• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4646951)   Today's Articles (2592)   Subscriber (50684)
For: Gajewicz A. What if the number of nanotoxicity data is too small for developing predictive Nano-QSAR models? An alternative read-across based approach for filling data gaps. Nanoscale 2017;9:8435-8448. [PMID: 28604902 DOI: 10.1039/c7nr02211e] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Number Cited by Other Article(s)
1
Jarzynska K, Gajewicz-Skretna A, Ciura K, Puzyn T. Predicting zeta potential of liposomes from their structure: A nano-QSPR model for DOPE, DC-Chol, DOTAP, and EPC formulations. Comput Struct Biotechnol J 2024;25:3-8. [PMID: 38328349 PMCID: PMC10848030 DOI: 10.1016/j.csbj.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/09/2024]  Open
2
Banerjee A, Kar S, Roy K, Patlewicz G, Charest N, Benfenati E, Cronin MTD. Molecular similarity in chemical informatics and predictive toxicity modeling: from quantitative read-across (q-RA) to quantitative read-across structure-activity relationship (q-RASAR) with the application of machine learning. Crit Rev Toxicol 2024;54:659-684. [PMID: 39225123 DOI: 10.1080/10408444.2024.2386260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
3
He S, Nader K, Abarrategi JS, Bediaga H, Nocedo-Mena D, Ascencio E, Casanola-Martin GM, Castellanos-Rubio I, Insausti M, Rasulev B, Arrasate S, González-Díaz H. NANO.PTML model for read-across prediction of nanosystems in neurosciences. computational model and experimental case of study. J Nanobiotechnology 2024;22:435. [PMID: 39044265 PMCID: PMC11267683 DOI: 10.1186/s12951-024-02660-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024]  Open
4
Balraadjsing S, J G M Peijnenburg W, Vijver MG. Building species trait-specific nano-QSARs: Model stacking, navigating model uncertainties and limitations, and the effect of dataset size. ENVIRONMENT INTERNATIONAL 2024;188:108764. [PMID: 38788418 DOI: 10.1016/j.envint.2024.108764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
5
Singh AV, Shelar A, Rai M, Laux P, Thakur M, Dosnkyi I, Santomauro G, Singh AK, Luch A, Patil R, Bill J. Harmonization Risks and Rewards: Nano-QSAR for Agricultural Nanomaterials. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024;72:2835-2852. [PMID: 38315814 DOI: 10.1021/acs.jafc.3c06466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
6
Pandey NK, Murmu A, Banjare P, Matore BW, Singh J, Roy PP. Integrated predictive QSAR, Read Across, and q-RASAR analysis for diverse agrochemical phytotoxicity in oat and corn: A consensus-based approach for risk assessment and prioritization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024;31:12371-12386. [PMID: 38228952 DOI: 10.1007/s11356-024-31872-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024]
7
Varsou DD, Sarimveis H. Deimos: A novel automated methodology for optimal grouping. Application to nanoinformatics case studies. Mol Inform 2023;42:e2300019. [PMID: 37258455 DOI: 10.1002/minf.202300019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/05/2023] [Accepted: 05/31/2023] [Indexed: 06/02/2023]
8
Yan X, Yue T, Winkler DA, Yin Y, Zhu H, Jiang G, Yan B. Converting Nanotoxicity Data to Information Using Artificial Intelligence and Simulation. Chem Rev 2023. [PMID: 37262026 DOI: 10.1021/acs.chemrev.3c00070] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
9
De P, Roy K. Computational modeling of PET imaging agents for vesicular acetylcholine transporter (VAChT) protein binding affinity: application of 2D-QSAR modeling and molecular docking techniques. In Silico Pharmacol 2023;11:9. [PMID: 37035236 PMCID: PMC10073372 DOI: 10.1007/s40203-023-00146-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/31/2023] [Indexed: 04/07/2023]  Open
10
Wu J, Zhu Z, Liu W, Zhang Y, Kang Y, Liu J, Hu C, Wang R, Zhang M, Chen L, Shao L. How Nanoparticles Open the Paracellular Route of Biological Barriers: Mechanisms, Applications, and Prospects. ACS NANO 2022;16:15627-15652. [PMID: 36121682 DOI: 10.1021/acsnano.2c05317] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
11
Li J, Wang C, Yue L, Chen F, Cao X, Wang Z. Nano-QSAR modeling for predicting the cytotoxicity of metallic and metal oxide nanoparticles: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022;243:113955. [PMID: 35961199 DOI: 10.1016/j.ecoenv.2022.113955] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/11/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
12
Kar S, Pathakoti K, Leszczynska D, Tchounwou PB, Leszczynski J. In vitro and in silico study of mixtures cytotoxicity of metal oxide nanoparticles to Escherichia coli: a mechanistic approach. Nanotoxicology 2022;16:566-579. [PMID: 36149909 PMCID: PMC10266837 DOI: 10.1080/17435390.2022.2123750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 01/04/2023]
13
Proposing an Adaptive Neuro-Fuzzy System-Based Swarm Concept Method for Predicting the Physical Properties of Nanofluids. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1155/2022/3345368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
14
Forest V. Experimental and Computational Nanotoxicology-Complementary Approaches for Nanomaterial Hazard Assessment. NANOMATERIALS 2022;12:nano12081346. [PMID: 35458054 PMCID: PMC9031966 DOI: 10.3390/nano12081346] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 12/25/2022]
15
Robinson RLM, Sarimveis H, Doganis P, Jia X, Kotzabasaki M, Gousiadou C, Harper SL, Wilkins T. Identifying diverse metal oxide nanomaterials with lethal effects on embryonic zebrafish using machine learning. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021;12:1297-1325. [PMID: 34934606 PMCID: PMC8649207 DOI: 10.3762/bjnano.12.97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 10/28/2021] [Indexed: 06/14/2023]
16
Diéguez-Santana K, González-Díaz H. Towards machine learning discovery of dual antibacterial drug-nanoparticle systems. NANOSCALE 2021;13:17854-17870. [PMID: 34671801 DOI: 10.1039/d1nr04178a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
17
Gajewicz-Skretna A, Furuhama A, Yamamoto H, Suzuki N. Generating accurate in silico predictions of acute aquatic toxicity for a range of organic chemicals: Towards similarity-based machine learning methods. CHEMOSPHERE 2021;280:130681. [PMID: 34162070 DOI: 10.1016/j.chemosphere.2021.130681] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 06/13/2023]
18
Bai Q, Wang Y, Duan L, Xu X, Hu Y, Yang Y, Zhang L, Liu Z, Bao H, Liu T. Cu-Doped-ZnO Nanocrystals Induce Hepatocyte Autophagy by Oxidative Stress Pathway. NANOMATERIALS 2021;11:nano11082081. [PMID: 34443912 PMCID: PMC8399041 DOI: 10.3390/nano11082081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 11/17/2022]
19
Zhang P, Guo Z, Ullah S, Melagraki G, Afantitis A, Lynch I. Nanotechnology and artificial intelligence to enable sustainable and precision agriculture. NATURE PLANTS 2021;7:864-876. [PMID: 34168318 DOI: 10.1038/s41477-021-00946-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
20
Yu H, Luo D, Dai L, Cheng F. In silico nanosafety assessment tools and their ecosystem-level integration prospect. NANOSCALE 2021;13:8722-8739. [PMID: 33960351 DOI: 10.1039/d1nr00115a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
21
Kar S, Pathakoti K, Tchounwou PB, Leszczynska D, Leszczynski J. Evaluating the cytotoxicity of a large pool of metal oxide nanoparticles to Escherichia coli: Mechanistic understanding through In Vitro and In Silico studies. CHEMOSPHERE 2021;264:128428. [PMID: 33022504 PMCID: PMC7919734 DOI: 10.1016/j.chemosphere.2020.128428] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/23/2020] [Accepted: 09/21/2020] [Indexed: 05/25/2023]
22
Ortega-Tenezaca B, González-Díaz H. IFPTML mapping of nanoparticle antibacterial activity vs. pathogen metabolic networks. NANOSCALE 2021;13:1318-1330. [PMID: 33410431 DOI: 10.1039/d0nr07588d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
23
Winkler DA. Role of Artificial Intelligence and Machine Learning in Nanosafety. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020;16:e2001883. [PMID: 32537842 DOI: 10.1002/smll.202001883] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/07/2020] [Indexed: 06/11/2023]
24
Muratov EN, Bajorath J, Sheridan RP, Tetko IV, Filimonov D, Poroikov V, Oprea TI, Baskin II, Varnek A, Roitberg A, Isayev O, Curtarolo S, Fourches D, Cohen Y, Aspuru-Guzik A, Winkler DA, Agrafiotis D, Cherkasov A, Tropsha A. QSAR without borders. Chem Soc Rev 2020;49:3525-3564. [PMID: 32356548 PMCID: PMC8008490 DOI: 10.1039/d0cs00098a] [Citation(s) in RCA: 338] [Impact Index Per Article: 84.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
25
Liu S, Xia T. Continued Efforts on Nanomaterial-Environmental Health and Safety Is Critical to Maintain Sustainable Growth of Nanoindustry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020;16:e2000603. [PMID: 32338451 PMCID: PMC7694868 DOI: 10.1002/smll.202000603] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 05/27/2023]
26
Afantitis A, Melagraki G, Isigonis P, Tsoumanis A, Varsou DD, Valsami-Jones E, Papadiamantis A, Ellis LJA, Sarimveis H, Doganis P, Karatzas P, Tsiros P, Liampa I, Lobaskin V, Greco D, Serra A, Kinaret PAS, Saarimäki LA, Grafström R, Kohonen P, Nymark P, Willighagen E, Puzyn T, Rybinska-Fryca A, Lyubartsev A, Alstrup Jensen K, Brandenburg JG, Lofts S, Svendsen C, Harrison S, Maier D, Tamm K, Jänes J, Sikk L, Dusinska M, Longhin E, Rundén-Pran E, Mariussen E, El Yamani N, Unger W, Radnik J, Tropsha A, Cohen Y, Leszczynski J, Ogilvie Hendren C, Wiesner M, Winkler D, Suzuki N, Yoon TH, Choi JS, Sanabria N, Gulumian M, Lynch I. NanoSolveIT Project: Driving nanoinformatics research to develop innovative and integrated tools for in silico nanosafety assessment. Comput Struct Biotechnol J 2020;18:583-602. [PMID: 32226594 PMCID: PMC7090366 DOI: 10.1016/j.csbj.2020.02.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/18/2020] [Accepted: 02/29/2020] [Indexed: 01/26/2023]  Open
27
Nymark P, Bakker M, Dekkers S, Franken R, Fransman W, García-Bilbao A, Greco D, Gulumian M, Hadrup N, Halappanavar S, Hongisto V, Hougaard KS, Jensen KA, Kohonen P, Koivisto AJ, Dal Maso M, Oosterwijk T, Poikkimäki M, Rodriguez-Llopis I, Stierum R, Sørli JB, Grafström R. Toward Rigorous Materials Production: New Approach Methodologies Have Extensive Potential to Improve Current Safety Assessment Practices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020;16:e1904749. [PMID: 31913582 DOI: 10.1002/smll.201904749] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/09/2019] [Indexed: 06/10/2023]
28
Furxhi I, Murphy F, Mullins M, Arvanitis A, Poland CA. Practices and Trends of Machine Learning Application in Nanotoxicology. NANOMATERIALS (BASEL, SWITZERLAND) 2020;10:E116. [PMID: 31936210 PMCID: PMC7023261 DOI: 10.3390/nano10010116] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/31/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023]
29
Li Y, Wu Y, Liu Y, Deng QH, Mak M, Yang X. Atmospheric nanoparticles affect vascular function using a 3D human vascularized organotypic chip. NANOSCALE 2019;11:15537-15549. [PMID: 31393488 DOI: 10.1039/c9nr03622a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
30
Hataminia F, Noroozi Z, Mobaleghol Eslam H. Investigation of iron oxide nanoparticle cytotoxicity in relation to kidney cells: A mathematical modeling of data mining. Toxicol In Vitro 2019;59:197-203. [DOI: 10.1016/j.tiv.2019.04.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 12/20/2022]
31
Forest V, Hochepied JF, Pourchez J. Importance of Choosing Relevant Biological End Points To Predict Nanoparticle Toxicity with Computational Approaches for Human Health Risk Assessment. Chem Res Toxicol 2019;32:1320-1326. [PMID: 31243983 DOI: 10.1021/acs.chemrestox.9b00022] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
32
Serra A, Letunic I, Fortino V, Handy RD, Fadeel B, Tagliaferri R, Greco D. INSIdE NANO: a systems biology framework to contextualize the mechanism-of-action of engineered nanomaterials. Sci Rep 2019;9:179. [PMID: 30655578 PMCID: PMC6336851 DOI: 10.1038/s41598-018-37411-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/30/2018] [Indexed: 12/14/2022]  Open
33
Toropov AA, Toropova AP, Roncaglioni A, Benfenati E. Prediction of Biochemical Endpoints by the CORAL Software: Prejudices, Paradoxes, and Results. Methods Mol Biol 2018;1800:573-583. [PMID: 29934912 DOI: 10.1007/978-1-4939-7899-1_27] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
34
Gajewicz A, Puzyn T, Odziomek K, Urbaszek P, Haase A, Riebeling C, Luch A, Irfan MA, Landsiedel R, van der Zande M, Bouwmeester H. Decision tree models to classify nanomaterials according to the DF4nanoGrouping scheme. Nanotoxicology 2017;12:1-17. [DOI: 10.1080/17435390.2017.1415388] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA