1
|
Song Z, Chen P, Teng L, Wang W, Zhu W. Copper Nanodrugs with Controlled Morphologies through Aqueous Atom Transfer Radical Polymerization. Biomacromolecules 2024; 25:4545-4556. [PMID: 38902858 DOI: 10.1021/acs.biomac.4c00552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Copper (Cu) nanodrugs can be facilely prepared through atom transfer radical polymerization (ATRP) in an aqueous medium. However, it is difficult to control the morphology of Cu nanodrugs and thereby optimize their anticancer activity. In this work, aqueous ATRP was combined with polymerization-induced self-assembly (PISA) to prepare Cu nanodrugs with various morphologies. We mapped the relationship between polymerization condition and product morphology in which each morphology shows a wide preparation window. Decreasing the reaction temperature and feeding more Cu catalysts can improve the mobility of chains, facilitating the morphology evolution from sphere to other high-order morphologies. The resultant Cu nanodrugs with high monomer conversion and high Cu loading efficiency could be easily taken by cancer cells, showing excellent anticancer efficacy in vitro. This work proposed a potential strategy to prepare Cu nanodrugs with a specific morphology in batches, providing the method to optimize the anticancer efficacy through morphology control.
Collapse
Affiliation(s)
- Ziyan Song
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Peng Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Weibin Wang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Weipu Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China
- Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Hangzhou 310058, China
| |
Collapse
|
2
|
Serkhacheva NS, Prokopov NI, Lysenko EA, Kozhunova EY, Chernikova EV. Modern Trends in Polymerization-Induced Self-Assembly. Polymers (Basel) 2024; 16:1408. [PMID: 38794601 PMCID: PMC11125046 DOI: 10.3390/polym16101408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Polymerization-induced self-assembly (PISA) is a powerful and versatile technique for producing colloidal dispersions of block copolymer particles with desired morphologies. Currently, PISA can be carried out in various media, over a wide range of temperatures, and using different mechanisms. This method enables the production of biodegradable objects and particles with various functionalities and stimuli sensitivity. Consequently, PISA offers a broad spectrum of potential commercial applications. The aim of this review is to provide an overview of the current state of rational synthesis of block copolymer particles with diverse morphologies using various PISA techniques and mechanisms. The discussion begins with an examination of the main thermodynamic, kinetic, and structural aspects of block copolymer micellization, followed by an exploration of the key principles of PISA in the formation of gradient and block copolymers. The review also delves into the main mechanisms of PISA implementation and the principles governing particle morphology. Finally, the potential future developments in PISA are considered.
Collapse
Affiliation(s)
- Natalia S. Serkhacheva
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, pr. Vernadskogo, 86, 119571 Moscow, Russia;
| | - Nickolay I. Prokopov
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, pr. Vernadskogo, 86, 119571 Moscow, Russia;
| | - Evgenii A. Lysenko
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, bld. 3, 119991 Moscow, Russia; (E.A.L.); (E.Y.K.)
| | - Elena Yu. Kozhunova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, bld. 3, 119991 Moscow, Russia; (E.A.L.); (E.Y.K.)
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1, bld. 2, 119991 Moscow, Russia
| | - Elena V. Chernikova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, bld. 3, 119991 Moscow, Russia; (E.A.L.); (E.Y.K.)
| |
Collapse
|
3
|
Zhao X, Sun C, Xiong F, Wang T, Li S, Huo F, Yao X. Polymerization-Induced Self-Assembly for Efficient Fabrication of Biomedical Nanoplatforms. RESEARCH (WASHINGTON, D.C.) 2023; 6:0113. [PMID: 37223484 PMCID: PMC10202185 DOI: 10.34133/research.0113] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/19/2023] [Indexed: 05/25/2023]
Abstract
Amphiphilic copolymers can self-assemble into nano-objects in aqueous solution. However, the self-assembly process is usually performed in a diluted solution (<1 wt%), which greatly limits scale-up production and further biomedical applications. With recent development of controlled polymerization techniques, polymerization-induced self-assembly (PISA) has emerged as an efficient approach for facile fabrication of nano-sized structures with a high concentration as high as 50 wt%. In this review, after the introduction, various polymerization method-mediated PISAs that include nitroxide-mediated polymerization-mediated PISA (NMP-PISA), reversible addition-fragmentation chain transfer polymerization-mediated PISA (RAFT-PISA), atom transfer radical polymerization-mediated PISA (ATRP-PISA), and ring-opening polymerization-mediated PISA (ROP-PISA) are discussed carefully. Afterward, recent biomedical applications of PISA are illustrated from the following aspects, i.e., bioimaging, disease treatment, biocatalysis, and antimicrobial. In the end, current achievements and future perspectives of PISA are given. It is envisioned that PISA strategy can bring great chance for future design and construction of functional nano-vehicles.
Collapse
|
4
|
Synthesis of soft-core hard-shell nanoparticles by visible PET-RAFT polymerization in dispersion conditions. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
5
|
Petrov A, Chertovich AV, Gavrilov AA. Phase Diagrams of Polymerization-Induced Self-Assembly Are Largely Determined by Polymer Recombination. Polymers (Basel) 2022; 14:polym14235331. [PMID: 36501725 PMCID: PMC9736918 DOI: 10.3390/polym14235331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
In the current work, atom transfer radical polymerization-induced self-assembly (ATRP PISA) phase diagrams were obtained by the means of dissipative particle dynamics simulations. A fast algorithm for determining the equilibrium morphology of block copolymer aggregates was developed. Our goal was to assess how the chemical nature of ATRP affects the self-assembly of diblock copolymers in the course of PISA. We discovered that the chain growth termination via recombination played a key role in determining the ATRP PISA phase diagrams. In particular, ATRP with turned off recombination yielded a PISA phase diagram very similar to that obtained for a simple ideal living polymerization process. However, an increase in the recombination probability led to a significant change of the phase diagram: the transition between cylindrical micelles and vesicles was strongly shifted, and a dependence of the aggregate morphology on the concentration was observed. We speculate that this effect occurred due to the simultaneous action of two factors: the triblock copolymer architecture of the terminated chains and the dispersity of the solvophobic blocks. We showed that these two factors affected the phase diagram weakly if they acted separately; however, their combination, which naturally occurs during ATRP, affected the ATRP PISA phase diagram strongly. We suggest that the recombination reaction is a key factor leading to the complexity of experimental PISA phase diagrams.
Collapse
Affiliation(s)
- Artem Petrov
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence:
| | - Alexander V. Chertovich
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
- Semenov Federal Research Center for Chemical Physics, 119991 Moscow, Russia
| | - Alexey A. Gavrilov
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
- Semenov Federal Research Center for Chemical Physics, 119991 Moscow, Russia
| |
Collapse
|
6
|
Neal TJ, Penfold NJW, Armes SP. Reverse Sequence Polymerization-Induced Self-Assembly in Aqueous Media. Angew Chem Int Ed Engl 2022; 61:e202207376. [PMID: 35678548 PMCID: PMC9541501 DOI: 10.1002/anie.202207376] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 11/06/2022]
Abstract
We report a new aqueous polymerization-induced self-assembly (PISA) formulation that enables the hydrophobic block to be prepared first when targeting diblock copolymer nano-objects. This counter-intuitive reverse sequence approach uses an ionic reversible addition-fragmentation chain transfer (RAFT) agent for the RAFT aqueous dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA) to produce charge-stabilized latex particles. Chain extension using a water-soluble methacrylic, acrylic or acrylamide comonomer then produces sterically stabilized diblock copolymer nanoparticles in an aqueous one-pot formulation. In each case, the monomer diffuses into the PHPMA particles, which act as the locus for the polymerization. A remarkable change in morphology occurs as the ≈600 nm latex is converted into much smaller sterically stabilized diblock copolymer nanoparticles, which exhibit thermoresponsive behavior. Such reverse sequence PISA formulations enable the efficient synthesis of new functional diblock copolymer nanoparticles.
Collapse
Affiliation(s)
- Thomas J. Neal
- Department or ChemistryThe University of SheffieldBrook Hill, Sheffield, South YorkshireS3 7HFUK
| | - Nicholas J. W. Penfold
- Department or ChemistryThe University of SheffieldBrook Hill, Sheffield, South YorkshireS3 7HFUK
| | - Steven P. Armes
- Department or ChemistryThe University of SheffieldBrook Hill, Sheffield, South YorkshireS3 7HFUK
| |
Collapse
|
7
|
Neal TJ, Penfold NJW, Armes SP. Reverse Sequence Polymerization‐Induced Self‐Assembly in Aqueous Media. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Thomas J. Neal
- Department or Chemistry The University of Sheffield Brook Hill, Sheffield, South Yorkshire S3 7HF UK
| | - Nicholas J. W. Penfold
- Department or Chemistry The University of Sheffield Brook Hill, Sheffield, South Yorkshire S3 7HF UK
| | - Steven P. Armes
- Department or Chemistry The University of Sheffield Brook Hill, Sheffield, South Yorkshire S3 7HF UK
| |
Collapse
|
8
|
Li C, Zhao W, He J, Zhang Y, Zhang W. Single‐Step Expeditious Synthesis of Diblock Copolymers with Different Morphologies by Lewis Pair Polymerization‐Induced Self‐Assembly. Angew Chem Int Ed Engl 2022; 61:e202202448. [DOI: 10.1002/anie.202202448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Chengkai Li
- State Key Laboratory of Supramolecular Structure and Materials. College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Wuchao Zhao
- State Key Laboratory of Supramolecular Structure and Materials. College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Jianghua He
- State Key Laboratory of Supramolecular Structure and Materials. College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Yuetao Zhang
- State Key Laboratory of Supramolecular Structure and Materials. College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education Institute of Polymer Chemistry College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
9
|
Li C, Zhao W, He J, Zhang Y, Zhang W. Single‐Step Expeditious Synthesis of Diblock Copolymers with Different Morphologies by Lewis Pair Polymerization‐Induced Self‐Assembly. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Chengkai Li
- State Key Laboratory of Supramolecular Structure and Materials. College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Wuchao Zhao
- State Key Laboratory of Supramolecular Structure and Materials. College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Jianghua He
- State Key Laboratory of Supramolecular Structure and Materials. College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Yuetao Zhang
- State Key Laboratory of Supramolecular Structure and Materials. College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education Institute of Polymer Chemistry College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
10
|
Shahrokhinia A, Rijal S, Sonmez Baghirzade B, Scanga RA, Biswas P, Tafazoli S, Apul OG, Reuther JF. Chain Extensions in PhotoATRP-Induced Self-Assembly (PhotoATR-PISA): A Route to Ultrahigh Solids Concentrations and Click Nanoparticle Networks as Adsorbents for Water Treatment. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ali Shahrokhinia
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Sahaj Rijal
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Busra Sonmez Baghirzade
- Department of Civil and Environmental Engineering, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Randall A. Scanga
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Priyanka Biswas
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Shayesteh Tafazoli
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Onur G. Apul
- Department of Civil and Environmental Engineering, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
- Department of Civil and Environmental Engineering, University of Maine, Orono, Maine 04469, United States
| | - James F. Reuther
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
11
|
Kozhunova EY, Plutalova AV, Chernikova EV. RAFT Copolymerization of Vinyl Acetate and Acrylic Acid in the Selective Solvent. Polymers (Basel) 2022; 14:555. [PMID: 35160544 PMCID: PMC8838437 DOI: 10.3390/polym14030555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
Reversible addition-fragmentation chain transfer polymerization was successfully applied to the synthesis of the gradient copolymer of acrylic acid and vinyl acetate in the selective solvent. The gradient degree of the copolymer was varied by the monomer feed. The monomer conversion was found to affect the ability of the copolymer to self-assemble in aqueous solutions in narrowly dispersed micelles with an average hydrodynamic radius of about 250 nm. Furthermore, the synthesized copolymers also tended to self-assemble throughout copolymerization in the selective solvent.
Collapse
Affiliation(s)
- Elena Yu. Kozhunova
- Faculty of Physics, Lomonosov Moscow State University, Lenin Hills, 1, bld. 2, 119991 Moscow, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills, 1, bld. 3, 119991 Moscow, Russia
| | - Anna V. Plutalova
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills, 1, bld. 3, 119991 Moscow, Russia
| | - Elena V. Chernikova
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills, 1, bld. 3, 119991 Moscow, Russia
| |
Collapse
|
12
|
Dorsman IR, Derry MJ, Cunningham VJ, Brown SL, Williams CN, Armes SP. Tuning the vesicle-to-worm transition for thermoresponsive block copolymer vesicles prepared via polymerisation-induced self-assembly. Polym Chem 2021. [DOI: 10.1039/d0py01713b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Does statistical copolymerization of n-butyl methacrylate with benzyl methacrylate lower the critical temperature required for vesicle-to-worm and worm-to-sphere transitions for diblock copolymer nano-objects in mineral oil?
Collapse
Affiliation(s)
| | - Matthew J. Derry
- Department of Chemistry
- The University of Sheffield
- South Yorkshire
- UK
| | | | | | | | - Steven P. Armes
- Department of Chemistry
- The University of Sheffield
- South Yorkshire
- UK
| |
Collapse
|
13
|
Xu S, Corrigan N, Boyer C. Forced gradient copolymerisation: a simplified approach for polymerisation-induced self-assembly. Polym Chem 2021. [DOI: 10.1039/d0py00889c] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this work, a novel and versatile gradient copolymerisation approach to simplify polymeric nanoparticle synthesis through polymerisation-induced self-assembly (PISA) is reported.
Collapse
Affiliation(s)
- Sihao Xu
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Nathaniel Corrigan
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| |
Collapse
|
14
|
Gavrilov AA, Shupanov RM, Chertovich AV. Phase Diagram for Ideal Diblock-Copolymer Micelles Compared to Polymerization-Induced Self Assembly. Polymers (Basel) 2020; 12:E2599. [PMID: 33167451 PMCID: PMC7694520 DOI: 10.3390/polym12112599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 01/28/2023] Open
Abstract
In this work we constructed a detailed phase diagram for the solutions of ideal diblock-copolymers and compared such diagram with that obtained during polymerization-induced self-assembly (PISA); a wide range of polymer concentrations as well as chain compositions was studied. As the length of the solvophobic block nB increases (the length of the solvophilic block nA was fixed), the transition from spherical micelles to cylinders and further to vesicles (lamellae) occurs. We observed a rather wide transition region between the spherical and cylindrical morphology in which the system contains a mixture of spheres and short cylinders, which appear to be in dynamic equilibrium; the transition between the cylinders and vesicles was found to be rather sharp. Next, upon increasing the polymer concentration in the system, the transition region between the spheres and cylinders shifts towards lower nB/nA values; a similar shift but with less magnitude was observed for the transition between the cylinders and vesicles. Such behavior was attributed to the increased number of contacts between the micelles at higher polymer volume concentrations. We also found that the width of the stability region of the cylindrical micelles for small polymer volume concentrations is in good quantitative agreement with the predictions of analytical theory. The obtained phase diagram for PISA was similar to the case of presynthesized diblock copolymer; however, the positions of the transition lines for PISA are slightly shifted towards higher nB/nA values in comparison to the presynthesized diblock copolymers, which is more pronounced for the case of the cylinders-to-vesicles transition. We believe that the reason for such behavior is the polydispersity of the core-forming blocks: The presence of the short and long blocks being located at the micelle interface and in its center, respectively, helps to reduce the entropy losses due to the insoluble block stretching, which leads to the increased stability of more curved micelles.
Collapse
Affiliation(s)
- Alexey A. Gavrilov
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (R.M.S.); (A.V.C.)
| | - Ruslan M. Shupanov
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (R.M.S.); (A.V.C.)
| | - Alexander V. Chertovich
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (R.M.S.); (A.V.C.)
- Semenov Federal Research Center for Chemical Physics, 119991 Moscow, Russia
| |
Collapse
|
15
|
Wang J, Cao M, Zhou P, Wang G. Exploration of a Living Anionic Polymerization Mechanism into Polymerization-Induced Self-Assembly and Site-Specific Stabilization of the Formed Nano-Objects. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00371] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jian Wang
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Mengya Cao
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Peng Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Guowei Wang
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
16
|
Liu D, Cai W, Zhang L, Boyer C, Tan J. Efficient Photoinitiated Polymerization-Induced Self-Assembly with Oxygen Tolerance through Dual-Wavelength Type I Photoinitiation and Photoinduced Deoxygenation. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02710] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Dongdong Liu
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Weibin Cai
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
17
|
Zhou C, Wang J, Zhou P, Wang G. A polymerization-induced self-assembly process for all-styrenic nano-objects using the living anionic polymerization mechanism. Polym Chem 2020. [DOI: 10.1039/d0py00296h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
By combination of the living anionic polymerization (LAP) mechanism with the polymerization-induced self-assembly (PISA) technique, the all-styrenic diblock copolymer poly(p-tert-butylstyrene)-b-polystyrene (PtBS-b-PS) based LAP PISA was successfully developed.
Collapse
Affiliation(s)
- Chengcheng Zhou
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Jian Wang
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Peng Zhou
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Guowei Wang
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| |
Collapse
|
18
|
Liu C, Hong CY, Pan CY. Polymerization techniques in polymerization-induced self-assembly (PISA). Polym Chem 2020. [DOI: 10.1039/d0py00455c] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The development of controlled/“living” polymerization greatly stimulated the prosperity of the fabrication and application of block copolymer nano-objects.
Collapse
Affiliation(s)
- Chao Liu
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Chun-Yan Hong
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Cai-Yuan Pan
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P. R. China
| |
Collapse
|
19
|
Abstract
Mother Nature produces a perfectly defined architecture that inspires researchers to make polymeric macromolecules for an array of functions. The present article describes recent development in the PISA to synthesize polymeric nano-objects.
Collapse
Affiliation(s)
- Shivshankar R. Mane
- Polymer Science and Engineering Division
- CSIR – National Chemical Laboratory
- Pune 411008
- India
| |
Collapse
|
20
|
Ikkene D, Arteni AA, Ouldali M, Six JL, Ferji K. Self-assembly of amphiphilic copolymers containing polysaccharide: PISA versus nanoprecipitation, and the temperature effect. Polym Chem 2020. [DOI: 10.1039/d0py00407c] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The self-assembly methods and the temperature have a considerable impact on the morphology of the resulting nanoobjects in the case of amphiphilic glycopolymers.
Collapse
Affiliation(s)
| | - Ana Andreea Arteni
- Université Paris-Saclay
- CEA
- CNRS
- Institute for Integrative Biology of the Cell (I2BC)
- Cryo-electron Microscopy Facility
| | - Malika Ouldali
- Université Paris-Saclay
- CEA
- CNRS
- Institute for Integrative Biology of the Cell (I2BC)
- Cryo-electron Microscopy Facility
| | - Jean-Luc Six
- Université de Lorraine
- CNRS
- LCPM
- F-54000 Nancy
- France
| | - Khalid Ferji
- Université de Lorraine
- CNRS
- LCPM
- F-54000 Nancy
- France
| |
Collapse
|
21
|
Bao C, Chen J, Li D, Zhang A, Zhang Q. Synthesis of lipase–polymer conjugates by Cu(0)-mediated reversible deactivation radical polymerization: polymerization vs. degradation. Polym Chem 2020. [DOI: 10.1039/c9py01462d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cu(0)-RDRP was first used for the polymerization-induced self-assembly of lipase–polymer conjugates, inducing the formation of nanospheres with preserved activity and degradability.
Collapse
Affiliation(s)
- Chunyang Bao
- Key Laboratory of New Membrane Materials
- Ministry of Industry and Information Technology
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
| | - Jing Chen
- Key Laboratory of New Membrane Materials
- Ministry of Industry and Information Technology
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
| | - Die Li
- Key Laboratory of New Membrane Materials
- Ministry of Industry and Information Technology
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
| | - Aotian Zhang
- Key Laboratory of New Membrane Materials
- Ministry of Industry and Information Technology
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
| | - Qiang Zhang
- Key Laboratory of New Membrane Materials
- Ministry of Industry and Information Technology
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
| |
Collapse
|
22
|
Shi B, Zhang H, Liu Y, Wang J, Zhou P, Cao M, Wang G. Development of ICAR ATRP–Based Polymerization‐Induced Self‐Assembly and Its Application in the Preparation of Organic–Inorganic Nanoparticles. Macromol Rapid Commun 2019; 40:e1900547. [DOI: 10.1002/marc.201900547] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/04/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Boyang Shi
- State Key Laboratory of Molecular Engineering of PolymersCollaborative Innovation Center of Polymers and Polymer Composite MaterialsDepartment of Macromolecular ScienceFudan University Shanghai 200433 China
| | - Hao Zhang
- State Key Laboratory of Molecular Engineering of PolymersCollaborative Innovation Center of Polymers and Polymer Composite MaterialsDepartment of Macromolecular ScienceFudan University Shanghai 200433 China
| | - Yi Liu
- State Key Laboratory of Molecular Engineering of PolymersCollaborative Innovation Center of Polymers and Polymer Composite MaterialsDepartment of Macromolecular ScienceFudan University Shanghai 200433 China
| | - Jian Wang
- State Key Laboratory of Molecular Engineering of PolymersCollaborative Innovation Center of Polymers and Polymer Composite MaterialsDepartment of Macromolecular ScienceFudan University Shanghai 200433 China
| | - Peng Zhou
- State Key Laboratory of Molecular Engineering of PolymersCollaborative Innovation Center of Polymers and Polymer Composite MaterialsDepartment of Macromolecular ScienceFudan University Shanghai 200433 China
| | - Mengya Cao
- State Key Laboratory of Molecular Engineering of PolymersCollaborative Innovation Center of Polymers and Polymer Composite MaterialsDepartment of Macromolecular ScienceFudan University Shanghai 200433 China
| | - Guowei Wang
- State Key Laboratory of Molecular Engineering of PolymersCollaborative Innovation Center of Polymers and Polymer Composite MaterialsDepartment of Macromolecular ScienceFudan University Shanghai 200433 China
| |
Collapse
|
23
|
Dai X, Yu L, Zhang Y, Zhang L, Tan J. Polymerization-Induced Self-Assembly via RAFT-Mediated Emulsion Polymerization of Methacrylic Monomers. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01689] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Xiaocong Dai
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Liangliang Yu
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuxuan Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
24
|
Penfold NJW, Yeow J, Boyer C, Armes SP. Emerging Trends in Polymerization-Induced Self-Assembly. ACS Macro Lett 2019; 8:1029-1054. [PMID: 35619484 DOI: 10.1021/acsmacrolett.9b00464] [Citation(s) in RCA: 344] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this Perspective, we summarize recent progress in polymerization-induced self-assembly (PISA) for the rational synthesis of block copolymer nanoparticles with various morphologies. Much of the PISA literature has been based on thermally initiated reversible addition-fragmentation chain transfer (RAFT) polymerization. Herein, we pay particular attention to alternative PISA protocols, which allow the preparation of nanoparticles with improved control over copolymer morphology and functionality. For example, initiation based on visible light, redox chemistry, or enzymes enables the incorporation of sensitive monomers and fragile biomolecules into block copolymer nanoparticles. Furthermore, PISA syntheses and postfunctionalization of the resulting nanoparticles (e.g., cross-linking) can be conducted sequentially without intermediate purification by using various external stimuli. Finally, PISA formulations have been optimized via high-throughput polymerization and recently evaluated within flow reactors for facile scale-up syntheses.
Collapse
Affiliation(s)
- Nicholas J. W. Penfold
- Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, United Kingdom
| | - Jonathan Yeow
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales, 2051, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales, 2051, Australia
| | - Steven P. Armes
- Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, United Kingdom
| |
Collapse
|
25
|
Cao M, Zhang Y, Wang J, Fan X, Wang G. ICAR ATRP Polymerization‐Induced Self‐Assembly Using a Mixture of Macroinitiator/Stabilizer with Different Molecular Weights. Macromol Rapid Commun 2019; 40:e1900296. [DOI: 10.1002/marc.201900296] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/24/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Mengya Cao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsKey Laboratory of Green Chemical Media and Reactions Ministry of EducationSchool of Chemistry and Chemical EngineeringHenan Normal University Xinxiang 453007 China
- State Key Laboratory of Molecular Engineering of PolymersCollaborative Innovation Center of Polymers and Polymer Composite MaterialsDepartment of Macromolecular ScienceFudan University Shanghai 200433 China
| | - Yixiang Zhang
- State Key Laboratory of Molecular Engineering of PolymersCollaborative Innovation Center of Polymers and Polymer Composite MaterialsDepartment of Macromolecular ScienceFudan University Shanghai 200433 China
| | - Jian Wang
- State Key Laboratory of Molecular Engineering of PolymersCollaborative Innovation Center of Polymers and Polymer Composite MaterialsDepartment of Macromolecular ScienceFudan University Shanghai 200433 China
| | - Xiaoshan Fan
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsKey Laboratory of Green Chemical Media and Reactions Ministry of EducationSchool of Chemistry and Chemical EngineeringHenan Normal University Xinxiang 453007 China
| | - Guowei Wang
- State Key Laboratory of Molecular Engineering of PolymersCollaborative Innovation Center of Polymers and Polymer Composite MaterialsDepartment of Macromolecular ScienceFudan University Shanghai 200433 China
| |
Collapse
|
26
|
Penfold NJW, Whatley JR, Armes SP. Thermoreversible Block Copolymer Worm Gels Using Binary Mixtures of PEG Stabilizer Blocks. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02491] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Nicholas J. W. Penfold
- Department of Chemistry, Dainton Building, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Jessica R. Whatley
- Department of Chemistry, Dainton Building, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Steven P. Armes
- Department of Chemistry, Dainton Building, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| |
Collapse
|
27
|
Chen M, Li JW, Zhang WJ, Hong CY, Pan CY. pH- and Reductant-Responsive Polymeric Vesicles with Robust Membrane-Cross-Linked Structures: In Situ Cross-Linking in Polymerization-Induced Self-Assembly. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02081] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Miao Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jia-Wei Li
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wen-Jian Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chun-Yan Hong
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Cai-Yuan Pan
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
28
|
Qu S, Wang K, Khan H, Xiong W, Zhang W. Synthesis of block copolymer nano-assemblies via ICAR ATRP and RAFT dispersion polymerization: how ATRP and RAFT lead to differences. Polym Chem 2019. [DOI: 10.1039/c8py01799a] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Block copolymer nano-assemblies were synthesized via ICAR ATRP dispersion polymerization employing the CuBr2/tris(2-pyridylmethyl)amine catalyst in an alcoholic solvent at a relatively low temperature of 45 °C.
Collapse
Affiliation(s)
- Shuwen Qu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Ke Wang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Habib Khan
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Weifeng Xiong
- State Key Laboratory of Special Functional Waterproof Materials
- Beijing Oriental Yuhong Waterproof Technology Co
- Ltd
- Beijing 100123
- China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| |
Collapse
|
29
|
Qian S, Li S, Xiong W, Khan H, Huang J, Zhang W. A new visible light and temperature responsive diblock copolymer. Polym Chem 2019. [DOI: 10.1039/c9py01050e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A visible light and temperature responsive diblock copolymer of poly[6-(2,6,2′,6′-tetramethoxy-4′-oxyazobenzene) hexyl methacrylate]-block-poly(N-isopropylacrylamide) (PmAzo-b-PNIPAM) was synthesized via RAFT polymerization by carefully tuning the polymerization conditions.
Collapse
Affiliation(s)
- Sijia Qian
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Shenzhen Li
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Weifeng Xiong
- State Key Laboratory of Special Functional Waterproof Materials
- Beijing Oriental Yuhong Waterproof Technology Co
- Ltd
- Beijing 100123
- China
| | - Habib Khan
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Jing Huang
- Sinopec Research Institute of Petroleum Engineering
- Beijing
- China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|
30
|
Zaquen N, Azizi WAAW, Yeow J, Kuchel RP, Junkers T, Zetterlund PB, Boyer C. Alcohol-based PISA in batch and flow: exploring the role of photoinitiators. Polym Chem 2019. [DOI: 10.1039/c9py00166b] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymerization-induced self-assembly (PISA) via PhotoRAFT (photoinduced reversible addition–fragmentation radical transfer) was investigated in polar solvents via continuous flow reactors.
Collapse
Affiliation(s)
- Neomy Zaquen
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Wan A. A. W. Azizi
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Jonathan Yeow
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Rhiannon P. Kuchel
- Polymer Reaction Design Group
- School of Chemistry
- Monash University
- Melbourne
- Australia
| | - Tanja Junkers
- Organic and Bio-Polymer Chemistry (OBPC)
- Universiteit Hasselt
- 3590 Diepenbeek
- Belgium
| | - Per B. Zetterlund
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| |
Collapse
|
31
|
Six JL, Ferji K. Polymerization induced self-assembly: an opportunity toward the self-assembly of polysaccharide-containing copolymers into high-order morphologies. Polym Chem 2019. [DOI: 10.1039/c8py01295d] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Self-assembly of polysaccharide-containing amphiphilic copolymers: polymerization induced self-assembly versus traditional techniques.
Collapse
Affiliation(s)
- Jean-Luc Six
- Université de Lorraine
- CNRS, LCPM
- F-5400 Nancy
- France
| | - Khalid Ferji
- Université de Lorraine
- CNRS, LCPM
- F-5400 Nancy
- France
| |
Collapse
|
32
|
Rodríguez-Arco L, Poma A, Ruiz-Pérez L, Scarpa E, Ngamkham K, Battaglia G. Molecular bionics - engineering biomaterials at the molecular level using biological principles. Biomaterials 2018; 192:26-50. [PMID: 30419394 DOI: 10.1016/j.biomaterials.2018.10.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/06/2018] [Accepted: 10/28/2018] [Indexed: 12/18/2022]
Abstract
Life and biological units are the result of the supramolecular arrangement of many different types of molecules, all of them combined with exquisite precision to achieve specific functions. Taking inspiration from the design principles of nature allows engineering more efficient and compatible biomaterials. Indeed, bionic (from bion-, unit of life and -ic, like) materials have gained increasing attention in the last decades due to their ability to mimic some of the characteristics of nature systems, such as dynamism, selectivity, or signalling. However, there are still many challenges when it comes to their interaction with the human body, which hinder their further clinical development. Here we review some of the recent progress in the field of molecular bionics with the final aim of providing with design rules to ensure their stability in biological media as well as to engineer novel functionalities which enable navigating the human body.
Collapse
Affiliation(s)
- Laura Rodríguez-Arco
- Department of Chemistry, University College London (UCL) 20 Gordon St, Kings Cross, London, WC1H 0AJ, UK; Institute for Physics of Living Systems, University College London, London, UK.
| | - Alessandro Poma
- Department of Chemistry, University College London (UCL) 20 Gordon St, Kings Cross, London, WC1H 0AJ, UK; Institute for Physics of Living Systems, University College London, London, UK
| | - Lorena Ruiz-Pérez
- Department of Chemistry, University College London (UCL) 20 Gordon St, Kings Cross, London, WC1H 0AJ, UK; Institute for Physics of Living Systems, University College London, London, UK; The EPRSC/Jeol Centre of Liquid Electron Microscopy, University College London, London, WC1H 0AJ, UK
| | - Edoardo Scarpa
- Department of Chemistry, University College London (UCL) 20 Gordon St, Kings Cross, London, WC1H 0AJ, UK; Institute for Physics of Living Systems, University College London, London, UK
| | - Kamolchanok Ngamkham
- Faculty of Engineering, King Mongkut's University of Technology Thonbury, 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok, 10140, Thailand
| | - Giuseppe Battaglia
- Department of Chemistry, University College London (UCL) 20 Gordon St, Kings Cross, London, WC1H 0AJ, UK; Institute for Physics of Living Systems, University College London, London, UK; The EPRSC/Jeol Centre of Liquid Electron Microscopy, University College London, London, WC1H 0AJ, UK.
| |
Collapse
|
33
|
Tan J, Xu Q, Zhang Y, Huang C, Li X, He J, Zhang L. Room Temperature Synthesis of Self-Assembled AB/B and ABC/BC Blends by Photoinitiated Polymerization-Induced Self-Assembly (Photo-PISA) in Water. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01456] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
34
|
Zhang Y, Han G, Cao M, Guo T, Zhang W. Influence of Solvophilic Homopolymers on RAFT Polymerization-Induced Self-Assembly. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00690] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | - Guang Han
- State Key Laboratory of Special Functional Waterproof Materials, Beijing Oriental Yuhong Waterproof Technology Co., Ltd., Beijing, China
| | | | | | | |
Collapse
|
35
|
Wang Y, Han G, Duan W, Zhang W. ICAR ATRP in PEG with Low Concentration of Cu(II) Catalyst: A Versatile Method for Synthesis of Block Copolymer Nanoassemblies under Dispersion Polymerization. Macromol Rapid Commun 2018; 40:e1800140. [DOI: 10.1002/marc.201800140] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/17/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Yixin Wang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education; Institute of Polymer Chemistry; College of Chemistry; Nankai University; Tianjin 300071 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 China
| | - Guang Han
- State Key Laboratory of Special Functional Waterproof Materials; Beijing Oriental Yuhong Waterproof Technology Co., Ltd; Beijing 100123 China
| | - Wenfeng Duan
- State Key Laboratory of Special Functional Waterproof Materials; Beijing Oriental Yuhong Waterproof Technology Co., Ltd; Beijing 100123 China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education; Institute of Polymer Chemistry; College of Chemistry; Nankai University; Tianjin 300071 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 China
| |
Collapse
|
36
|
Rideau E, Dimova R, Schwille P, Wurm FR, Landfester K. Liposomes and polymersomes: a comparative review towards cell mimicking. Chem Soc Rev 2018; 47:8572-8610. [DOI: 10.1039/c8cs00162f] [Citation(s) in RCA: 521] [Impact Index Per Article: 86.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Minimal cells: we compare and contrast liposomes and polymersomes for a bettera priorichoice and design of vesicles and try to understand the advantages and shortcomings associated with using one or the other in many different aspects (properties, synthesis, self-assembly, applications).
Collapse
Affiliation(s)
- Emeline Rideau
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
| | - Rumiana Dimova
- Max Planck Institute for Colloids and Interfaces
- Wissenschaftspark Potsdam-Golm
- 14476 Potsdam
- Germany
| | - Petra Schwille
- Max Planck Institute of Biochemistry
- 82152 Martinsried
- Germany
| | | | | |
Collapse
|