1
|
Chuiprasert J, Srinives S, Boontanon N, Polprasert C, Ramungul N, Karawek A, Boontanon SK. Ciprofloxacin Electrochemical Sensor Using Copper-Iron Mixed Metal Oxides Nanoparticles/Reduced Graphene Oxide Composite. ACS OMEGA 2024; 9:23172-23183. [PMID: 38863745 PMCID: PMC11166261 DOI: 10.1021/acsomega.3c06705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/30/2024] [Accepted: 03/21/2024] [Indexed: 06/13/2024]
Abstract
The harmful effects of antibiotic proliferation on the environment and its persistent nature are urgent global problems. Ciprofloxacin (CIP) is a fluoroquinolone-class antibiotic agent used widely to treat pathogen-related diseases in humans and animals. Its excretion into surface water causes antibiotic resistance in microbes, resulting in difficult-to-treat or untreatable infectious diseases. This study developed a simple and efficient electrochemical sensor to detect CIP. Hydrothermal chemistry was utilized to synthesize an electrophotocatalytic composite of copper-iron mixed metal oxides (CIMMO) on reduced graphene oxide (rGO) (CIMMO/rGO). The composite was employed in an electrochemical sensor and exhibited outstanding performance in detecting CIP. The sensor was operated in differential pulse voltammetry (DPV) mode under light source illumination. The sensor yielded a linear response in the concentration range of 0.75 × 10-9-1.0 × 10-7 mol L-1 CIP and showed a limit of detection (LOD) of 4.74 × 10-10 mol L-1. The excellent sensing performance of the composite is attributable to the synergic effects between CIMMO nanoparticles and rGO, which facilitate photoinduced electron-hole separation and assist in the indirect electrochemical reactions/interactions with CIP.
Collapse
Affiliation(s)
- Jedsada Chuiprasert
- Graduate
Program in Environmental and Water Resources Engineering, Department
of Civil and Environmental Engineering, Faculty of Engineering, Mahidol University, Salaya, Phuttamonthon, Nakhon
Pathom 73170, Thailand
| | - Sira Srinives
- Nanocomposite
Engineering Laboratory (NanoCEN), Department of Chemical Engineering,
Faculty of Engineering, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Narin Boontanon
- Faculty
of Environment and Resource Studies, Mahidol
University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Chongrak Polprasert
- Department
of Civil Engineering, Faculty of Engineering, Thammasat University, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Nudjarin Ramungul
- National
Metal and Materials Technology Center, National Science and Technology
Development Agency, Khlong
Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Apisit Karawek
- Nanocomposite
Engineering Laboratory (NanoCEN), Department of Chemical Engineering,
Faculty of Engineering, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Suwanna Kitpati Boontanon
- Graduate
Program in Environmental and Water Resources Engineering, Department
of Civil and Environmental Engineering, Faculty of Engineering, Mahidol University, Salaya, Phuttamonthon, Nakhon
Pathom 73170, Thailand
- Graduate
School of Global Environmental Studies, Kyoto University, Yoshida-Honmachi,
Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
2
|
Tan S, Long K, Chen W, Liu H, Liang S, Zhang Q. Synergistic oxidation of humic acid treated by H 2O 2/O 3 activated by CuCo/C with high efficiency and wide pH range. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120896. [PMID: 38640758 DOI: 10.1016/j.jenvman.2024.120896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Combination of oxidation processes are one of the most promising humic acid treatment technologies. Single oxidant or even two oxidants in advance oxidation process can hardly achieve satisfactory removal efficiency of refractory organic matter, mainly humic acid, in the treatment process of reverse osmosis concentrates from landfill leachate. To solve this problem, this study investigated the synergistic degradation of Humic acid (HA) using a Cu and Co supported on carbon catalyst (CuCo/C) in a Hydrogen peroxide (H2O2) with ozone (O3) system. The catalyst was characterized by performing SEM, XRD, BET, XPS and FTIR technologies. UV-vis spectra, 3D Excitation Emission Matrix Spectra (3D-EEM) and gas chromatography-mass spectrometry (GC-MS) were applied for exploring degradation mechanism of HA. To further understand the oxidation mechanism, electron paramagnetic resonance (EPR) was used to evaluate the generation of hydroxyl (·OH) and superoxide radicals (O2·-). As a result, CuCo/C catalyst possessed stable catalytic performance for HA degradation with a wide pH range from 5 to 8, while T = 40 °C,catalyst dosage of 2.4 g/L,O3 intake rate of 0.15 g/min and H2O2 dosage of 1.92 mL/L, the degradation rate of total organic carbon (TOC) achieved 40-46.5 mg·L-1min-1. As affirmed by the EPR, ·OH and O2·- were effectively generated with addition of the CuCo/C catalyst. Degradation performance of UV254 proved that the catalytic activity can still be maintained above 95% with removal rate of 82% after 5 cycles reuse. GC-MS shows that the oxidation products mainly consist of amide, benzoheterocyclic ring and carboxylic acid. This work promotes an effective method for degrading HA, which has the potential for satisfactory application in landfill leachate.
Collapse
Affiliation(s)
- Senwen Tan
- Department of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 40054, China.
| | - Kun Long
- Department of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 40054, China
| | - Wang Chen
- Department of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 40054, China
| | - Huan Liu
- Department of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 40054, China
| | - Siyu Liang
- Department of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 40054, China
| | - Qian Zhang
- Department of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 40054, China.
| |
Collapse
|
3
|
Wang Z, Zhou X, Shang Y, Wang B, Lu K, Gan W, Lai H, Wang J, Huang C, Chen Z, Hao C, Feng E, Li J. Synthesis and Characterization of Superhydrophobic Epoxy Resin Coating with SiO 2@CuO/HDTMS for Enhanced Self-Cleaning, Photocatalytic, and Corrosion-Resistant Properties. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1849. [PMID: 38673205 PMCID: PMC11051187 DOI: 10.3390/ma17081849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
The exceptional corrosion resistance and combined physical and chemical self-cleaning capabilities of superhydrophobic photocatalytic coatings have sparked significant interest among researchers. In this paper, we propose an economical and eco-friendly superhydrophobic epoxy resin coating that incorporates SiO2@CuO/HDTMS nanoparticles modified with Hexadecyltrimethoxysilane (HDTMS). The application of superhydrophobic coatings effectively reduces the contact area between the metal surface and corrosive media, leading to a decreased corrosion rate. Additionally, the incorporation of nanomaterials, exemplified by SiO2@CuO core-shell nanoparticles, improves the adhesion and durability of the coatings on aluminum alloy substrates. Experimental data from Tafel curve analysis and electrochemical impedance spectroscopy (EIS) confirm the superior corrosion resistance of the superhydrophobic modified aluminum alloy surface compared to untreated surfaces. Estimations indicate a significant reduction in corrosion rate after superhydrophobic treatment. Furthermore, an optical absorption spectra analysis of the core-shell nanoparticles demonstrates their suitability for photocatalytic applications, showcasing their potential contribution to enhancing the overall performance of the coated surfaces. This research underscores the promising approach of combining superhydrophobic properties with photocatalytic capabilities to develop advanced surface modification techniques for enhanced corrosion resistance and functional properties in diverse industrial settings.
Collapse
Affiliation(s)
- Zhongmin Wang
- Guangxi Academy of Sciences, Nanning 530007, China; (Z.W.); (Y.S.); (B.W.); (K.L.); (W.G.); (H.L.); (C.H.)
| | - Xiaoyu Zhou
- Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, China; (X.Z.); (J.W.); (C.H.)
| | - Yongwei Shang
- Guangxi Academy of Sciences, Nanning 530007, China; (Z.W.); (Y.S.); (B.W.); (K.L.); (W.G.); (H.L.); (C.H.)
| | - Bingkui Wang
- Guangxi Academy of Sciences, Nanning 530007, China; (Z.W.); (Y.S.); (B.W.); (K.L.); (W.G.); (H.L.); (C.H.)
| | - Kecheng Lu
- Guangxi Academy of Sciences, Nanning 530007, China; (Z.W.); (Y.S.); (B.W.); (K.L.); (W.G.); (H.L.); (C.H.)
| | - Weijiang Gan
- Guangxi Academy of Sciences, Nanning 530007, China; (Z.W.); (Y.S.); (B.W.); (K.L.); (W.G.); (H.L.); (C.H.)
| | - Huajun Lai
- Guangxi Academy of Sciences, Nanning 530007, China; (Z.W.); (Y.S.); (B.W.); (K.L.); (W.G.); (H.L.); (C.H.)
| | - Jiang Wang
- Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, China; (X.Z.); (J.W.); (C.H.)
| | - Caimin Huang
- Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, China; (X.Z.); (J.W.); (C.H.)
| | - Zongning Chen
- Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China;
| | - Chenggang Hao
- Guangxi Academy of Sciences, Nanning 530007, China; (Z.W.); (Y.S.); (B.W.); (K.L.); (W.G.); (H.L.); (C.H.)
| | - Enlang Feng
- Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China;
- Geely Baikuang Group Co., Ltd., Baise 533000, China
| | - Jiacheng Li
- Guangxi Academy of Sciences, Nanning 530007, China; (Z.W.); (Y.S.); (B.W.); (K.L.); (W.G.); (H.L.); (C.H.)
| |
Collapse
|
4
|
Okmen Altas B, Goktas C, Topcu G, Aydogan N. Multi-Stimuli-Responsive Tadpole-like Polymer/Lipid Janus Microrobots for Advanced Smart Material Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15533-15547. [PMID: 38356451 PMCID: PMC10983008 DOI: 10.1021/acsami.3c18826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Abstract
Microrobots are of significant interest due to their smart transport capabilities, especially for precisely targeted delivery in dynamic environments (blood, cell membranes, tumor interstitial matrixes, blood-brain barrier, mucosa, and other body fluids). To perform a more complex micromanipulation in biological applications, it is highly desirable for microrobots to be stimulated with multiple stimuli rather than a single stimulus. Herein, the biodegradable and biocompatible smart micromotors with a Janus architecture consisting of PrecirolATO 5 and polycaprolactone compartments inspired by the anisotropic geometry of tadpoles and sperms are newly designed. These bioinspired micromotors combine the advantageous properties of polypyrrole nanoparticles (NPs), a high near-infrared light-absorbing agent with high photothermal conversion efficiency, and magnetic NPs, which respond to the magnetic field and exhibit multistimulus-responsive behavior. By combining both fields, we achieved an "on/off" propulsion mechanism that can enable us to overcome complex tasks and limitations in liquid environments and overcome the limitations encountered by single actuation applications. Moreover, the magnetic particles offer other functions such as removing organic pollutants via the Fenton reaction. Janus-structured motors provide a broad perspective not only for biosensing, optical detection, and on-chip separation applications but also for environmental water treatment due to the catalytic activities of multistimulus-responsive micromotors.
Collapse
Affiliation(s)
- Burcu Okmen Altas
- Department of Chemical Engineering, Hacettepe University, Beytepe, 06800 Ankara, Turkey
| | | | | | - Nihal Aydogan
- Department of Chemical Engineering, Hacettepe University, Beytepe, 06800 Ankara, Turkey
| |
Collapse
|
5
|
Shen G, Wang J, Bai P, Wang Z. Lanthanide-Assisted Nanozyme Performs Optical and Magnetic Resonance Dual-Modality Logical Signal for In Vitro Diagnosis. Anal Chem 2024; 96:4612-4622. [PMID: 38462905 DOI: 10.1021/acs.analchem.3c05624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The iron nanozyme-based colorimetric method, which is widely applied for biosubstrate detection in in vitro diagnosis (IVD), faces some limitations. The optimal catalytic conditions of iron nanozymes necessitate a strong acidic environment, high temperature, and other restrictive factors; additionally, the colorimetric results are highly influenced by optical interferences. To address these challenges, iron nanozymes doped with various transition elements were efficiently prepared in this study, and notably, the manganese-modified one displayed a high catalytic activity owing to its electron transfer property. Furthermore, the introduction of lanthanide ions into the catalytic reactions, specifically the neodymium ion, significantly boosted the generation efficiency of hydroxyl radicals; importantly, this enhancement extended to a wide range of pH levels and temperatures, amplifying the detection signal. Moreover, the nanozyme's superparamagnetic characteristic was also employed to perform a logical optical and magnetic resonance dual-modality detection for substrates, effectively eliminating background optical interference and ensuring a reliable verification of the signal's authenticity. Based on this magnetic signal, the integration of natural glucose oxidase with the nanozyme resulted in a notable 61.5% increase in detection sensitivity, surpassing the capabilities of the traditional colorimetric approach. Consequently, the incorporation of lanthanide ions into the magnetic nanozyme enables the effective identification of physiological biomarkers through the dual-modality signal. This not only guarantees enhanced sensitivity but also demonstrates significant potential for future applications.
Collapse
Affiliation(s)
- Guixian Shen
- School of Materials Science and Engineering, Center for Functional Biomaterials, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Junyao Wang
- School of Materials Science and Engineering, Center for Functional Biomaterials, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Pengli Bai
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P.R. China
| | - Zhiyong Wang
- School of Materials Science and Engineering, Center for Functional Biomaterials, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, P.R. China
| |
Collapse
|
6
|
Zhao Y, Gu S, Li L, Wang M. From waste to catalyst: Growth mechanisms of ZSM-5 zeolite from coal fly ash & rice husk ash and its performance as catalyst for tetracycline degradation in fenton-like oxidation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123509. [PMID: 38325512 DOI: 10.1016/j.envpol.2024.123509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/24/2023] [Accepted: 02/04/2024] [Indexed: 02/09/2024]
Abstract
Coal fly ash (CFA), an industrial solid waste, can be utilized to synthesize Zeolite Socony Mobil-5 (ZSM-5) by incorporating an external silica source. In this study, a series of ZSM-5 zeolites were synthesized using rice husk ash (RHA) as the primary silica source and CFA as the primary aluminum source under controlled hydrothermal reaction conditions, and the growth mechanism of ZSM-5 was investigated. The process of ZSM-5 growth was featured by the transformation of hyperpoly silico-aluminate in CFA and RHA into monomers. These monomers formed crystal nuclei connected in a five-membered ring structure under the influence of Tetrapropyl ammonium hydroxide (TPAOH). The surplus monomeric silica-aluminate grew on the nucleus surface due to the addition of the silica source within RHA (RHA-SiO2), ultimately resulting in the development of ZSM-5 zeolite. Characterization results demonstrated that RHA-SiO2 exhibited favorable physical and chemical properties during the ZSM-5 synthesis, with a crystallinity of 99.03%, a specific surface area of 321.19 m2/g, a weight loss of only 3.06% at 800 °C and a total acidity of 0.65 mmol/g. To evaluate the catalytic performance of ZSM-5, Fe/Cu-modified ZSM-5 was developed and used as the catalyst for the degradation of tetracycline (TC) in Fenton-like oxidation. The results indicated that Fe/Cu-ZSM-5 exhibited excellent activity and stability as the catalyst for TC degradation and mineralization. The maximum TC degradation rate reached 99.02% in 10 min and the TOC removal could be up to 69.32% in 2 h. Characterization results indicated that the Fe/Cu ions redox cycle accelerated the generation of active species (1O2 and ˙OH) in Fenton-like systems. The ZSM-5 zeolite synthesized from solid waste demonstrated superb stability and catalytic activity, leading to the effective removal of TC. Since real wastewater generally contains various pollutants, future research efforts should focused on multi-pollutant treatment.
Collapse
Affiliation(s)
- Yifei Zhao
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai, 200093, PR China
| | - Siyi Gu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai, 200093, PR China
| | - Liang Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai, 200093, PR China.
| | - Meng Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai, 200093, PR China
| |
Collapse
|
7
|
Du X, Duan W, Gao Y, Wang T, Li T, Lin Y, Yu ZP, Xu K. Nano-Cu Derived from a Copper Nitride Precatalyst for Reductive Coupling of Nitroaromatics to Azo Compounds. Inorg Chem 2024; 63:4328-4336. [PMID: 38367216 DOI: 10.1021/acs.inorgchem.3c04552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
The study of structural reconstruction is vital for the understanding of the real active sites in heterogeneous catalysis and guiding the improved catalyst design. Herein, we applied a copper nitride precatalyst in the nitroarene reductive coupling reaction and made a systematic investigation on the dynamic structural evolution behaviors and catalytic performance. This Cu3N precatalyst undergoes a rapid phase transition to nanostructured Cu with rich defective sites, which act as the actual catalytic sites for the coupling process. The nitride-derived defective Cu is very active and selective for azo formation, with 99.6% conversion of nitrobenzene and 97.1% selectivity to azobenzene obtained under mild reaction conditions. Density functional theory calculations suggest that the defective Cu sites play a role for the preferential adsorption of nitrosobenzene intermediates and significantly lowered the activation energy of the key coupling step. This work not only proposes a highly efficient noble-metal-free catalyst for nitroarenes coupling to valuable azo products but also may inspire more scientific interest in the study of the dynamic evolution of metal nitrides in different catalytic reactions.
Collapse
Affiliation(s)
- Xianting Du
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
| | - Wanchun Duan
- Department of Materials Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Yanan Gao
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
| | - Tong Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
| | - Tairan Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
| | - Yunxiang Lin
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Zhi-Peng Yu
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Kun Xu
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
| |
Collapse
|
8
|
Hollanda LR, de Souza JAB, Foletto EL, Dotto GL, Chiavone-Filho O. Applying bottom ash as an alternative Fenton catalyst for effective removal of phenol from aqueous environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:120763-120774. [PMID: 37943438 DOI: 10.1007/s11356-023-30890-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
In this study, coal bottom ash from a thermoelectric plant was tested as an alternative Fenton catalyst for phenol degradation in water. The effect of operating parameters such as initial pH, catalyst dosage and H2O2 concentration were evaluated. The characterization results indicated that the material has a mesoporous structure, with active species (Fe) well distributed on its surface. Under the optimal reaction conditions (6 mM H2O2, 1 g L-1 of catalyst and pH = 3), 98.7% phenol degradation efficiency was achieved in 60 min, as well as 71.6% TOC removal after 150 min. Hydroxyl radical was identified as the main oxidizing agent involved on the cleavage of the phenol molecule. After four consecutive reuse cycles, phenol degradation efficiency was around 80%, indicating good reusability and stability of the catalyst. Therefore, the obtained results demonstrated that the bottom ash presents remarkable activity for application in the Fenton reaction towards phenol degradation.
Collapse
Affiliation(s)
- Luana Rabelo Hollanda
- Department of Chemical Engineering, Federal University of Rio Grande Do Norte, Natal, 59078-970, Brazil
| | | | - Edson Luiz Foletto
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Guilherme Luiz Dotto
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil.
| | - Osvaldo Chiavone-Filho
- Department of Chemical Engineering, Federal University of Rio Grande Do Norte, Natal, 59078-970, Brazil
| |
Collapse
|
9
|
Le TTN, Truong HB, Thi Hoa L, Le HS, Tran TTT, Manh TD, Le VT, Dinh QK, Nguyen XC. Cu 2O/Fe 3O 4/UiO-66 nanocomposite as an efficient fenton-like catalyst: Performance in organic pollutant degradation and influencing factors based machinelearning. Heliyon 2023; 9:e20466. [PMID: 37810813 PMCID: PMC10556788 DOI: 10.1016/j.heliyon.2023.e20466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023] Open
Abstract
The persistent presence of organic pollutants like dyes in water environment necessitates innovative approaches for efficient degradation. In this research, we developed an advanced hybrid catalyst by combining metal oxides (Cu2O, Fe3O4) with UiO-66, serving as a heterogeneous Fenton catalyst for for efficient RB19 breakdown in water with H2O2. The control factors to the catalytic behavior were also quantified by machine learning. Experimental results show that the catalytic performance was much better than its individual components (P < 0.05 & non-zero 95% C.I). The improved catalytic efficiency was linked to the occurrence of active metal centers (Fe, Cu, and Zr), with Cu(I) from Cu2O playing a crucial role in promoting increased production of HO•. Also, UiO-66 served as a catalyst support, attracting pollutants to the reaction center, while magnetic Fe3O4 aids catalyst recovery. The optimal experimental parameters for best performance were pH at 7, catalyst loading of 1.6 g/L, H2O2 strength of 0.16 M, and reaction temperature of 25 °C. The catalyst can be magnetically separated and regenerated after five recycling times without significantly reducing catalytic activity. The reaction time and pH were ranked as the most influencing factors on catalytic efficiency via Random Forest and SHapley Additive exPlanations models. The findings show that developed catalyst is a suitable candidate to remove dyes in water by Fenton heterogeneous reaction.
Collapse
Affiliation(s)
- Thi Thanh Nhi Le
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Viet Nam
- Faculty of Natural Sciences, Duy Tan University, 03 Quang Trung, Da Nang, Viet Nam
| | - Hai Bang Truong
- Optical Materials Research Group, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Viet Nam
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Le Thi Hoa
- University of Sciences, Hue University, 77 Nguyen Hue, Hue, Viet Nam
| | - Hoang Sinh Le
- VN-UK Institute for Research and Executive Education, University of Danang, Danang city, Viet Nam
| | - Thanh Tam Toan Tran
- Institute of Applied Technology, Thu Dau Mot University, Thu Dau Mot city, Viet Nam
| | - Tran Duc Manh
- University of Danang, University of Science and Education, Da Nang, Viet Nam
| | - Van Thuan Le
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Viet Nam
- Faculty of Natural Sciences, Duy Tan University, 03 Quang Trung, Da Nang, Viet Nam
| | - Quang Khieu Dinh
- University of Sciences, Hue University, 77 Nguyen Hue, Hue, Viet Nam
| | - Xuan Cuong Nguyen
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Viet Nam
- Faculty of Natural Sciences, Duy Tan University, 03 Quang Trung, Da Nang, Viet Nam
| |
Collapse
|
10
|
Yu F, Yin H, Bai X, Pan J, Zhang X, Ma J. Cu@Cu2O/carbon for efficient desalination in capacitive deionization. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
11
|
Fan H, Chen C, Huang Q, Lu J, Hu J, Wang P, Liang J, Hu H, Gan T. Zinc-doped and biochar support strategies to enhance the catalytic activity of CuFe 2O 4 to persulfate for crystal violet degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:38775-38793. [PMID: 36585595 DOI: 10.1007/s11356-022-24929-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Sulfate radicals-based Fenton-like technology has placed more emphasis on effectively dealing with the threat of dye wastewater. In this work, the Zn-doped CuFe2O4@biochar composite (Cu0.9Zn0.1Fe2O4@BC) was prepared through the convenient sol-gel pyrolysis process and applied as heterogeneous persulfate (PS) activator for crystal violet (CV) degradation. The crystal morphology and physicochemical properties of Cu0.9Zn0.1Fe2O4@BC were investigated by scanning electron microscope (SEM), X-ray diffractometer (XRD), vibrating sample magnetometer (VSM), Brunauer-Emmett-Teller method (BET), and X-ray photoelectron spectroscopy (XPS). The morphology of the catalyst changed before and after Zn doping. The crystallite size, lattice constant, saturation magnetization, and oxygen vacancy content increased after doping Zn. Compared with CuFe2O4@BC, the CV degradation efficiency of Cu0.9Zn0.1Fe2O4@BC activating PS increased from 87.7 to 96.9%, and the corresponding reaction rate constant increased by about 3.69 times. The effect of experimental conditions was systematically studied on the degradation progress. The degradation efficiency of CV was 91% after five times cycle experiments. Multiple experiments indicated that SO4•-, •OH and O2•- predominated for CV degradation. The degradation mechanism of CV in the Cu0.9Zn0.1Fe2O4@BC/PS system involved both free radical (SO4•-, •OH and O2•-) and non-free radical pathways (electron transfer). The possible degradation pathways were investigated according to the ultra-performance liquid chromatography mass spectrometry (UPLC-MS) analysis of degradation intermediates. The result showed that Cu0.9Zn0.1Fe2O4@BC have an excellent catalyst performance, which provides a new strategy for improving catalytic activity.
Collapse
Affiliation(s)
- Hui Fan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Congjin Chen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
| | - Quanlong Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Jingping Lu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Jiaqi Hu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Peiwen Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Jing Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Huayu Hu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Tao Gan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| |
Collapse
|
12
|
Nagshbandi Z, Gholinejad M, Sansano JM. Novel Magnetic Zeolitic Imidazolate Framework for Room Temperature Enhanced Catalysis. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
13
|
Bayahia H. High activity of ZnFe 2O 4 nanoparticles for photodegradation of crystal violet dye solution in the presence of sunlight. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2022.2134696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Hossein Bayahia
- Chemistry Department, Faculty of Science, Albaha University, Albaha, Saudi Arabia
| |
Collapse
|
14
|
Fe-Immobilised Catechol-Based Hypercrosslinked Polymer as Heterogeneous Fenton Catalyst for Degradation of Methylene Blue in Water. Polymers (Basel) 2022; 14:polym14132749. [PMID: 35808793 PMCID: PMC9269043 DOI: 10.3390/polym14132749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 02/01/2023] Open
Abstract
Clean water is one of the sustainable development goals. Organic dye is one of the water pollutants affecting water quality. Hence, the conversion of dyes to safer species is crucial for water treatment. The Fenton reaction using Fe as a catalyst is a promising process. However, homogeneous catalysts are normally sensitive, difficult to separate, and burdensome to reuse. Therefore, a catechol-based hypercrosslinked polymer (catechol-HCP) was developed as an inexpensive solid support for Fe (catechol-HCP-Fe) and applied as a heterogenous Fenton catalyst. The good interaction of the catechol moiety with Fe, as well as the porous structure, simple preparation, low cost, and high stability of catechol-HCP, make it beneficial for Fe-loading in the polymer and Fenton reaction utilisation. The catechol-HCP-Fe demonstrated good catalytic activity for methylene blue (MB) degradation in a neutral pH. Complete decolouration of 100 ppm MB could be observed within 25 min. The rate of reaction was influenced by H2O2 concentration, polymer dose, MB concentration, pH, and temperature. The catechol-HCP-Fe could be reused for at least four cycles. The dominant reactive species of the reaction was considered to be singlet oxygen (1O2), and the plausible mechanism of the reaction was proposed.
Collapse
|
15
|
Jacukowicz-Sobala I, Ciechanowska A, Kociołek-Balawejder E, Gibas A, Zakrzewski A. Photocatalytically-assisted oxidative adsorption of As(III) using sustainable multifunctional composite material - Cu 2O doped anion exchanger. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128529. [PMID: 35220119 DOI: 10.1016/j.jhazmat.2022.128529] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/31/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
The purpose of the presented study was to explore the photocatalytic activity of Cu2O-supported anion exchangers and to explain the mechanism of their action in water purification processes. The functionality of this type of material was studied in the process of As(III) removal from water. As a result of the reactivity of cuprous oxide and functional groups of the polymer, the obtained composite exhibited complex activity towards arsenic(III) species. The adsorption studies were conducted under various conditions: dark, UV-VIS irradiation, VIS irradiation, under aerobic and anoxic conditions. The results from chemical analyses were supported by instrumental analyses - X-ray photoelectron spectroscopy, and FTIR and Raman spectroscopy. These studies showed that the mechanism of As(III) oxidative adsorption is based on the coupling of several reaction pathways: 1) photocatalytic oxidation involving Cu2O as a photocatalyst, and photogenerated holes and ROS as oxidative agents, 2) chemical oxidation on the surface of CuO (being a result of the ageing process) with a re-oxidation of the produced Cu2O to CuO by ROS and oxygen present in water, and 3) photochemical oxidation of As(III) in solution under UV light irradiation and subsequent adsorption of arsenates in the functional groups of the polymer.
Collapse
Affiliation(s)
- Irena Jacukowicz-Sobala
- Department of Chemical Technology, Wroclaw University of Economics and Business, 118/120 Komandorska St., 53-345 Wrocław, Poland.
| | - Agnieszka Ciechanowska
- Department of Chemical Technology, Wroclaw University of Economics and Business, 118/120 Komandorska St., 53-345 Wrocław, Poland
| | - Elżbieta Kociołek-Balawejder
- Department of Chemical Technology, Wroclaw University of Economics and Business, 118/120 Komandorska St., 53-345 Wrocław, Poland
| | - Anna Gibas
- Department of Mechanics, Materials and Biomedical Engineering, Wroclaw University of Science and Technology, 25 M Smoluchowskiego St., 50-370 Wrocław, Poland
| | - Adrian Zakrzewski
- Department of Mechanical Engineering, Wroclaw University of Science and Technology, 5 Łukasiewicza St., 50-371 Wrocław, Poland
| |
Collapse
|
16
|
Tomar S, Gill D, Kondamudi K, Upadhyayula S, Bhattacharya S. SO 3 decomposition over silica-modified β-SiC supported CuFe 2O 4 catalyst: characterization, performance, and atomistic insights. NANOSCALE 2022; 14:6876-6887. [PMID: 35445684 DOI: 10.1039/d2nr01086k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The sulfur-iodine (S-I) thermochemical water-splitting cycle is one of the potential ways to produce hydrogen on a large scale. CuFe2O4 was dispersed over modified silica or treated β-SiC and untreated β-SiC using the wet impregnation method for SO3 decomposition, which is the most endothermic reaction of the S-I cycle. Various state-of-the-art techniques such as XRD, FT-IR, BET, XPS, TEM, HR-TEM, FESEM-EDS and elemental mapping were employed to characterize both the synthesized catalysts. CuFe2O4 catalyst supported on silica-modified β-SiC resulted in enhanced catalytic activity and stability due to better metal-support interaction. In order to get a better insight into the reaction mechanism over this bimetallic catalyst, the first principles based simulation under the framework of density functional theory was performed. We have found that the presence of Cu gives rise to an improved charge localization at the O-vacancy site alongside favourable reaction kinetics, which results in an enhanced catalytic activity for the CuFe2O4 nano-cluster compared to that of a single metallic catalyst containing Fe2O3 nano-cluster.
Collapse
Affiliation(s)
- Sachin Tomar
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| | - Deepika Gill
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| | - Kishore Kondamudi
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| | - Sreedevi Upadhyayula
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| | - Saswata Bhattacharya
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| |
Collapse
|
17
|
Yu F, Bai X, Liang M, Ma J. HKUST-1-Derived Cu@Cu(I)@Cu(II)/Carbon adsorbents for ciprofloxacin removal with high adsorption performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Almojil SF, Almohana AI, Alali AF, Attia EA, Sharma K, Shamseldin MA, Mohammed AG, Cao Y. Oxygen vacancy and p–n heterojunction in a g-C 3N 4 nanosheet/CuFeO 2 nanocomposite for enhanced photocatalytic N 2 fixation to NH 3 under ambient conditions. NEW J CHEM 2022. [DOI: 10.1039/d2nj02850f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In this article, the nitrogen fixation process over g-C3N4 nanosheets/CuFeO2 p–n heterojunction photocatalyst is presented.
Collapse
Affiliation(s)
- Sattam Fahad Almojil
- Department of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Abdulaziz Ibrahim Almohana
- Department of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Abdulrhman Fahmi Alali
- Department of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - El-Awady Attia
- Department of Industrial Engineering, College of Engineering, Prince Sattam bin Abdulaziz University, Al Kharj 16273, Saudi Arabia
- Mechanical Engineering Department, faculty of engineering (Shoubra), Benha University, Cairo, Egypt
| | - Kamal Sharma
- Institute of Engineering and Technology, GLA University, Mathura, U.P., 281406, India
| | - Mohamed A. Shamseldin
- Department of Mechanical Engineering, Faculty of Engineering & Technology, Future University in Egypt, 11845 New Cairo, Egypt
| | - Azheen Ghafour Mohammed
- Department of Information Technology, College of Engineering and Computer Science, Lebanese French University, Kurdistan Region, Iraq
| | - Yan Cao
- School of Mechatronic Engineering, Xi’an Technological University, Xi’an, 710021, China
| |
Collapse
|
19
|
Recent Development in Sludge Biochar-Based Catalysts for Advanced Oxidation Processes of Wastewater. Catalysts 2021. [DOI: 10.3390/catal11111275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Sewage sludge as waste of the wastewater treatment process contains toxic substances, and its conversion into sludge biochar-based catalysts is a promising strategy that merges the merits of waste reutilization and environmental cleanup. This study aims to systematically recapitulate the published articles on the development of sludge biochar-based catalysts in different advanced oxidation processes of wastewater, including sulfate-based system, Fenton-like systems, photocatalysis, and ozonation systems. Due to abundant functional groups, metal phases and unique structures, sludge biochar-based catalysts exhibit excellent catalytic behavior for decontamination in advanced oxidation systems. In particular, the combination of sludge and pollutant dopants manifests a synergistic effect. The catalytic mechanisms of as-prepared catalysts in these systems are also investigated. Furthermore, initial solution pH, catalyst dosage, reaction temperature, and coexisting anions have a vital role in advanced oxidation processes, and these parameters are systematically summarized. In summary, this study could provide relatively comprehensive and up-to-date messages for the application of sludge biochar-based catalysts in the advanced oxidation processes of wastewater treatment.
Collapse
|
20
|
Fu M, Yang J, Sun X, Tian W, Yin G, Tian S, Tan M, Liu H, Xing X, Huang H. Photo-Fenton Process over an Fe-Free 3%-CuO/Sr 0.76Ce 0.16WO 4 Photocatalyst under Simulated Sunlight. ACS OMEGA 2021; 6:27297-27304. [PMID: 34693150 PMCID: PMC8529691 DOI: 10.1021/acsomega.1c04107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Photo-Fenton is a promising photocatalytic technology that utilizes sunlight. Herein, an Fe-free 3%-CuO/Sr0.76Ce0.16WO4 photocatalyst was synthesized to apply simulated wastewater degradation via a photo-Fenton process under simulated sunlight. The photodegradation efficiency of RhB solution over the 3%-CuO/Sr0.76Ce0.16WO4 photocatalyst is 93.2% in the first 3 h; its photocatalytic efficiency remains at 91.6% even after three cycle experiments. The kinetic constant of the 3%-CuO/Sr0.76Ce0.16WO4 photocatalyst is 0.0127 min-1, which is 2.8-fold that of an intrinsic Sr0.76Ce0.16WO4 sample. The experiment of radical quenching revealed that the photogenerated electrons and holes are transferred to CuO to form hydroxyl radicals. Besides, the photocatalyst was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), diffused reflectance spectroscopy (DRS), and X-ray photoelectron spectroscopy (XPS) measurements. It has some reference significance for the design of iron-free photocatalysts.
Collapse
Affiliation(s)
- Mingyan Fu
- Chongqing Key Laboratory
of Inorganic Special Functional Materials, College of Chemistry and
Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, P. R. China
| | - Jia Yang
- Chongqing Key Laboratory
of Inorganic Special Functional Materials, College of Chemistry and
Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, P. R. China
| | - Xiaorui Sun
- Chongqing Key Laboratory
of Inorganic Special Functional Materials, College of Chemistry and
Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, P. R. China
| | - Wei Tian
- Chongqing Key Laboratory
of Inorganic Special Functional Materials, College of Chemistry and
Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, P. R. China
| | - Guihua Yin
- Chongqing Key Laboratory
of Inorganic Special Functional Materials, College of Chemistry and
Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, P. R. China
| | - Sheng Tian
- Chongqing Key Laboratory
of Inorganic Special Functional Materials, College of Chemistry and
Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, P. R. China
| | - Mingdan Tan
- Chongqing Key Laboratory
of Inorganic Special Functional Materials, College of Chemistry and
Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, P. R. China
| | - Hongfu Liu
- Chongqing Key Laboratory
of Inorganic Special Functional Materials, College of Chemistry and
Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, P. R. China
| | - Xiaofeng Xing
- Chongqing Key Laboratory
of Inorganic Special Functional Materials, College of Chemistry and
Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, P. R. China
| | - Huisheng Huang
- Chongqing Key Laboratory
of Inorganic Special Functional Materials, College of Chemistry and
Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, P. R. China
| |
Collapse
|
21
|
Wang J, Tang J. Fe-based Fenton-like catalysts for water treatment: Preparation, characterization and modification. CHEMOSPHERE 2021; 276:130177. [PMID: 33714147 DOI: 10.1016/j.chemosphere.2021.130177] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/06/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
Fenton reaction based on hydroxyl radicals () is effective for environment remediation. Nevertheless, the conventional Fenton reaction has several disadvantages, such as working at acidic pH, producing iron-containing sludge, and the difficulty in catalysts reuse. Fenton-like reaction using solid catalysts rather than Fe2+ has received increasing attention. To date, Fe-based catalysts have received increasing attention due to their earth abundance, good biocompatibility, comparatively low toxicity and ready availability, it is necessary to review the current status of Fenton-like catalysts. In this review, the recent advances in Fe-based Fenton-like catalysts were systematically analyzed and summarized. Firstly, the various preparation methods were introduced, including template-free methods (precipitation, sol gel, impregnation, hydrothermal, thermal, and others) and template-based methods (hard-templating method and soft-templating method); then, the characterization techniques for Fe-based catalysts were summarized, such as X-ray diffraction (XRD), Brunauer, Emmett and Teller (BET), SEM (scanning electron microscopy)/TEM (transmission electron microscopy)/HRTEM (high-resolution TEM), FTIR (Fourier transform infrared spectroscopy)/Raman, XPS (X-ray photoelectron spectroscopy), 57Fe Mössbauer spectroscopy etc.; thirdly, some important conventional Fe-based catalysts were introduced, including iron oxides and oxyhydroxides, zero-valent iron (ZVI) and iron disulfide and oxychloride; fourthly, the modification strategies of Fe-based catalysts were discussed, such as microstructure controlling, introduction of support materials, construction of core-shell structure and incorporation of new metal-containing component; Finally, concluding remarks were given and the future perspectives for further study were discussed. This review will provide important information to further advance the development and application of Fe-based catalysts for water treatment.
Collapse
Affiliation(s)
- Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing, 100084, PR China.
| | - Juntao Tang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China
| |
Collapse
|
22
|
Chu JH, Kang JK, Park SJ, Lee CG. Bisphenol A degradation using waste antivirus copper film with enhanced sono-Fenton-like catalytic oxidation. CHEMOSPHERE 2021; 276:130218. [PMID: 33744646 DOI: 10.1016/j.chemosphere.2021.130218] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
This study investigated the applicability of waste antivirus copper film (CF) as a Fenton-like catalyst. The reaction activity of H2O2 and CF in combination was significantly enhanced by ultrasound (US) irradiation, and the synergy factor calculated from bisphenol A (BPA) degradation using CF-H2O2-US was 9.64 compare to that of dual factors. Photoluminescence analyses were conducted to compare the generation of hydroxyl radicals during both processes. In this sono-Fenton-like process, BPA degradation was affected by solution pH, temperature, ultrasound power, CF size, H2O2 dose, and initial BPA concentration. The BPA degradation curves showed an induction period (first stage) and a rapid degradation period (second stage). Process efficiency was totally and partially enhanced in the presence of chloride and carbonate ions, respectively. Chemical scavenger tests showed that both free and surface-bound hydroxyl radicals participate in BPA degradation under the sono-Fenton-like process using CF. The functional groups and copper crystals on the CF surface remained unchanged after five consecutive reuses, and the BPA degradation efficiency of CF was maintained over 80% during the reuse processes as a sono-Fenton-like catalyst.
Collapse
Affiliation(s)
- Jae-Hun Chu
- Department of Environmental and Safety Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Jin-Kyu Kang
- Environmental Functional Materials and Water Treatment Laboratory, Seoul National University, Republic of Korea
| | - Seong-Jik Park
- Department of Bioresources and Rural System Engineering, Hankyong National University, Anseong, Republic of Korea
| | - Chang-Gu Lee
- Department of Environmental and Safety Engineering, Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|
23
|
Zhang M, Wang X. Preparation of a Gangue-Based X-type Zeolite Molecular Sieve as a Multiphase Fenton Catalyst and Its Catalytic Performance. ACS OMEGA 2021; 6:18414-18425. [PMID: 34308072 PMCID: PMC8296578 DOI: 10.1021/acsomega.1c02469] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
In this study, a series of X-type zeolite molecular sieve catalysts, modified with copper (Cu-X), were prepared by an alkali fusion-hydrothermal synthesis using coal gangue from Inner Mongolia. These catalysts were used in the degradation of the methylene blue dye by a Fenton-like reaction. Characterization results showed that Cu is considered to be present in the surface structure of the zeolite in the form of doped Cu ions and metal oxide. It is believed that Cu2+ is the main active site involved in the Fenton reaction. The X-ray photoelectron spectroscopy (XPS) spectra indicated that Cu2+ and Cu+ coexist in the catalysts and participate together in the Fenton reaction. The degradation of methylene blue by the Cu-X catalysts was investigated to determine the optimal catalytic conditions in terms of six aspects: catalyst dosage, initial solution concentration, initial pH of the solution, H2O2 dosage, copper loading, and reaction temperature. The experimental results showed that CX-1.0 had excellent activity and stability for the degradation and decolorization of the methylene blue dye, which could completely degrade the dye within 90 min, and the total organic carbon removal rate reached as high as 97.8%. Electron spin resonance (ESR) and radical capture experiments showed that •OH played a dominant role in the Fenton-like reaction. Combined with XPS, ESR, and catalytic tests, the redox cycle of Cu+/Cu2+ was found to be accelerating the generation of reactive radicals in the Fenton system.
Collapse
Affiliation(s)
- MiaoSen Zhang
- Inner Mongolia Key Laboratory of Environmental
Chemistry, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - XiaoLi Wang
- Inner Mongolia Key Laboratory of Environmental
Chemistry, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| |
Collapse
|
24
|
Wang J, Tang J. Fe-based Fenton-like catalysts for water treatment: Catalytic mechanisms and applications. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115755] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
An J, Hu C, Wang Y, Jin Y, Zhang J, Yuan S, Wang P. Preparation of Activated Carbon Fibers‐α‐FeOOH as a High‐performance Heterogeneous Fenton‐like Catalyst for Efficient Removal of Hydrotropic Lignin Model Compound. ChemistrySelect 2021. [DOI: 10.1002/slct.202100394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Junjian An
- Hubei Key Laboratory of Green Materials for Light Industry School of Materials science and Chemical Engineering Hubei University of Technology Wuhan 430068 P.R.China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control College of Light Industry and Food Engineering Guangxi University Nanning 530004 P.R.China
| | - Chenyan Hu
- Hubei Key Laboratory of Green Materials for Light Industry School of Materials science and Chemical Engineering Hubei University of Technology Wuhan 430068 P.R.China
| | - Yin Wang
- Hubei Key Laboratory of Green Materials for Light Industry School of Materials science and Chemical Engineering Hubei University of Technology Wuhan 430068 P.R.China
| | - Yi Jin
- Hubei Key Laboratory of Green Materials for Light Industry School of Materials science and Chemical Engineering Hubei University of Technology Wuhan 430068 P.R.China
| | - Jian Zhang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control College of Light Industry and Food Engineering Guangxi University Nanning 530004 P.R.China
| | - Shiju Yuan
- Hubei Key Laboratory of Green Materials for Light Industry School of Materials science and Chemical Engineering Hubei University of Technology Wuhan 430068 P.R.China
| | - Peng Wang
- Hubei Key Laboratory of Green Materials for Light Industry School of Materials science and Chemical Engineering Hubei University of Technology Wuhan 430068 P.R.China
| |
Collapse
|
26
|
Easily Recycled CuMgFe Catalysts Derived from Layered Double Hydroxides for Hydrogenolysis of Glycerol. Catalysts 2021. [DOI: 10.3390/catal11020232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A series of CuMgFe catalysts with different (Cu + Mg)/Fe molar ratios derived from hydrotalcites were prepared by coprecipitation for the hydrogenolysis of glycerol to 1,2-propanediol (1,2-PDO). X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), vibrating sample magnetometer (VSM), hydrogen temperature-programmed reduction (H2-TPR), CO2-TPD, and H2-TPD (temperature-programmed desorption of CO2 and H2) were used to investigate the physicochemical properties of the catalysts. The CuMgFe-layered double oxides (CuMgFe-4LDO) catalyst with (Cu + Mg)/Fe molar ratio of 4 exhibited superior activity and stability. The high glycerol conversion and 1,2-propanediol selectivity over CuMgFe-4LDO catalyst were attributed to its strong basicity, excellent H2 activation ability, and an increase in the surface Cu content. The CuMgFe catalysts could be easily recycled with the assistance of an external magnetic field due to their magnetism.
Collapse
|
27
|
Hu C, Hung YC, Tseng PY, Yang ZJ, Lin YF, Nguyen VH. The roles of metal species supported on Fe 3O 4 aerogel for photoassisted 4-nitrophenol reduction and benzoic acid oxidation. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00077b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-supported Fe3O4 aerogel is employed for photoassisted 4-NP reduction and benzoic acid oxidation.
Collapse
Affiliation(s)
- Chechia Hu
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei City
- 106 Taiwan
- R&D Center for Membrane Technology and Research Center for Circular Economy
| | - Yi-Chan Hung
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei City
- 106 Taiwan
- Department of Chemical Engineering
| | - Pin-Yo Tseng
- Department of Chemical Engineering
- Chung Yuan Christian University
- Taoyuan City
- 320 Taiwan
| | - Zhen-Jie Yang
- Department of Chemical Engineering
- Chung Yuan Christian University
- Taoyuan City
- 320 Taiwan
| | - Yi-Feng Lin
- R&D Center for Membrane Technology and Research Center for Circular Economy
- Chung Yuan Christian University
- Taoyuan City
- 320 Taiwan
- Department of Chemical Engineering
| | - Van-Huy Nguyen
- Institute of Research and Development
- Duy Tan University
- Da Nang
- 550000 Vietnam
| |
Collapse
|
28
|
Zhang M, Niu Y, Xu Y. Heterogeneous Fenton-like magnetic nanosphere coated with vanadium oxide quantum dots for enhanced organic dyes decolorization. J Colloid Interface Sci 2020; 579:269-281. [DOI: 10.1016/j.jcis.2020.06.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 01/25/2023]
|
29
|
Gan Q, Hou H, Liang S, Qiu J, Tao S, Yang L, Yu W, Xiao K, Liu B, Hu J, Wang Y, Yang J. Sludge-derived biochar with multivalent iron as an efficient Fenton catalyst for degradation of 4-Chlorophenol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138299. [PMID: 32278183 DOI: 10.1016/j.scitotenv.2020.138299] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/15/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Fe-rich biochar with multivalent iron compounds (Fe0, Fe0.95C0.05, Fe3O4, and FeAl2O4) pyrolyzed from sludge cake conditioned with Fenton's reagent and red mud was utilized as an efficient Fenton catalyst for the degradation of 4-chlorophenol (4-CP). Effects of pyrolysis temperature and sludge conditioner composition on the transformation of iron compounds were studied. Both homogeneous Fenton reaction initiated by Fe2+ leached from both low-valent Fe0 and Fe0.95C0.05, and heterogeneous Fenton reaction initiated by solid iron phases of Fe3O4 and FeAl2O4 were revealed to contribute to the degradation of 4-CP. The removal efficiency of 4-CP remained 100% after five successive degradation rounds. The homogeneous Fenton reaction mainly works in the first degradation round, and the heterogeneous Fenton reaction dominates in subsequent degradation rounds. The findings of this study suggest that sewage sludge derived Fe-rich biochar could be utilized as an efficient Fenton catalyst for recalcitrant organics degradation.
Collapse
Affiliation(s)
- Quan Gan
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; CCCC-FHDI Engineering Co.,Ltd, Guangzhou, Guangdong 510230, China
| | - Huijie Hou
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Sha Liang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China.
| | - Jingjing Qiu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shuangyi Tao
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Liang Yang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Wenbo Yu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Keke Xiao
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Bingchuan Liu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Jingping Hu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Yanfei Wang
- Wuhan Sanzhen Industrial Holding Co.,Ltd., Wuhan, Hubei 430074, China
| | - Jiakuan Yang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
30
|
Li J, Pham AN, Dai R, Wang Z, Waite TD. Recent advances in Cu-Fenton systems for the treatment of industrial wastewaters: Role of Cu complexes and Cu composites. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122261. [PMID: 32066018 DOI: 10.1016/j.jhazmat.2020.122261] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/02/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
Cu-based Fenton systems have been recognized as a promising suite of technologies for the treatment of industrial wastewaters due to their high catalytic oxidation capacity. Rapid progress regarding Cu Fenton systems has been made not only in fundamental mechanistic aspects of these systems but also with regard to applications over the past decade. Based on available literature, this review synthesizes the recent advances regarding both the understanding and applications of Cu-based Fenton processes for industrial wastewater treatment. Cu-based catalysts that are essential to the effectiveness of use of Cu Fenton reactions for oxidation of target species are mainly classified into two types: (i) Cu complexes with organic or inorganic ligands, and (ii) Cu composites with inorganic materials. Performance of the Cu-based catalysts for the removal of organic pollutants in industrial wastewaters are reviewed, with the key operating parameters illustrated. Furthermore, the roles of Cu complexes and composites in both homogeneous and heterogeneous Cu-Fenton systems are critically examined with particular focus on the mechanisms involved. Perspectives and future efforts needed for Cu-based Fenton systems using Cu complexes and composites for industrial wastewater treatment are presented.
Collapse
Affiliation(s)
- Jiayi Li
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - A Ninh Pham
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - T David Waite
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
31
|
Benchmarking recent advances and innovative technology approaches of Fenton, photo-Fenton, electro-Fenton, and related processes: A review on the relevance of phenol as model molecule. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116337] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
32
|
Li H, Cheng R, Liu Z, Du C. Waste control by waste: Fenton-like oxidation of phenol over Cu modified ZSM-5 from coal gangue. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 683:638-647. [PMID: 31150884 DOI: 10.1016/j.scitotenv.2019.05.242] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 05/24/2023]
Abstract
Coal gangue and phenol are two main pollutants in coal mining and processing. Using coal gangue as raw material, a series of Cu modified ZSM-5 (Cu/ZSM-5) catalysts were developed to remove phenol through heterogeneous Fenton-like reaction. This procedure implies the concept of waste control by waste. The characterization results showed that Cu modification had no obvious impact on the MFI (Mobile Five) structure of ZSM-5. Copper ions were presented as doping element (substitution of Na and Al ions) and copper oxides on ZSM-5 surface. The XPS spectra suggested the co-existence of Cu2+ and Cu+. As a consequence of well-defined experimental parameters, 7% Cu/ZSM-5 performed excellent activity and stability for the degradation and mineralization of phenol pollutant, which could degrade phenol completely within 30min and the TOC removal efficiency could reach 63% within 60min and 92% within 8h. ESR and radicals capturing experiments demonstrated that OH and 1O2 played the dominant roles in the Fenton-like reaction. In combination with XPS, ESR and catalytic tests, it's found that the redox cycling of Cu+/Cu2+ played critical roles in accelerating the active radical generation in this Fenton-like system.
Collapse
Affiliation(s)
- Haipeng Li
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, PR China
| | - Rongqing Cheng
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, PR China
| | - Zhiliang Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, PR China
| | - Chunfang Du
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, PR China.
| |
Collapse
|
33
|
Lei Z, Min L, Tingting K, Lei Z, Huibin H, Yang J, Chao Y, Yan W, Mengting L. Preparation of MnOx Supported LiOH Activated Soybean Oil Sludge Catalyst and Its Analysis in Denitration Mechanism of Selective Catalytic Oxidation (SCO). Sci Rep 2019; 9:11604. [PMID: 31406174 PMCID: PMC6690868 DOI: 10.1038/s41598-019-47947-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 07/10/2019] [Indexed: 11/09/2022] Open
Abstract
Treatment with selective catalytic oxidation (SCO) is an effective technology applied recently for conversion of nitrogen oxides pollution control. In order to solve the problems of high cost and difficulties in practical application of SCO catalyst, it was put forward using the solid waste sludge from soybean oil plant as catalyst carrier to prepare denitration catalyst. The sludge was treated by alkaline activation and then MnOx-based sludge was prepared by impregnation. Finally, MnOx-based sludge was calcined in the muffle furnace. The effects of activation and calcination conditions on catalyst activity were investigated. Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the activity of the sludge based denitration catalyst, and the structure and activity of the sludge based denitration catalyst were furtherly confirmed. According to the achieved results, (1) after activated by LiOH with a mass concentration of 15% for 4 hours, the surface of the sludge catalyst has more alkali functional groups, making the denitration of sludge catalyst the best; (2) the MnOx-based catalyst calcined in the muffle furnace with calcination temperature of 450 °C for 4 hours has obvious denitration efficiency.
Collapse
Affiliation(s)
- Zhang Lei
- Xi'an University of Science and Technology, Xi'an, 710054, China.
- Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources Xi'an, Xi'an, 710021, China.
| | - Luo Min
- Xi'an University of Science and Technology, Xi'an, 710054, China
| | | | - Zhang Lei
- China National Heavy Machinery Research Institute, Xi'an, 710032, China
| | - He Huibin
- Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Jia Yang
- Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Yang Chao
- Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Wu Yan
- Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, Xi'an, 710054, China
| | - Li Mengting
- Neijiang Normal University, Neijiang, 641100, China
| |
Collapse
|
34
|
Moreno-Castilla C, López-Ramón MV, Fontecha-Cámara MÁ, Álvarez MA, Mateus L. Removal of Phenolic Compounds from Water Using Copper Ferrite Nanosphere Composites as Fenton Catalysts. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E901. [PMID: 31226850 PMCID: PMC6631195 DOI: 10.3390/nano9060901] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/13/2019] [Accepted: 06/16/2019] [Indexed: 11/16/2022]
Abstract
Copper ferrites containing Cu+ ions can be highly active heterogeneous Fenton catalysts due to synergic effects between Fe and Cu ions. Therefore, a method of copper ferrite nanosphere (CFNS) synthesis was selected that also permits the formation of cuprite, obtaining a CFNS composite that was subsequently calcined up to 400 °C. Composites were tested as Fenton catalysts in the mineralization of phenol (PHE), p-nitrophenol (PNP) and p-aminophenol (PAP). Catalysts were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and magnetic measurements. Degradation of all phenols was practically complete at 95% total organic carbon (TOC) removal. Catalytic activity increased in the order PHE < PNP < PAP and decreased when the calcination temperature was raised; this order depended on the electronic effects of the substituents of phenols. The as-prepared CFNS showed the highest catalytic activity due to the presence of cubic copper ferrite and cuprite. The Cu+ surface concentration decreased after calcination at 200 °C, diminishing the catalytic activity. Cuprite alone showed a lower activity than the CFNS composite and the homogeneous Fenton reaction had almost no influence on its overall activity. CFNS activity decreased with its reutilization due to the disappearance of the cuprite phase. Degradation pathways are proposed for the phenols.
Collapse
Affiliation(s)
- Carlos Moreno-Castilla
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain.
| | - María Victoria López-Ramón
- Department of Inorganic and Organic Chemistry, Faculty of Experimental Science, University of Jaen, 23071 Jaen, Spain.
| | - María Ángeles Fontecha-Cámara
- Department of Inorganic and Organic Chemistry, Faculty of Experimental Science, University of Jaen, 23071 Jaen, Spain.
| | - Miguel A Álvarez
- Department of Inorganic and Organic Chemistry, Faculty of Experimental Science, University of Jaen, 23071 Jaen, Spain.
| | - Lucía Mateus
- Department of Inorganic and Organic Chemistry, Faculty of Experimental Science, University of Jaen, 23071 Jaen, Spain.
| |
Collapse
|
35
|
Zhang L, Yang C, Zhang L, He H, Luo M, Jia Y, Li Y. Application of Plasma Treatment in Preparation of Soybean Oil Factory Sludge Catalyst and Its Application in Selective Catalytic Oxidation (SCO) Denitration. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1609. [PMID: 30181491 PMCID: PMC6163642 DOI: 10.3390/ma11091609] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/24/2018] [Accepted: 08/30/2018] [Indexed: 11/29/2022]
Abstract
At present, the most commonly used denitration process is the selective catalytic reduction (SCR) method. However, in the SCR method, the service life of the catalyst is short, and the industrial operation cost is high. The selective catalytic oxidation absorption (SCO) method can be used in a low temperature environment, which greatly reduces energy consumption and cost. The C/N ratio of the sludge produced in the wastewater treatment process of the soybean oil plant used in this paper is 9.64, while the C/N ratio of the sludge produced by an urban sewage treatment plant is 10⁻20. This study shows that the smaller the C/N ratio, the better the denitration efficiency of the catalyst. Therefore, dried oil sludge is used as a catalyst carrier. The influence of different activation times, and LiOH concentrations, on catalyst activity were investigated in this paper. The denitration performance of catalysts prepared by different activation sequences was compared. The catalyst was characterized by Fourier Transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscope (SEM). The experimental results showed that: (1) When the concentration of the LiOH solution used for activation is 15%, and the activation time is four hours, the denitration effect of the catalyst is the best; (2) the catalyst prepared by activation before plasma roasting has the best catalytic activity.
Collapse
Affiliation(s)
- Lei Zhang
- School of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China.
| | - Chao Yang
- School of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China.
| | - Lei Zhang
- China National Heavy Machinery Research Institute Co., Ltd., Xi'an 710032, China.
| | - Huibin He
- Zhejiang Dechuang Environmental Protection Technology Co., Ltd., Xi'an 710000, China.
| | - Min Luo
- School of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China.
| | - Yang Jia
- School of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China.
| | - Yonghui Li
- China National Heavy Machinery Research Institute Co., Ltd., Xi'an 710032, China.
| |
Collapse
|
36
|
Zeng X, Gong C, Guo H, Xu H, Zhang J, Xie J. Efficient heterogeneous hydroboration of alkynes: enhancing the catalytic activity by Cu(0) incorporated CuFe2O4 nanoparticles. NEW J CHEM 2018. [DOI: 10.1039/c8nj03708f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nano-copper ferrite supported Cu catalysts are active for hydroboration of alkynes to vinylboronates.
Collapse
Affiliation(s)
- Xianghua Zeng
- College of Biological
- Chemical Science and Engineering Jiaxing University
- Jiaxing 314001
- China
| | - Chunhua Gong
- College of Biological
- Chemical Science and Engineering Jiaxing University
- Jiaxing 314001
- China
| | - Haiyang Guo
- College of Biological
- Chemical Science and Engineering Jiaxing University
- Jiaxing 314001
- China
| | - Hao Xu
- College of Biological
- Chemical Science and Engineering Jiaxing University
- Jiaxing 314001
- China
| | - Junyong Zhang
- College of Biological
- Chemical Science and Engineering Jiaxing University
- Jiaxing 314001
- China
| | - Jingli Xie
- College of Biological
- Chemical Science and Engineering Jiaxing University
- Jiaxing 314001
- China
- State Key Laboratory of Structural Chemistry
| |
Collapse
|