1
|
Anggraeni AR, Lim LW, Takeuchi T. L-Cysteine-Bonded Polymeric Monolithic Stationary Phase for Enantioseparation of Dansyl Amino Acids in Capillary Liquid Chromatography. J Sep Sci 2024; 47:e70017. [PMID: 39523539 DOI: 10.1002/jssc.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
A chiral monolith stationary phase was fabricated by modifying the monolith surface using L-cysteine through a thiol-epoxy click reaction. L-cysteine-bonded polymer monolith was characterized by scanning electron microscopy/energy-dispersive X-ray and attenuated total reflectance Fourier-transformed infrared. The monomer content and modification temperature were carefully optimized to create a polymer monolith with excellent mechanical stability and permeability. Our findings revealed that the column morphology depended significantly on the porogen concentration and modification temperature for its morphology and efficiency. Adequate pores and binding sites were formed with the optimal porogen content, while a higher modification temperature improved the modification yield, enhancing peak shapes and increasing separation efficiency. The column demonstrated its capability for enantioseparation of dansyl glutamic acid, dansyl aspartic acid, dansyl methionine, and dansyl phenylalanine using a 60 mM ammonium acetate buffer solution and acetonitrile in a 20:80 v/v ratio. It maintained good mechanical stability and repeatability with no relative standard deviation exceeding 7%. These results indicated that the L-cysteine-bonded polymer monolith has excellent potential as a chiral stationary phase.
Collapse
Affiliation(s)
- Ayu Rahayu Anggraeni
- Department of Engineering Science, Graduate School of Engineering, Gifu University, Gifu, Japan
| | - Lee Wah Lim
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
- International Joint Department of Materials Science and Engineering between National University of Malaysia and Gifu University, Graduate School of Engineering, Gifu University, Gifu, Japan
| | - Toyohide Takeuchi
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| |
Collapse
|
2
|
Kuciel T, Wieczorek P, Rajchel-Mieldzioć P, Wytrwał M, Zapotoczny S, Szuwarzyński M. Surface-grafted macromolecular nanowires with pedant fluorescein chromophores by dense non-aggregated nanoarchitectonics as versatile photoactive platforms. J Colloid Interface Sci 2024; 670:182-190. [PMID: 38761571 DOI: 10.1016/j.jcis.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/18/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024]
Abstract
In this paper, we present a facile method of synthesis and modification of poly(glycidyl methacrylate) brushes with 6-aminofluorescein (6AF) molecules. Polymer brushes were obtained using surface-grafted atom transfer radical polymerization (SI-ATRP) and functionalized in the presence of triethylamine (TEA) acting both as a reaction catalyst and an agent preventing aggregation of chromophores. Atomic force microscopy (AFM), FTIR, X-ray photoelectron spectroscopy (XPS) were used to study the structure and formation of obtained photoactive platforms. UV-Vis absorption and emission spectroscopy and confocal microscopy were conducted to investigate photoactivity of chromophores within the macromolecular matrix. Owing to the simplicity of fabrication and good ordering of the chromophore in a thin nanometric layer, the proposed method may open new opportunities for obtaining light sensors, photovoltaic devices, or other light-harvesting systems.
Collapse
Affiliation(s)
- Tomasz Kuciel
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387, Krakow, Poland
| | - Piotr Wieczorek
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11, 30-348 Krakow, Poland
| | - Paulina Rajchel-Mieldzioć
- University of Warsaw, Faculty of Physics, Institute of Experimental Physics, Pasteura 5, 02-093 Warsaw, Poland
| | - Magdalena Wytrwał
- AGH University of Krakow, Academic Centre for Materials and Nanotechnology, Mickiewicza 30, 30-059 Krakow, Poland
| | - Szczepan Zapotoczny
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387, Krakow, Poland; AGH University of Krakow, Academic Centre for Materials and Nanotechnology, Mickiewicza 30, 30-059 Krakow, Poland.
| | - Michał Szuwarzyński
- AGH University of Krakow, Academic Centre for Materials and Nanotechnology, Mickiewicza 30, 30-059 Krakow, Poland.
| |
Collapse
|
3
|
Paats JWD, Hamelmann NM, Paulusse JMJ. Dual-reactive single-chain polymer nanoparticles for orthogonal functionalization through active ester and click chemistry. J Control Release 2024; 373:117-127. [PMID: 38968970 DOI: 10.1016/j.jconrel.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 06/09/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Glucose has been extensively studied as a targeting ligand on nanoparticles for biomedical nanoparticles. A promising nanocarrier platform are single-chain polymer nanoparticles (SCNPs). SCNPs are well-defined 5-20 nm semi-flexible nano-objects, formed by intramolecularly crosslinked linear polymers. Functionality can be incorporated by introducing labile pentafluorophenyl (PFP) esters in the polymer backbone, which can be readily substituted by functional amine-ligands. However, not all ligands are compatible with PFP-chemistry, requiring different ligation strategies for increasing versatility of surface functionalization. Here, we combine active PFP-ester chemistry with copper(I)-catalyzed azide alkyne cycloaddition (CuAAC) click chemistry to yield dual-reactive SCNPs. First, the SCNPs are functionalized with increasing amounts of 1-amino-3-butyne groups through PFP-chemistry, leading to a range of butyne-SCNPs with increasing terminal alkyne-density. Subsequently, 3-azido-propylglucose is conjugated through the glucose C1- or C6-position by CuAAC click chemistry, yielding two sets of glyco-SCNPs. Cellular uptake is evaluated in HeLa cancer cells, revealing increased uptake upon higher glucose-surface density, with no apparent positional dependance. The general conjugation strategy proposed here can be readily extended to incorporate a wide variety of functional molecules to create vast libraries of multifunctional SCNPs.
Collapse
Affiliation(s)
- Jan-Willem D Paats
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500, AE, Enschede, the Netherlands
| | - Naomi M Hamelmann
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500, AE, Enschede, the Netherlands
| | - Jos M J Paulusse
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500, AE, Enschede, the Netherlands.
| |
Collapse
|
4
|
Kaptan Usul S, Aslan A, Lüleci HB, Ergüden B. Effects of Hexagonal Boron Nitride and Mesoporous Silica Nanoparticles on the Morphology, Mechanical Properties and Antimicrobial Activity of Dental Composites. J CLUST SCI 2024. [DOI: 10.1007/s10876-024-02658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/21/2024] [Indexed: 07/26/2024]
Abstract
AbstractHexagonal boron nitride (HBN), an artificial material with unique properties, is used in many industries. This article focuses on the extent to which hexagonal boron nitride and silica nanoparticles (MSN) affect the physicochemical and mechanical properties and antimicrobial activity of prepared dental composites. In this study, HBN, and MSN were used as additives in dental composites. 5% and 10% by weight of HBN are added to the structure of the composite materials. FTIR analysis were performed to determine the components of the produced boron nitride powders, hexagonal boron nitride-containing composites, and filling material applications. The structural and microstructural properties of dental composites have been extensively characterized using X-ray diffractometry (XRD). Surface morphology and distributions of nano boron nitride were determined by scanning electron microscopy (SEM)-EDS. In addition, the solubility of dental composites in water and their stability in water and chemical solution (Fenton) were determined by three repetitive experiments. Finally, the antimicrobial activity of dental composites was detected by using Minimum Inhibitory Concentration (MIC) measurement, as well as Minimum Fungicidal Concentration (MFC) method against yeast strain Saccharomyces cerevisiae, and Minimum Bactericidal Concentration (MBC) method against bacteria strains, Staphylococcus aureus and Escherichia coli. Since the HMP series have better antimicrobial activity than the HP series, they are more suitable for preventing dental caries and for long-term use of dental composites. In addition, when HMP and HP series added to the composite are compared, HMP-containing dental composites have better physicochemical and mechanical properties and therefore have a high potential for commercialization.
Collapse
|
5
|
Long K, Guan J, Yu J, Zhang D, Shi S. Preparation and study of a capillary electrochromatographic column prepared by conjugating β-CD COFs and gold-poly glycidyl methacrylate nanoparticles. Mikrochim Acta 2024; 191:457. [PMID: 38980449 DOI: 10.1007/s00604-024-06533-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024]
Abstract
A new enantioselective open-tubular capillary electrochromatography (OT-CEC) was developed employing β-cyclodextrin covalent organic frameworks (β-CD COFs) conjugated gold-poly glycidyl methacrylate nanoparticles (Au-PGMA NPs) as a stationary phase. The resulting coating layer on the inner wall of the fabricated capillary column was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), energy dispersive spectroscopy (EDS), and electroosmotic flow (EOF) experiments. The performance of the fabricated capillary column was evaluated by CEC using enantiomers of seven model analytes, including two proton pump inhibitors (PPIs, omeprazole and tenatoprazole), three amino acids (AAs, tyrosine, phenylalanine, and tryptophan), and two fluoroquinolones (FQs, gatifloxacin and sparfloxacin). The influences of coating time, buffer concentration, buffer pH, and applied voltage on enantioseparation were investigated to obtain satisfactory enantioselectivity. In the optimum conditions, the enantiomers of seven analytes were fully resolved within 10 min with high resolutions of 3.03 to 5.25. The inter- to intra-day and column-to-column repeatabilities of the fabricated capillary column were lower than 4.26% RSD. Furthermore, molecular docking studies were performed based on the chiral fabricated column and as ligand isomers of analytes using Auto Dock Tools. The binding energies and interactions acquired from docking results of analytes supported the experimental data.
Collapse
Affiliation(s)
- Ke Long
- School of Chemical Technology, Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, P. R. China
| | - Jin Guan
- School of Chemical Technology, Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, P. R. China.
| | - Jiatong Yu
- School of Chemical Technology, Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, P. R. China
| | - Dongxiang Zhang
- School of Chemical Technology, Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, P. R. China
| | - Shuang Shi
- School of Chemical Technology, Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, P. R. China
| |
Collapse
|
6
|
Stevens KC, Tirrell MV. Impact of a Lightly Branched Star Polyelectrolyte Architecture on Polyelectrolyte Complexes. ACS Macro Lett 2024; 13:688-694. [PMID: 38780149 DOI: 10.1021/acsmacrolett.4c00167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The effect of charge density in blocky and statistical linear polyelectrolytes on polyelectrolyte complex (PEC) properties has been studied with the finding that increased charge density in a polyelectrolyte tends to increase the salt resistance and modulus of a PEC across various polyelectrolyte pairs. Here, we demonstrate the ability to orthogonally alter PEC salt resistance while maintaining rheological properties and internal structure by going from linear to lightly branched architectures with similar total degrees of polymerization. Using a model system built around glycidyl methacrylate (GMA) and thiol-epoxy "click" functionalization, we create a library of homologous linear, 4-armed, 6-armed, and 8-armed star polyelectrolytes. The PECs formed from these model polyelectrolyte pairs are then characterized via optical microscopy, rheology, and small-angle X-ray scattering to evaluate their salt resistance, mechanical properties, and internal structure. We argue that our results are due to the difference between linear charge density or charge per unit length along backbone segments for each polyelectrolyte and spatial charge density, the number of charges per unit volume of the polyelectrolyte prior to complexation. Our findings suggest that linear charge density is the dominant factor in determining intermolecular interactions of the complex, leading to identical rheological and structural behavior, whereas the spatial charge density primarily influences the stability of the complexes. These distinct mechanisms for altering various sought-after PEC properties offer greater potential applications in precision design of polyelectrolyte complex materials.
Collapse
Affiliation(s)
- Kaden C Stevens
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Matthew V Tirrell
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
7
|
Almalla A, Elomaa L, Fribiczer N, Landes T, Tang P, Mahfouz Z, Koksch B, Hillebrandt KH, Sauer IM, Heinemann D, Seiffert S, Weinhart M. Chemistry matters: A side-by-side comparison of two chemically distinct methacryloylated dECM bioresins for vat photopolymerization. BIOMATERIALS ADVANCES 2024; 160:213850. [PMID: 38626580 DOI: 10.1016/j.bioadv.2024.213850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/25/2024] [Accepted: 04/05/2024] [Indexed: 04/18/2024]
Abstract
Decellularized extracellular matrix (dECM) is an excellent natural source for 3D bioprinting materials due to its inherent cell compatibility. In vat photopolymerization, the use of dECM-based bioresins is just emerging, and extensive research is needed to fully exploit their potential. In this study, two distinct methacryloyl-functionalized, photocrosslinkable dECM-based bioresins were prepared from digested porcine liver dECM through functionalization with glycidyl methacrylate (GMA) or conventional methacrylic anhydride (MA) under mild conditions for systematic comparison. Although the chemical modifications did not significantly affect the structural integrity of the dECM proteins, mammalian cells encapsulated in the respective hydrogels performed differently in long-term culture. In either case, photocrosslinking during 3D (bio)printing resulted in transparent, highly swollen, and soft hydrogels with good shape fidelity, excellent biomimetic properties and tunable mechanical properties (~ 0.2-2.5 kPa). Interestingly, at a similar degree of functionalization (DOF ~ 81.5-83.5 %), the dECM-GMA resin showed faster photocrosslinking kinetics in photorheology resulting in lower final stiffness and faster enzymatic biodegradation compared to the dECM-MA gels, yet comparable network homogeneity as assessed via Brillouin imaging. While human hepatic HepaRG cells exhibited comparable cell viability directly after 3D bioprinting within both materials, cell proliferation and spreading were clearly enhanced in the softer dECM-GMA hydrogels at a comparable degree of crosslinking. These differences were attributed to the additional hydrophilicity introduced to dECM via methacryloylation through GMA compared to MA. Due to its excellent printability and cytocompatibility, the functional porcine liver dECM-GMA biomaterial enables the advanced biofabrication of soft 3D tissue analogs using vat photopolymerization-based bioprinting.
Collapse
Affiliation(s)
- Ahed Almalla
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Laura Elomaa
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Nora Fribiczer
- Department of Chemistry, Johannes Gutenberg Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Timm Landes
- HOT - Hanover Centre for Optical Technologies, Leibniz Universität Hannover, Nienburger Straße 17, 30167 Hannover, Germany; Institute of Horticultural Productions Systems, Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany; Cluster of Excellence PhoenixD, Leibniz University Hannover, Welfengarten 1a, 30167 Hannover, Germany
| | - Peng Tang
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Zeinab Mahfouz
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Beate Koksch
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Karl Herbert Hillebrandt
- Experimental Surgery, Department of Surgery, CCM|CVK, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Charitéplatz 1, 10117 Berlin, Germany; Cluster of Excellence Matters of Activity, Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy - EXC 2025, Germany
| | - Igor Maximilian Sauer
- Experimental Surgery, Department of Surgery, CCM|CVK, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; Cluster of Excellence Matters of Activity, Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy - EXC 2025, Germany
| | - Dag Heinemann
- HOT - Hanover Centre for Optical Technologies, Leibniz Universität Hannover, Nienburger Straße 17, 30167 Hannover, Germany; Institute of Horticultural Productions Systems, Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany; Cluster of Excellence PhoenixD, Leibniz University Hannover, Welfengarten 1a, 30167 Hannover, Germany
| | - Sebastian Seiffert
- Department of Chemistry, Johannes Gutenberg Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Marie Weinhart
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany; Cluster of Excellence Matters of Activity, Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy - EXC 2025, Germany; Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstr. 3A, 30167 Hannover, Germany.
| |
Collapse
|
8
|
Patel BB, Feng H, Loo WS, Snyder CR, Eom C, Murphy J, Sunday DF, Nealey PF, DeLongchamp DM. Self-Assembly of Hierarchical High-χ Fluorinated Block Copolymers with an Orthogonal Smectic-within-Lamellae 3 nm Sublattice and Vertical Surface Orientation. ACS NANO 2024; 18:11311-11322. [PMID: 38623826 DOI: 10.1021/acsnano.4c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Hierarchical structure-within-structure assemblies offer a route toward increasingly complex and multifunctional materials while pushing the limits of block copolymer self-assembly. We present a detailed study of the self-assembly of a series of fluorinated high-χ block copolymers (BCPs) prepared via postmodification of a single poly(styrene)-block-poly(glycidyl methacrylate) (S-b-G) parent polymer with the fluorinated alkylthiol pendent groups containing 1, 6, or 8 fluorinated carbons (termed trifluoro-ethanethiol (TFET), perfluoro-octylthiol (PFOT), and perfluoro-decylthiol (PFDT), respectively). Bulk X-ray scattering of thermally annealed samples demonstrates hierarchical molecular assembly with phase separation between the two blocks and within the fluorinated block. The degree of ordering within the fluorinated block is highly sensitive to synthetic variation; a lamellar sublattice was formed for S-b-GPFOT and S-b-GPFDT. Thermal analyses of S-b-GPFOT reveal that the fluorinated block exhibits liquid crystal-like ordering. The complex thin-film self-assembly behavior of an S-b-GPFOT polymer was investigated using real-space (atomic force microscopy and scanning electron microscopy) and reciprocal-space (resonant soft X-ray scattering (RSoXS), grazing incidence small- and wide-angle scattering) measurements. After thermal annealing in nitrogen or vacuum, films thicker than 1.5 times the primary lattice spacing exhibit a 90-degree grain boundary, exposing a thin layer of vertical lamellae at the free interface, while exhibiting horizontal lamellae on the preferential (polystyrene brush) substrate. RSoXS measurements reveal the near-perfect orthogonality between the primary and sublattice orientations, demonstrating hierarchical patterning at the nanoscale.
Collapse
Affiliation(s)
- Bijal B Patel
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Hongbo Feng
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Whitney S Loo
- Department of Chemical and Biological Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Chad R Snyder
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Christopher Eom
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Julia Murphy
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Daniel F Sunday
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Paul F Nealey
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Dean M DeLongchamp
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
9
|
Khan A. Thiol-epoxy 'click' chemistry: a focus on molecular attributes in the context of polymer chemistry. Chem Commun (Camb) 2023; 59:11028-11044. [PMID: 37642518 DOI: 10.1039/d3cc02555a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Base-catalyzed ring-opening reaction of epoxides with the thiol nucleophiles is useful in the preparation and post-polymerization modification of synthetic polymers. Due to its many beneficial characteristics, this process is referred to as the thiol-epoxy 'click' reaction. In this article, our aim is to discuss the fundamental attributes of this process by tracing our own steps in the field. We initially address the aspects of efficiency, regio-selectivity, stoichiometry, and reaction conditions with the help of linear, hyperbranched, graft, dendritic, and cross-linked poly(β-hydroxy thioether)s. A special emphasis is placed on hydrogel synthesis and photopolymerization on surfaces. Subsequently, quenching of the alkoxide anion is considered which is a critical step in the formation of the β-hydroxy thioether linkage upon completion of reaction. The amenability of further reaction on the hydroxy and thioether groups through esterification and sulfur alkylation is then discussed. Initially, post-gelation/fabrication modification of sulfide linkages is considered to obtain cationic sulfonium hydrogels and zwitterionic photopatterned networks with antibacterial and antibiofouling properties, respectively. A post-synthesis functionalization strategy is then described to access same centered and segregated main-chain poly(β-hydroxy sulfonium)s as potent antibacterial materials. In side-chain polysulfides, the sequential post-synthesis modifications involving poly(glycidyl methacrylate) scaffolds can lead to the formation of amphiphilic homopolymers. The application of such materials is discussed in the arena of siRNA delivery. Finally, concerns relating to the formation of disulfide defects and open research goals such as study of the orthogonality of the reaction are addressed.
Collapse
Affiliation(s)
- Anzar Khan
- Department of Molecules and Materials, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| |
Collapse
|
10
|
Santhamoorthy M, Vanaraj R, Thirupathi K, Ulagesan S, Nam TJ, Phan TTV, Kim SC. L-Lysine-Modified pNIPAm-co-GMA Copolymer Hydrogel for pH- and Temperature-Responsive Drug Delivery and Fluorescence Imaging Applications. Gels 2023; 9:gels9050363. [PMID: 37232955 DOI: 10.3390/gels9050363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
The development of dual-stimuli-responsive hydrogels attracts much research interest owing to its unique stimuli-responsive characteristics. In this study, a poly-N-isopropyl acrylamide-co-glycidyl methacrylate-based copolymer was synthesized by incorporating N-isopropyl acrylamide (NIPAm) and a glycidyl methacrylate (GMA) monomer. The synthesized copolymer, pNIPAm-co-GMA was further modified with L-lysine (Lys) functional units and further conjugated with fluorescent isothiocyanate (FITC) to produce a fluorescent copolymer pNIPAAm-co-GMA-Lys hydrogel (HG). The in vitro drug loading and dual pH- and temperature-stimuli-responsive drug release behavior of the pNIPAAm-co-GMA-Lys HG was investigated at different pH (pH 7.4, 6.2, and 4.0) and temperature (25 °C, 37 °C, and 45 °C) conditions, respectively, using curcumin (Cur) as a model anticancer drug. The Cur drug-loaded pNIPAAm-co-GMA-Lys/Cur HG showed a relatively slow drug release behavior at a physiological pH (pH 7.4) and low temperature (25 °C) condition, whereas enhanced drug release was achieved at acidic pH (pH 6.2 and 4.0) and higher temperature (37 °C and 45 °C) conditions. Furthermore, the in vitro biocompatibility and intracellular fluorescence imaging were examined using the MDA-MB-231 cell line. Therefore, we demonstrate that the synthesized pNIPAAm-co-GMA-Lys HG system with temperature- and pH-stimuli-responsive features could be promising for various applications in biomedical fields, including drug delivery, gene delivery, tissue engineering, diagnosis, antibacterial/antifouling material, and implantable devices.
Collapse
Affiliation(s)
| | - Ramkumar Vanaraj
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Kokila Thirupathi
- Department of Physics, Government Arts and Science College for Women, Karimangalam 635111, Dharmapuri, Tamil Nadu, India
| | - Selvakumari Ulagesan
- Division of Fisheries Life Sciences, Pukyong National University, Nam-gu, Busan 48513, Republic of Korea
| | - Taek-Jeong Nam
- Institute of Fisheries Sciences, Pukyong National University, Gijang-gun, Busan 46041, Republic of Korea
| | - Thi Tuong Vy Phan
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Hai Chau, Danang 550000, Vietnam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, 03 Quang Trung, Hai Chau, Danang 550000, Vietnam
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
11
|
Janata M, Čadová E, Johnson JW, Raus V. Diminishing the catalyst concentration in the Cu(0)‐
RDRP
and
ATRP
synthesis of well‐defined low‐molecular weight poly(glycidyl methacrylate). JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20230087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Miroslav Janata
- Institute of Macromolecular Chemistry Czech Academy of Sciences Heyrovského nám. 2 Prague 6 162 06 Czech Republic
| | - Eva Čadová
- Institute of Macromolecular Chemistry Czech Academy of Sciences Heyrovského nám. 2 Prague 6 162 06 Czech Republic
| | - Jeffery W. Johnson
- Axalta Coating Systems Global Innovation Center Philadelphia PA 19112 USA
| | - Vladimír Raus
- Institute of Macromolecular Chemistry Czech Academy of Sciences Heyrovského nám. 2 Prague 6 162 06 Czech Republic
| |
Collapse
|
12
|
Fujita M, Nakashima N, Wanibuchi S, Yamamoto Y, Kojima H, Ono A, Kasahara T. Assessment of commercial polymers with and without reactive groups using amino acid derivative reactivity assay based on both molar concentration approach and gravimetric approach. J Appl Toxicol 2023; 43:446-457. [PMID: 36101970 DOI: 10.1002/jat.4395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/09/2022]
Abstract
The amino acid derivative reactivity assay (ADRA), an alternative method for testing skin sensitization, has been established based on the molar concentration approach. However, the additional development of gravimetric concentration and fluorescence detection methods has expanded its range of application to mixtures, which cannot be evaluated using the conventional testing method, the direct peptide reactivity assay (DPRA). Although polymers are generally treated as mixtures, there have been no reports of actual polymer evaluations using alternative methods owing to their insolubility. Therefore, in this study, we evaluated skin sensitization potential of polymers, which is difficult to predict, using ADRA. As polymers have molecular weights ranging from several thousand to more than several tens of thousand Daltons, they are unlikely to cause skin sensitization due to their extremely low penetration into the skin, according to the 500-Da rule. However, if highly reactive functional groups remain at the ends or side chains of polymers, relatively low-molecular-weight polymer components may penetrate the skin to cause sensitization. Polymers can be roughly classified into three major types based on the features of their constituent monomers; we investigated the sensitization capacity of each type of polymer. Polymers with alert sensitization structures at their ends were classified as skin sensitizers, whereas those with no residual reactive groups were classified as nonsensitizers. Although polymers with a glycidyl group need to be evaluated carefully, we concluded that ADRA (0.5 mg/ml) is generally sufficient for polymer hazard assessment.
Collapse
Affiliation(s)
- Masaharu Fujita
- Safety Evaluation Center, FUJIFILM Corporation, Minamiashigara, Japan
| | - Natsumi Nakashima
- Safety Evaluation Center, FUJIFILM Corporation, Minamiashigara, Japan
| | - Sayaka Wanibuchi
- Safety Evaluation Center, FUJIFILM Corporation, Minamiashigara, Japan
| | - Yusuke Yamamoto
- Safety Evaluation Center, FUJIFILM Corporation, Minamiashigara, Japan
| | - Hajime Kojima
- Biological Safety Research Center, Division of Risk Assessment, National Institute of Health Sciences, Kawasaki, Japan
| | - Atsushi Ono
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Division of Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | | |
Collapse
|
13
|
Tzoumani I, Iatridi Z, Fidelli AM, Krassa P, Kallitsis JK, Bokias G. Room-Temperature Self-Healable Blends of Waterborne Polyurethanes with 2-Hydroxyethyl Methacrylate-Based Polymers. Int J Mol Sci 2023; 24:2575. [PMID: 36768898 PMCID: PMC9916575 DOI: 10.3390/ijms24032575] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
The design of self-healing agents is a topic of important scientific interest for the development of high-performance materials for coating applications. Herein, two series of copolymers of 2-hydroxyethyl methacrylate (HEMA) with either the hydrophilic N,N-dimethylacrylamide (DMAM) or the epoxy group-bearing hydrophobic glycidyl methacrylate were synthesized and studied as potential self-healing agents of waterborne polyurethanes (WPU). The molar percentage of DMAM or GMA units in the P(HEMA-co-DMAMy) and P(HEMA-co-GMAy) copolymers varies from 0% up to 80%. WPU/polymer composites with a 10% w/w or 20% w/w copolymer content were prepared with the facile method of solution mixing. Thanks to the presence of P(HEMA-co-DMAMy) copolymers, WPU/P(HEMA-co-DMAMy) composite films exhibited surface hydrophilicity (water contact angle studies), and tendency for water uptake (water sorption kinetics studies). In contrast, the surfaces of the WPU/P(HEMA-co-GMAy) composites were less hydrophilic compared with the WPU/P(HEMA-co-DMAMy) ones. The room-temperature, water-mediated self-healing ability of these composites was investigated through addition of water drops on the damaged area. Both copolymer series exhibited healing abilities, with the hydrophilic P(HEMA-co-DMAMy) copolymers being more promising. This green healing procedure, in combination with the simple film fabrication process and simple healing triggering, makes these materials attractive for practical applications.
Collapse
Affiliation(s)
- Ioanna Tzoumani
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece
| | | | - Athena M. Fidelli
- Megara Resins Anastassios Fanis S.A., Vathi Avlidas, GR-34100 Evia, Greece
| | - Poppy Krassa
- Megara Resins Anastassios Fanis S.A., Vathi Avlidas, GR-34100 Evia, Greece
| | | | - Georgios Bokias
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece
| |
Collapse
|
14
|
Synthesis and applications of a new type of 1,4-diaminophenyltetraglycidyl amine. IRANIAN POLYMER JOURNAL 2023. [DOI: 10.1007/s13726-022-01137-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Porous Crosslinked Zwitterionic Microparticles Based on Glycidyl Methacrylate and N-Vinylimidazole as Possible Drug Delivery Systems. Int J Mol Sci 2022; 23:ijms232314999. [PMID: 36499328 PMCID: PMC9740762 DOI: 10.3390/ijms232314999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
Crosslinked porous microparticles have received great attention as drug delivery systems lately due to their unique set of properties: the capability to form various polymer-drug combinations, low immunogenicity, patient compliance and ability to release drugs in a delayed or controlled manner. Moreover, polymers with betaine groups have shown some unique features such as antifouling, antimicrobial activity, biocompatibility and strong hydration properties. Herein, novel porous zwitterionic microparticles were prepared in two stages. The first step involves the synthesis of porous microparticles based on glycidyl methacrylate, N-vinylimidazole and triethyleneglycol dimethacrylate using the suspension polymerization technique, the second step being the synthesis of zwitterionic porous microparticles by polymer-analogous reaction in presence of sodium monochloroacetate as betainization agent. Both types of microparticles were characterized structurally and morphologically by FT-IR spectroscopy, energy dispersive X-ray analysis, scanning electron microscopy, dynamic vapors sorption and mercury porosimetry. The tetracycline loading into crosslinked and zwitterionic microparticles was also performed, the maximum tetracycline loading capacities being 87 mg/g and 135 mg/g, respectively. The drug release mechanism, elucidated by various mathematical models, is controlled by both diffusion and swelling processes as a function of the zwitterionic and/or porous microparticle structure. Both types of microparticles presented antibacterial activity against the two reference strains used in this study: Escherichia coli and Staphylococcus aureus.
Collapse
|
16
|
Steinbach JC, Fait F, Mayer HA, Kandelbauer A. Monodisperse Porous Silica/Polymer Nanocomposite Microspheres with Tunable Silica Loading, Morphology and Porosity. Int J Mol Sci 2022; 23:ijms232314977. [PMID: 36499304 PMCID: PMC9737779 DOI: 10.3390/ijms232314977] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
Hybrid organic/inorganic nanocomposites combine the distinct properties of the organic polymer and the inorganic filler, resulting in overall improved system properties. Monodisperse porous hybrid beads consisting of tetraethylene pentamine functionalized poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) particles and silica nanoparticles (SNPs) were synthesized under Stoeber sol-gel process conditions. A wide range of hybrid organic/silica nanocomposite materials with different material properties was generated. The effects of n(H2O)/n(TEOS) and c(NH3) on the hybrid bead properties particle size, SiO2 content, median pore size, specific surface area, pore volume and size of the SNPs were studied. Quantitative models with a high robustness and predictive power were established using a statistical and systematic approach based on response surface methodology. It was shown that the material properties depend in a complex way on the process factor settings and exhibit non-linear behaviors as well as partly synergistic interactions between the process factors. Thus, the silica content, median pore size, specific surface area, pore volume and size of the SNPs are non-linearly dependent on the water-to-precursor ratio. This is attributed to the effect of the water-to-precursor ratio on the hydrolysis and condensation rates of TEOS. A possible mechanism of SNP incorporation into the porous polymer network is discussed.
Collapse
Affiliation(s)
- Julia C. Steinbach
- Process Analysis & Technology, Reutlingen Research Institute, Reutlingen University, Alteburgstraße 150, 72762 Reutlingen, Germany
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Fabio Fait
- Process Analysis & Technology, Reutlingen Research Institute, Reutlingen University, Alteburgstraße 150, 72762 Reutlingen, Germany
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Hermann A. Mayer
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Andreas Kandelbauer
- Process Analysis & Technology, Reutlingen Research Institute, Reutlingen University, Alteburgstraße 150, 72762 Reutlingen, Germany
- Institute of Wood Technology and Renewable Materials, Department of Material Sciences and Process Engineering (MAP), University of Natural Resources and Life Sciences, Gregor-Mendel-Straße 33, 1180 Vienna, Austria
- Correspondence: ; Tel.: +49-(0)7121-271-2009
| |
Collapse
|
17
|
Wang HS, Truong NP, Jones GR, Anastasaki A. Investigating the Effect of End-Group, Molecular Weight, and Solvents on the Catalyst-Free Depolymerization of RAFT Polymers: Possibility to Reverse the Polymerization of Heat-Sensitive Polymers. ACS Macro Lett 2022; 11:1212-1216. [PMID: 36174124 PMCID: PMC9583609 DOI: 10.1021/acsmacrolett.2c00506] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/28/2022] [Indexed: 12/01/2022]
Abstract
Reversing reversible deactivation radical polymerization (RDRP) to regenerate the original monomer is an attractive prospect for both fundamental research and industry. However, current depolymerization strategies are often applied to highly heat-tolerant polymers with a specific end-group and can only be performed in a specific solvent. Herein, we depolymerize a variety of poly(methyl methacrylate) materials made by reversible addition-fragmentation chain-transfer (RAFT) polymerization and terminated by various end groups (dithiobenzoate, trithiocarbonate, and pyrazole carbodithioate). The effect of the nature of the solvent on the depolymerization conversion was also investigated, and key solvents such as dioxane, xylene, toluene, and dimethylformamide were shown to facilitate efficient depolymerization reactions. Notably, our approach could selectively regenerate pure heat-sensitive monomers (e.g., tert-butyl methacrylate and glycidyl methacrylate) in the absence of previously reported side reactions. This work pushes the boundaries of reversing RAFT polymerization and considerably expands the chemical toolbox for recovering starting materials under relatively mild conditions.
Collapse
Affiliation(s)
- Hyun Suk Wang
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| | - Nghia P. Truong
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| | - Glen R. Jones
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| | - Athina Anastasaki
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| |
Collapse
|
18
|
Nguyen TPT, Barroca-Aubry N, Aymes-Chodur C, Dragoe D, Pembouong G, Roger P. Copolymers Derived from Two Active Esters: Synthesis, Characterization, Thermal Properties, and Reactivity in Post-Modification. Molecules 2022; 27:molecules27206827. [PMID: 36296419 PMCID: PMC9607591 DOI: 10.3390/molecules27206827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Copolymers with two distinguished reactive repeating units are of great interest, as such copolymers might open the possibility of obtaining selective and/or consequent copolymers with different chemical structures and properties. In the present work, copolymers based on two active esters (pentafluorophenyl methacrylate and p-nitrophenyl methacrylate) with varied compositions were synthesized by Cu(0)-mediated reversible deactivation radical polymerization. This polymerization technique allows the preparation of copolymers with high to quantitative conversion of both comonomers, with moderate control over dispersity (Đ = 1.3–1.7). Additionally, by in-depth study on the composition of each copolymer by various techniques including elemental analysis, NMR, FT-IR, and XPS, it was possible to confirm the coherence between expected and obtained composition. Thermal analyses by DSC and TGA were implemented to investigate the relation between copolymers’ composition and their thermal properties. Finally, an evaluation of the difference in reactivity of the two monomer moieties was confirmed by post-modification of copolymers with a primary amine and a primary alcohol as the model.
Collapse
Affiliation(s)
- Thi Phuong Thu Nguyen
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), UMR 8182, Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Nadine Barroca-Aubry
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), UMR 8182, Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Caroline Aymes-Chodur
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), UMR 8182, Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Diana Dragoe
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), UMR 8182, Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Gaëlle Pembouong
- Equipe Chimie des Polymères, Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS, 4 Place Jussieu, 75005 Paris, France
| | - Philippe Roger
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), UMR 8182, Université Paris-Saclay, CNRS, 91405 Orsay, France
- Correspondence:
| |
Collapse
|
19
|
Kusmus DNM, van Veldhuisen TW, Khan A, Cornelissen JJLM, Paulusse JMJ. Uniquely sized nanogels via crosslinking polymerization. RSC Adv 2022; 12:29423-29432. [PMID: 36320766 PMCID: PMC9562763 DOI: 10.1039/d2ra04123e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/21/2022] [Indexed: 12/31/2022] Open
Abstract
Nanogels are very promising carriers for nanomedicine, as they can be prepared in the favorable nanometer size regime, can be functionalized with targeting agents and are responsive to stimuli, i.e. temperature and pH. This induces shrinking or swelling, resulting in controlled release of a therapeutic cargo. Our interest lies in the controlled synthesis of functional nanogels, such as those containing epoxide moieties, that can be subsequently functionalized. Co-polymerization of glycidyl methacrylate and a bifunctional methacrylate crosslinker under dilute conditions gives rise to well-defined epoxide-functional nanogels, of which the sizes are controlled by the degree of polymerization. Nanogels with well-defined sizes (polydispersity of 0.2) ranging from 38 nm to 95 nm were prepared by means of controlled radical polymerization. The nanogels were characterized in detail by FT-IR, DLS, size exclusion chromatography, NMR spectroscopy, AFM and TEM. Nucleophilic attack with functional thiols or amines on the least hindered carbon of the epoxide provides water-soluble nanogels, without altering the backbone structure, while reaction with sodium azide provides handles for further functionalization via click chemistry.
Collapse
Affiliation(s)
- Disraëli N. M. Kusmus
- MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Department of Biomolecular Nanotechnology, University of TwenteDrienerlolaan 57522EnschedeNBNetherlands
| | - Thijs W. van Veldhuisen
- MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Department of Biomolecular Nanotechnology, University of TwenteDrienerlolaan 57522EnschedeNBNetherlands
| | - Anzar Khan
- Korea University145 Anam-ro, Anam-dongSeoulSeongbuk-guKorea
| | - Jeroen J. L. M. Cornelissen
- MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Department of Biomolecular Nanotechnology, University of TwenteDrienerlolaan 57522EnschedeNBNetherlands
| | - Jos M. J. Paulusse
- MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Department of Biomolecular Nanotechnology, University of TwenteDrienerlolaan 57522EnschedeNBNetherlands
| |
Collapse
|
20
|
Tzoumani I, Soto Beobide A, Iatridi Z, Voyiatzis GA, Bokias G, Kallitsis JK. Glycidyl Methacrylate-Based Copolymers as Healing Agents of Waterborne Polyurethanes. Int J Mol Sci 2022; 23:ijms23158118. [PMID: 35897694 PMCID: PMC9332020 DOI: 10.3390/ijms23158118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022] Open
Abstract
Self-healing materials and self-healing mechanisms are two topics that have attracted huge scientific interest in recent decades. Macromolecular chemistry can provide appropriately tailored functional polymers with desired healing properties. Herein, we report the incorporation of glycidyl methacrylate-based (GMA) copolymers in waterborne polyurethanes (WPUs) and the study of their potential healing ability. Two types of copolymers were synthesized, namely the hydrophobic P(BA-co-GMAy) copolymers of GMA with n-butyl acrylate (BA) and the amphiphilic copolymers P(PEGMA-co-GMAy) of GMA with a poly(ethylene glycol) methyl ether methacrylate (PEGMA) macromonomer. We demonstrate that the blending of these types of copolymers with two WPUs leads to homogenous composites. While the addition of P(BA-co-GMAy) in the WPUs leads to amorphous materials, the addition of P(PEGMA-co-GMAy) copolymers leads to hybrid composite systems varying from amorphous to semi-crystalline, depending on copolymer or blend composition. The healing efficiency of these copolymers was explored upon application of two external triggers (addition of water or heating). Promising healing results were exhibited by the final composites when water was used as a healing trigger.
Collapse
Affiliation(s)
- Ioanna Tzoumani
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece; (I.T.); (A.S.B.); (G.B.); (J.K.K.)
| | - Amaia Soto Beobide
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece; (I.T.); (A.S.B.); (G.B.); (J.K.K.)
- FORTH/ICE-HT, Stadiou Street, P.O. Box 1414, GR-26504 Patras, Greece;
| | - Zacharoula Iatridi
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece; (I.T.); (A.S.B.); (G.B.); (J.K.K.)
- Correspondence:
| | | | - Georgios Bokias
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece; (I.T.); (A.S.B.); (G.B.); (J.K.K.)
| | - Joannis K. Kallitsis
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece; (I.T.); (A.S.B.); (G.B.); (J.K.K.)
| |
Collapse
|
21
|
Methacrylate-Based Polymeric Sorbents for Recovery of Metals from Aqueous Solutions. METALS 2022. [DOI: 10.3390/met12050814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The industrialization and urbanization expansion have increased the demand for precious and rare earth elements (REEs). In addition, environmental concerns regarding the toxic effects of heavy metals on living organisms imposed an urgent need for efficient methods for their removal from wastewaters and aqueous solutions. The most efficient technique for metal ions removal from wastewaters is adsorption due to its reversibility and high efficiency. Numerous adsorbents were mentioned as possible metal ions adsorbents in the literature. Chelating polymer ligands (CPLs) with adaptable surface chemistry, high affinity towards targeted metal ions, high capacity, fast kinetics, chemically stable, and reusable are especially attractive. This review is focused on methacrylate-based magnetic and non-magnetic porous sorbents. Special attention was devoted to amino-modified glycidyl methacrylate (GMA) copolymers. Main adsorption parameters, kinetic models, adsorption isotherms, thermodynamics of the adsorption process, as well as regeneration of the polymeric sorbents were discussed.
Collapse
|
22
|
Durmuş S, Yılmaz B, Onder A, Ilgin P, Ozay H, Ozay O. An innovative approach to use zeolite as crosslinker for synthesis of p(HEMA-co-NIPAM) hydrogel. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02908-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Hu B, Carrillo JM, Collins L, Silmore KS, Keum J, Bonnesen PV, Wang Y, Retterer S, Kumar R, Lokitz BS. Modular Approach for the Synthesis of Bottlebrush Diblock Copolymers from Poly(Glycidyl Methacrylate)-block-Poly(Vinyldimethylazlactone) Backbones. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c01849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bin Hu
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jan-Michael Carrillo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Liam Collins
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Kevin S. Silmore
- Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jong Keum
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Peter V. Bonnesen
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Yangyang Wang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Scott Retterer
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Rajeev Kumar
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Bradley S. Lokitz
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
24
|
Microwave-Assisted Synthesis of Modified Glycidyl Methacrylate-Ethyl Methacrylate Oligomers, Their Physico-Chemical and Biological Characteristics. Molecules 2022; 27:molecules27020337. [PMID: 35056652 PMCID: PMC8779268 DOI: 10.3390/molecules27020337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 12/04/2022] Open
Abstract
In this study, well-known oligomers containing ethyl methacrylate (EMA) and glycidyl methacrylate (GMA) components for the synthesis of the oligomeric network [P(EMA)-co-(GMA)] were used. In order to change the hydrophobic character of the [P(EMA)-co-(GMA)] to a more hydrophilic one, the oligomeric chain was functionalized with ethanolamine, xylitol (Xyl), and L-ornithine. The oligomeric materials were characterized by nuclear magnetic resonance and Fourier transform infrared spectroscopy, scanning electron microscopy, and differential thermogravimetric analysis. In the final stage, thanks to the large amount of -OH groups, it was possible to obtain a three-dimensional hydrogel (HG) network. The HGs were used as a matrix for the immobilization of methylene blue, which was chosen as a model compound of active substances, the release of which from the matrix was examined using spectrophotometric detection. The cytotoxic test was performed using fluid extracts of the HGs and human skin fibroblasts. The cell culture experiment showed that only [P(EMA)-co-(GMA)] and [P(EMA)-co-(GMA)]-Xyl have the potential to be used in biomedical applications. The studies revealed that the obtained HGs were porous and non-cytotoxic, which gives them the opportunity to possess great potential for use as an oligomeric network for drug reservoirs in in vitro application.
Collapse
|
25
|
György C, Smith T, Growney DJ, Armes SP. Synthesis and derivatization of epoxy-functional sterically-stabilized diblock copolymer spheres in non-polar media: does the spatial location of the epoxy groups matter? Polym Chem 2022. [DOI: 10.1039/d2py00559j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Epoxy-functional sterically-stabilized diblock copolymer nanoparticles are prepared via PISA in mineral oil and then derivatized using various reagents and reaction conditions.
Collapse
Affiliation(s)
- Csilla György
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| | - Timothy Smith
- Lubrizol Ltd, Nether Lane, Hazelwood, Derbyshire, DE56 4AN, UK
| | | | - Steven P. Armes
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| |
Collapse
|
26
|
Jazani AM, Oh JK. Synthesis of multiple stimuli-responsive degradable block copolymers via facile carbonyl imidazole-induced postpolymerization modification. Polym Chem 2022. [DOI: 10.1039/d2py00729k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A robust approach that centers on carbonyl imidazole chemistry was used to synthesize a triple-stimuli-responsive degradable block copolymer labeled with acetal, disulfide, and o-nitrobenzyl groups exhibiting acid, reduction, and light responses.
Collapse
Affiliation(s)
- Arman Moini Jazani
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| |
Collapse
|
27
|
So J, Cho ES, Kim SY. Epoxy functionalized cycloolefin polymers by ring-opening metathesis polymerization. Polym Chem 2022. [DOI: 10.1039/d2py00721e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functional COPs by ROMP and post-polymerization modification.
Collapse
Affiliation(s)
- Jongho So
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Eun Seon Cho
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Sang Youl Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
28
|
Sun J, Hong YL, Wang C, Tan ZW, Liu CM. Main-chain/Side-chain type Phosphine Oxide-Containing Reactive Polymers Derived from same Monomer: Controllable RAFT Polymerisation and ring-opening Polycondensation. Polym Chem 2022. [DOI: 10.1039/d2py00006g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper reports the synthesis and selective polymerisations of an epoxy-rich phosphine oxide-containing styrenic monomer, namely 4-vinylbenzyl-bis((oxiran-2-ylmethoxy)methyl) phosphine oxide (VBzBOPO). The styryl and epoxy functionalities could be polymerized independently through...
Collapse
|
29
|
Grocke G, Zhang H, Kopfinger SS, Patel SN, Rowan SJ. Synthesis and Characterization of Redox-Responsive Disulfide Cross-Linked Polymer Particles for Energy Storage Applications. ACS Macro Lett 2021; 10:1637-1642. [PMID: 35549126 PMCID: PMC8697551 DOI: 10.1021/acsmacrolett.1c00682] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022]
Abstract
Cross-linking poly(glycidyl methacrylate) microparticles with redox-responsive bis(5-amino-l,3,4-thiadiazol-2-yl) disulfide moieties yield redox-active particles (RAPs) capable of electrochemical energy storage via a reversible 2-electron reduction of the disulfide bond. The resulting RAPs show improved electrochemical reversibility compared to a small-molecule disulfide analogue in solution, attributed to spatial confinement of the polymer-grafted disulfides in the particle. Galvanostatic cycling was used to investigate the impact of electrolyte selection on stability and specific capacity. A dimethyl sulfoxide/magnesium triflate electrolyte was ultimately selected for its favorable electrochemical reversibility and specific capacity. Additionally, the specific capacity showed a strong dependence on particle size where smaller particles yielded higher specific capacity. Overall, these experiments offer a promising direction in designing synthetically facile and electrochemically stable materials for organosulfur-based multielectron energy storage coupled with beyond Li ion systems such as Mg.
Collapse
Affiliation(s)
- Garrett
L. Grocke
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Joint
Center for Energy Storage Research, Argonne
National Laboratory, Argonne, Illinois 60439, United States
| | - Hongyi Zhang
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Joint
Center for Energy Storage Research, Argonne
National Laboratory, Argonne, Illinois 60439, United States
| | - Samuel S. Kopfinger
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Shrayesh N. Patel
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Joint
Center for Energy Storage Research, Argonne
National Laboratory, Argonne, Illinois 60439, United States
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Argonne, Illinois 60439, United States
| | - Stuart J. Rowan
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Joint
Center for Energy Storage Research, Argonne
National Laboratory, Argonne, Illinois 60439, United States
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Argonne, Illinois 60439, United States
- Department
of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
30
|
Chen R, Ayyakkalai B, Sun J, Lee GA, Gopalan P. Formamide based monomer for highly functionalized polymers. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ri Chen
- Department of Materials Science and Engineering University of Wisconsin‐Madison Madison Wisconsin USA
| | - Balamurugan Ayyakkalai
- Department of Materials Science and Engineering University of Wisconsin‐Madison Madison Wisconsin USA
| | - Jian Sun
- Department of Materials Science and Engineering University of Wisconsin‐Madison Madison Wisconsin USA
| | - Gene A. Lee
- Department of Chemical and Biological Engineering University of Wisconsin‐Madison Madison Wisconsin USA
| | - Padma Gopalan
- Department of Materials Science and Engineering University of Wisconsin‐Madison Madison Wisconsin USA
- Department of Chemistry University of Wisconsin‐Madison Madison Wisconsin USA
| |
Collapse
|
31
|
Krieghoff J, Gronbach M, Schulz-Siegmund M, Hacker MC. Biodegradable macromers for implant bulk and surface engineering. Biol Chem 2021; 402:1357-1374. [PMID: 34433237 DOI: 10.1515/hsz-2021-0161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/09/2021] [Indexed: 11/15/2022]
Abstract
Macromers, polymeric molecules with at least two functional groups for cross-polymerization, are interesting materials to tailor mechanical, biochemical and degradative bulk and surface properties of implants for tissue regeneration. In this review we focus on macromers with at least one biodegradable building block. Manifold design options, such as choice of polymeric block(s), optional core molecule and reactive groups, as well as cross-co-polymerization with suitable anchor or linker molecules, allow the adaptation of macromer-based biomaterials towards specific application requirements in both hard and soft tissue regeneration. Implants can be manufactured from macromers using additive manufacturing as well as molding and templating approaches. This review summarizes and discusses the overall concept of biodegradable macromers and recent approaches for macromer processing into implants as well as techniques for surface modification directed towards bone regeneration. These aspects are reviewed including a focus on the authors' contributions to the field through research within the collaborative research project Transregio 67.
Collapse
Affiliation(s)
- Jan Krieghoff
- Medical Faculty, Pharmaceutical Technology, Leipzig University, Eilenburger Str. 15A, D-04317 Leipzig, Germany.,Collaborative Research Center (SFB-TRR67) "Functional Biomaterials for Controlling Healing Processes in Bone and Skin - From Material Science to Clinical Application", Leipzig and Dresden, Germany
| | - Mathis Gronbach
- Medical Faculty, Pharmaceutical Technology, Leipzig University, Eilenburger Str. 15A, D-04317 Leipzig, Germany.,Collaborative Research Center (SFB-TRR67) "Functional Biomaterials for Controlling Healing Processes in Bone and Skin - From Material Science to Clinical Application", Leipzig and Dresden, Germany
| | - Michaela Schulz-Siegmund
- Medical Faculty, Pharmaceutical Technology, Leipzig University, Eilenburger Str. 15A, D-04317 Leipzig, Germany.,Collaborative Research Center (SFB-TRR67) "Functional Biomaterials for Controlling Healing Processes in Bone and Skin - From Material Science to Clinical Application", Leipzig and Dresden, Germany
| | - Michael C Hacker
- Medical Faculty, Pharmaceutical Technology, Leipzig University, Eilenburger Str. 15A, D-04317 Leipzig, Germany.,Collaborative Research Center (SFB-TRR67) "Functional Biomaterials for Controlling Healing Processes in Bone and Skin - From Material Science to Clinical Application", Leipzig and Dresden, Germany.,Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
32
|
Stuparu MC, Khan A. Poly(ß-hydroxy thioether)s: synthesis through thiol-epoxy ‘click’ reaction and post-polymerization modification to main-chain polysulfonium salts. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2021. [DOI: 10.1080/10601325.2021.1984849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mihaiela C. Stuparu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Anzar Khan
- Department of Chemical and Biological Engineering, Korea University, Seoul, South Korea
| |
Collapse
|
33
|
Tajbakhsh S, Hajiali F, Marić M. Epoxy-based triblock, diblock, gradient and statistical copolymers of glycidyl methacrylate and alkyl methacrylates by nitroxide mediated polymerization. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
34
|
Madrid JF, Barba BJD, Pomicpic JC, Cabalar PJE. Immobilization of an organophosphorus compound on polypropylene
‐g‐
poly(glycidyl methacrylate) polymer support and its application in scandium recovery. J Appl Polym Sci 2021. [DOI: 10.1002/app.51597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jordan F. Madrid
- Chemistry Research Section, Philippine Nuclear Research Institute Department of Science and Technology Quezon City Philippines
| | - Bin Jeremiah D. Barba
- Chemistry Research Section, Philippine Nuclear Research Institute Department of Science and Technology Quezon City Philippines
| | - Janronel C. Pomicpic
- Chemistry Research Section, Philippine Nuclear Research Institute Department of Science and Technology Quezon City Philippines
| | - Patrick Jay E. Cabalar
- Chemistry Research Section, Philippine Nuclear Research Institute Department of Science and Technology Quezon City Philippines
| |
Collapse
|
35
|
Construction of β-cyclodextrin linked glycidyl methacrylate polymers for stereoselective separation of chiral drug. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02634-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
Oh J, Khan A. Main-Chain Polysulfonium Salts: Development of Non-Ammonium Antibacterial Polymers Similar in Their Activity to Antibiotic Drugs Vancomycin and Kanamycin. Biomacromolecules 2021; 22:3534-3542. [PMID: 34251178 DOI: 10.1021/acs.biomac.1c00627] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Typically, quaternary ammonium polymers are employed for antibacterial purposes. However, a century of use has led bacteria to develop resistance to such materials. Therefore, attention is now turning toward other cationic moieties. In this context, the present work explores sulfur-based main-chain cationic polymers. The results indicate that sulfonium polymers with a β-hydroxy motif do not suffer from structural instability issues as is commonly observed in cationic polythioethers. Furthermore, they can be highly effective toward important Gram-positive bacterial strains such as Mycobacterium smegmatis, a model organism to develop drugs against rapidly spreading tuberculosis infections. More importantly, however, more challenging Gram-negative strains such as Escherichia coli can also be targeted by the polysulfoniums with equal effectiveness. Interestingly, side-chain sulfonium polyelectrolytes are observed to be devoid of any significant antibacterial activity. Finally, a comparison with kanamycin and vancomycin suggests the present polymers to be similarly effective as the bactericidal antibiotic drugs. Overall, these results indicate the effectiveness of the main-chain trivalent β-hydroxy sulfonium motif for the development of novel antibacterial polymers with a non-ammonium structure.
Collapse
Affiliation(s)
- Junki Oh
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea
| | - Anzar Khan
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea
| |
Collapse
|
37
|
Stuparu MC. Corannulene: A Curved Polyarene Building Block for the Construction of Functional Materials. Acc Chem Res 2021; 54:2858-2870. [PMID: 34115472 DOI: 10.1021/acs.accounts.1c00207] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This Account describes a body of research in the design and synthesis of molecular materials prepared from corannulene. Corannulene (C20H10) is a molecular bowl of carbon that can be visualized as the hydrogen-terminated cap of buckminsterfullerene. Due to this structural resemblance, it is often referred to as a buckybowl. The bowl can invert, accept electrons, and form host-guest complexes. Due to these characteristics, corannulene presents a useful building block in materials chemistry.In macromolecular science, for example, assembly of amphiphilic copolymers carrying a hydrophobic corannulene block enables micelle formation in water. Such micellar nanostructures can host large amounts of fullerenes (C60 and C70) in their corannulene-rich core through complementarity of the curved π-surfaces. Covalent stabilization of the assembled structures then leads to the formation of robust water-soluble fullerene nanoparticles. Alternatively, use of corannulene in a polymer backbone allows for the preparation of electronic and redox-active materials. Finally, a corannulene core enables polymer chains to respond to solution temperature changes and form macroscopic fibrillar structures. In this way, the corannulene motif brings a variety of properties to the polymeric materials.In the design of non-fullerene electron acceptors, corannulene is emerging as a promising aromatic scaffold. In this regard, placement of sulfur atoms along the rim can cause an anodic shift in the molecular reduction potential. Oxidation of the sulfur atoms can further enhance this shift. Thus, a variation in the number, placement, and oxidation state of the sulfur atoms can create electron acceptors of tunable and high strengths. An advantage of this molecular design is that material solubility can also be tuned. For example, water-soluble electron acceptors can be created and are shown to improve the moisture resistance of perovskite solar cells.Host-guest complexation between corannulene and γ-cyclodextrin under flow conditions of a microfluidic chamber allows for the preparation of water-soluble nanoparticles. Due to an oligosaccharide-based sugarcoat, the nanoparticles are biocompatible while the corannulene component renders them active toward nonlinear absorption and emission properties. Together, these attributes allow the nanoparticles to be used as two-photon imaging probes in cancer cells.Finally, aromatic extension of the corannulene nucleus is seen as a potential route to nonplanar nanographenes. Typically, such endeavors rely upon gas-phase synthesis or metal-catalyzed coupling protocols. Recently, two new approaches have been established in this regard. Photochemically induced oxidative cyclization, the Mallory reaction, is shown to be a general method to access corannulenes with an extended π-framework. Alternatively, solid-state ball milling can achieve this goal in a highly efficient manner. These new protocols bring practicality and sustainability to the rapidly growing area of corannulene-based nanographenes.In essence, corannulene presents a unique building block in the construction of functional materials. In this Account, we trace our own efforts in the field and point toward the challenges and future prospects of this area of research.
Collapse
Affiliation(s)
- Mihaiela C. Stuparu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21-Nanyang Link, 637371 Singapore
| |
Collapse
|
38
|
Click chemistry strategies for the accelerated synthesis of functional macromolecules. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210126] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Hoshina H, Chen J, Amada H, Seko N. Chelating Fabrics Prepared by an Organic Solvent-Free Process for Boron Removal from Water. Polymers (Basel) 2021; 13:polym13071163. [PMID: 33916430 PMCID: PMC8038601 DOI: 10.3390/polym13071163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 11/17/2022] Open
Abstract
A chelating fabric was prepared by graft polymerization of glycidyl methacrylate (GMA) onto a nonwoven fabric, followed by attachment reaction of N-methyl-D-glucamine (NMDG) using an organic solvent-free process. The graft polymerization was performed by immersing the gamma-ray pre-irradiated fabric into the GMA emulsion, while the attachment reaction was carried out by immersing the grafted fabric in the NMDG aqueous solution. The chelating capacity of the chelating fabric prepared by reaction in the NMDG aqueous solution without any additives reached 1.74 mmol/g, which further increased to above 2.0 mmol/g when surfactant and acid catalyst were added in the solution. The boron chelation of the chelating fabric was evaluated in a batch mode. Fourier transform infrared spectrophotometer (FTIR) was used to characterize the fabrics. The chelating fabric can quickly chelate boron from water to form a boron ester, and a high boron chelating ability close to 18.3 mg/g was achieved in the concentrated boron solution. The chelated boron can be eluted completely by HCl solution. The regeneration and stability of the chelating fabric were tested by 10 cycles of the chelation-elution operations. Considering the organic solvent-free preparation process and the high boron chelating performance, the chelating fabric is promising for the boron removal from water.
Collapse
|
40
|
Kasza G, Stumphauser T, Bisztrán M, Szarka G, Hegedüs I, Nagy E, Iván B. Thermoresponsive Poly( N, N-diethylacrylamide- co-glycidyl methacrylate) Copolymers and Its Catalytically Active α-Chymotrypsin Bioconjugate with Enhanced Enzyme Stability. Polymers (Basel) 2021; 13:987. [PMID: 33806995 PMCID: PMC8004754 DOI: 10.3390/polym13060987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 12/11/2022] Open
Abstract
Responsive (smart, intelligent, adaptive) polymers have been widely explored for a variety of advanced applications in recent years. The thermoresponsive poly(N,N-diethylacrylamide) (PDEAAm), which has a better biocompatibility than the widely investigated poly(N,N-isopropylacrylamide), has gained increased interest in recent years. In this paper, the successful synthesis, characterization, and bioconjugation of a novel thermoresponsive copolymer, poly(N,N-diethylacrylamide-co-glycidyl methacrylate) (P(DEAAm-co-GMA)), obtained by free radical copolymerization with various comonomer contents and monomer/initiator ratios are reported. It was found that all the investigated copolymers possess LCST-type thermoresponsive behavior with small extent of hysteresis, and the critical solution temperatures (CST), i.e., the cloud and clearing points, decrease linearly with increasing GMA content of these copolymers. The P(DEAAm-co-GMA) copolymer with pendant epoxy groups was found to conjugate efficiently with α-chymotrypsin in a direct, one-step reaction, leading to enzyme-polymer nanoparticle (EPNP) with average size of 56.9 nm. This EPNP also shows reversible thermoresponsive behavior with somewhat higher critical solution temperature than that of the unreacted P(DEAAm-co-GMA). Although the catalytic activity of the enzyme-polymer nanoconjugate is lower than that of the native enzyme, the results of the enzyme activity investigations prove that the pH and thermal stability of the enzyme is significantly enhanced by conjugation the with P(DEAAm-co-GMA) copolymer.
Collapse
Affiliation(s)
- György Kasza
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; (T.S.); (M.B.); (G.S.)
| | - Tímea Stumphauser
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; (T.S.); (M.B.); (G.S.)
| | - Márk Bisztrán
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; (T.S.); (M.B.); (G.S.)
| | - Györgyi Szarka
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; (T.S.); (M.B.); (G.S.)
| | - Imre Hegedüs
- Chemical and Biochemical Procedures Laboratory, Institute of Biomolecular and Chemical Engineering, Faculty of Engineering, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary; (I.H.); (E.N.)
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37–47, H-1094 Budapest, Hungary
| | - Endre Nagy
- Chemical and Biochemical Procedures Laboratory, Institute of Biomolecular and Chemical Engineering, Faculty of Engineering, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary; (I.H.); (E.N.)
| | - Béla Iván
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; (T.S.); (M.B.); (G.S.)
| |
Collapse
|
41
|
Wolfel A, Chacón D, Romero MR, Valente M, Mattea F. Synthesis of a metal chelating monomer for radiation polymer dosimetry. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2020.109295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Products and kinetics of the cationic ring-opening polymerization of 3-glycidoxypropylmethyldimethoxysilane by lithium perchlorate. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
43
|
Kredel J, Schmitt D, Schäfer JL, Biesalski M, Gallei M. Cross-Linking Strategies for Fluorine-Containing Polymer Coatings for Durable Resistant Water- and Oil-Repellency. Polymers (Basel) 2021; 13:polym13050723. [PMID: 33673433 PMCID: PMC7956606 DOI: 10.3390/polym13050723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 11/16/2022] Open
Abstract
Functional coatings for application on surfaces are of growing interest. Especially in the textile industry, durable water and oil repellent finishes are of special demand for implementation in the outdoor sector, but also as safety-protection clothes against oil or chemicals. Such oil and chemical repellent textiles can be achieved by coating surfaces with fluoropolymers. As many concerns exist regarding (per)fluorinated polymers due to their high persistence and accumulation capacity in the environment, a durable and resistant coating is essential also during the washing processes of textiles. Within the present study, different strategies are examined for a durable resistant cross-linking of a novel fluoropolymer on the surface of fibers. The monomer 2-((1,1,2-trifluoro-2-(perfluoropropoxy)ethyl)thio)ethyl acrylate, whose fluorinated side-chain is degradable by treatment with ozone, was used for this purpose. The polymers were synthesized via free radical polymerization in emulsion, and different amounts of cross-linking reagents were copolymerized. The final polymer dispersions were applied to cellulose fibers and the cross-linking was induced thermally or by irradiation with UV-light. In order to investigate the cross-linking efficiency, tensile elongation studies were carried out. In addition, multiple washing processes of the fibers were performed and the polymer loss during washing, as well as the effects on oil and water repellency were investigated. The cross-linking strategy paves the way to a durable fluoropolymer-based functional coating and the polymers are expected to provide a promising and sustainable alternative to functional coatings.
Collapse
Affiliation(s)
- Julia Kredel
- Polymer Chemistry, Universität des Saarlandes, Campus Saarbrücken, 66123 Saarbrücken, Germany; (J.K.); (D.S.)
- Ernst-Berl Institute of Technical and Macromolecular Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany; (J.-L.S.); (M.B.)
| | - Deborah Schmitt
- Polymer Chemistry, Universität des Saarlandes, Campus Saarbrücken, 66123 Saarbrücken, Germany; (J.K.); (D.S.)
| | - Jan-Lukas Schäfer
- Ernst-Berl Institute of Technical and Macromolecular Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany; (J.-L.S.); (M.B.)
| | - Markus Biesalski
- Ernst-Berl Institute of Technical and Macromolecular Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany; (J.-L.S.); (M.B.)
| | - Markus Gallei
- Polymer Chemistry, Universität des Saarlandes, Campus Saarbrücken, 66123 Saarbrücken, Germany; (J.K.); (D.S.)
- Correspondence:
| |
Collapse
|
44
|
Sweet KR, Stanzione JF. Epoxy‐functional
thermoplastic copolymers and their incorporation into a thermosetting resin. J Appl Polym Sci 2021. [DOI: 10.1002/app.50608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Kayla R. Sweet
- Department of Chemical Engineering Rowan University Glassboro New Jersey USA
| | - Joseph F. Stanzione
- Department of Chemical Engineering Rowan University Glassboro New Jersey USA
| |
Collapse
|
45
|
Molle E, Frech S, Grüger T, Theato P. Electrochemically-initiated polymerization of reactive monomers via 4-fluorobenzenediazonium salts. Polym Chem 2021. [DOI: 10.1039/d1py00536g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on the electrochemically-initiated polymerization of reactive monomers using a fluorine-labelled aromatic diazonium salt in an undivided cell setup with subsequent post-polymerization modifications of the intact reactive moieties.
Collapse
Affiliation(s)
- Edgar Molle
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76131 Karlsruhe, Germany
- Institute for Biological Interfaces III (IBG-3), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Frech
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76131 Karlsruhe, Germany
- Institute for Biological Interfaces III (IBG-3), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Tilman Grüger
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76131 Karlsruhe, Germany
| | - Patrick Theato
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76131 Karlsruhe, Germany
- Institute for Biological Interfaces III (IBG-3), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
46
|
Romano A, Sangermano M, Rossegger E, Mühlbacher I, Griesser T, Giebler M, Palmara G, Frascella F, Roppolo I, Schlögl S. Hybrid silica micro-particles with light-responsive surface properties and Janus-like character. Polym Chem 2021. [DOI: 10.1039/d1py00459j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present work highlights the synthesis and post-modification of silica-based micro-particles containing photo-responsive polymer brushes with photolabile o-nitrobenzyl ester (o-NBE) chromophores.
Collapse
Affiliation(s)
- A. Romano
- Department of Applied Science and Technology
- Politecnico di Torino
- 10129 Torino
- Italy
| | - M. Sangermano
- Department of Applied Science and Technology
- Politecnico di Torino
- 10129 Torino
- Italy
| | - E. Rossegger
- Polymer Competence Center Leoben GmbH
- A-8700 Leoben
- Austria
| | - I. Mühlbacher
- Polymer Competence Center Leoben GmbH
- A-8700 Leoben
- Austria
| | - T. Griesser
- Institute of Chemistry of Polymeric Materials
- Montanuniversitaet Leoben
- A-8700 Leoben
- Austria
| | - M. Giebler
- Polymer Competence Center Leoben GmbH
- A-8700 Leoben
- Austria
| | - G. Palmara
- Department of Applied Science and Technology
- Politecnico di Torino
- 10129 Torino
- Italy
| | - F. Frascella
- Department of Applied Science and Technology
- Politecnico di Torino
- 10129 Torino
- Italy
| | - I. Roppolo
- Department of Applied Science and Technology
- Politecnico di Torino
- 10129 Torino
- Italy
| | - S. Schlögl
- Polymer Competence Center Leoben GmbH
- A-8700 Leoben
- Austria
| |
Collapse
|
47
|
Lequieu J, Magenau AJD. Reaction-induced phase transitions with block copolymers in solution and bulk. Polym Chem 2021. [DOI: 10.1039/d0py00722f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Reaction-induced phase transitions use chemical reactions to drive macromolecular organisation and self-assembly. This review highlights significant and recent advancements in this burgeoning field.
Collapse
Affiliation(s)
- Joshua Lequieu
- Department of Chemical and Biological Engineering
- Drexel University
- Philadelphia
- USA
| | | |
Collapse
|
48
|
Barát V, Eom T, Khan A, Stuparu MC. Buckybowl polymers: synthesis of corannulene-containing polymers through post-polymerization modification strategy. Polym Chem 2021. [DOI: 10.1039/d1py00664a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this study, we explore the synthesis of methacrylate polymers carrying buckybowl corannulene as the polymer side-chain.
Collapse
Affiliation(s)
- Viktor Barát
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Taejun Eom
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, 02841 Seoul, Korea
| | - Anzar Khan
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, 02841 Seoul, Korea
| | - Mihaiela C. Stuparu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| |
Collapse
|
49
|
Synthesis of three-dimensional hydrogels based on poly(glycidyl methacrylate-alt-maleic anhydride): Characterization and study of furosemide drug release. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
50
|
Eom T, Khan A. Selenonium Polyelectrolyte Synthesis through Post-Polymerization Modifications of Poly (Glycidyl Methacrylate) Scaffolds. Polymers (Basel) 2020; 12:E2685. [PMID: 33202976 PMCID: PMC7697662 DOI: 10.3390/polym12112685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 02/02/2023] Open
Abstract
Atom transfer radical polymerization of glycidyl methacrylate monomer with poly(ethylene glycol)-based macroinitiators leads to the formation of reactive block copolymers. The epoxide side-chains of these polymers can be subjected to a regiospecific base-catalyzed nucleophilic ring-opening reaction with benzeneselenol under ambient conditions. The ß-hydroxy selenide linkages thus formed can be alkylated to access polyselenonium salts. 77Se-NMR indicates the formation of diastereomers upon alkylation. In such a manner, sequential post-polymerization modifications of poly(glycidyl methacrylate) scaffolds via selenium-epoxy and selenoether alkylation reactions furnish practical access to poly(ethylene glycol)-based cationic organoselenium copolymers.
Collapse
Affiliation(s)
| | - Anzar Khan
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 02841, Korea;
| |
Collapse
|