers and presents the step-wise information on techniques and procedures of existing models that can be used readily to assemble new nanotoxicological in silico studies and accelerates the regulation of in silico tools in nanotoxicology. ML applications in nanotoxicology comprise an active and diverse collection of ongoing efforts, although it is still in their early steps toward a scientific accord, subsequent guidelines, and regulation adoption. This study is an important bookend to a decade of ML applications to nanotoxicology and serves as a useful guide to further in silico applications.
Collapse
Affiliation(s)
- Irini Furxhi
- Department of Accounting and Finance, Kemmy Business School, University of Limerick, V94PH93 Limerick, Ireland; (F.M.); (M.M.)
- Transgero Limited, Newcastle, V42V384 Limerick, Ireland
| | - Finbarr Murphy
- Department of Accounting and Finance, Kemmy Business School, University of Limerick, V94PH93 Limerick, Ireland; (F.M.); (M.M.)
- Transgero Limited, Newcastle, V42V384 Limerick, Ireland
| | - Martin Mullins
- Department of Accounting and Finance, Kemmy Business School, University of Limerick, V94PH93 Limerick, Ireland; (F.M.); (M.M.)
- Transgero Limited, Newcastle, V42V384 Limerick, Ireland
| | - Athanasios Arvanitis
- Department of Mechanical Engineering, Environmental Informatics Research Group, Aristotle University of Thessaloniki, 54124 Thessaloniki Box 483, Greece;
| | - Craig A. Poland
- ELEGI/Colt Laboratory, Queen’s Medical Research Institute, 47 Little France Crescent, University of Edinburgh, Edinburgh EH16 4TJ, Scotland, UK;
| |
Collapse
|
29
|
Li Y, Wu Y, Liu Y, Deng QH, Mak M, Yang X. Atmospheric nanoparticles affect vascular function using a 3D human vascularized organotypic chip. NANOSCALE 2019; 11:15537-15549. [PMID: 31393488 DOI: 10.1039/c9nr03622a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inhaled atmospheric nanoparticles (ANPs) can migrate into human blood vessels. However, the exact pathogenesis has not yet been well elucidated. In this study, a perfusable 3D human microvessel network was constructed in a microfluidic device. This functional 3D micro-tissue partly mimicked the physiological response of human vessels. Intravascular nanoparticles tend to adsorb proteins to form a protein corona. Based on this pathological response, vessel permeability and vasoconstriction resulting from ANP stimulation might be related to vascular inflammation. It mediated abnormal expression of nuclear factor-κB (NF-κB) and an influx of intracellular Ca2+ ([Ca2+]i). This biological behavior disturbed the normal expression of intercellular cell adhesion molecule 1 (ICAM-1) and vascular endothelial growth factor (VEGF). The imbalance of nitric oxide (NO) and endothelin-1 (ET-1) further resulted in endothelial cell contraction. All these bio-events induced the loss of tight junctions (ZO-1) which enhanced vessel permeability. Meanwhile, ANP induced-vascular toxicity was also found in mice. Our observations provide a plausible explanation for how the ANPs affect human vascular function. The vessel-on-chip provides a bridge between in vitro results and human responses. We aimed to use this human 3D functional microvascular model to mimic the physiological responses of human vessels. This model is suitable for the evaluation of vascular toxicity after the human vessel exposure to ANPs.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, P.R. China and Department of Biomedical Engineering, School of Engineering & Applied Science, Yale University, New Haven 06520, USA.
| | - Yang Wu
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, P.R. China
| | - Yan Liu
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, P.R. China
| | - Qi-Hong Deng
- XiangYa School of Public Health, Central South University, Changsha 410083, P.R. China
| | - Michael Mak
- Department of Biomedical Engineering, School of Engineering & Applied Science, Yale University, New Haven 06520, USA.
| | - Xu Yang
- Lab of Environmental Biomedicine, School of Life Sciences, Central China Normal University, Wuhan 430079, P.R. China.
| |
Collapse
|
30
|
Hataminia F, Noroozi Z, Mobaleghol Eslam H. Investigation of iron oxide nanoparticle cytotoxicity in relation to kidney cells: A mathematical modeling of data mining. Toxicol In Vitro 2019; 59:197-203. [DOI: 10.1016/j.tiv.2019.04.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 12/20/2022]
|
31
|
Forest V, Hochepied JF, Pourchez J. Importance of Choosing Relevant Biological End Points To Predict Nanoparticle Toxicity with Computational Approaches for Human Health Risk Assessment. Chem Res Toxicol 2019; 32:1320-1326. [PMID: 31243983 DOI: 10.1021/acs.chemrestox.9b00022] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Because it is impossible to assess in vitro or in vivo the toxicity of all nanoparticles available on the market on a case-by-case basis, computational approaches have been proposed as useful alternatives to predict in silico the hazard potential of engineered nanoparticles. Despite promising results, a major issue associated with these mathematical models lies in the a priori choice of the physicochemical descriptors and the biological end points. We performed a thorough bibliographic survey on the biological end points used for nanotoxicology purposes and compared them between experimental and computational approaches. They were found to be disparate: while conventional in vitro nanotoxicology assays usually investigate a large array of biological effects using eukaryotic cells (cytotoxicity, pro-inflammatory response, oxidative stress, genotoxicity), computational studies mostly focus on cell viability and also include studies on prokaryotic cells. We may thus wonder the relevance of building complex mathematical models able to predict accurately a biological end point if this latter is not the most relevant to support human health risk assessment. The choice of biological end points clearly deserves to be more carefully discussed. This could bridge the gap between experimental and computational nanotoxicology studies and allow in silico predictive models to reach their full potential.
Collapse
Affiliation(s)
- Valérie Forest
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet , INSERM, U 1059 Sainbiose, Centre CIS , F-42023 Saint-Etienne , France
| | - Jean-François Hochepied
- MINES ParisTech , PSL Research University , MAT - Centre des matériaux, CNRS UMR 7633 , BP 87 91003 Evry , France.,UCP, ENSTA ParisTech , Université Paris-Saclay , 828 bd des Maréchaux , 91762 Palaiseau cedex , France
| | - Jérémie Pourchez
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet , INSERM, U 1059 Sainbiose, Centre CIS , F-42023 Saint-Etienne , France
| |
Collapse
|
32
|
Serra A, Letunic I, Fortino V, Handy RD, Fadeel B, Tagliaferri R, Greco D. INSIdE NANO: a systems biology framework to contextualize the mechanism-of-action of engineered nanomaterials. Sci Rep 2019; 9:179. [PMID: 30655578 PMCID: PMC6336851 DOI: 10.1038/s41598-018-37411-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/30/2018] [Indexed: 12/14/2022] Open
Abstract
Engineered nanomaterials (ENMs) are widely present in our daily lives. Despite the efforts to characterize their mechanism of action in multiple species, their possible implications in human pathologies are still not fully understood. Here we performed an integrated analysis of the effects of ENMs on human health by contextualizing their transcriptional mechanism-of-action with respect to drugs, chemicals and diseases. We built a network of interactions of over 3,000 biological entities and developed a novel computational tool, INSIdE NANO, to infer new knowledge about ENM behavior. We highlight striking association of metal and metal-oxide nanoparticles and major neurodegenerative disorders. Our novel strategy opens possibilities to achieve fast and accurate read-across evaluation of ENMs and other chemicals based on their biosignatures.
Collapse
Affiliation(s)
- Angela Serra
- NeuRoNe Lab, DISA-MIS, University of Salerno, Salerno, Italy.,Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.,Institute of Biosciences and Medical Technologies, University of Tampere, Tampere, Finland
| | | | - Vittorio Fortino
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.,Institute of Biosciences and Medical Technologies, University of Tampere, Tampere, Finland.,Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Biomedicine Institute, University of Eastern Finland, Kuopio, Finland
| | - Richard D Handy
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| | - Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Dario Greco
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland. .,Institute of Biosciences and Medical Technologies, University of Tampere, Tampere, Finland. .,Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
33
|
Toropov AA, Toropova AP, Roncaglioni A, Benfenati E. Prediction of Biochemical Endpoints by the CORAL Software: Prejudices, Paradoxes, and Results. Methods Mol Biol 2018; 1800:573-583. [PMID: 29934912 DOI: 10.1007/978-1-4939-7899-1_27] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Quantitative structure-activity relationships (QSARs) for prediction of toxicological endpoints built up with the CORAL software are discussed. Prejudices related to these QSAR models are listed. Possible ways to improve the software are discussed.
Collapse
Affiliation(s)
- Andrey A Toropov
- Laboratory of Environmental Chemistry and Toxicology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy.
| | - Alla P Toropova
- Laboratory of Environmental Chemistry and Toxicology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Alessandra Roncaglioni
- Laboratory of Environmental Chemistry and Toxicology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Emilio Benfenati
- Laboratory of Environmental Chemistry and Toxicology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| |
Collapse
|
34
|
Gajewicz A, Puzyn T, Odziomek K, Urbaszek P, Haase A, Riebeling C, Luch A, Irfan MA, Landsiedel R, van der Zande M, Bouwmeester H. Decision tree models to classify nanomaterials according to the DF4nanoGrouping scheme. Nanotoxicology 2017; 12:1-17. [DOI: 10.1080/17435390.2017.1415388] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Agnieszka Gajewicz
- Laboratory of Environmental Chemometrics, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Tomasz Puzyn
- Laboratory of Environmental Chemometrics, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Katarzyna Odziomek
- Laboratory of Environmental Chemometrics, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Piotr Urbaszek
- Laboratory of Environmental Chemometrics, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Andrea Haase
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | - Christian Riebeling
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | - Andreas Luch
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | - Muhammad A. Irfan
- Department of Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
| | - Robert Landsiedel
- Department of Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
| | | | - Hans Bouwmeester
- RIKILT – Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|