1
|
Adamowska M, Kaniewska K, Muszyńska M, Romański J, Hyk W, Karbarz M. Smart Hydrogel Based on Derivatives of Natural α-Amino Acids for Efficient Removal of Metal Ions from Wastewater. Gels 2024; 10:560. [PMID: 39330162 PMCID: PMC11431252 DOI: 10.3390/gels10090560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/18/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
A novel class of hydrogels, rich in a variety of functional groups capable of interacting/complexing with metal ions was successfully synthesized. This was achieved by using acryloyl derivatives of natural α-amino acids, specifically ornithine and cystine. The δ-amino group of ornithine was modified with an acryloyl group to facilitate its attachment to the polymer chain. Additionally, N,N'-bisacryloylcystine, derived from cystine, was employed as the cross-linker. The hydrogel was obtained through a process of free radical polymerization. This hydrogel, composed only from derivatives of natural amino acids, has proven to be a competitive sorbent and has been effectively used to remove heavy metal pollutants, mainly lead, copper, and silver ions, from aqueous media. The maximum sorption capacities were ca. 155 mg·g-1, 90 mg·g-1, and 215 mg·g-1, respectively for Pb(II), Cu(II), and Ag(I). The material was characterized by effective regeneration, maintaining the sorption capacity at around 80%, 85%, and 90% for Cu(II), Ag(I), and Pb(II), respectively, even after five cycles. The properties of sorption materials, such as sorption kinetics and the effect of pH on sorption, as well as the influence of the concentration of the examined metal ions on the swelling ratio and morphology of the gel, were investigated. The EDS technique was employed to investigate the composition and element distribution in the dry gel samples. Additionally, IR spectroscopy was used to identify the functional groups responsible for binding the studied metal ions, providing insights into their specific interactions with the hydrogel.
Collapse
Affiliation(s)
- Monika Adamowska
- Faculty of Chemistry, University of Warsaw, 1 Pasteura, PL 02-093 Warsaw, Poland; (M.A.); (K.K.); (M.M.); (J.R.)
| | - Klaudia Kaniewska
- Faculty of Chemistry, University of Warsaw, 1 Pasteura, PL 02-093 Warsaw, Poland; (M.A.); (K.K.); (M.M.); (J.R.)
| | - Magdalena Muszyńska
- Faculty of Chemistry, University of Warsaw, 1 Pasteura, PL 02-093 Warsaw, Poland; (M.A.); (K.K.); (M.M.); (J.R.)
- Biological and Chemical Research Center, University of Warsaw, 101 Żwirki i Wigury Av., PL 02-089 Warsaw, Poland
| | - Jan Romański
- Faculty of Chemistry, University of Warsaw, 1 Pasteura, PL 02-093 Warsaw, Poland; (M.A.); (K.K.); (M.M.); (J.R.)
| | - Wojciech Hyk
- Faculty of Chemistry, University of Warsaw, 1 Pasteura, PL 02-093 Warsaw, Poland; (M.A.); (K.K.); (M.M.); (J.R.)
- Biological and Chemical Research Center, University of Warsaw, 101 Żwirki i Wigury Av., PL 02-089 Warsaw, Poland
| | - Marcin Karbarz
- Faculty of Chemistry, University of Warsaw, 1 Pasteura, PL 02-093 Warsaw, Poland; (M.A.); (K.K.); (M.M.); (J.R.)
- Biological and Chemical Research Center, University of Warsaw, 101 Żwirki i Wigury Av., PL 02-089 Warsaw, Poland
| |
Collapse
|
2
|
Cao H, Wang M, Ding J, Lin Y. Hydrogels: a promising therapeutic platform for inflammatory skin diseases treatment. J Mater Chem B 2024; 12:8007-8032. [PMID: 39045804 DOI: 10.1039/d4tb00887a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Inflammatory skin diseases, such as psoriasis and atopic dermatitis, pose significant health challenges due to their long-lasting nature, potential for serious complications, and significant health risks, which requires treatments that are both effective and exhibit minimal side effects. Hydrogels offer an innovative solution due to their biocompatibility, tunability, controlled drug delivery capabilities, enhanced treatment adherence and minimized side effects risk. This review explores the mechanisms that guide the design of hydrogel therapeutic platforms from multiple perspectives, focusing on the components of hydrogels, their adjustable physical and chemical properties, and their interactions with cells and drugs to underscore their clinical potential. We also examine various therapeutic agents for psoriasis and atopic dermatitis that can be integrated into hydrogels, including traditional drugs, novel compounds targeting oxidative stress, small molecule drugs, biologics, and emerging therapies, offering insights into their mechanisms and advantages. Additionally, we review clinical trial data to evaluate the effectiveness and safety of hydrogel-based treatments in managing psoriasis and atopic dermatitis under complex disease conditions. Lastly, we discuss the current challenges and future opportunities for hydrogel therapeutics in treating psoriasis and atopic dermatitis, such as improving skin barrier penetration and developing multifunctional hydrogels, and highlight emerging opportunities to enhance long-term safety and stability.
Collapse
Affiliation(s)
- Huali Cao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
- Department of Dermatology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Ming Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Jianwei Ding
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Yiliang Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
3
|
Sutthasupa S, Pankaew A, Thisan S, Wangngae S, Kumphune S. Approaching Tryptophan-Derived Polynorbornene Fluorescent Chemosensors: Synthesis, Characterization, and Sensing Ability for Biomedical Applications as Biomarkers for Detecting Fe 2+ Ions. Biomacromolecules 2024; 25:2875-2889. [PMID: 38554086 DOI: 10.1021/acs.biomac.4c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
We present a novel group of tryptophan (Trp)-based fluorescent polymeric probes synthesized via ring-opening metathesis polymerization (ROMP) of Trp-derived norbornene monomers. These probes, in mono- and disubstituted forms, incorporate amide and ester anchoring groups. The quantity of Trp substituents did not affect fluorescence selectivity but influenced quenching percentage. Poly-diamide-Trp, Poly-monoamide-Trp, Poly-diester-Trp, and Poly-monoester-Trp probes displayed selective detection of Fe2+ and Fe3+ ions with fluorescence on-off characteristics. Poly-diamide-Trp and Poly-monoamide-Trp exhibited a limit of detection (LOD) for Fe2+ and Fe3+ ions of 0.86-11.32 μM, while Poly-diester-Trp and Poly-monoester-Trp showed higher LODs (21.8-108.7 μM). These probes exhibited high selectivity over Fe2+, a crucial metal ion in the body known for its redox properties causing oxidative stress and cell damage. Cell cytotoxicity tests in various cell types confirmed biocompatibility. Additionally, Poly-diamide-Trp displayed excellent cell permeability and iron ion detection in EA.hy926 cells, suggesting potential for bioimaging and clinical applications.
Collapse
Affiliation(s)
- Sutthira Sutthasupa
- Division of Packaging Technology, Faculty of Agro Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
| | - Aphiwat Pankaew
- Mahidol University-Frontier Research Facility, Mahidol University at Salaya, Phuttamonthon 4 Road, Salaya 73170, Nakhon Pathom, Thailand
| | - Sukanya Thisan
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai 502200, Thailand
| | - Sirilak Wangngae
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sarawut Kumphune
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai 502200, Thailand
| |
Collapse
|
4
|
Basuroy K, de Jesus Velazquez-Garcia J, Techert S. Investigation of encapsulated water wire within self-assembled hydrophilic nanochannels, in a modified γ 4-amino acid crystals: Tracking thermally induced changes of intermolecular interactions within a crystalline hydrate. Amino Acids 2024; 56:9. [PMID: 38315214 PMCID: PMC10844418 DOI: 10.1007/s00726-023-03372-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/20/2023] [Indexed: 02/07/2024]
Abstract
Nanostructures formed by the self-assembly of modified/unmodified amino acids have the potential to be useful in several biological/nonbiological applications. In that regard, the greater conformational space provided by γ-amino acids, owing to their additional backbone torsional degrees of freedom and enhanced proteolytic stability, compared to their α-counterparts, should be explored. Though, modified single amino acid-based nanomaterials such as nanobelts or hydrogels are developed by utilizing the monosubstituted γ-amino acids derived from the backbone homologation of phenylalanine (Phe). Examples of a single γ-amino acid-based porous nanostructure capable of accommodating solvent molecules are not really known. The crystal structures of a modified γ4(R)Phe residue, Boc-γ4(R)Phe-OH, at different temperatures, showed that hydrogen-bonded water molecules are forming a wire inside hydrophilic nanochannels. The dynamics of intermolecular interactions between the water wire and the inner wall of the channel with relation to the temperature change was investigated by analyzing the natural bonding orbital (NBO) calculation results performed with the single crystal structures obtained at different temperature points. The NBO results showed that from 325 K onward, the strength of water-water interactions in the water wire are getting weaker, whereas, for the water-inner wall interactions, it getting stronger, suggesting a favorable change in the orientation of water molecules with temperatures, for the latter.
Collapse
Affiliation(s)
- Krishnayan Basuroy
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany.
| | | | - Simone Techert
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
| |
Collapse
|
5
|
Yadav D, Sharma PK, Malviya R, Mishra PS, Surendra AV, Rao GSNK, Rani BR. Stimuli-responsive Biomaterials for Tissue Engineering Applications. Curr Pharm Biotechnol 2024; 25:981-999. [PMID: 37594093 DOI: 10.2174/1389201024666230818121821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/14/2023] [Accepted: 07/12/2023] [Indexed: 08/19/2023]
Abstract
The use of ''smart materials,'' or ''stimulus responsive'' materials, has proven useful in a variety of fields, including tissue engineering and medication delivery. Many factors, including temperature, pH, redox state, light, and magnetic fields, are being studied for their potential to affect a material's properties, interactions, structure, and/or dimensions. New tissue engineering and drug delivery methods are made possible by the ability of living systems to respond to both external stimuli and their own internal signals) for example, materials composed of stimuliresponsive polymers that self assemble or undergo phase transitions or morphology transformation. The researcher examines the potential of smart materials as controlled drug release vehicles in tissue engineering, aiming to enable the localized regeneration of injured tissue by delivering precisely dosed drugs at precisely timed intervals.
Collapse
Affiliation(s)
- Deepika Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University Greater Noida, Uttar Pradesh, India
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University Greater Noida, Uttar Pradesh, India
| | - Prem Shankar Mishra
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University Greater Noida, Uttar Pradesh, India
| | | | - G S N Koteswara Rao
- Shobhaben Pratapbhai Patel School of Pharmacy, NMIMS Deemed University, Mumbai, India
| | - Budha Roja Rani
- Institute of Pharmaceutical Technology, Sri Padmavathi Mahila Visvavidyalayam, Tirupati, A.P., India
| |
Collapse
|
6
|
Saeed S, Munawar S, Ahmad S, Mansha A, Zahoor AF, Irfan A, Irfan A, Kotwica-Mojzych K, Soroka M, Głowacka M, Mojzych M. Recent Trends in the Petasis Reaction: A Review of Novel Catalytic Synthetic Approaches with Applications of the Petasis Reaction. Molecules 2023; 28:8032. [PMID: 38138522 PMCID: PMC10745964 DOI: 10.3390/molecules28248032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/26/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
The Petasis reaction, also called the Petasis Borono-Mannich reaction, is a multicomponent reaction that couples a carbonyl derivative, an amine and boronic acids to yield substituted amines. The reaction proceeds efficiently in the presence or absence of a specific catalyst and solvent. By employing this reaction, a diverse range of chiral derivatives can easily be obtained, including α-amino acids. A broad substrate scope, high yields, distinct functional group tolerance and the availability of diverse catalytic systems constitute key features of this reaction. In this review article, attention has been drawn toward the recently reported methodologies for executing the Petasis reaction to produce structurally simple to complex aryl/allyl amino scaffolds.
Collapse
Affiliation(s)
- Sadaf Saeed
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (S.S.); (S.M.); (A.M.); (A.I.)
| | - Saba Munawar
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (S.S.); (S.M.); (A.M.); (A.I.)
| | - Sajjad Ahmad
- Department of Basic Sciences and Humanities, University of Engineering and Technology Lahore, Faisalabad Campus, Faisalabad 38000, Pakistan;
| | - Asim Mansha
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (S.S.); (S.M.); (A.M.); (A.I.)
| | - Ameer Fawad Zahoor
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (S.S.); (S.M.); (A.M.); (A.I.)
| | - Ali Irfan
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (S.S.); (S.M.); (A.M.); (A.I.)
| | - Ahmad Irfan
- Department of Chemistry, College of Science, King Khalid University, Abha 61413, Saudi Arabia;
| | - Katarzyna Kotwica-Mojzych
- Department of Histology, Embryology and Cytophysiology of the Department of Basic Sciences, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland;
| | - Malgorzata Soroka
- Faculty of Medicine, Collegium Medicum, The Mazovian Academy in Plock, Pl. Dąbrowskiego 2, 09-402 Płock, Poland;
| | - Mariola Głowacka
- Faculty of Health Sciences, Collegium Medicum, The Mazovian Academy in Plock, Pl. Dąbrowskiego 2, 09-402 Płock, Poland;
| | - Mariusz Mojzych
- Faculty of Medicine, Collegium Medicum, The Mazovian Academy in Plock, Pl. Dąbrowskiego 2, 09-402 Płock, Poland;
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, 3-go Maja 54, 08-110 Siedlce, Poland
| |
Collapse
|
7
|
Nishimura SN, Sato D, Koga T. Mechanically Tunable Hydrogels with Self-Healing and Shape Memory Capabilities from Thermo-Responsive Amino Acid-Derived Vinyl Polymers. Gels 2023; 9:829. [PMID: 37888402 PMCID: PMC10606565 DOI: 10.3390/gels9100829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
In this study, we report the fabrication and characterization of self-healing and shape-memorable hydrogels, the mechanical properties of which can be tuned via post-polymerization crosslinking. These hydrogels were constructed from a thermo-responsive poly(N-acryloyl glycinamide) (NAGAm) copolymer containing N-acryloyl serine methyl ester (NASMe) units (5 mol%) that were readily synthesized via conventional radical copolymerization. This transparent and free-standing hydrogel is produced via multiple hydrogen bonds between PNAGAm chains by simply dissolving the polymer in water at a high temperature (~90 °C) and then cooling it. This hydrogel exhibited moldability and self-healing properties. The post-polymerization crosslinking of the amino acid-derived vinyl copolymer network with glutaraldehyde, which acts as a crosslinker between the hydroxy groups of the NASMe units, tuned mechanical properties such as viscoelasticity and tensile strength. The optimal crosslinker concentration efficiently improved the viscoelasticity. Moreover, these hydrogels exhibited shape fixation (~60%)/memory (~100%) behavior owing to the reversible thermo-responsiveness (upper critical solution temperature-type) of the PNAGAm units. Our multifunctional hydrogel, with moldable, self-healing, mechanical tunability via post-polymerization crosslinking, and shape-memorable properties, has considerable potential for applications in engineering and biomedical materials.
Collapse
Affiliation(s)
- Shin-nosuke Nishimura
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe 610-0321, Kyoto, Japan;
| | | | - Tomoyuki Koga
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe 610-0321, Kyoto, Japan;
| |
Collapse
|
8
|
Zhang Y, Tang H, Zhou J, Zhang L, Wang R. Designing Multimodal ON-OFF Nanoswitches of DNA-Functionalized Nanoparticles by Stimuli-Responsive Polymers. J Phys Chem B 2023; 127:8049-8056. [PMID: 37699428 DOI: 10.1021/acs.jpcb.3c04409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
It is a challenging task to realize highly reversible ON-OFF nanoswitches over a wide range of temperatures, which emerge as a versatile toolbox for use in nanobiotechnology. Herein, nanoparticles (NPs) bifunctionalized by DNA strands and stimuli-responsive polymers are proposed to construct multimodal ON-OFF nanoswitches by the coarse-grained model. The successful achievement of multimodal ON-OFF nanoswitches for bifunctionalized NPs at lower temperatures is attributed to the synergistic effects of the contraction and expansion configurations of stimuli-responsive polymers, combined with the hybridization-dehybridization event of DNA strands. Importantly, our simulations isolate the conditions of programmable self-assembly of bifunctionalized NPs to realize the multimodal ON-OFF nanoswitches by the changes of temperature and chain rigidity. In addition, it is found that the bifunctionalized NPs in the ON state display anisotropic and patchy features due to an introduction of stimuli-responsive polymers. Our simulation results provide fundamental insights on qualitative predictions of ON/OFF states of DNA-based NPs, which can aid in realizing a set of ON-OFF nanoswitches by the rational design of functionalization molecules.
Collapse
Affiliation(s)
- Yixin Zhang
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hao Tang
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Junwei Zhou
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Liangshun Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Rong Wang
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
9
|
Huang YC, Zeng YJ, Lin YW, Tai HC, Don TM. In Situ Encapsulation of Camptothecin by Self-Assembly of Poly(acrylic acid)- b-Poly( N-Isopropylacrylamide) and Chitosan for Controlled Drug Delivery. Polymers (Basel) 2023; 15:polym15112463. [PMID: 37299263 DOI: 10.3390/polym15112463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Camptothecin (CPT) has been shown to exhibit anticancer activity against several cancers. Nevertheless, CPT is very hydrophobic with poor stability, and thus its medical application is limited. Therefore, various drug carriers have been exploited for effectively delivering CPT to the targeted cancer site. In this study, a dual pH/thermo-responsive block copolymer of poly(acrylic acid-b-N-isopropylacrylamide) (PAA-b-PNP) was synthesized and applied to encapsulate CPT. At temperatures above its cloud point, the block copolymer self-assembled to form nanoparticles (NPs) and in situ encapsulate CPT, owing to their hydrophobic interaction as evidenced by fluorescence spectrometry. Chitosan (CS) was further applied on the surface through the formation of a polyelectrolyte complex with PAA for improving biocompatibility. The average particle size and zeta potential of the developed PAA-b-PNP/CPT/CS NPs in a buffer solution were 168 nm and -30.6 mV, respectively. These NPs were still stable at least for 1 month. The PAA-b-PNP/CS NPs exhibited good biocompatibility toward NIH 3T3 cells. Moreover, they could protect the CPT at pH 2.0 with a very slow-release rate. At pH 6.0, these NPs could be internalized by Caco-2 cells, followed by intracellular release of the CPT. They became highly swollen at pH 7.4, and the released CPT was able to diffuse into the cells at higher intensity. Among several cancer cell lines, the highest cytotoxicity was observed for H460 cells. As a result, these environmentally-responsive NPs have the potential to be applied in oral administration.
Collapse
Affiliation(s)
- Yi-Cheng Huang
- Department of Food Science, National Taiwan Ocean University, No. 2, Beining Rd., Zhongzheng Dist., Keelung City 202301, Taiwan
| | - Yang-Jie Zeng
- Department of Food Science, National Taiwan Ocean University, No. 2, Beining Rd., Zhongzheng Dist., Keelung City 202301, Taiwan
| | - Yu-Wei Lin
- Department of Chemical and Materials Engineering, Tamkang University, No. 151 Yingzhuan Rd., Tamsui Dist., New Taipei City 251301, Taiwan
| | - Hung-Chih Tai
- Department of Food Science, National Taiwan Ocean University, No. 2, Beining Rd., Zhongzheng Dist., Keelung City 202301, Taiwan
| | - Trong-Ming Don
- Department of Chemical and Materials Engineering, Tamkang University, No. 151 Yingzhuan Rd., Tamsui Dist., New Taipei City 251301, Taiwan
| |
Collapse
|
10
|
Enbanathan S, Munusamy S, Ponnan S, Jothi D, Manoj Kumar S, Sathiyanarayanan KI. AIE active luminous dye with a triphenylamine attached benzothiazole core as a portable polymer film for sensitively detecting CN- ions in food samples. Talanta 2023; 264:124726. [PMID: 37276676 DOI: 10.1016/j.talanta.2023.124726] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/07/2023]
Abstract
Aggregation-induced emission (AIE) active 3-(3-(benzo[d]thiazol-2-yl)-2-hydroxyphenyl)-2-(4'-(diphenylamino)-[1,1'-biphenyl]-4-yl)acrylonitrile (BTPA) has been designed and synthesized herein, with the goal of detecting CN- ions at a low-level in semi-aqueous medium. The deliberate addition of the electron-deficient alkene BTPA increased its sensitivity and selectivity to CN- ions, with a better detection limit of 6.4 nM, unveiling the next-generation approach to creating sophisticated CN- ions selective chemosensors. The ESI-MS and NMR spectra analyses provided strong support for the structures of the chemosensors, while the UV-Vis, photoluminescence, and 1H-NMR titration experiments provided support for the sensing efficiencies. Subsequently, PVDF/BTPA electrospun nanofibers have been effectively produced as functional films. These nanofiber films exhibit outstanding mechanical strength, photo/thermal stability, and optical responsiveness to CN- ions, making them a potential choice for on-field emerging contaminant detection.
Collapse
Affiliation(s)
- Saravanan Enbanathan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632 014, India
| | - Sathishkumar Munusamy
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, United States.
| | - Sathiyanathan Ponnan
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Dhanapal Jothi
- Department of Advanced Organic Materials Science and Engineering, Chungnam National University, South Korea
| | - Selin Manoj Kumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632 014, India
| | | |
Collapse
|
11
|
Song Y, Zhang Z, Cao Y, Yu Z. Stimulus-Responsive Amino Acids Behind In Situ Assembled Bioactive Peptide Materials. Chembiochem 2023; 24:e202200497. [PMID: 36278304 DOI: 10.1002/cbic.202200497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/18/2022] [Indexed: 02/04/2023]
Abstract
In situ self-assembly of peptides into well-defined nanostructures represents one of versatile strategies for creation of bioactive materials within living cells with great potential in disease diagnosis and treatment. The intimate relationship between amino acid sequences and the assembling propensity of peptides has been thoroughly elucidated over the past few decades. This has inspired development of various controllable self-assembling peptide systems based on stimuli-responsive naturally occurring or non-canonical amino acids, including redox-, pH-, photo-, enzyme-responsive amino acids. This review attempts to summarize the recent progress achieved in manipulating in situ self-assembly of peptides by controllable reactions occurring to amino acids. We will highlight the systems containing non-canonical amino acids developed in our laboratory during the past few years, primarily including acid/enzyme-responsive 4-aminoproline, redox-responsive (seleno)methionine, and enzyme-responsive 2-nitroimidazolyl alanine. Utilization of the stimuli-responsive assembling systems in creation of bioactive materials will be specifically introduced to emphasize their advantages for addressing the concerns lying in disease theranostics. Eventually, we will provide the perspectives for the further development of stimulus-responsive amino acids and thereby demonstrating their great potential in development of next-generation biomaterials.
Collapse
Affiliation(s)
- Yanqiu Song
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China
| | - Zeyu Zhang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China
| | - Yawei Cao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China.,Haihe Laboratory of Synthetic Biology, 21 West 15th Avenue, Tianjin, 300308, P. R. China
| |
Collapse
|
12
|
Maity T, Paul S, De P. Side-chain amino acid-based macromolecular architectures. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2023. [DOI: 10.1080/10601325.2023.2169158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Tanmoy Maity
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, India
| | - Soumya Paul
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, India
| |
Collapse
|
13
|
Panchal SS, Vasava DV. Synthetic biodegradable polymeric materials in non-viral gene delivery. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2023.2167081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Siddhi S. Panchal
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, India
| | - Dilip V. Vasava
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, India
| |
Collapse
|
14
|
Reitenbach J, Geiger C, Wang P, Vagias A, Cubitt R, Schanzenbach D, Laschewsky A, Papadakis CM, Müller-Buschbaum P. Effect of Magnesium Salts with Chaotropic Anions on the Swelling Behavior of PNIPMAM Thin Films. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Julija Reitenbach
- TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Christina Geiger
- TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Peixi Wang
- TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Apostolos Vagias
- Heinz Maier-Leibnitz Zentrum (MLZ), Technical University of Munich, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Robert Cubitt
- Institut Laue-Langevin, 6 rue Jules Horowitz, 38000 Grenoble, France
| | - Dirk Schanzenbach
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - André Laschewsky
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
- Fraunhofer Institut für Angewandte Polymerforschung, Geiselbergstr. 69, 14476 Potsdam-Golm, Germany
| | - Christine M. Papadakis
- TUM School of Natural Sciences, Department of Physics, Fachgebiet Physik weicher Materie, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Peter Müller-Buschbaum
- TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technical University of Munich, Lichtenbergstr. 1, 85748 Garching, Germany
| |
Collapse
|
15
|
Synthesis & characterization of amino acid-based acrylamide derived amphiphilic block copolymer using a new xanthate and its influence on cell cytotoxicity & cell viability. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
16
|
Saxena A, Malviya R. 3D Printable Drug Delivery Systems: Next-generation Healthcare Technology and Regulatory Aspects. Curr Pharm Des 2023; 29:2814-2826. [PMID: 38018197 DOI: 10.2174/0113816128275872231105183036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 11/30/2023]
Abstract
A revolutionary shift in healthcare has been sparked by the development of 3D printing, propelling us into an era replete with boundless opportunities for personalized DDS (Drug Delivery Systems). Precise control of the kinetics of drug release can be achieved through 3D printing, improving treatment efficacy and patient compliance. Additionally, 3D printing facilitates the co-administration of multiple drugs, simplifying treatment regimens. The technology offers rapid prototyping and manufacturing capabilities, reducing development timelines and costs. The seamless integration of advanced algorithms and artificial neural networks (ANN) augments the precision and efficacy of 3D printing, propelling us toward the forefront of personalized medicine. This comprehensive review delves into the regulatory frontiers governing 3D printable drug delivery systems, with an emphasis on adhering to rigorous safety protocols to ensure the well-being of patients by leveraging the latest advancements in 3D printing technologies powered by artificial intelligence. The paradigm promises superior therapeutic outcomes and optimized medication experiences and sets the stage for an immersive future within the Metaverse, wherein healthcare seamlessly converges with virtual environments to unlock unparalleled possibilities for personalized treatments.
Collapse
Affiliation(s)
- Anmol Saxena
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
17
|
Dou J, Yu S, Reddy O, Zhang Y. Novel ABA block copolymers: preparation, temperature sensitivity, and drug release. RSC Adv 2022; 13:129-139. [PMID: 36605663 PMCID: PMC9764341 DOI: 10.1039/d2ra05831f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/04/2022] [Indexed: 12/24/2022] Open
Abstract
A new PEGylated macroiniferter was prepared based on the polycondensation reaction of polyethylene oxide (PEO), methylene diphenyl diisocyanate (MDI), and 1,1,2,2-tetraphenyl-1,2-ethanediol (TPED). The macroiniferter consists of PEO end groups and readily reacts with acrylamides (such as N-isopropylacrylamide, NIPAM) and forms ABA block copolymers (PEO-PNIPAM-PEO). This approach of making amphiphilic ABA block copolymers is robust, versatile, and useful, particularly for the development of polymers for biomedical applications. The resulting amphiphilic PEO-PNIPAM-PEO block copolymers are also temperature sensitive, and their phase transition temperatures are close to human body temperature and therefore they have been applied as drug carriers for cancer treatment. Two PEO-PNIPAM-PEO polymers with different molecular weights were prepared and selected to make temperature-sensitive micelles. As a result of the biocompatibility of these micelles, cell viability tests proved that these micelles have low toxicity toward cancer cells. The resultant polymer micelles were then used as drug carriers to deliver the hydrophobic anticancer drug doxorubicin (DOX), and the results showed that they exhibit significantly higher cumulative drug release efficiency at higher temperatures. Moreover, after loading DOX into the micelles, cellular uptake experiments showed easy uptake and cell viability tests showed that DOX-loaded micelles possess a better therapeutic effect than free DOX at the same dose.
Collapse
Affiliation(s)
- Jie Dou
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, University Heights Newark 07102 NJ USA
| | - Shupei Yu
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, University Heights Newark 07102 NJ USA
| | - Ojasvita Reddy
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, University Heights Newark 07102 NJ USA
| | - Yuanwei Zhang
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, University Heights Newark 07102 NJ USA
| |
Collapse
|
18
|
Chandra Joshi D, Ashokan A, Jayakannan M. l-Amino Acid Based Phenol- and Catechol-Functionalized Poly(ester-urethane)s for Aromatic π-Interaction Driven Drug Stabilization and Their Enzyme-Responsive Delivery in Cancer Cells. ACS APPLIED BIO MATERIALS 2022; 5:5432-5444. [PMID: 36318654 DOI: 10.1021/acsabm.2c00775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Exploiting aromatic π-interaction for the stabilization of polyaromatic anticancer drugs at the core of the polymer nanoassemblies is an elegant approach for drug delivery in cancer research. To demonstrate this concept, here we report one of the first attempts on enzyme-responsive polymers from aryl-unit containing amino acid bioresources such as l-tyrosine and 3,4-dihydroxy-l-phenylalanine (l-DOPA). A silyl ether protection strategy was adopted to make melt polymerizable monomers, which were subjected to solvent free melt polycondensation to produce silyl-protected poly(ester-urethane)s. Postpolymerization deprotection yielded phenol- and catechol-functionalized poly(ester-urethane)s with appropriate amphiphilicity and produced 100 ± 10 nm size nanoparticles in an aqueous solution. The aromatic π-core in the nanoparticle turns out to be the main driving force for the successful encapsulation of anticancer drugs such as doxorubicin (DOX) and topotecan (TPT). The electron-rich catechol aromatic unit in l-DOPA was found to be unique in stabilizing the DOX and TPT, whereas its l-tyrosine counterpart was found to exhibit limited success. Aromatic π-interactions between l-DOPA and anticancer drug molecules were established by probing the fluorescence characteristics of the drug-polymer chain interactions. Lysosomal enzymatic biodegradation of the poly(ester-urethane) backbone disassembled the nanoparticles and released the loaded drugs at the cellular level. The nascent polymer was nontoxic in breast cancer (MCF7) and WT-MEF cell lines, whereas its DOX and TPT loaded nanoparticles showed remarkable cell growth inhibition. A LysoTracker-assisted confocal microscopic imaging study directly evidenced the polymer nanoparticles' biodegradation at the intracellular level. The present investigation gives an opportunity to design aromatic π-interaction driven drug stabilization in l-amino acid based polymer nanocarriers for drug delivery applications.
Collapse
Affiliation(s)
- Dheeraj Chandra Joshi
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Akash Ashokan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Manickam Jayakannan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| |
Collapse
|
19
|
Zhang Y, Tang H, Wang R. Controlling the two components modified on nanoparticles to construct nanomaterials. SOFT MATTER 2022; 18:8213-8222. [PMID: 36285648 DOI: 10.1039/d2sm00877g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nanoparticle self-assembly technology has made great progress in the past 30 years. Many kinds of self-assembly strategies of modifiable nanoparticles have been developed and used to construct nano-aggregates by designing the shape, size and type of nanoparticles and controlling the components modified on nanoparticles. These strategies are widely used in many fields, such as medical diagnosis, biological detection, drug delivery, materials synthesis and sensors. The modified components can be DNA chains, polymer chains, proteins, and even organic molecules based on different molecular conformations and chemical properties. In recent years, the self-assembly of two-component modified nanoparticles has gradually attracted more attention. Nanoparticles modified with two components of different DNA strands can self-assemble to produce a variety of nano arrangement structures, such as BCC, FCC and other cubic crystals, which can be used in crystal materials. Two-component modification of hydrophilic and hydrophobic polymers can produce vesicular aggregates, which can be used for drug delivery. In this review, we summarize the latest experimental progress and theoretical simulation of self-assembly of two-component modified nanoparticles including different DNA chains, different polymer chains, DNA and polymer chains, proteins and polymer chains, and different organic molecules. Their self-assembly characteristics and application prospects were discussed. Compared with single-component modified nanoparticles, two-component nanoparticles have different tethered molecules or molecular chains, which can be multifunctional by regulating different modified components and types of nanoparticles and ultimately expand the scope of applications.
Collapse
Affiliation(s)
- Yixin Zhang
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Hao Tang
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Rong Wang
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
20
|
Thermo-responsive diblock copolymer with pendant thiolactone group and its double postmodification. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03298-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Chowdhury P, Banerjee A, Saha B, Bauri K, De P. Stimuli-Responsive Aggregation-Induced Emission (AIE)-Active Polymers for Biomedical Applications. ACS Biomater Sci Eng 2022; 8:4207-4229. [PMID: 36054823 DOI: 10.1021/acsbiomaterials.2c00656] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
At high concentration or in the aggregated state, most of the traditional luminophores suffer from the general aggregation-caused quenching (ACQ) effect, which significantly limits their biomedical applications. On the contrary, a few fluorophores exhibit an aggregation-induced emission (AIE) feature which is just the opposite of ACQ. The luminophores with aggregation-induced emission (AIEgens) have exhibited noteworthy advantages to get tunable emission, excellent photostability, and biocompatibility. Incorporating AIEgens into polymer design has yielded diversified polymer systems with fascinating photophysical characteristics. Again, stimuli-responsive polymers are capable of undergoing chemical and/or physical property changes on receiving signals from single or multiple stimuli. The combination of the AIE property and stimuli responses in a single polymer platform provides a feasible and effective strategy for the development of smart polymers with promising biomedical applications. Herein, the advancements in stimuli-responsive polymers with AIE characteristics for biomedical applications are summarized. AIE-active polymers are first categorized into conventional π-π conjugated and nonconventional fluorophore systems and then subdivided based on various stimuli, such as pH, redox, enzyme, reactive oxygen species (ROS), and temperature. In each section, the design strategies of the smart polymers and their biomedical applications, including bioimaging, cancer theranostics, gene delivery, and antimicrobial examples, are introduced. The current challenges and future perspectives of this field are also stated at the end of this review article.
Collapse
Affiliation(s)
- Pampa Chowdhury
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 Nadia, West Bengal, India
| | - Arnab Banerjee
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 Nadia, West Bengal, India
| | - Biswajit Saha
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 Nadia, West Bengal, India
| | - Kamal Bauri
- Department of Chemistry, Raghunathpur College, Raghunathpur, 723133 Purulia, West Bengal, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 Nadia, West Bengal, India
| |
Collapse
|
22
|
Intrinsically fluorescent polyureas toward conformation-assisted metamorphosis, discoloration and intracellular drug delivery. Nat Commun 2022; 13:4551. [PMID: 35931687 PMCID: PMC9355952 DOI: 10.1038/s41467-022-32053-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 07/13/2022] [Indexed: 11/08/2022] Open
Abstract
Peptidomimetic polymers have attracted increasing interest because of the advantages of facile synthesis, high molecular tunability, resistance to degradation, and low immunogenicity. However, the presence of non-native linkages compromises their ability to form higher ordered structures and protein-inspired functions. Here we report a class of amino acid-constructed polyureas with molecular weight- and solvent-dependent helical and sheet-like conformations as well as green fluorescent protein-mimic autofluorescence with aggregation-induced emission characteristics. The copolymers self-assemble into vesicles and nanotubes and exhibit H-bonding-mediated metamorphosis and discoloration behaviors. We show that these polymeric vehicles with ultrahigh stability, superfast responsivity and conformation-assisted cell internalization efficiency could act as an “on-off” switchable nanocarrier for specific intracellular drug delivery and effective cancer theranosis in vitro and in vivo. This work provides insights into the folding and hierarchical assembly of biomacromolecules, and a new generation of bioresponsive polymers and nonconventional luminescent aliphatic materials for diverse applications. Biomimetic materials are of interest but can often suffer from limitations caused by the non-native linkages used. Here, the authors report on the creation of amino acid constructed polyureas which can self-assemble into vesicles and nanotubes with aggregation induced fluorescence and the potential for drug delivery applications.
Collapse
|
23
|
Duan H, Zhu C, Qi D, Li J. Circularly polarized luminescence of polymers with coil to helix transformation in water system triggered via metal coordination. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
24
|
Guo Y, Shen Y, Yu B, Ding L, Meng Z, Wang X, Han M, Dong Z, Wang X. Hydrophilic Poly(glutamic acid)-Based Nanodrug Delivery System: Structural Influence and Antitumor Efficacy. Polymers (Basel) 2022; 14:2242. [PMID: 35683914 PMCID: PMC9182916 DOI: 10.3390/polym14112242] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
Poly(amino acids) have advanced characteristics, including unique secondary structure, enzyme degradability, good biocompatibility, and stimuli responsibility, and are suitable as drug delivery nanocarriers for tumor therapy. The isoform structure of poly(amino acids) plays an important role in their antitumor efficacy and should be researched in detail. In this study, two kinds of pH-sensitive isoforms, including α-poly(glutamic acid) (α-PGA) and γ-PGA, were selected and used as nanocarriers to prepare a nanodrug delivery system. According to the preparation results, α-PGA can be used as an ideal drug carrier. Selecting doxorubicin (DOX) as the model drug, an α-PGA/DOX nanoparticle (α-PGA/DOX NPs) with a particle size of 110.4 nm was prepared, and the drug-loading content was 66.2%. α-PGA/DOX NPs presented obvious sustained and pH-dependent release characteristics. The IC50 value of α-PGA/DOX NPs was 1.06 ± 0.77 μg mL-1, decreasing by approximately 8.5 fold in vitro against 4T1 cells after incubation for 48 h. Moreover, α-PGA/DOX NPs enhanced antitumor efficacy in vivo, the tumor inhibition rate was 67.4%, increasing 1.5 fold over DOX injection. α-PGA/DOX NPs also reduced the systemic toxicity and cardiotoxicity of DOX. In sum, α-PGA is a biosafe nanodrug delivery carrier with potential clinical application prospects.
Collapse
Affiliation(s)
- Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Y.G.); (Y.S.); (B.Y.); (L.D.); (Z.M.); (X.W.); (M.H.)
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yiping Shen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Y.G.); (Y.S.); (B.Y.); (L.D.); (Z.M.); (X.W.); (M.H.)
| | - Bo Yu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Y.G.); (Y.S.); (B.Y.); (L.D.); (Z.M.); (X.W.); (M.H.)
| | - Lijuan Ding
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Y.G.); (Y.S.); (B.Y.); (L.D.); (Z.M.); (X.W.); (M.H.)
| | - Zheng Meng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Y.G.); (Y.S.); (B.Y.); (L.D.); (Z.M.); (X.W.); (M.H.)
| | - Xiaotong Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Y.G.); (Y.S.); (B.Y.); (L.D.); (Z.M.); (X.W.); (M.H.)
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Y.G.); (Y.S.); (B.Y.); (L.D.); (Z.M.); (X.W.); (M.H.)
| | - Zhengqi Dong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Y.G.); (Y.S.); (B.Y.); (L.D.); (Z.M.); (X.W.); (M.H.)
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Y.G.); (Y.S.); (B.Y.); (L.D.); (Z.M.); (X.W.); (M.H.)
| |
Collapse
|
25
|
He X, Qu Y, Lin X, Sun J, Jiang Z, Wang C, Deng Y, Yan F, Sun Y. Self-assembled D-arginine derivatives based on click chemical reactions for intracellular codelivery of antigens and adjuvants for potential immunotherapy. J Mater Chem B 2022; 10:3491-3500. [PMID: 35403659 DOI: 10.1039/d2tb00346e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-assembled amino acid derivatives could form well-defined nanostructures which have great application value for drug delivery systems. In particular, D-amino acid derivatives possess tremendous advantages including anti-degradation and good lysosome escape compared with L-amino acid derivatives. In this work, 9-fluorenylmethyloxycarbonyl (Fmoc) neighboring D-arginine derivatives were replaced by dibenzocyclooctyne (DBCO) to extend the class of functional D-arginine derivatives, which were further reacted with various cross-linkers including azide to construct a library of self-assembled supramolecular nanovehicles and strengthen the stability of nanostructures for disease immunotherapy. Moreover, in vitro studies demonstrated that the combination of DBCO modified D-arginine derivative DR3 and cross-linker C1 not only reinforced the cellular uptake efficiency of ovalbumin (OVA) which was chosen as the model antigen, but also promoted the cytokine TNF-α release of RAW 264.7 cells after the introduction of adjuvant unmethylated cytosine-phosphate-guanine dinucleotides (CpG). Furthermore, the nanovaccine based on DR3C1 could enhance the antigen OVA and adjuvant cytosolic delivery of marrow derived dendritic cells (BMDCs), which improved the antigen-presentation cross efficiency and induced the maturation of BMDCs. Taken together, we believe that D-arginine derivatives functionalized by DBCO provide an effective strategy for disease immunotherapy and act as a great potential delivery tool.
Collapse
Affiliation(s)
- Xiao He
- Department of Geriatrics, The Shenzhen Hospital of Peking University, Shenzhen, Guangdong, 518036, China.
| | - Yannv Qu
- Department of Geriatrics, The Shenzhen Hospital of Peking University, Shenzhen, Guangdong, 518036, China.
| | - Xiaohong Lin
- Department of Infertility and Reproductive Health, Shenzhen Longhua District Maternity & Child Healthcare Hospital, Shenzhen, Guangdong, 518109, China
| | - Jiapan Sun
- Department of Geriatrics, The Shenzhen Hospital of Peking University, Shenzhen, Guangdong, 518036, China.
| | - Zhiru Jiang
- Department of Geriatrics, The Shenzhen Hospital of Peking University, Shenzhen, Guangdong, 518036, China.
| | - Chaodong Wang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Yuanfei Deng
- Department of Geriatrics, The Shenzhen Hospital of Peking University, Shenzhen, Guangdong, 518036, China.
| | - Fei Yan
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.
| | - Yansun Sun
- Department of Geriatrics, The Shenzhen Hospital of Peking University, Shenzhen, Guangdong, 518036, China.
| |
Collapse
|
26
|
Hong Y, Lin Z, Yang Y, Jiang T, Shang J, Luo Z. Biocompatible Conductive Hydrogels: Applications in the Field of Biomedicine. Int J Mol Sci 2022; 23:4578. [PMID: 35562969 PMCID: PMC9104506 DOI: 10.3390/ijms23094578] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
The impact of COVID-19 has rendered medical technology an important factor to maintain social stability and economic increase, where biomedicine has experienced rapid development and played a crucial part in fighting off the pandemic. Conductive hydrogels (CHs) are three-dimensional (3D) structured gels with excellent electrical conductivity and biocompatibility, which are very suitable for biomedical applications. CHs can mimic innate tissue's physical, chemical, and biological properties, which allows them to provide environmental conditions and structural stability for cell growth and serve as efficient delivery substrates for bioactive molecules. The customizability of CHs also allows additional functionality to be designed for different requirements in biomedical applications. This review introduces the basic functional characteristics and materials for preparing CHs and elaborates on their synthetic techniques. The development and applications of CHs in the field of biomedicine are highlighted, including regenerative medicine, artificial organs, biosensors, drug delivery systems, and some other application scenarios. Finally, this review discusses the future applications of CHs in the field of biomedicine. In summary, the current design and development of CHs extend their prospects for functioning as an intelligent and complex system in diverse biomedical applications.
Collapse
Affiliation(s)
| | | | | | - Tao Jiang
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China; (Y.H.); (Z.L.); (Y.Y.); (J.S.)
| | | | - Zirong Luo
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China; (Y.H.); (Z.L.); (Y.Y.); (J.S.)
| |
Collapse
|
27
|
Hsieh PH, Huang WY, Wang HC, Kuan CH, Shiue TY, Chen Y, Wang TW. Dual-responsive polypeptide nanoparticles attenuate tumor-associated stromal desmoplasia and anticancer through programmable dissociation. Biomaterials 2022; 284:121469. [PMID: 35344799 DOI: 10.1016/j.biomaterials.2022.121469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/02/2022] [Accepted: 03/11/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Pei-Hsuan Hsieh
- Department of Materials Science and Engineering, National Tsing Hua University, Taiwan; Department of Bioengineering, University of Illinois at Urbana-Champaign, United States
| | - Wei-Yuan Huang
- Department of Materials Science and Engineering, National Tsing Hua University, Taiwan
| | - Huan-Chih Wang
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taiwan; College of Biological Science and Technology, National Chiao Tung University, Taiwan
| | - Chen-Hsiang Kuan
- Division of Plastic Surgery, Department of Surgery, National Taiwan University Hospital, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taiwan
| | - Ting-Yun Shiue
- Institute of Biomedical Engineering, National Tsing Hua University, Taiwan
| | - Yunching Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Taiwan
| | - Tzu-Wei Wang
- Department of Materials Science and Engineering, National Tsing Hua University, Taiwan.
| |
Collapse
|
28
|
Zhang C, Lu H. Helical Nonfouling Polypeptides for Biomedical Applications. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2688-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
29
|
Feng W, Li G, Kang X, Wang R, Liu F, Zhao D, Li H, Bu F, Yu Y, Moriarty TF, Ren Q, Wang X. Cascade-Targeting Poly(amino acid) Nanoparticles Eliminate Intracellular Bacteria via On-Site Antibiotic Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109789. [PMID: 35066925 DOI: 10.1002/adma.202109789] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Intracellular bacteria in latent or dormant states tolerate high-dose antibiotics. Fighting against these opportunistic bacteria has been a long-standing challenge. Herein, the design of a cascade-targeting drug delivery system (DDS) that can sequentially target macrophages and intracellular bacteria, exhibiting on-site drug delivery, is reported. The DDS is fabricated by encapsulating rifampicin (Rif) into mannose-decorated poly(α-N-acryloyl-phenylalanine)-block-poly(β-N-acryloyl-d-aminoalanine) nanoparticles, denoted as Rif@FAM NPs. The mannose units on Rif@FAM NPs guide the initial macrophage-specific uptake and intracellular accumulation. After the uptake, the detachment of mannose in acidic phagolysosome via Schiff base cleavage exposes the d-aminoalanine moieties, which subsequently steer the NPs to escape from lysosomes and target intracellular bacteria through peptidoglycan-specific binding, as evidenced by the in situ/ex situ co-localization using confocal, flow cytometry, and transmission electron microscopy. Through the on-site Rif delivery, Rif@FAM NPs show superior in vitro and in vivo elimination efficiency than the control groups of free Rif or the DDSs lacking the macrophages- or bacteria-targeting moieties. Furthermore, Rif@FAM NPs remodel the innate immune response of the infected macrophages by upregulating M1/M2 polarization, resulting in a reinforced antibacterial capacity. Therefore, this biocompatible DDS enabling macrophages and bacteria targeting in a cascade manner provides a new outlook for the therapy of intracellular pathogen infection.
Collapse
Affiliation(s)
- Wenli Feng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Guofeng Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaoxu Kang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Ruibai Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, P. R. China
| | - Fang Liu
- Department of Oncology of Integrative Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, 100029, P. R. China
| | - Dongdong Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Haofei Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Fanqiang Bu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | | | - Qun Ren
- Empa, the Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biointerfaces, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
30
|
Duan H, Yin L, Chen T, Qi D, Zhang D. A “metal ions-induced poisoning behavior of biomolecules” inspired polymeric probe for Cu2+ selective detection on basis of coil to helix conformation transition. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
31
|
Luo J, Zhang S, Zhu P, Liu W, Du J. Fabrication of pH/Redox Dual-Responsive Mixed Polyprodrug Micelles for Improving Cancer Chemotherapy. Front Pharmacol 2022; 12:802785. [PMID: 35185545 PMCID: PMC8850636 DOI: 10.3389/fphar.2021.802785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/27/2021] [Indexed: 11/18/2022] Open
Abstract
In this work, we prepared pH/redox dual-responsive mixed polyprodrug micelles (MPPMs), which were co-assembled from two polyprodrugs, namely, poly(ethylene glycol) methyl ether-b-poly (β-amino esters) conjugated with doxorubicin (DOX) via redox-sensitive disulfide bonds (mPEG-b-PAE-ss-DOX) and poly(ethylene glycol) methyl ether-b-poly (β-amino esters) conjugated with DOX via pH-sensitive cis-aconityl bonds (mPEG-b-PAE-cis-DOX) for effective anticancer drug delivery with enhanced therapeutic efficacy. The particle size of MPPMs was about 125 nm with low polydispersity index, indicating the reasonable size and uniform dispersion. The particle size, zeta-potential, and critical micelle concentration (CMC) of MPPMs at different mass ratios of the two kinds of polyprodrugs were dependent on pH value and glutathione (GSH) level, suggesting the pH and redox responsiveness. The drug release profiles in vitro of MPPMs at different conditions were further studied, showing the pH—and redox-triggered drug release mechanism. Confocal microscopy study demonstrated that MPPMs can effectively deliver doxorubicin molecules into MDA-MB-231 cells. Cytotoxicity assay in vitro proved that MPPMs possessed high toxic effect against tumor cells including A549 and MDA-MB-231. The results of in vivo experiments demonstrated that MPPMs were able to effectively inhibit the tumor growth with reduced side effect, leading to enhanced survival rate of tumor-bearing mice. Taken together, these findings revealed that this pH/redox dual-responsive MPPMs could be a potential nanomedicine for cancer chemotherapy. Furthermore, it could be a straightforward way to fabricate the multifunctional system basing on single stimuli-responsive polyprodrugs.
Collapse
|
32
|
Ren S, Tian F, Zhang S, Zhou W, Du Y. Bio‐based
benzoxazine from renewable
L‐tyrosine
: Synthesis, polymerization, and properties. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shitong Ren
- School of Materials Science and Engineering Shijiazhuang Tiedao University Shijiazhuang China
- Hebei Key Laboratory of Advanced Materials for Transportation Engineering and Environment Shijiazhuang Tiedao University Shijiazhuang China
| | - Fangjing Tian
- School of Materials Science and Engineering Shijiazhuang Tiedao University Shijiazhuang China
| | - Shaoheng Zhang
- School of Materials Science and Engineering Shijiazhuang Tiedao University Shijiazhuang China
| | - Weicong Zhou
- School of Materials Science and Engineering Shijiazhuang Tiedao University Shijiazhuang China
| | - Yonggang Du
- School of Materials Science and Engineering Shijiazhuang Tiedao University Shijiazhuang China
- Hebei Key Laboratory of Advanced Materials for Transportation Engineering and Environment Shijiazhuang Tiedao University Shijiazhuang China
| |
Collapse
|
33
|
Nabiyan A, Max JB, Schacher FH. Double hydrophilic copolymers - synthetic approaches, architectural variety, and current application fields. Chem Soc Rev 2022; 51:995-1044. [PMID: 35005750 DOI: 10.1039/d1cs00086a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Solubility and functionality of polymeric materials are essential properties determining their role in any application. In that regard, double hydrophilic copolymers (DHC) are typically constructed from two chemically dissimilar but water-soluble building blocks. During the past decades, these materials have been intensely developed and utilised as, e.g., matrices for the design of multifunctional hybrid materials, in drug carriers and gene delivery, as nanoreactors, or as sensors. This is predominantly due to almost unlimited possibilities to precisely tune DHC composition and topology, their solution behavior, e.g., stimuli-response, and potential interactions with small molecules, ions and (nanoparticle) surfaces. In this contribution we want to highlight that this class of polymers has experienced tremendous progress regarding synthesis, architectural variety, and the possibility to combine response to different stimuli within one material. Especially the implementation of DHCs as versatile building blocks in hybrid materials expanded the range of water-based applications during the last two decades, which now includes also photocatalysis, sensing, and 3D inkjet printing of hydrogels, definitely going beyond already well-established utilisation in biomedicine or as templates.
Collapse
Affiliation(s)
- Afshin Nabiyan
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany. .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena), Philosophenweg 7a, 07743 Jena, Germany
| | - Johannes B Max
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany. .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena), Philosophenweg 7a, 07743 Jena, Germany
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany. .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena), Philosophenweg 7a, 07743 Jena, Germany
| |
Collapse
|
34
|
Microwave-Assisted Synthesis of Modified Glycidyl Methacrylate-Ethyl Methacrylate Oligomers, Their Physico-Chemical and Biological Characteristics. Molecules 2022; 27:molecules27020337. [PMID: 35056652 PMCID: PMC8779268 DOI: 10.3390/molecules27020337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 12/04/2022] Open
Abstract
In this study, well-known oligomers containing ethyl methacrylate (EMA) and glycidyl methacrylate (GMA) components for the synthesis of the oligomeric network [P(EMA)-co-(GMA)] were used. In order to change the hydrophobic character of the [P(EMA)-co-(GMA)] to a more hydrophilic one, the oligomeric chain was functionalized with ethanolamine, xylitol (Xyl), and L-ornithine. The oligomeric materials were characterized by nuclear magnetic resonance and Fourier transform infrared spectroscopy, scanning electron microscopy, and differential thermogravimetric analysis. In the final stage, thanks to the large amount of -OH groups, it was possible to obtain a three-dimensional hydrogel (HG) network. The HGs were used as a matrix for the immobilization of methylene blue, which was chosen as a model compound of active substances, the release of which from the matrix was examined using spectrophotometric detection. The cytotoxic test was performed using fluid extracts of the HGs and human skin fibroblasts. The cell culture experiment showed that only [P(EMA)-co-(GMA)] and [P(EMA)-co-(GMA)]-Xyl have the potential to be used in biomedical applications. The studies revealed that the obtained HGs were porous and non-cytotoxic, which gives them the opportunity to possess great potential for use as an oligomeric network for drug reservoirs in in vitro application.
Collapse
|
35
|
Biswas S, Datta LP, Kumar Das T. A bioinspired stimuli-responsive amino acid-based antibacterial drug delivery system in cancer therapy. NEW J CHEM 2022. [DOI: 10.1039/d2nj00815g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Design of tyrosine based stimuli responsive antibacterial drug delivery system with potential application in cancer therapy.
Collapse
Affiliation(s)
- Subharanjan Biswas
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, Nadia - 741235, Nadia, West Bengal, India
- Institut Lavoisier de Versailles, UMR CNRS 8180, Université de Versailles St Quentin en Yvelines, Université Paris Saclay, 45 avenue des Etats-Unis, Versailles 78035, France
| | - Lakshmi Priya Datta
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, Nadia - 741235, Nadia, West Bengal, India
| | - Tapan Kumar Das
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, Nadia - 741235, Nadia, West Bengal, India
| |
Collapse
|
36
|
|
37
|
Xu T, Skoulas D, Ding D, Cryan SA, Heise A. Exploring the potential of polypeptide–polypeptoide hybrid nanogels for mucosal delivery. Polym Chem 2022; 13:6054-6060. [DOI: 10.1039/d2py01126c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
By chain extension of polysarcosine with phenylalanine and cystine, nanogels are formed. The nanogels facilitate the transport of dyes across an artificial mucus coated membrane and their release by reductive bond cleavage.
Collapse
Affiliation(s)
- Tao Xu
- School of Pharmacy and Biomolecular Sciences and Tissue Engineering Research Group, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
- College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Dimitrios Skoulas
- Department of Chemistry, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Dawei Ding
- College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Sally-Ann Cryan
- School of Pharmacy and Biomolecular Sciences and Tissue Engineering Research Group, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CURAM), RCSI, Dublin 2, Ireland
- AMBER, The SFI Advanced Materials and Bioengineering Research Centre, RCSI, Dublin 2, Ireland
| | - Andreas Heise
- Department of Chemistry, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CURAM), RCSI, Dublin 2, Ireland
- AMBER, The SFI Advanced Materials and Bioengineering Research Centre, RCSI, Dublin 2, Ireland
| |
Collapse
|
38
|
El-Husseiny HM, Mady EA, Hamabe L, Abugomaa A, Shimada K, Yoshida T, Tanaka T, Yokoi A, Elbadawy M, Tanaka R. Smart/stimuli-responsive hydrogels: Cutting-edge platforms for tissue engineering and other biomedical applications. Mater Today Bio 2022; 13:100186. [PMID: 34917924 PMCID: PMC8669385 DOI: 10.1016/j.mtbio.2021.100186] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/14/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023] Open
Abstract
Recently, biomedicine and tissue regeneration have emerged as great advances that impacted the spectrum of healthcare. This left the door open for further improvement of their applications to revitalize the impaired tissues. Hence, restoring their functions. The implementation of therapeutic protocols that merge biomimetic scaffolds, bioactive molecules, and cells plays a pivotal role in this track. Smart/stimuli-responsive hydrogels are remarkable three-dimensional (3D) bioscaffolds intended for tissue engineering and other biomedical purposes. They can simulate the physicochemical, mechanical, and biological characters of the innate tissues. Also, they provide the aqueous conditions for cell growth, support 3D conformation, provide mechanical stability for the cells, and serve as potent delivery matrices for bioactive molecules. Many natural and artificial polymers were broadly utilized to design these intelligent platforms with novel advanced characteristics and tailored functionalities that fit such applications. In the present review, we highlighted the different types of smart/stimuli-responsive hydrogels with emphasis on their synthesis scheme. Besides, the mechanisms of their responsiveness to different stimuli were elaborated. Their potential for tissue engineering applications was discussed. Furthermore, their exploitation in other biomedical applications as targeted drug delivery, smart biosensors, actuators, 3D and 4D printing, and 3D cell culture were outlined. In addition, we threw light on smart self-healing hydrogels and their applications in biomedicine. Eventually, we presented their future perceptions in biomedical and tissue regeneration applications. Conclusively, current progress in the design of smart/stimuli-responsive hydrogels enhances their prospective to function as intelligent, and sophisticated systems in different biomedical applications.
Collapse
Affiliation(s)
- Hussein M. El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
| | - Eman A. Mady
- Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
| | - Lina Hamabe
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| | - Amira Abugomaa
- Faculty of Veterinary Medicine, Mansoura University, Mansoura, Dakahliya, 35516, Egypt
| | - Kazumi Shimada
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
- Division of Research Animal Laboratory and Translational Medicine, Research and Development Center, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Tomohiko Yoshida
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| | - Takashi Tanaka
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| | - Aimi Yokoi
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| | - Mohamed Elbadawy
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
| | - Ryou Tanaka
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| |
Collapse
|
39
|
Leiske MN, Kempe K. A Guideline for the Synthesis of Amino-Acid-Functionalized Monomers and Their Polymerizations. Macromol Rapid Commun 2021; 43:e2100615. [PMID: 34761461 DOI: 10.1002/marc.202100615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/31/2021] [Indexed: 12/16/2022]
Abstract
Amino acids have emerged as a sustainable source for the design of functional polymers. Besides their wide availability, especially their high degree of biocompatibility makes them appealing for a broad range of applications in the biomedical research field. In addition to these favorable characteristics, the versatility of reactive functional groups in amino acids (i.e., carboxylic acids, amines, thiols, and hydroxyl groups) makes them suitable starting materials for various polymerization approaches, which include step- and chain-growth reactions. This review aims to provide an overview of strategies to incorporate amino acids into polymers. To this end, it focuses on the preparation of polymerizable monomers from amino acids, which yield main chain or side chain-functionalized polymers. Furthermore, postpolymerization modification approaches for polymer side chain functionalization are discussed. Amino acids are presented as a versatile platform for the development of polymers with tailored properties.
Collapse
Affiliation(s)
- Meike N Leiske
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan, Ghent, 9000, Belgium
| | - Kristian Kempe
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
40
|
Tinajero-Díaz E, Kimmins SD, García-Carvajal ZY, Martínez de Ilarduya A. Polypeptide-based materials prepared by ring-opening polymerisation of anionic-based α-amino acid N-carboxyanhydrides: A platform for delivery of bioactive-compounds. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
41
|
Shinde DB, Pawar R, Vitore J, Kulkarni D, Musale S, Giram P. Natural and synthetic functional materials for broad spectrum applications in antimicrobials, antivirals and cosmetics. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Dasharath B. Shinde
- Symbiosis School of Biological Sciences (SSBS) Symbiosis International (Deemed University) Lavale Pune India
| | - Ranjitsinh Pawar
- Department of Pharmaceutics, Poona College of Pharmacy Bharati Vidyapeeth (Deemed to be University) Pune Maharashtra India
| | - Jyotsna Vitore
- Department of Pharmaceutics National Institute of Pharmaceutical Education and Research (NIPER) – Ahmedabad (An Institute of National Importance, Government of India) Gujarat India
- Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gujarat, India
| | - Deepak Kulkarni
- Department of Pharmaceutics Srinath College of Pharmacy Aurangabad Maharashtra India
| | - Shubham Musale
- Department of Pharmaceutics Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research Pune India
| | - Prabhanjan Giram
- Department of Pharmaceutics Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research Pune India
| |
Collapse
|
42
|
Pu L, Zhu M, Shen X, Wu S, Wei W, Li S. Stomata-inspired smart bilayer catalyst with the dual-responsive ability, capable of single/tandem catalysis. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Aoki D, Miyake A, Tachaboonyakiat W, Ajiro H. Remarkable diastereomeric effect on thermoresponsive behavior of polyurethane based on lysine and tartrate ester derivatives. RSC Adv 2021; 11:35607-35613. [PMID: 35493186 PMCID: PMC9043254 DOI: 10.1039/d1ra05877k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/23/2021] [Indexed: 11/24/2022] Open
Abstract
This study describes the long-distance diastereomeric effect on thermoresponsive properties in water-soluble diastereomeric polyurethanes (PUs) composed of an l-lysine ethyl ester diisocyanate and a trimethylene glycol l-/d-tartrate ester, which have differences in spatial arrangements of the ethyl esters in the mirror image. The PUs based on l-lysine and l-/d-tartrate ester, named l-PU and d-PU, were synthesized with various number average molecular weights from 4700 to 13 100. In turbidimetry, l-PU showed a steep phase transition from 100%T to 0%T within about 10 °C at 4 g L−1, whereas d-PU did not change completely to 0%T transmittance even at 80 °C at 4 g L−1. In addition, the thermoresponsive properties of l-PU were less affected by concentration than those of d-PU. This long-distance diastereomeric effect on thermoresponsive behavior between l-PU and d-PU appeared in common among 6 samples with 4700 to 13 100 number average molecular weight. In the dynamic light scattering experiments at each transmittance, the hydrodynamic diameter (Dh) of l-PU increased up to 1000 nm, while the Dh of d-PU remained almost at 200–300 nm. The C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
O stretching vibration of FT-IR spectra showed that d-PU has more hydrogen-bonded ester groups than L-PU. Thus, we speculated that the difference in the retention of polymer chains in the micelle to promote intermicellar bridging generates the long-distance diastereomeric effect. The long-distance diastereomeric effect on thermoresponsive properties in a polyurethane system consisting of chiral monomers was reported.![]()
Collapse
Affiliation(s)
- Daisuke Aoki
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| | - Akihiro Miyake
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| | - Wanpen Tachaboonyakiat
- Department of Materials Science, Faculty of Science, Chulalongkorn University Phayathai, Pathumwan Bangkok 10330 Thailand
| | - Hiroharu Ajiro
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan .,Data Science Center, Nara Institute of Science and Technology 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| |
Collapse
|
44
|
Redox manipulation of enzyme activity through physiologically active molecule. iScience 2021; 24:102977. [PMID: 34485859 PMCID: PMC8405983 DOI: 10.1016/j.isci.2021.102977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 07/01/2021] [Accepted: 08/09/2021] [Indexed: 11/23/2022] Open
Abstract
The effective utility of physiologically active molecules is crucial in numerous biological processes. However, the regulation of enzyme functions through active substances remains challenging at present. Here, glutathione (GSH), produced in cells, was used to modulate the catalytic activity of thrombin without external stimulus. It was found that high concentrations of GSH was more conducive to initiate the cleavage of compound AzoDiTAB in the range of concentration used to mimic the difference between cancer and normal cells, which has practical implications for targeting cancel cells since GSH is overexpressed in cancer cells. Importantly, GSH treatment caused the deformation of G4 structure by cleaving AzoDiTAB and thus triggered the transition of thrombin from being free to be inhibited in complex biological systems. This work would open up a new route for the specific manipulation of enzyme-catalyzed systems in cancer cells. The transition of telomere DNA structures based on redox switch Achieving redox manipulation of thrombin activity through active substance This switch can be specifically used for enzyme regulation in cancer cells
Collapse
|
45
|
Altering of lower critical solution temperature of environmentally responsive poly (N-isopropylacrylamide-co-acrylic acid-co-vanillin acrylate) affected by acrylic acid, vanillin acrylate, and post-polymerization modification. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04882-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
46
|
Pushpa Yadav, Hafeez S, Jaishankar J, Srivastava P, Nebhani L. Antimicrobial and Responsive Zwitterionic Polymer Based on Cysteine Methacrylate Synthesized via RAFT Polymerization. POLYMER SCIENCE SERIES A 2021. [DOI: 10.1134/s0965545x21050163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Nayak K, Ghosh P, Khan MEH, De P. Side‐chain amino‐acid‐based polymers: self‐assembly and bioapplications. POLYM INT 2021. [DOI: 10.1002/pi.6278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Kasturee Nayak
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Nadia India
| | - Pooja Ghosh
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Nadia India
| | - Md Ezaz Hasan Khan
- School of General Education, College of the North Atlantic – Qatar Doha Qatar
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Nadia India
| |
Collapse
|
48
|
Gupta SS, Mishra V, Mukherjee MD, Saini P, Ranjan KR. Amino acid derived biopolymers: Recent advances and biomedical applications. Int J Biol Macromol 2021; 188:542-567. [PMID: 34384802 DOI: 10.1016/j.ijbiomac.2021.08.036] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 01/19/2023]
Abstract
Over the past few years, amino acids (AA) have emerged as promising biomaterials for the synthesis of functional polymers. Owing to the diversity of functional groups in amino acids, various polymerization methods may be used to make a wide range of well-defined functional amino-acid/peptide-based optically active polymers with varying polymer lengths, compositions, and designs. When incorporated with chirality and self-assembly, they offer a wide range of applications and are particularly appealing in the field of drug delivery, tissue engineering, and biosensing. There are several classes of these polymers that include polyamides (PA), polyesters (PE), poly(ester-amide)s (PEA)s, polyurethanes (PU)s, poly(depsipeptide)s (PDP)s, etc. They offer the ability to control functionality, conjugation, crosslinking, stimuli responsiveness, and tuneable mechanical/thermal properties. In this review, we present the recent advancements in the synthesis strategies for obtaining these amino acid-derived bio-macromolecules, their self-assembly properties, and the wealth of prevalent applications.
Collapse
Affiliation(s)
| | - Vivek Mishra
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, NOIDA, India.
| | | | | | - Kumar Rakesh Ranjan
- Amity Institute of Applied Sciences, Amity University Uttar Pradesh, NOIDA, India.
| |
Collapse
|
49
|
Varlas S, Maitland GL, Derry MJ. Protein-, (Poly)peptide-, and Amino Acid-Based Nanostructures Prepared via Polymerization-Induced Self-Assembly. Polymers (Basel) 2021; 13:2603. [PMID: 34451144 PMCID: PMC8402019 DOI: 10.3390/polym13162603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/31/2021] [Accepted: 08/01/2021] [Indexed: 12/13/2022] Open
Abstract
Proteins and peptides, built from precisely defined amino acid sequences, are an important class of biomolecules that play a vital role in most biological functions. Preparation of nanostructures through functionalization of natural, hydrophilic proteins/peptides with synthetic polymers or upon self-assembly of all-synthetic amphiphilic copolypept(o)ides and amino acid-containing polymers enables access to novel protein-mimicking biomaterials with superior physicochemical properties and immense biorelevant scope. In recent years, polymerization-induced self-assembly (PISA) has been established as an efficient and versatile alternative method to existing self-assembly procedures for the reproducible development of block copolymer nano-objects in situ at high concentrations and, thus, provides an ideal platform for engineering protein-inspired nanomaterials. In this review article, the different strategies employed for direct construction of protein-, (poly)peptide-, and amino acid-based nanostructures via PISA are described with particular focus on the characteristics of the developed block copolymer assemblies, as well as their utilization in various pharmaceutical and biomedical applications.
Collapse
Affiliation(s)
- Spyridon Varlas
- Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - Georgia L Maitland
- Aston Institute of Materials Research, Aston University, Birmingham B4 7ET, UK
| | - Matthew J Derry
- Aston Institute of Materials Research, Aston University, Birmingham B4 7ET, UK
| |
Collapse
|
50
|
Mohammad SA, Dolui S, Kumar D, Mane SR, Banerjee S. l-Histidine-Derived Smart Antifouling Biohybrid with Multistimuli Responsivity. Biomacromolecules 2021; 22:3941-3949. [PMID: 34347452 DOI: 10.1021/acs.biomac.1c00748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel dual pH/thermoresponsive amphiphilic poly(histidine methacrylamide)-block-hydroxyl-terminated polybutadiene-block-poly(histidine methacrylamide) (PHisMAM-b-PB-b-PHisMAM) triblock copolymer biohybrid, composed of hydrophobic PB and ampholytic PHisMAM segments, is developed via direct switching from living anionic polymerization to recyclable nanoparticle catalyst-mediated reversible-deactivation radical polymerization (RDRP). The transformation involved in situ postpolymerization modification of living polybutadiene-based carbanionic species, end-capped with ethylene oxide, into dihydroxyl-terminated polybutadiene and a subsequent reaction with 2-bromo-2-methylpropionyl bromide resulting in a telechelic ATRP macroinitiator (Br-PB-Br). Br-PB-Br was used to mediate RDRP of an l-histidine-derived monomer, HisMAM, yielding a series of PHisMAM-b-PB-b-PHisMAM triblock copolymers. The copolymer's stimuli response was assessed against pH and temperature changes. The copolymer is capable of switching among its zwitterionic, anionic, and cationic forms and exhibited unique antifouling properties in its zwitterionic form. These novel triblock copolymers are expected to be show promising potential in biomedical applications.
Collapse
Affiliation(s)
- Sk Arif Mohammad
- Department of Chemistry, Indian Institute of Technology Bhilai, Raipur 492015, Chhattisgarh, India
| | - Subrata Dolui
- Department of Chemistry, Indian Institute of Technology Bhilai, Raipur 492015, Chhattisgarh, India
| | - Devendra Kumar
- Department of Chemistry, Indian Institute of Technology Bhilai, Raipur 492015, Chhattisgarh, India
| | - Shivshankar R Mane
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008, India
| | - Sanjib Banerjee
- Department of Chemistry, Indian Institute of Technology Bhilai, Raipur 492015, Chhattisgarh, India
| |
Collapse
|