1
|
Yu JR, Chou HC, Yang CW, Liao WS, Hwang IS, Chen C. A horizontal-type scanning near-field optical microscope with torsional mode operation toward high-resolution and non-destructive imaging of soft materials. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:073703. [PMID: 32752832 DOI: 10.1063/5.0009422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
We design and build a horizontal-type aperture based scanning near-field optical microscope (a-SNOM) with superior mechanical stability toward high-resolution and non-destructive topographic and optical imaging. We adopt the torsional mode in AFM (atomic force microscopy) operation to achieve a better force sensitivity and a higher topographic resolution when using pyramidal a-SNOM tips. The performance and stability of the AFM are evaluated through single-walled carbon nanotube and poly(3-hexyl-thiophene) nanowire samples. An optical resolution of 93 nm is deduced from the a-SNOM imaging of a metallic grating. Finally, a-SNOM fluorescence imaging of soft lipid domains is successfully achieved without sample damage by our horizontal-type a-SNOM instrument with torsional mode AFM operation.
Collapse
Affiliation(s)
- Jia-Ru Yu
- Research Center for Applied Sciences, Academia Sinica, Nangang, Taipei 115, Taiwan
| | - He-Chun Chou
- Research Center for Applied Sciences, Academia Sinica, Nangang, Taipei 115, Taiwan
| | - Chih-Wen Yang
- Institute of Physics, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Wei-Ssu Liao
- Department of Chemistry, National Taiwan University, Da-an, Taipei 106, Taiwan
| | - Ing-Shouh Hwang
- Institute of Physics, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Chi Chen
- Research Center for Applied Sciences, Academia Sinica, Nangang, Taipei 115, Taiwan
| |
Collapse
|
2
|
Holub M, Adobes-Vidal M, Frutiger A, Gschwend PM, Pratsinis SE, Momotenko D. Single-Nanoparticle Thermometry with a Nanopipette. ACS NANO 2020; 14:7358-7369. [PMID: 32426962 DOI: 10.1021/acsnano.0c02798] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Thermal measurements at the nanoscale are key for designing technologies in many areas, including drug delivery systems, photothermal therapies, and nanoscale motion devices. Herein, we present a nanothermometry technique that operates in electrolyte solutions and, therefore, is applicable for many in vitro measurements, capable of measuring and mapping temperature with nanoscale spatial resolution and sensitive to detect temperature changes down to 30 mK with 43 μs temporal resolution. The methodology is based on local measurements of ionic conductivity confined at the tip of a pulled glass capillary, a nanopipettete, with opening diameters as small as 6 nm. When scanned above a specimen, the measured ion flux is converted into temperature using an extensive theoretical support given by numerical and analytical modeling. This allows quantitative thermal measurements with a variety of capillary dimensions and is applicable to a range of substrates. We demonstrate the capabilities of this nanothermometry technique by simultaneous mapping of temperature and topography on sub-micrometer-sized aggregates of thermoplasmonic nanoparticles heated by a laser and observe the formation of micro- and nanobubbles upon plasmonic heating. Furthermore, we perform quantitative thermometry on a single-nanoparticle level, demonstrating that the temperature at an individual nanoheater of 25 nm in diameter can reach an increase of about 3 K.
Collapse
Affiliation(s)
- Martin Holub
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Maria Adobes-Vidal
- Wood Materials Science Group, Institute for Building Materials, ETH Zurich, Zurich, CH-8093, Switzerland
| | - Andreas Frutiger
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Pascal M Gschwend
- Particle Technology Laboratory, Institute of Process Engineering, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Sotiris E Pratsinis
- Particle Technology Laboratory, Institute of Process Engineering, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Dmitry Momotenko
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich, CH-8092, Switzerland
| |
Collapse
|
3
|
Rafiei Miandashti A, Khosravi Khorashad L, Kordesch ME, Govorov AO, Richardson HH. Experimental and Theoretical Observation of Photothermal Chirality in Gold Nanoparticle Helicoids. ACS NANO 2020; 14:4188-4195. [PMID: 32176469 DOI: 10.1021/acsnano.9b09062] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Single-particle spectroscopy is central to the characterization of plasmonic nanostructures and understanding of light-matter interactions in chiral nanosystems. Although chiral plasmonic nanostructures are generally characterized by their circular differential extinction and scattering, single-particle absorption studies can extend our understanding of light-matter interactions. Here, we introduce an experimental observation of photothermal chirality which originated from circular differential absorption of chiral plasmonic nanostructures. Using luminescence ratio thermometry, we identify the optical and photothermal handedness and an absolute temperature difference of 6 K under the right and left circularly polarized light. We observe a circular differential extinction parameter (gext) of -0.13 in colloidally prepared gold helicoids and compare our findings with numerical simulations using finite element methods. The simulated data showed that circular differential absorption and the maximum temperature of a small cluster of helical nanoparticles are polarization-dependent. We observed an intensity-dependent photothermal g-factor from chiral helicoids that decreases slightly at higher temperatures. We also measure a range of optical g-factors from several gold helicoids, which are attributed to the heterogeneity of helicoids in nanoparticles during synthesis. The principles of differential photothermal response of chiral nanomaterials and heat generation described here can be potentially used for thermal photocatalysis, energy conversion, and electronic applications.
Collapse
Affiliation(s)
- Ali Rafiei Miandashti
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, United States
| | | | - Martin E Kordesch
- Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, United States
| | - Alexander O Govorov
- Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, United States
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hugh H Richardson
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, United States
| |
Collapse
|
4
|
Davis HC, Kang S, Lee JH, Shin TH, Putterman H, Cheon J, Shapiro MG. Nanoscale Heat Transfer from Magnetic Nanoparticles and Ferritin in an Alternating Magnetic Field. Biophys J 2020; 118:1502-1510. [PMID: 32061270 PMCID: PMC7091488 DOI: 10.1016/j.bpj.2020.01.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 11/28/2022] Open
Abstract
Recent suggestions of nanoscale heat confinement on the surface of synthetic and biogenic magnetic nanoparticles during heating by radio frequency-alternating magnetic fields have generated intense interest because of the potential utility of this phenomenon for noninvasive control of biomolecular and cellular function. However, such confinement would represent a significant departure from the classical heat transfer theory. Here, we report an experimental investigation of nanoscale heat confinement on the surface of several types of iron oxide nanoparticles commonly used in biological research, using an all-optical method devoid of the potential artifacts present in previous studies. By simultaneously measuring the fluorescence of distinct thermochromic dyes attached to the particle surface or dissolved in the surrounding fluid during radio frequency magnetic stimulation, we found no measurable difference between the nanoparticle surface temperature and that of the surrounding fluid for three distinct nanoparticle types. Furthermore, the metalloprotein ferritin produced no temperature increase on the protein surface nor in the surrounding fluid. Experiments mimicking the designs of previous studies revealed potential sources of the artifacts. These findings inform the use of magnetic nanoparticle hyperthermia in engineered cellular and molecular systems.
Collapse
Affiliation(s)
- Hunter C Davis
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California
| | - Sunghwi Kang
- Center for NanoMedicine,Yonsei-Institute for Basic Science, Seoul, Republic of Korea
| | - Jae-Hyun Lee
- Center for NanoMedicine,Yonsei-Institute for Basic Science, Seoul, Republic of Korea
| | - Tae-Hyun Shin
- Center for NanoMedicine,Yonsei-Institute for Basic Science, Seoul, Republic of Korea
| | - Harry Putterman
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California
| | - Jinwoo Cheon
- Center for NanoMedicine,Yonsei-Institute for Basic Science, Seoul, Republic of Korea
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California; Center for NanoMedicine,Yonsei-Institute for Basic Science, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Shrestha K, Vicente JR, Miandashti AR, Chen J, Richardson HH. Time-resolved temperature-jump measurements and steady-state thermal imaging of nanoscale heat transfer of gold nanostructures on AlGaN:Er 3+ thin films. J Chem Phys 2020; 152:034706. [PMID: 31968975 DOI: 10.1063/1.5133844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
For a nanostructure sitting on top of an AlGaN:Er3+ thin film, a new thermal imaging technique is presented where dual cameras collect bandpass filtered videos from the H and S bands of Er3+ emission. We combine this thermal imaging technique with our newly developed time-resolved temperature measurement technique which relies on luminescence thermometry using Er3+ emission. This technique collects time-resolved traces from the H and S bands of Er3+ emission. The H and S signal traces are then used to reconstruct the time-resolved temperature transient when a nanostructure is illuminated with a pulsed 532 nm light. Two different types of samples are interrogated with these techniques (drop-casted gold nanosphere cluster and lithographically prepared gold nanodot) on the AlGaN:Er3+ film. Steady-state and time-resolved temperature data are collected when the samples are immersed in air and water. The results of time-resolved temperature-jump measurements from a cluster of gold nanospheres show extremely slow heat transfer when the cluster is immersed in water and nearly 200-fold increase when immersed in air. The low thermal diffusivity for the cluster in water suggests poor thermal contact between the cluster and the thermal bath. The lithographically prepared nanodot has much better adhesion to the AlGaN film, resulting in much higher thermal diffusivity in both air and water. This proof-of-concept demonstration opens a new way to measure the dynamics of the local heat generation and dissipation at the nanoparticle-media interface.
Collapse
Affiliation(s)
- Kristina Shrestha
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, USA
| | - Juvinch R Vicente
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, USA
| | | | - Jixin Chen
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, USA
| | - Hugh H Richardson
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, USA
| |
Collapse
|
6
|
Controlled phage therapy by photothermal ablation of specific bacterial species using gold nanorods targeted by chimeric phages. Proc Natl Acad Sci U S A 2020; 117:1951-1961. [PMID: 31932441 PMCID: PMC6994977 DOI: 10.1073/pnas.1913234117] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
New methods for detecting and killing antibiotic-resistant, Gram-negative bacteria are of prime interest for a wide variety of applications. While phages have long been considered as potential antibacterial agents, many concerns about phage therapy stem from the fact that phages are replicating, evolvable entities whose biology is poorly understood in most cases. These concerns could be addressed by destroying the phage immediately upon use. We accomplish this by conjugating phages to gold nanorods, whose excitation by near-infrared light causes localized heating that essentially cooks nearby bacteria. Thus, the phages deliver gold nanorods to the targeted bacteria, and the nanorods destroy both bacteria and phages simultaneously. This strategy transforms phages from an evolving biological entity into a controlled, drug-like reagent. The use of bacteriophages (phages) for antibacterial therapy is under increasing consideration to treat antimicrobial-resistant infections. Phages have evolved multiple mechanisms to target their bacterial hosts, such as high-affinity, environmentally hardy receptor-binding proteins. However, traditional phage therapy suffers from multiple challenges stemming from the use of an exponentially replicating, evolving entity whose biology is not fully characterized (e.g., potential gene transduction). To address this problem, we conjugate the phages to gold nanorods, creating a reagent that can be destroyed upon use (termed “phanorods”). Chimeric phages were engineered to attach specifically to several Gram-negative organisms, including the human pathogens Escherichia coli, Pseudomonas aeruginosa, and Vibrio cholerae, and the plant pathogen Xanthomonas campestris. The bioconjugated phanorods could selectively target and kill specific bacterial cells using photothermal ablation. Following excitation by near-infrared light, gold nanorods release energy through nonradiative decay pathways, locally generating heat that efficiently kills targeted bacterial cells. Specificity was highlighted in the context of a P. aeruginosa biofilm, in which phanorod irradiation killed bacterial cells while causing minimal damage to epithelial cells. Local temperature and viscosity measurements revealed highly localized and selective ablation of the bacteria. Irradiation of the phanorods also destroyed the phages, preventing replication and reducing potential risks of traditional phage therapy while enabling control over dosing. The phanorod strategy integrates the highly evolved targeting strategies of phages with the photothermal properties of gold nanorods, creating a well-controlled platform for systematic killing of bacterial cells.
Collapse
|
7
|
Chen X, Hu D, Mescall R, You G, Basov DN, Dai Q, Liu M. Modern Scattering-Type Scanning Near-Field Optical Microscopy for Advanced Material Research. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804774. [PMID: 30932221 DOI: 10.1002/adma.201804774] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 02/27/2019] [Indexed: 05/27/2023]
Abstract
Infrared and optical spectroscopy represents one of the most informative methods in advanced materials research. As an important branch of modern optical techniques that has blossomed in the past decade, scattering-type scanning near-field optical microscopy (s-SNOM) promises deterministic characterization of optical properties over a broad spectral range at the nanoscale. It allows ultrabroadband optical (0.5-3000 µm) nanoimaging, and nanospectroscopy with fine spatial (<10 nm), spectral (<1 cm-1 ), and temporal (<10 fs) resolution. The history of s-SNOM is briefly introduced and recent advances which broaden the horizons of this technique in novel material research are summarized. In particular, this includes the pioneering efforts to study the nanoscale electrodynamic properties of plasmonic metamaterials, strongly correlated quantum materials, and polaritonic systems at room or cryogenic temperatures. Technical details, theoretical modeling, and new experimental methods are also discussed extensively, aiming to identify clear technology trends and unsolved challenges in this exciting field of research.
Collapse
Affiliation(s)
- Xinzhong Chen
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Debo Hu
- Division of Nanophotonics, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Ryan Mescall
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Guanjun You
- Shanghai Key Lab of Modern Optical Systems and Engineering Research Center of Optical Instrument and System, Ministry of Education, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - D N Basov
- Department of Physics, Columbia University, New York, NY, 10027, USA
| | - Qing Dai
- Division of Nanophotonics, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Mengkun Liu
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, 11794, USA
| |
Collapse
|
8
|
Roper DK, Berry KR, Dunklin JR, Chambers C, Bejugam V, Forcherio GT, Lanier M. Effects of geometry and composition of soft polymer films embedded with nanoparticles on rates for optothermal heat dissipation. NANOSCALE 2018; 10:11531-11543. [PMID: 29892737 DOI: 10.1039/c8nr00977e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Embedding soft matter with nanoparticles (NPs) can provide electromagnetic tunability at sub-micron scales for a growing number of applications in healthcare, sustainable energy, and chemical processing. However, the use of NP-embedded soft material in temperature-sensitive applications has been constrained by difficulties in validating the prediction of rates for energy dissipation from thermally insulating to conducting behavior. This work improved the embedment of monodisperse NPs to stably decrease the inter-NP spacings in polydimethylsiloxane (PDMS) to nano-scale distances. Lumped-parameter and finite element analyses were refined to apportion the effects of the structure and composition of the NP-embedded soft polymer on the rates for conductive, convective, and radiative heat dissipation. These advances allowed for the rational selection of PDMS size and NP composition to optimize measured rates of internal (conductive) and external (convective and radiative) heat dissipation. Stably reducing the distance between monodisperse NPs to nano-scale intervals increased the overall heat dissipation rate by up to 29%. Refined fabrication of NP-embedded polymer enabled the tunability of the dynamic thermal response (the ratio of internal to external dissipation rate) by a factor of 3.1 to achieve a value of 0.091, the largest reported to date. Heat dissipation rates simulated a priori were consistent with 130 μm resolution thermal images across 2- to 15-fold changes in the geometry and composition of NP-PDMS. The Nusselt number was observed to increase with the fourth root of the Rayleigh number across thermally insulative and conductive regimes, further validating the approach. These developments support the model-informed design of soft media embedded with nano-scale-spaced NPs to optimize the heat dissipation rates for evolving temperature-sensitive diagnostic and therapeutic modalities, as well as emerging uses in flexible bioelectronics, cell and tissue culture, and solar-thermal heating.
Collapse
Affiliation(s)
- D Keith Roper
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA.
| | | | | | | | | | | | | |
Collapse
|