1
|
Zhou L, Zhu R, Figueroa-Miranda G, Neis M, Offenhäusser A, Mayer D. Ratiometric electrochemical aptasensor with strand displacement for insulin detection in blood samples. Anal Chim Acta 2024; 1317:342823. [PMID: 39029996 DOI: 10.1016/j.aca.2024.342823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Diabetes patients suffer either from insulin deficiency or resistance with a high risk of severe long-term complications, thus the quantitative assessment of insulin level is highly desired for diabetes surveillance and management. Utilizing insulin-capturing aptamers may facilitate the development of affordable biosensors however, their rigid G-quadruplex structures impair conformational changes of the aptamers and diminish the sensor signals. RESULTS Here we report on a ratiometric, electrochemical insulin aptasensor which is achieved by hybridization of an insulin-capturing aptamer and a partially complementary ssDNA to break the rigid G-quadruplex structures. To improve the durability of the aptasensor, the capturing aptamer was immobilized on gold electrodes via two dithiol-phosphoramidite functional groups while methoxy-polyethylene glycol thiol was used as a blocking molecule. The exposure of the sensor to insulin-containing solutions induced the dissociation of the hybridized DNA accompanied by a conformational rearrangement of the capturing aptamer back into a G-quadruplex structure. The reliability of sensor readout was improved by the adoption of an AND logic gate utilizing anthraquinone and methylene blue redox probes associated to the aptamer and complementary strand, respectively. Our aptasensor possessed an improved detection limit of 0.15 nM in comparison to aptasensors without strand displacement. SIGNIFICANCE The sensor was adapted for detection in real blood and is ready for future PoC diagnostics. The capability of monitoring the insulin level in an affordably manner can improve the treatment for an increasing number of patients in developed and developing nations. The utilization of low-cost and versatile aptamer receptors together with the engineering of ratiometric electrochemical signal recording has the potential to considerably advance the current insulin detection technology toward multi-analyte diabetes sensors.
Collapse
Affiliation(s)
- Lei Zhou
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Jülich, Germany; Faculty I, RWTH Aachen University, Aachen, Germany
| | - Ruifeng Zhu
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Gabriela Figueroa-Miranda
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Marc Neis
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Andreas Offenhäusser
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Dirk Mayer
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Jülich, Germany.
| |
Collapse
|
2
|
Hanke M, Hansen N, Tomm E, Grundmeier G, Keller A. Time-Dependent DNA Origami Denaturation by Guanidinium Chloride, Guanidinium Sulfate, and Guanidinium Thiocyanate. Int J Mol Sci 2022; 23:ijms23158547. [PMID: 35955680 PMCID: PMC9368935 DOI: 10.3390/ijms23158547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Guanidinium (Gdm) undergoes interactions with both hydrophilic and hydrophobic groups and, thus, is a highly potent denaturant of biomolecular structure. However, our molecular understanding of the interaction of Gdm with proteins and DNA is still rather limited. Here, we investigated the denaturation of DNA origami nanostructures by three Gdm salts, i.e., guanidinium chloride (GdmCl), guanidinium sulfate (Gdm2SO4), and guanidinium thiocyanate (GdmSCN), at different temperatures and in dependence of incubation time. Using DNA origami nanostructures as sensors that translate small molecular transitions into nanostructural changes, the denaturing effects of the Gdm salts were directly visualized by atomic force microscopy. GdmSCN was the most potent DNA denaturant, which caused complete DNA origami denaturation at 50 °C already at a concentration of 2 M. Under such harsh conditions, denaturation occurred within the first 15 min of Gdm exposure, whereas much slower kinetics were observed for the more weakly denaturing salt Gdm2SO4 at 25 °C. Lastly, we observed a novel non-monotonous temperature dependence of DNA origami denaturation in Gdm2SO4 with the fraction of intact nanostructures having an intermediate minimum at about 40 °C. Our results, thus, provide further insights into the highly complex Gdm–DNA interaction and underscore the importance of the counteranion species.
Collapse
|
3
|
Hanke M, Dornbusch D, Hadlich C, Rossberg A, Hansen N, Grundmeier G, Tsushima S, Keller A, Fahmy K. Anion-specific structure and stability of guanidinium-bound DNA origami. Comput Struct Biotechnol J 2022; 20:2611-2623. [PMID: 35685373 PMCID: PMC9163702 DOI: 10.1016/j.csbj.2022.05.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 12/13/2022] Open
Abstract
While the folding of DNA into rationally designed DNA origami nanostructures has been studied extensively with the aim of increasing structural diversity and introducing functionality, the fundamental physical and chemical properties of these nanostructures remain largely elusive. Here, we investigate the correlation between atomistic, molecular, nanoscopic, and thermodynamic properties of DNA origami triangles. Using guanidinium (Gdm) as a DNA-stabilizing but potentially also denaturing cation, we explore the dependence of DNA origami stability on the identity of the accompanying anions. The statistical analyses of atomic force microscopy (AFM) images and circular dichroism (CD) spectra reveals that sulfate and chloride exert stabilizing and destabilizing effects, respectively, already below the global melting temperature of the DNA origami triangles. We identify structural transitions during thermal denaturation and show that heat capacity changes ΔCp determine the temperature sensitivity of structural damage. The different hydration shells of the anions and their potential to form Gdm+ ion pairs in concentrated salt solutions modulate ΔCp by altered wetting properties of hydrophobic DNA surface regions as shown by molecular dynamics simulations. The underlying structural changes on the molecular scale become amplified by the large number of structurally coupled DNA segments and thereby find nanoscopic correlations in AFM images.
Collapse
|
4
|
Lebitania JA, Inada N, Morimoto M, You J, Shahiduzzaman M, Taima T, Hirata K, Fukuma T, Ohta A, Asakawa T, Asakawa H. Local Cross-Coupling Activity of Azide-Hexa(ethylene glycol)-Terminated Self-Assembled Monolayers Investigated by Atomic Force Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14688-14696. [PMID: 34878277 DOI: 10.1021/acs.langmuir.1c02451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Azide-oligo(ethylene glycol)-terminated self-assembled monolayers (N3-OEG-SAMs) are promising interfacial structures for surface functionalization. Its many potential applications include chemical/bio-sensing and construction of surface models owing to its cross-coupling activity that originates from the azide group and oligo(ethylene glycol) (OEG) units for non-specific adsorption resistance. However, there are only a few studies and limited information, particularly on the molecular-scale structures and local cross-coupling activities of N3-OEG-SAMs, which are vital to understanding its surface properties and interfacial molecular design. In this study, molecular-scale surface structures and cross-coupling activity of azide-hexa(ethylene glycol)-terminated SAMs (N3-EG6-SAMs) were investigated using frequency modulation atomic force microscopy (FM-AFM) in liquid. The N3-EG6-SAMs were prepared on Au(111) substrates through the self-assembly of 11-azido-hexa(ethylene glycol)-undecane-1-thiol (N3-EG6-C11-HS) molecules obtained from a liquid phase. Subnanometer-resolution surface structures were visualized in an aqueous solution using a laboratory-built FM-AFM instrument. The results show a well-ordered molecular arrangement in the N3-EG6-SAM and its clean surfaces originating from the adsorption resistance property of the terminal EG6 units. Surface functionalization by the cross-coupling reaction of copper(I)-catalyzed azide-alkyne cycloaddition was observed, indicating a structural change in the form of fluctuating structures and island-shaped structures depending on the concentration of the alkyne molecules. The FM-AFM imaging enabled to provide information on the relationship between the surface structures and cross-coupling activity. These findings provide molecular-scale information on the functionalization of the N3-EG6-SAMs, which is helpful for the interfacial molecular design based on alkanethiol SAMs in many applications.
Collapse
Affiliation(s)
- Julie Ann Lebitania
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Natsumi Inada
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Masayuki Morimoto
- Nanomaterials Research Institute (NanoMaRi), Kanazawa University, Kanazawa 920-1192, Japan
| | - Jiaxun You
- Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| | - Md Shahiduzzaman
- Nanomaterials Research Institute (NanoMaRi), Kanazawa University, Kanazawa 920-1192, Japan
| | - Tetsuya Taima
- Nanomaterials Research Institute (NanoMaRi), Kanazawa University, Kanazawa 920-1192, Japan
- Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| | - Kaito Hirata
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Takeshi Fukuma
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
- Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Akio Ohta
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Tsuyoshi Asakawa
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Hitoshi Asakawa
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
- Nanomaterials Research Institute (NanoMaRi), Kanazawa University, Kanazawa 920-1192, Japan
- Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
5
|
Avelino KYPS, Dos Santos GS, Frías IAM, Silva-Junior AG, Pereira MC, Pitta MGR, de Araújo BC, Errachid A, Oliveira MDL, Andrade CAS. Nanostructured sensor platform based on organic polymer conjugated to metallic nanoparticle for the impedimetric detection of SARS-CoV-2 at various stages of viral infection. J Pharm Biomed Anal 2021; 206:114392. [PMID: 34607201 PMCID: PMC8462052 DOI: 10.1016/j.jpba.2021.114392] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022]
Abstract
The projection of new biosensing technologies for genetic identification of SARS-COV-2 is essential in the face of a pandemic scenario. For this reason, the current research aims to develop a label-free flexible biodevice applicable to COVID-19. A nanostructured platform made of polypyrrole (PPy) and gold nanoparticles (GNP) was designed for interfacing the electrochemical signal in miniaturized electrodes of tin-doped indium oxide (ITO). Oligonucleotide primer was chemically immobilized on the flexible transducers for the biorecognition of the nucleocapsid protein (N) gene. Methodological protocols based on cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and atomic force microscopy (AFM) were used to characterize the nanotechnological apparatus. The biosensor’s electrochemical performance was evaluated using the SARS-CoV-2 genome and biological samples of cDNA from patients infected with retrovirus at various disease stages. It is inferred that the analytical tool was able to distinguish the expression of SARS-CoV-2 in patients diagnosed with COVID-19 in the early, intermediate and late stages. The biosensor exhibited high selectivity by not recognizing the biological target in samples from patients not infected with SARS-CoV-2. The proposed sensor obtained a linear response range estimated from 800 to 4000 copies µL−1 with a regression coefficient of 0.99, and a detection limit of 258.01 copies µL−1. Therefore, the electrochemical biosensor based on flexible electrode technology represents a promising trend for sensitive molecular analysis of etiologic agent with fast and simple operationalization. In addition to early genetic diagnosis, the biomolecular assay may help to monitor the progression of COVID-19 infection in a novel manner.
Collapse
Affiliation(s)
- Karen Y P S Avelino
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Giselle S Dos Santos
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Isaac A M Frías
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Alberto G Silva-Junior
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Michelly C Pereira
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Maira G R Pitta
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Breno C de Araújo
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Abdelhamid Errachid
- Université Claude Bernard Lyon 1, Institut des Sciences Analytiques (ISA), 5 rue de la Doua, 69100, Lyon, Villeurbane, France
| | - Maria D L Oliveira
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - César A S Andrade
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil.
| |
Collapse
|
6
|
Seong S, Kwon S, Han S, Son YJ, Lee G, Yang T, Lee N, Noh J. Steric Effects on the Formation of
Self‐Assembled
Monolayers of Alicyclic Thiol Derivatives on Au(111). B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Sicheon Seong
- Department of Chemistry Hanyang University, Seongdong‐gu Seoul 04763 South Korea
| | - Seungwook Kwon
- Department of Chemistry Hanyang University, Seongdong‐gu Seoul 04763 South Korea
| | - Seulki Han
- Department of Chemistry Hanyang University, Seongdong‐gu Seoul 04763 South Korea
| | - Young Ji Son
- Department of Chemistry Hanyang University, Seongdong‐gu Seoul 04763 South Korea
| | - Gaeun Lee
- Department of Chemistry Hanyang University, Seongdong‐gu Seoul 04763 South Korea
| | - Taeho Yang
- Department of Chemistry Hanyang University, Seongdong‐gu Seoul 04763 South Korea
| | - Nam‐Suk Lee
- National Institute for Nanomaterials Technology Pohang University of Science and Technology Pohang 37673 South Korea
| | - Jaegeun Noh
- Department of Chemistry Hanyang University, Seongdong‐gu Seoul 04763 South Korea
- Institute of Nano Science and Technology Hanyang University, Seongdong‐gu Seoul 04763 South Korea
| |
Collapse
|
7
|
Xin Y, Shen B, Kostiainen MA, Grundmeier G, Castro M, Linko V, Keller A. Scaling Up DNA Origami Lattice Assembly. Chemistry 2021; 27:8564-8571. [PMID: 33780583 PMCID: PMC8252642 DOI: 10.1002/chem.202100784] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 12/31/2022]
Abstract
The surface-assisted hierarchical assembly of DNA origami nanostructures is a promising route to fabricate regular nanoscale lattices. In this work, the scalability of this approach is explored and the formation of a homogeneous polycrystalline DNA origami lattice at the mica-electrolyte interface over a total surface area of 18.75 cm2 is demonstrated. The topological analysis of more than 50 individual AFM images recorded at random locations over the sample surface showed only minuscule and random variations in the quality and order of the assembled lattice. The analysis of more than 450 fluorescence microscopy images of a quantum dot-decorated DNA origami lattice further revealed a very homogeneous surface coverage over cm2 areas with only minor boundary effects at the substrate edges. At total DNA costs of € 0.12 per cm2 , this large-scale nanopatterning technique holds great promise for the fabrication of functional surfaces.
Collapse
Affiliation(s)
- Yang Xin
- Technical and Macromolecular ChemistryPaderborn UniversityWarburger Str. 10033098PaderbornGermany
| | - Boxuan Shen
- Biohybrid MaterialsDepartment of Bioproducts and BiosystemsAalto UniversityP. O. Box 1610000076AaltoFinland
| | - Mauri A. Kostiainen
- Biohybrid MaterialsDepartment of Bioproducts and BiosystemsAalto UniversityP. O. Box 1610000076AaltoFinland
| | - Guido Grundmeier
- Technical and Macromolecular ChemistryPaderborn UniversityWarburger Str. 10033098PaderbornGermany
| | - Mario Castro
- Grupo Interdisciplinar de Sistemas Complejos and Instituto de Investigación TecnológicaUniversidad Pontificia Comillas de MadridMadrid28015Spain
| | - Veikko Linko
- Biohybrid MaterialsDepartment of Bioproducts and BiosystemsAalto UniversityP. O. Box 1610000076AaltoFinland
| | - Adrian Keller
- Technical and Macromolecular ChemistryPaderborn UniversityWarburger Str. 10033098PaderbornGermany
| |
Collapse
|
8
|
Glaser M, Deb S, Seier F, Agrawal A, Liedl T, Douglas S, Gupta MK, Smith DM. The Art of Designing DNA Nanostructures with CAD Software. Molecules 2021; 26:molecules26082287. [PMID: 33920889 PMCID: PMC8071251 DOI: 10.3390/molecules26082287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 11/16/2022] Open
Abstract
Since the arrival of DNA nanotechnology nearly 40 years ago, the field has progressed from its beginnings of envisioning rather simple DNA structures having a branched, multi-strand architecture into creating beautifully complex structures comprising hundreds or even thousands of unique strands, with the possibility to exactly control the positions down to the molecular level. While the earliest construction methodologies, such as simple Holliday junctions or tiles, could reasonably be designed on pen and paper in a short amount of time, the advent of complex techniques, such as DNA origami or DNA bricks, require software to reduce the time required and propensity for human error within the design process. Where available, readily accessible design software catalyzes our ability to bring techniques to researchers in diverse fields and it has helped to speed the penetration of methods, such as DNA origami, into a wide range of applications from biomedicine to photonics. Here, we review the historical and current state of CAD software to enable a variety of methods that are fundamental to using structural DNA technology. Beginning with the first tools for predicting sequence-based secondary structure of nucleotides, we trace the development and significance of different software packages to the current state-of-the-art, with a particular focus on programs that are open source.
Collapse
Affiliation(s)
- Martin Glaser
- Peter Debye Institute for Soft Matter Physics, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany;
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, 04103 Leipzig, Germany; (F.S.); (A.A.)
| | - Sourav Deb
- Dhirubhai Ambani Institute of Information and Communication Technology, Gandhinagar 382 007, India;
| | - Florian Seier
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, 04103 Leipzig, Germany; (F.S.); (A.A.)
| | - Amay Agrawal
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, 04103 Leipzig, Germany; (F.S.); (A.A.)
- Dhirubhai Ambani Institute of Information and Communication Technology, Gandhinagar 382 007, India;
| | - Tim Liedl
- Faculty of Physics and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539 München, Germany;
| | - Shawn Douglas
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA;
| | - Manish K. Gupta
- Dhirubhai Ambani Institute of Information and Communication Technology, Gandhinagar 382 007, India;
- Correspondence: (M.K.G.); (D.M.S.)
| | - David M. Smith
- Peter Debye Institute for Soft Matter Physics, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany;
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, 04103 Leipzig, Germany; (F.S.); (A.A.)
- Dhirubhai Ambani Institute of Information and Communication Technology, Gandhinagar 382 007, India;
- Institute of Clinical Immunology, University of Leipzig Medical Faculty, 04103 Leipzig, Germany
- Correspondence: (M.K.G.); (D.M.S.)
| |
Collapse
|
9
|
Yucesoy DT, Khatayevich D, Tamerler C, Sarikaya M. Rationally designed chimeric solid‐binding peptides for tailoring solid interfaces. ACTA ACUST UNITED AC 2020. [DOI: 10.1002/mds3.10065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Deniz T. Yucesoy
- GEMSEC Genetically Engineered Materials Science and Engineering Center University of Washington Seattle WA USA
- Department of Materials Science and Engineering University of Washington Seattle WA USA
| | - Dimitry Khatayevich
- GEMSEC Genetically Engineered Materials Science and Engineering Center University of Washington Seattle WA USA
- Department of Materials Science and Engineering University of Washington Seattle WA USA
| | - Candan Tamerler
- GEMSEC Genetically Engineered Materials Science and Engineering Center University of Washington Seattle WA USA
- Department of Materials Science and Engineering University of Washington Seattle WA USA
- Department of Mechanical Engineering Bioengineering Program Institute for Bioengineering Research University of Kansas Lawrence Lawrence KS USA
| | - Mehmet Sarikaya
- GEMSEC Genetically Engineered Materials Science and Engineering Center University of Washington Seattle WA USA
- Department of Materials Science and Engineering University of Washington Seattle WA USA
- Department of Chemical Engineering University of Washington Seattle WA USA
- Department of Oral Health Sciences University of Washington Seattle WA USA
| |
Collapse
|
10
|
Xin Y, Ji X, Grundmeier G, Keller A. Dynamics of lattice defects in mixed DNA origami monolayers. NANOSCALE 2020; 12:9733-9743. [PMID: 32324191 DOI: 10.1039/d0nr01252a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The surface-assisted hierarchical assembly of DNA nanostructures into regular lattices is not only a promising route toward the fabrication of molecular lithography masks over macroscopic surface areas, but also represents an intriguing model system that enables the direct real-time observation of interface-related dynamic phenomena such as adsorption, desorption, and diffusion that are hardly accessible in other lattice-forming systems. In this work, we employ in situ high-speed atomic force microscopy to investigate the development of mixed DNA origami monolayers consisting of DNA origami triangles with threefold symmetry in the presence of rectangular DNA origami impurities with fourfold symmetry. The dynamic formation and annealing of the resulting defects is monitored in dependence of the triangle-to-rectangle ratio and correlated with the achieved lattice order. We find that the overall order of the formed DNA origami monolayer is rather resilient with regard to the presence of impurities. We even find indications that the deliberate addition of impurities at low concentrations may lead to slightly improved lattice order, presumable because they facilitate the dynamic rearrangement of neighboring lattice triangles and thus aid the annealing of non-impurity defects. Deliberate doping of DNA origami lattices with differently shaped impurities during assembly may thus provide a route toward further enhancing lattice quality via impurity-assisted annealing of lattice defects.
Collapse
Affiliation(s)
- Yang Xin
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany.
| | - Xueyin Ji
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany.
| | - Guido Grundmeier
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany.
| | - Adrian Keller
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany.
| |
Collapse
|
11
|
Shepherd JL, Clément J, McGillivary L. Friction titration measurements of electrochemically generated mixed alkylthiol monolayers on polycrystalline gold. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Wang W, Yu S, Huang S, Bi S, Han H, Zhang JR, Lu Y, Zhu JJ. Bioapplications of DNA nanotechnology at the solid-liquid interface. Chem Soc Rev 2019; 48:4892-4920. [PMID: 31402369 PMCID: PMC6746594 DOI: 10.1039/c8cs00402a] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
DNA nanotechnology engineered at the solid-liquid interface has advanced our fundamental understanding of DNA hybridization kinetics and facilitated the design of improved biosensing, bioimaging and therapeutic platforms. Three research branches of DNA nanotechnology exist: (i) structural DNA nanotechnology for the construction of various nanoscale patterns; (ii) dynamic DNA nanotechnology for the operation of nanodevices; and (iii) functional DNA nanotechnology for the exploration of new DNA functions. Although the initial stages of DNA nanotechnology research began in aqueous solution, current research efforts have shifted to solid-liquid interfaces. Based on shape and component features, these interfaces can be classified as flat interfaces, nanoparticle interfaces, and soft interfaces of DNA origami and cell membranes. This review briefly discusses the development of DNA nanotechnology. We then highlight the important roles of structural DNA nanotechnology in tailoring the properties of flat interfaces and modifications of nanoparticle interfaces, and extensively review their successful bioapplications. In addition, engineering advances in DNA nanodevices at interfaces for improved biosensing both in vitro and in vivo are presented. The use of DNA nanotechnology as a tool to engineer cell membranes to reveal protein levels and cell behavior is also discussed. Finally, we present challenges and an outlook for this emerging field.
Collapse
Affiliation(s)
- Wenjing Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Kielar C, Xin Y, Xu X, Zhu S, Gorin N, Grundmeier G, Möser C, Smith DM, Keller A. Effect of Staple Age on DNA Origami Nanostructure Assembly and Stability. Molecules 2019; 24:E2577. [PMID: 31315177 PMCID: PMC6680526 DOI: 10.3390/molecules24142577] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 01/02/2023] Open
Abstract
DNA origami nanostructures are widely employed in various areas of fundamental and applied research. Due to the tremendous success of the DNA origami technique in the academic field, considerable efforts currently aim at the translation of this technology from a laboratory setting to real-world applications, such as nanoelectronics, drug delivery, and biosensing. While many of these real-world applications rely on an intact DNA origami shape, they often also subject the DNA origami nanostructures to rather harsh and potentially damaging environmental and processing conditions. Furthermore, in the context of DNA origami mass production, the long-term storage of DNA origami nanostructures or their pre-assembled components also becomes an issue of high relevance, especially regarding the possible negative effects on DNA origami structural integrity. Thus, we investigated the effect of staple age on the self-assembly and stability of DNA origami nanostructures using atomic force microscopy. Different harsh processing conditions were simulated by applying different sample preparation protocols. Our results show that staple solutions may be stored at -20 °C for several years without impeding DNA origami self-assembly. Depending on DNA origami shape and superstructure, however, staple age may have negative effects on DNA origami stability under harsh treatment conditions. Mass spectrometry analysis of the aged staple mixtures revealed no signs of staple fragmentation. We, therefore, attribute the increased DNA origami sensitivity toward environmental conditions to an accumulation of damaged nucleobases, which undergo weaker base-pairing interactions and thus lead to reduced duplex stability.
Collapse
Affiliation(s)
- Charlotte Kielar
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany
| | - Yang Xin
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany
| | - Xiaodan Xu
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany
| | - Siqi Zhu
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany
| | - Nelli Gorin
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany
| | - Guido Grundmeier
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany
| | - Christin Möser
- DNA Nanodevices Unit, Department Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology IZI, 04103 Leipzig, Germany
- Institute of Biochemistry and Biology, Faculty of Science, University of Potsdam, 14476 Potsdam, Germany
| | - David M Smith
- DNA Nanodevices Unit, Department Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology IZI, 04103 Leipzig, Germany
- Peter Debye Institute for Soft Matter Physics, Faculty of Physics and Earth Sciences, University of Leipzig, 04103 Leipzig, Germany
| | - Adrian Keller
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany.
| |
Collapse
|
14
|
Fan S, Wang D, Kenaan A, Cheng J, Cui D, Song J. Create Nanoscale Patterns with DNA Origami. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805554. [PMID: 31018040 DOI: 10.1002/smll.201805554] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/16/2019] [Indexed: 05/21/2023]
Abstract
Structural deoxyribonucleic acid (DNA) nanotechnology offers a robust platform for diverse nanoscale shapes that can be used in various applications. Among a wide variety of DNA assembly strategies, DNA origami is the most robust one in constructing custom nanoshapes and exquisite patterns. In this account, the static structural and functional patterns assembled on DNA origami are reviewed, as well as the reconfigurable assembled architectures regulated through dynamic DNA nanotechnology. The fast progress of dynamic DNA origami nanotechnology facilitates the construction of reconfigurable patterns, which can further be used in many applications such as optical/plasmonic sensors, nanophotonic devices, and nanorobotics for numerous different tasks.
Collapse
Affiliation(s)
- Sisi Fan
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dongfang Wang
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ahmad Kenaan
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jin Cheng
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200011, China
| |
Collapse
|
15
|
Dianat S, Hatefi-Mehrjardi A, Mahmoodzadeh K. Electrochemical behavior of inorganic–organic hybrid polyoxometalate ((Cys)3[PW12O40]) nanostructure self-assembled monolayer on polycrystalline gold electrode surfaces. NEW J CHEM 2019. [DOI: 10.1039/c8nj05721d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synergistic effect of HPW and Cys enhanced electrochemical activity of Au-(Cys)PW electrode.
Collapse
Affiliation(s)
- Somayeh Dianat
- Department of Chemistry, Faculty of Sciences, University of Hormozgan
- Bandar Abbas 71961
- Iran
| | - Abdolhamid Hatefi-Mehrjardi
- Department of Chemistry, Payame Noor University (PNU)
- Tehran
- Iran
- Department of Chemistry & Nanoscience and Nanotechnology Research Laboratory (NNRL), Sirjan Payame Noor University
- Sirjan
| | - Kourosh Mahmoodzadeh
- Department of Chemistry, Payame Noor University (PNU)
- Tehran
- Iran
- Department of Chemistry & Nanoscience and Nanotechnology Research Laboratory (NNRL), Sirjan Payame Noor University
- Sirjan
| |
Collapse
|
16
|
Ramakrishnan S, Ijäs H, Linko V, Keller A. Structural stability of DNA origami nanostructures under application-specific conditions. Comput Struct Biotechnol J 2018; 16:342-349. [PMID: 30305885 PMCID: PMC6169152 DOI: 10.1016/j.csbj.2018.09.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 12/21/2022] Open
Abstract
With the introduction of the DNA origami technique, it became possible to rapidly synthesize almost arbitrarily shaped molecular nanostructures at nearly stoichiometric yields. The technique furthermore provides absolute addressability in the sub-nm range, rendering DNA origami nanostructures highly attractive substrates for the controlled arrangement of functional species such as proteins, dyes, and nanoparticles. Consequently, DNAorigami nanostructures have found applications in numerous areas of fundamental and applied research, ranging from drug delivery to biosensing to plasmonics to inorganic materials synthesis. Since many of those applications rely on structurally intact, well-definedDNA origami shapes, the issue of DNA origami stability under numerous application-relevant environmental conditions has received increasing interest in the past few years. In this mini-review we discuss the structural stability, denaturation, and degradation of DNA origami nanostructures under different conditions relevant to the fields of biophysics and biochemistry, biomedicine, and materials science, and the methods to improve their stability for desired applications.
Collapse
Affiliation(s)
- Saminathan Ramakrishnan
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany
| | - Heini Ijäs
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P. O. Box 16100, FI-00076 Aalto, Finland
- University of Jyväskylä, Department of Biological and Environmental Science, P. O. Box 35, FI-40014 Jyväskylä, Finland
| | - Veikko Linko
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P. O. Box 16100, FI-00076 Aalto, Finland
| | - Adrian Keller
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany
| |
Collapse
|
17
|
Engel MC, Smith DM, Jobst MA, Sajfutdinow M, Liedl T, Romano F, Rovigatti L, Louis AA, Doye JPK. Force-Induced Unravelling of DNA Origami. ACS NANO 2018; 12:6734-6747. [PMID: 29851456 DOI: 10.1021/acsnano.8b01844] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The mechanical properties of DNA nanostructures are of widespread interest as applications that exploit their stability under constant or intermittent external forces become increasingly common. We explore the force response of DNA origami in comprehensive detail by combining AFM single molecule force spectroscopy experiments with simulations using oxDNA, a coarse-grained model of DNA at the nucleotide level, to study the unravelling of an iconic origami system: the Rothemund tile. We contrast the force-induced melting of the tile with simulations of an origami 10-helix bundle. Finally, we simulate a recently proposed origami biosensor, whose function takes advantage of origami behavior under tension. We observe characteristic stick-slip unfolding dynamics in our force-extension curves for both the Rothemund tile and the helix bundle and reasonable agreement with experimentally observed rupture forces for these systems. Our results highlight the effect of design on force response: we observe regular, modular unfolding for the Rothemund tile that contrasts with strain-softening of the 10-helix bundle which leads to catastropic failure under monotonically increasing force. Further, unravelling occurs straightforwardly from the scaffold ends inward for the Rothemund tile, while the helix bundle unfolds more nonlinearly. The detailed visualization of the yielding events provided by simulation allows preferred pathways through the complex unfolding free-energy landscape to be mapped, as a key factor in determining relative barrier heights is the extensional release per base pair broken. We shed light on two important questions: how stable DNA nanostructures are under external forces and what design principles can be applied to enhance stability.
Collapse
Affiliation(s)
- Megan C Engel
- Rudolf Peierls Centre for Theoretical Physics , University of Oxford , 1 Keble Road , Oxford OX1 3NP , United Kingdom
| | - David M Smith
- Fraunhofer Institute for Cell Therapy and Immunology IZI , Perlickstraβe 1 , 04103 Leipzig , Germany
| | - Markus A Jobst
- Department für Physik , Ludwig-Maximilians-Universität Amalienstrasse 54 80799 München , Germany
| | - Martin Sajfutdinow
- Fraunhofer Institute for Cell Therapy and Immunology IZI , Perlickstraβe 1 , 04103 Leipzig , Germany
| | - Tim Liedl
- Department für Physik , Ludwig-Maximilians-Universität Amalienstrasse 54 80799 München , Germany
| | - Flavio Romano
- Dipartimento di Scienze Molecolari e Nanosistemi , Università Ca' Foscari di Venezia , Via Torino 155 , 30172 Venezia Mestre , Italy
| | - Lorenzo Rovigatti
- Rudolf Peierls Centre for Theoretical Physics , University of Oxford , 1 Keble Road , Oxford OX1 3NP , United Kingdom
- CNR-ISC , Uos Sapienza, Piazzale A. Moro 2 , 00185 Roma , Italy
- Dipartimento di Fisica , Sapienza Università di Roma , Piazzale A. Moro 2 , 00185 Roma , Italy
| | - Ard A Louis
- Rudolf Peierls Centre for Theoretical Physics , University of Oxford , 1 Keble Road , Oxford OX1 3NP , United Kingdom
| | - Jonathan P K Doye
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry , University of Oxford , South Parks Road , Oxford OX1 3QZ , United Kingdom
| |
Collapse
|