1
|
Zhang Y, Wang S, Zhang L, Peng T. Development of a urea-bond cleavage reaction induced by nitric oxide for fluorescence imaging. J Mater Chem B 2024; 12:10248-10257. [PMID: 39291486 DOI: 10.1039/d4tb01462f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Nitric oxide (NO) is a multifunctional signalling molecule with indispensable roles in physiological processes, but its abnormal production is implicated in various disease conditions. Detecting NO is crucial for interrogating its biological roles. Although many o-phenylenediamine-based fluorescent probes have been developed, only a small fraction has been employed in vivo. Moreover, these probes largely require direct modifications of the fluorophore backbones to render NO responsiveness, which restricts the general applicability of o-phenylenediamine-based probe designs to other types of fluorophores. Here, we report the rational development, optimization, and application of a NO-induced urea-bond cleavage reaction for selective fluorescence detection and imaging of NO in living systems. Through rational design and extensive screening, we identified a 2-aminophenylurea-derived functionality that can react with NO through N-nitrosation, acyltriazole formation, and hydrolysis to induce the cleavage of the urea bond and release of the amino-containing coumarin fluorophore. By caging different amino-containing fluorophore scaffolds with the 2-aminophenylurea-derived functionality, we modularly developed a series of NO fluorescent probes with different excitation and emission profiles for the detection of NO in aqueous solutions and live cells. Among these probes, the near-infrared probe has been demonstrated to enable in vivo fluorescence visualization of elevated endogenous levels of NO in a murine inflammation model. Overall, this study provides a NO-induced urea-bond cleavage reaction and establishes the utility of this reaction for the general and modular development of NO fluorescent probes, thus opening new opportunities for studying and manipulating NO in biological systems.
Collapse
Affiliation(s)
- Yuqing Zhang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Shushu Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Lina Zhang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Tao Peng
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
2
|
Meng T, He D, Han Z, Shi R, Wang Y, Ren B, Zhang C, Mao Z, Luo G, Deng J. Nanomaterial-Based Repurposing of Macrophage Metabolism and Its Applications. NANO-MICRO LETTERS 2024; 16:246. [PMID: 39007981 PMCID: PMC11250772 DOI: 10.1007/s40820-024-01455-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024]
Abstract
Macrophage immunotherapy represents an emerging therapeutic approach aimed at modulating the immune response to alleviate disease symptoms. Nanomaterials (NMs) have been engineered to monitor macrophage metabolism, enabling the evaluation of disease progression and the replication of intricate physiological signal patterns. They achieve this either directly or by delivering regulatory signals, thereby mapping phenotype to effector functions through metabolic repurposing to customize macrophage fate for therapy. However, a comprehensive summary regarding NM-mediated macrophage visualization and coordinated metabolic rewiring to maintain phenotypic equilibrium is currently lacking. This review aims to address this gap by outlining recent advancements in NM-based metabolic immunotherapy. We initially explore the relationship between metabolism, polarization, and disease, before delving into recent NM innovations that visualize macrophage activity to elucidate disease onset and fine-tune its fate through metabolic remodeling for macrophage-centered immunotherapy. Finally, we discuss the prospects and challenges of NM-mediated metabolic immunotherapy, aiming to accelerate clinical translation. We anticipate that this review will serve as a valuable reference for researchers seeking to leverage novel metabolic intervention-matched immunomodulators in macrophages or other fields of immune engineering.
Collapse
Affiliation(s)
- Tingting Meng
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Danfeng He
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Zhuolei Han
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Rong Shi
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
- Department of Breast Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, 730030, People's Republic of China
| | - Yuhan Wang
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Bibo Ren
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Cheng Zhang
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Zhengwei Mao
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China.
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| | - Gaoxing Luo
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China.
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China.
| |
Collapse
|
3
|
Xu Z, Liu S, Xu L, Li Z, Zhang X, Kang H, Liu Y, Yu J, Jing J, Niu G, Zhang X. A novel ratiometric fluorescent probe with high selectivity for lysosomal nitric oxide imaging. Anal Chim Acta 2024; 1297:342303. [PMID: 38438223 DOI: 10.1016/j.aca.2024.342303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/21/2024] [Accepted: 01/28/2024] [Indexed: 03/06/2024]
Abstract
Nitric oxide (NO) plays critical roles in both physiology and pathology, serving as a significant signaling molecule. Recent investigations have uncovered the pivotal role of lysosome as a critical organelle where intracellular NO exists and takes function. In this study, we developed a novel ratiometric fluorescent probe called XL-NO and modified it with a morpholine unit, which followed the intramolecular charge transfer (ICT) mechanism. The probe could detect lysosomal nitric oxide with high selectivity and sensitivity. The probe XL-NO contained a secondary amine moiety that could readily react with NO in lysosomes, leading to the formation of the N-nitrosation product. The N-nitroso structure enhanced the capability in push-pull electron, which obviously led to the change of fluorescence from 621 nm to 521 nm. In addition, XL-NO was discovered to have some evident advantages, such as significant ratiometric signal (I521/I621) change, strong anti-interference ability, good biocompatibility, and a low detection limit (LOD = 44.3 nM), which were crucial for the detection of lysosomal NO. To evaluate the practical application of XL-NO, NO imaging experiments were performed in both living cells and zebrafish. The results from these experiments confirmed the feasibility and reliability of XL-NO for exogenous/endogenous NO imaging and lysosome targeting.
Collapse
Affiliation(s)
- Zhiling Xu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Songtao Liu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Liren Xu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Zichun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Xiaoli Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China; School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Hao Kang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Yifan Liu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Jin Yu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Jing Jing
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China; School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Guangle Niu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Xiaoling Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China; School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, PR China.
| |
Collapse
|
4
|
Luo X, Cheng S, Zhang W, Dou K, Wang R, Yu F. Near-Infrared Fluorescence Probe for Indication of the Pathological Stages of Wound Healing Process and Its Clinical Application. ACS Sens 2024; 9:810-819. [PMID: 38243350 DOI: 10.1021/acssensors.3c02147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Chronic wound healing is one of the most complicated biological processes in human life, which is also a serious challenge for human health. During the healing process, multiple biological pathways are activated, and various kinds of reactive oxygen species participate in this process. Hydrogen peroxide (H2O2) involves in chronic wounds and its concentration is fluctuated in different pathological stages during the wound healing process. Therefore, H2O2 may be recognized as a powerful biomarker to indicate the wound healing process. However, the pathological roles of H2O2 cannot be fully understood yet. Herein, we proposed a near-infrared fluorescent probe DCM-H2O2 for highly sensitive and rapid detection of H2O2 in living cells and scald and incision wound mice models. DCM-H2O2 exhibited a low detection limit and high specificity with low cytotoxicity for H2O2, which had great potential for its application in vivo. The probe was successfully utilized to monitor the fluctuation of endogenous H2O2 in the proliferation process of human immortalized epidermal (HACAT) cells, which confirmed that H2O2 participated in the cells' proliferation activity through a growth factor signaling pathway. In the scald and incision wound mice models, H2O2 concentration fluctuations at different pathological stages during the wound healing process could be obtained by in vivo fluorescence imaging. Finally, H2O2 concentrations in different stages of human diabetic foot tissues were also confirmed by the proposed probe. We expect that H2O2 could be a sensitive biomarker to indicate the wound healing process.
Collapse
Affiliation(s)
- Xianzhu Luo
- Key Laboratory of Hainan Trauma and Disaster Rescue, Department of Wound Repair, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Shaowen Cheng
- Key Laboratory of Hainan Trauma and Disaster Rescue, Department of Wound Repair, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
| | - Wei Zhang
- Key Laboratory of Hainan Trauma and Disaster Rescue, Department of Wound Repair, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Kun Dou
- Key Laboratory of Hainan Trauma and Disaster Rescue, Department of Wound Repair, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Rui Wang
- Key Laboratory of Hainan Trauma and Disaster Rescue, Department of Wound Repair, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Fabiao Yu
- Key Laboratory of Hainan Trauma and Disaster Rescue, Department of Wound Repair, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
5
|
Gong J, Wang X, Fan HE, Wang J, Zhang F, Mao Z. Engineering an activatable fluorescent probe for studying ONOO - in pyroptotic process. Talanta 2024; 267:125216. [PMID: 37722344 DOI: 10.1016/j.talanta.2023.125216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
Pyroptosis, a recently discovered form of programmed cell death, plays a pivotal role in oncological treatment. Howbeit, the mechanisms underlying pyroptosis in tumor treatment remain unclear. Previous research has demonstrated that the occurrence of pyroptosis generally accompanies a surge of reactive oxygen species (ROS) generation, with ONOO- being one of these ROS and closely linked to numerous diseases. Therefore, it is imperative to investigate the potential association between ONOO- and pyroptosis. Herein, a highly sensitive and rapidly responsive near-infrared (NIR) probe, Rd700-PN, is fabricated for exploring unrevealed relationships between ONOO- and pyroptosis. We successfully harness Rd700-PN to detect ONOO- fluctuation during cellular pyroptosis for the first time. Furthermore, the results demonstrate that Rd700-PN can scout the chemotherapeutic drug's induction ability of tumor pyroptosis in vivo. Notably, this study provides an excellent means to shed light on the correlation between ONOO- and pyroptosis and to screen antitumor drugs activating pyroptosis.
Collapse
Affiliation(s)
- Jiankang Gong
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Xiaoyu Wang
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Hai-En Fan
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Jiaxuan Wang
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Fan Zhang
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, China.
| | - Zhiqiang Mao
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
6
|
Wu W, Wen Y, Chen Y, Ji L, Chao H. A Mitochondria-Localized Iridium(III) Complex for Simultaneous Two-Photon Phosphorescence Lifetime Imaging of Downstream Products N 2O 3 and ONOO - of Endogenous Nitric Oxide. Anal Chem 2023; 95:15956-15964. [PMID: 37856322 DOI: 10.1021/acs.analchem.3c03023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Nitric oxide (NO) serves as a ubiquitous and fundamental signaling molecule involved in intricate effects on both physiological and pathological processes. NO, biosynthesized by nitric oxide synthase (NOS) or generated from nitrite, can form nitrosation reagent N2O3 (4NO + O2 = 2N2O3) through its oxidation or quickly produce peroxynitrite anion ONOO- (NO + •O2- = ONOO-) by reacting with superoxide anion (•O2-). However, most of the existing luminescent probes for NO just focus on specificity and utilize only a single signal to distinguish products N2O3 or ONOO-. In most of the present work, they differentiate one product from another simply by fluorescence signal or fluorescence intensity, which is not enough to distinguish accurately the behavior of NO in living cells. Herein, a new mitochondria-targeted and two-photon near-infrared (NIR) phosphorescent iridium(III) complex, known as Ir-NBD, has been designed for accurate detection and simultaneous imaging of two downstream products of endogenous NO, i.e., N2O3 and ONOO-. Ir-NBD exhibits a rapid response to N2O3 and ONOO- in enhanced phosphorescence intensity, increased phosphorescence lifetime, and an exceptionally high two-photon cross-section, reaching values of 78 and 85 GM, respectively, after the reaction. Furthermore, we employed multiple imaging methods, phosphorescence intensity imaging, and phosphorescence lifetime imaging together to image even distinguish N2O3 and ONOO- by probe Ir-NBD. Thus, coupled with its excellent photometrics, Ir-NBD enabled the detection of the basal level of intracellular NO accurately by responding to N2O3 and ONOO- in the lipopolysaccharide-stimulated macrophage model in virtue of fluorescence signal and phosphorescence lifetime imaging, revealing precisely the endogenous mitochondrial NO distribution during inflammation in a cell environment.
Collapse
Affiliation(s)
- Weijun Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Yuxin Wen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
- MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 400201, P. R. China
| |
Collapse
|
7
|
Dai M, Yang YJ, Sarkar S, Ahn KH. Strategies to convert organic fluorophores into red/near-infrared emitting analogues and their utilization in bioimaging probes. Chem Soc Rev 2023; 52:6344-6358. [PMID: 37608780 DOI: 10.1039/d3cs00475a] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Organic fluorophores aided by current microscopy imaging modalities are essential for studying biological systems. Recently, red/near-infrared emitting fluorophores have attracted great research efforts, as they enable bioimaging applications with reduced autofluorescence interference and light scattering, two significant obstacles for deep-tissue imaging, as well as reduced photodamage and photobleaching. Herein, we analyzed the current strategies to convert key organic fluorophores bearing xanthene, coumarin, and naphthalene cores into longer wavelength-emitting derivatives by focussing on their effectiveness and limitations. Together, we introduced typical examples of how such fluorophores can be used to develop molecular probes for biological analytes, along with key sensing features. Finally, we listed several critical issues to be considered in developing new fluorophores.
Collapse
Affiliation(s)
- Mingchong Dai
- Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, South Korea.
- CEDAR, Knight Cancer Institute, School of Medicine, Oregon Health & Science University, Portland, Oregon, 97201, USA.
| | - Yun Jae Yang
- Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, South Korea.
| | - Sourav Sarkar
- Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, South Korea.
| | - Kyo Han Ahn
- Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, South Korea.
| |
Collapse
|
8
|
Andreeva VD, Ehlers H, R C AK, Presselt M, J van den Broek L, Bonnet S. Combining nitric oxide and calcium sensing for the detection of endothelial dysfunction. Commun Chem 2023; 6:179. [PMID: 37644120 PMCID: PMC10465535 DOI: 10.1038/s42004-023-00973-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/01/2023] [Indexed: 08/31/2023] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide and are not typically diagnosed until the disease has manifested. Endothelial dysfunction is an early, reversible precursor in the irreversible development of cardiovascular diseases and is characterized by a decrease in nitric oxide production. We believe that more reliable and reproducible methods are necessary for the detection of endothelial dysfunction. Both nitric oxide and calcium play important roles in the endothelial function. Here we review different types of molecular sensors used in biological settings. Next, we review the current nitric oxide and calcium sensors available. Finally, we review methods for using both sensors for the detection of endothelial dysfunction.
Collapse
Affiliation(s)
| | - Haley Ehlers
- Mimetas B.V., De limes 7, 2342 DH, Oegstgeest, The Netherlands
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Aswin Krishna R C
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Martin Presselt
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Str. 9, 07745, Jena, Germany
- Sciclus GmbH & Co. KG, Moritz-von-Rohr-Str. 1a, 07745, Jena, Germany
| | | | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
9
|
Bai Y, Miao J, Bian X, Wang Q, Gao W, Xue Y, Yang G, Zhu P, Yu J. In situ growth of a cobalt porphyrin-based covalent organic framework on multi-walled carbon nanotubes for ultrasensitive real-time monitoring of living cell-released nitric oxide. Analyst 2023; 148:4219-4226. [PMID: 37540136 DOI: 10.1039/d3an00947e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Nitric oxide (NO), as a critical transcellular messenger, participates in a variety of physiological and pathological processes. However, its real-time detection still faces challenges due to its short half-life and trace amounts. Here, MWCNTs@COF-366-Co was prepared by in situ growth of a cobalt porphyrin-based covalent organic framework (COF-366-Co) on multi-walled carbon nanotubes (MWCNTs), and a unique biosensing platform for ultrasensitive real-time NO determination was established. Remarkably, MWCNTs@COF-366-Co contains plenty of atomically arranged M-N4 active sites for electrocatalysis, which provides more efficient electron transfer pathways and resolves the random arrangement issue of active sites. COF-366-Co with a high surface area contains a large number of exposed active M-N4 sites, providing faster NO transport/diffusion and more efficient electron transfer pathways. Due to the synergy of atomic-level periodic structural features of COF-366-Co and high conductivity of MWCNTs, the MWCNTs@COF-366-Co electrochemical biosensor exhibited excellent NO determination performance in a wide range from 0.09 to 400 μM, with high sensitivity (8.9 μA μM-1 cm-2) and a low limit of detection (16 nM). Moreover, the biosensor has been successfully used to sensitively monitor NO molecules released from human umbilical vein endothelial cells (HUVECs). This research not only designed a multifunctional intelligent biosensor platform, but also provided a broad prospect for continuous dynamic monitoring of the activity of living cells and their released metabolites.
Collapse
Affiliation(s)
- Yujiao Bai
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, P. R. China
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Jiansong Miao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Xiaodi Bian
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Qian Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Wenqing Gao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, P. R. China
| | - Yu Xue
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, P. R. China
| | - Guihua Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, P. R. China
| | - Peihua Zhu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, P. R. China
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| |
Collapse
|
10
|
Ji C, Zheng X, Li S, Liu C, Yin M. Perylenediimides with Enhanced Autophagy Inhibition for a Dual-Light Activatable Photothermal Gas Therapy. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37450943 DOI: 10.1021/acsami.3c04404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Photothermal therapy (PTT) has emerged as a promising strategy for the treatment of tumors. However, the intrinsic self-repair mechanism of cells and the nonspecific photothermal effect of photothermal agents can result in poor treatment outcomes and normal tissue injury. To address this issue, we developed a dual light activatable perylenediimide derivative (P-NO) for nitric oxide-enhanced PTT. P-NO can self-assemble into nanoparticles in aqueous solutions. The P-NO nanoparticles are capable of releasing both NO and a photothermal molecule (P-NH) upon green light irradiation. The simultaneous release of NO and P-NH activates the photothermal effect and inhibits cell protection autophagy, thereby improving the therapeutic efficacy of PTT under near-infrared (NIR) light. Moreover, the switch on of NIR fluorescence allows real-time monitoring of the release of P-NH. Remarkably, in a mouse subcutaneous tumor model, significant tumor ablation can be achieved following dual light activated photothermal gas therapy. This work offers a promising and straightforward approach to constructing activatable perylenediimide-based photothermal agents for enhancing the effectiveness of photothermal gas therapy.
Collapse
Affiliation(s)
- Chendong Ji
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xian Zheng
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Shuolin Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Chang Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
11
|
Duraiyarasu M, Kumaran SS, Mayilmurugan R. Alkyl Chain Appended Fe(III) Catecholate Complex as a Dual-Modal T1 MRI-NIR Fluorescence Imaging Agent via Second Sphere Water Interactions. ACS Biomater Sci Eng 2023. [PMID: 37141045 DOI: 10.1021/acsbiomaterials.3c00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The C12-alkyl chain-conjugated Fe(III) catecholate complex [Fe(C12CAT)3]3-, Fe(C12CAT)3 [C12CAT = N-(3,4-dihydroxyphenethyl)dodecanamide], was synthesized and characterized, reported as a dual-modal T1-MRI and an optical imaging probe. The DFT-optimized structure of Fe(C12CAT)3 reveals a distorted octahedral coordination geometry around the high spin Fe(III) center. The formation constant (-log K) of Fe(C12CAT)3 was calculated as 45.4. The complex exhibited r1-relaxivity values of 2.31 ± 0.12 and 1.52 ± 0.06 mM-1 s-1 at 25 and 37 °C, respectively, on 1.41 T at pH 7.3 via second-sphere water interactions. The interaction of Fe(C12CAT)3 with human serum albumin showed concomitant enhancement of r1-relaxivity to 6.44 ± 0.15 mM-1 s-1. The MR phantom images are significantly brighter and directly correlate to the concentration of Fe(C12CAT)3. Adding an external fluorescent marker IR780 dye to Fe(C12CAT)3 leads to the formation of self-assembly by C12-alkyl chains. It resulted in the fluorescence quenching of the dye, and its critical aggregation concentration was calculated as 70 μM. The aggregated matrix of Fe(C12CAT)3 and IR780 dye is spherical, with an average hydrodynamic diameter of 189.5 nm. This self-assembled supramolecular system is found to be non-fluorescent and was "turn-on" under acidic pH via dissociation of aggregates. The r1-relaxivity is found to be unchanged during the matrix aggregation and disaggregation. The probe showed MRI ON and fluorescent OFF under physiological conditions and MRI ON and fluorescent ON under acidic pH. The cell viability experiments showed that the cells are 80% viable at 1 mM probe concentration. Fluorescence experiments and MR phantom images showed that Fe(C12CAT)3 is a potential dual model imaging probe to visualize the acidic pH environment of the cells.
Collapse
Affiliation(s)
- Maheshwaran Duraiyarasu
- Department of Chemistry, and Department of Bioscience & Biomedical Engineering, Indian Institute of Technology Bhilai, Raipur, Chattisgarh 492015, India
| | - S Senthil Kumaran
- Department of NMR, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110 029, India
| | - Ramasamy Mayilmurugan
- Department of Chemistry, and Department of Bioscience & Biomedical Engineering, Indian Institute of Technology Bhilai, Raipur, Chattisgarh 492015, India
| |
Collapse
|
12
|
Ding C, Ren T. Near infrared fluorescent probes for detecting and imaging active small molecules. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
13
|
Chen L, Lyu Y, Zhang X, Zheng L, Li Q, Ding D, Chen F, Liu Y, Li W, Zhang Y, Huang Q, Wang Z, Xie T, Zhang Q, Sima Y, Li K, Xu S, Ren T, Xiong M, Wu Y, Song J, Yuan L, Yang H, Zhang XB, Tan W. Molecular imaging: design mechanism and bioapplications. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1461-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
14
|
Mao Z, Kim JH, Lee J, Xiong H, Zhang F, Kim JS. Engineering of BODIPY-based theranostics for cancer therapy. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Chen X, Yuwen Z, Zhao Y, Li H, Chen K, Liu H. In situ detection of alkaline phosphatase in a cisplatin-induced acute kidney injury model with a fluorescent/photoacoustic bimodal molecular probe. Front Bioeng Biotechnol 2022; 10:1068533. [PMID: 36507263 PMCID: PMC9727191 DOI: 10.3389/fbioe.2022.1068533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/01/2022] [Indexed: 11/24/2022] Open
Abstract
Kidneys play an important part in drug metabolism and excretion. High local concentration of drugs or drug allergies often cause acute kidney injury (AKI). Identification of effective biomarkers of initial stage AKI and constructing activable molecular probes with excellent detection properties for early evaluation of AKI are necessary, yet remain significant challenges. Alkaline phosphatase (ALP), a key hydrolyzing protease, exists in the epithelial cells of the kidney and is discharged into the urine following kidney injury. However, no studies have revealed its level in drug-induced AKI. Existing ALP fluorescent molecular probes are not suitable for testing and imaging of ALP in the AKI model. Drug-induced AKI is accompanied by oxidative stress, and many studies have indicated that a large increase in reactive oxygen species (ROS) occur in the AKI model. Thus, the probe used for imaging of AKI must be chemically stable in the presence of ROS. However, most existing near-infrared fluorescent (NIRF) ALP probes are not stable in the presence of ROS in the AKI model. Hence, we built a chemically stable molecular sensor (CS-ALP) to map ALP level in cisplatin-induced AKI. This novel probe is not destroyed by ROS generated in the AKI model, thus allowing high-fidelity imaging. In the presence of ALP, the CS-ALP probe generates a new absorbance peak at 685 nm and a fluorescent emission peak at 716 nm that could be used to "turn on" photoacoustic (PA) and NIRF imaging of ALP in AKI. Levels of CS-ALP build up rapidly in the kidney, and CS-ALP has been successfully applied in NIRF/PA bimodal in vivo imaging. Through the NIRF/PA bimodal imaging results, we demonstrate that upregulated expression of ALP occurs in the early stages of AKI and continues with injury progression.
Collapse
Affiliation(s)
- Xingwang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Hunan Normal University, Changsha, China
| | - Zhiyang Yuwen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Hunan Normal University, Changsha, China
| | - Yixing Zhao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Hunan Normal University, Changsha, China
| | - Haixia Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Hunan Normal University, Changsha, China,*Correspondence: Hongwen Liu, ; Kang Chen, ; Haixia Li,
| | - Kang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Hunan Normal University, Changsha, China,Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, China,*Correspondence: Hongwen Liu, ; Kang Chen, ; Haixia Li,
| | - Hongwen Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Hunan Normal University, Changsha, China,Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, China,*Correspondence: Hongwen Liu, ; Kang Chen, ; Haixia Li,
| |
Collapse
|
16
|
Shang Z, Shu L, Liu J, Meng Q, Wang Y, Sun J, Zhang R, Zhang Z. Triphenylamine-embedded copper(II) complex as a "turn-on" fluorescent probe for the detection of nitric oxide in living animals. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4537-4544. [PMID: 36314283 DOI: 10.1039/d2ay01629j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nitric oxide (NO) is one of three major signaling molecules, which is involved in a large amount of physiological and pathological processes in biological systems. Furthermore, more and more evidence indicates that NO levels are closely associated with several aspects of human health. Accordingly, it is of great significance to develop a convenient and reliable detection method for NO in biological systems. In this work, a novel triphenylamine-embedded copper(II) complex (NZ-Cu2+) has been developed to be used as a fluorescence probe for the detection of NO in living animals. The proposed sensing mechanism of NZ-Cu2+ towards NO has been confirmed by high-resolution mass spectrometry, spectroscopic titration and density functional theory calculation. NO induced the conversion of paramagnetic Cu2+ to diamagnetic Cu+, which blocked the photoinduced electron transfer process of NZ-Cu2+, resulting in a remarkable enhancement of the emission spectra. The NZ-Cu2+ probe possesses several advantages including high selectivity, low detection limit (12.9 nM), long emission wavelength (640 nm), large Stokes shift (201 nm), fast response time (60 s) and low cytotoxicity. More importantly, NZ-Cu2+ has been successfully applied to detect NO in vivo by fluorescence imaging.
Collapse
Affiliation(s)
- Zhuye Shang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China.
| | - Li Shu
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China.
| | - Jianhua Liu
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China.
| | - Qingtao Meng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China.
| | - Yue Wang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China.
| | - Jianguo Sun
- Eye Institute and Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China.
| |
Collapse
|
17
|
Partnered Excited-State Intermolecular Proton Transfer Fluorescence (P-ESIPT) Signaling for Nitrate Sensing and High-Resolution Cell-Imaging. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165164. [PMID: 36014404 PMCID: PMC9416243 DOI: 10.3390/molecules27165164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022]
Abstract
Nitrite (NO2−) is a common pollutant and is widely present in the environment and in human bodies. The development of a rapid and accurate method for NO2− detection is always a very important task. Herein, we synthesized a partnered excited-state intermolecular proton transfer (ESIPT) fluorophore using the “multi-component one pot” method, and used this as a probe (ESIPT-F) for sensing NO2−. ESIPT-F exhibited bimodal emission in different solvents because of the solvent-mediated ESIPT reaction. The addition of NO2− caused an obvious change in colors and tautomeric fluorescence due to the graft of NO2− into the ESIPT-F molecules. From this basis, highly sensitive and selective analysis of NO2− was developed using tautomeric emission signaling, achieving sensitive detection of NO2− in the concentration range of 0~45 mM with a detection limit of 12.5 nM. More importantly, ESIPT-F showed the ability to anchor proteins and resulted in a recognition-driven “on-off” ESIPT process, enabling it to become a powerful tool for fluorescence imaging of proteins or protein-based subcellular organelles. MTT experimental results revealed that ESIPT-F is low cytotoxic and has good membrane permeability to cells. Thus, ESIPT-F was further employed to image the tunneling nanotube in vitro HEC-1A cells, displaying high-resolution performance.
Collapse
|
18
|
Peng C, Yang J, Li W, Lin D, Fei Y, Chen X, Yuan L, Li Y. Development of Probes with High Signal-to-Noise Ratios Based on the Facile Modification of Xanthene Dyes for Imaging Peroxynitrite during the Liver Ischemia/Reperfusion Process. Anal Chem 2022; 94:10773-10780. [PMID: 35867938 DOI: 10.1021/acs.analchem.2c01496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Xanthene-based fluorescence probes with high signal-to-noise ratios are highly useful for bioimaging. However, current strategies for improving the signal-to-noise ratios of xanthene fluorescence probes based on the replacement of oxygen group elements and extension of conjugation always require complicated modifications or time-consuming synthesis, which unfortunately goes against the original intention owing to the alteration of the parent structure and outstanding properties. Herein, a facile strategy is presented for developing a unique class of high signal-to-noise ratio probes by modifying the 2' position of a rhodol scaffold with different substituents. Systematic studies have shown that the probe named Rhod-CN-B with a strong electron-withdrawing methylene malononitrile functional group (-CH═(CN)2) at the 2' position displayed a high signal-to-noise ratio and excellent photostability in aqueous solutions and could detect peroxynitrite (ONOO-) without interference from other biologically active species. In addition, the excellent selectivity and sensitivity of Rhod-CN-B displayed satisfactory properties in tracking the endogenous production of ONOO- in the apoptosis process of liver cells stimulated by lipopolysaccharides. Moreover, we utilized Rhod-CN-B to perform imaging of ONOO- in the course of the liver ischemia/reperfusion (I/R) process, revealing that high ONOO- levels were associated with aggravation of hepatocyte damage. All of the experimental data and results demonstrated that Rhod-CN-B could be a powerful tool for imaging ONOO- in more physiological and pathological processes.
Collapse
Affiliation(s)
- Chao Peng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Jinfeng Yang
- Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410000, China
| | - Wei Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Dan Lin
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Yanxia Fei
- Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410000, China
| | - Xiaolan Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yinhui Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
19
|
Yin F, Fang H. Unveiling the effects of atomic electronegativity on the ESIPT mechanism and luminescence property of new coumarin benzothiazole Fluorophore: A TD-DFT exploration. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 275:121118. [PMID: 35305361 DOI: 10.1016/j.saa.2022.121118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/27/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
The excited-state intramolecular proton transfer (ESIPT) mechanism, photophysical properties of 8-(benzo[D] thiazole-2-yl)-7-hydroxy-2H-benzopyran-2-one (L-HKS) and the effect of O/Se atomic substitution on L-HKS have been studied in detail based on density functional theory (DFT) and time-dependent DFT (TD-DFT) methods. The S atom in the thiazole ring of L-HKS has been replaced by O/Se atom (denoted to L-HKO/L-HKSe) to analyze the effects of atomic electronegativity on the intramolecular H-bond, absorption/emission spectrum and ESIPT process. Through the analysis of series of calculated results, it can be found that the intramolecular H-bonds at normal form and tautomer form are enhanced and weakened in the S1 state, respectively, which is favorable to ESIPT process. The potential energy curves revealed that the ESIPT process is much easier to occur gradually from L-HKO to L-HKS and L-HKSe, as the electron-withdrawing ability of atom (from O to S and Se) is weakened. The atomic substitution also has an effect on the photophysical properties. From L-HKO to L-HKS, the emission peak at tautomer form red-shifts 70 nm. The energy gaps of the three compounds follow the decreased order of L-HKO (4.866 eV) > L-HKS (4.753 eV) > L-HKSe (4.371 eV) with the weakened electron-withdrawing ability of atom (from O to S and Se), which leads to the gradual red-shift of the absorption spectra from L-HKO to L-HKS and L-HKSe.
Collapse
Affiliation(s)
- Feiyang Yin
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Hua Fang
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| |
Collapse
|
20
|
Han X, Wang Y, Huang Y, Wang X, Choo J, Chen L. Fluorescent probes for biomolecule detection under environmental stress. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128527. [PMID: 35231812 DOI: 10.1016/j.jhazmat.2022.128527] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
The use of fluorescent probes in visible detection has been developed over the last several decades. Biomolecules are essential in the biological processes of organisms, and their distribution and concentration are largely influenced by environmental factors. Significant advances have occurred in the applications of fluorescent probes for the detection of the dynamic localization and quantity of biomolecules during various environmental stress-induced physiological and pathological processes. Herein, we summarize representative examples of small molecule-based fluorescent probes that provide bimolecular information when the organism is under environmental stress. The discussion includes strategies for the design of smart small-molecule fluorescent probes, in addition to their applications in biomolecule imaging under environmental stresses, such as hypoxia, ischemia-reperfusion, hyperthermia/hypothermia, organic/inorganic chemical exposure, oxidative/reductive stress, high glucose stimulation, and drug treatment-induced toxicity. We believe that comprehensive insight into the beneficial applications of fluorescent probes in biomolecule detection under environmental stress should enable the further development and effective application of fluorescent probes in the biochemical and biomedical fields.
Collapse
Affiliation(s)
- Xiaoyue Han
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Present: Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, UK; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Huang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; School of Pharmacy, Binzhou Medical University, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
21
|
Yadav AK, Lee MC, Lucero MY, Su S, Reinhardt CJ, Chan J. Activity-Based NIR Bioluminescence Probe Enables Discovery of Diet-Induced Modulation of the Tumor Microenvironment via Nitric Oxide. ACS CENTRAL SCIENCE 2022; 8:461-472. [PMID: 35505872 PMCID: PMC9052803 DOI: 10.1021/acscentsci.1c00317] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Indexed: 05/15/2023]
Abstract
Nitric oxide (NO) plays a critical role in acute and chronic inflammation. NO's contributions to cancer are of particular interest due to its context-dependent bioactivities. For example, immune cells initially produce cytotoxic quantities of NO in response to the nascent tumor. However, it is believed that this fades over time and reaches a concentration that supports the tumor microenvironment (TME). These complex dynamics are further complicated by other factors, such as diet and oxygenation, making it challenging to establish a complete picture of NO's impact on tumor progression. Although many activity-based sensing (ABS) probes for NO have been developed, only a small fraction have been employed in vivo, and fewer yet are practical in cancer models where the NO concentration is <200 nM. To overcome this outstanding challenge, we have developed BL660-NO, the first ABS probe for NIR bioluminescence imaging of NO in cancer. Owing to the low intrinsic background, high sensitivity, and deep tissue imaging capabilities of our design, BL660-NO was successfully employed to visualize endogenous NO in cellular systems, a human liver metastasis model, and a murine breast cancer model. Importantly, its exceptional performance facilitated two dietary studies which examine the impact of fat intake on NO and the TME. BL660-NO provides the first direct molecular evidence that intratumoral NO becomes elevated in mice fed a high-fat diet, which became obese with larger tumors, compared to control animals on a low-fat diet. These results indicate that an inflammatory diet can increase NO production via recruitment of macrophages and overexpression of inducible nitric oxide synthase which in turn can drive tumor progression.
Collapse
|
22
|
Wang X, Sun Q, Song X, Wang Y, Hu W. Development of a ratiometric nitric oxide probe with baseline resolved emissions by an ESIPT and rhodol ring opened-closed integrated two-photon platform. RSC Adv 2022; 12:2721-2728. [PMID: 35425308 PMCID: PMC8979048 DOI: 10.1039/d1ra08426g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/22/2021] [Indexed: 11/28/2022] Open
Abstract
In recent years, reflecting the degree of cellular inflammation through in situ monitoring of nitric oxide using fluorescence sensing has received much attention due to many merits such as non-invasiveness and easy operation. In particular, two-photon excitation microscopy can significantly improve the imaging resolution and visualization time. In the meantime, a ratiometric-based nitric oxide fluorescent sensor can avoid the interference of many factors, including light source intensity, solvent scattering degree, solvent color, solvent viscosity, probe distribution, and instrument performance, and improve the accuracy of the result. However, the mutual interference of two emission peaks is still an issue restricting the development of this field. In this work, the Rh-NO-F dye obtained by modifying the rhodol dye with benzothiazole exhibited excited state intramolecular proton transfer (ESIPT) in the closed ring state. In the open ring state, however, the emission wavelength can be significantly red-shifted by increasing the degree of dye conjugation. By introducing o-phenylenediamine, the recognition domain of NO, we successfully designed and synthesized a ratiometric two-photon NO fluorescent probe, Rh-NO-P, which showed a 154 nm increase in the maximum emission wavelength before and after the response and almost no interference between the two emission peaks. Confocal imaging showed that the probe could achieve in situ detection of exogenous NO fluctuations in cells. The probe was also successfully applied to detect the changes in NO content during wound healing in mice.
Collapse
Affiliation(s)
- Xumei Wang
- Hubei Key Laboratory of Biological Resources Protection and Utilization, School of Chemical and Environmental Engineering, Hubei Minzu University Enshi 445000 China
| | - Qi Sun
- Hubei Key Laboratory of Biological Resources Protection and Utilization, School of Chemical and Environmental Engineering, Hubei Minzu University Enshi 445000 China
| | - Xinjian Song
- Hubei Key Laboratory of Biological Resources Protection and Utilization, School of Chemical and Environmental Engineering, Hubei Minzu University Enshi 445000 China
| | - Yan Wang
- Hubei Key Laboratory of Biological Resources Protection and Utilization, School of Chemical and Environmental Engineering, Hubei Minzu University Enshi 445000 China
| | - Wei Hu
- College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology Xi'an 710021 China
| |
Collapse
|
23
|
Xie Y, Han S, Li Q, Fang Z, Yang W, Wei Q, Wang Y, Zhou Y, Weng X, Zhou X. Transcriptome-wide profiling of N6-methyladenosine via a selective chemical labeling method. Chem Sci 2022; 13:12149-12157. [PMID: 36349098 PMCID: PMC9600483 DOI: 10.1039/d2sc03181g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/05/2022] [Indexed: 11/24/2022] Open
Abstract
Studies of chemical modifications on RNA have ushered in the field of epitranscriptomics. N6-Methyladenosine (m6A) is the most typical RNA modification and is indispensable for basic biological processes. This study presents a chemical pulldown method (m6A-ORL-Seq) for transcriptome-wide profiling of m6A. Moreover, chemical labeling results in a specific reverse transcription (RT) truncation signature. This study has identified four thousand high-confidence m6A sites at single-base resolution in the human transcriptome. Unlike previously reported methods based on m6A-antibody or m6A-sensitive enzymes, the antibody/enzyme-free chemical method provides a new perspective for single-base m6A detection at the transcriptome level. m6A-ORL-Seq: A chemical labeling method for transcriptome-wide m6A profiling.![]()
Collapse
Affiliation(s)
- Yalun Xie
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, China
| | - Shaoqing Han
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, China
| | - Qiming Li
- College of Life Science, Wuhan University, Wuhan, Hubei, China
| | - Zhentian Fang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, China
| | - Wei Yang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, China
| | - Qi Wei
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, China
| | - Yafen Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, China
| | - Yu Zhou
- College of Life Science, Wuhan University, Wuhan, Hubei, China
| | - Xiaocheng Weng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, China
| |
Collapse
|
24
|
Panshina SY, Bakibaev AA, Borodaenko AA, Malkov VS. N-Nitrosation of Glycolurils Catalyzed by 1-Hydroxyethylidene-1,1-diphosphonic Acid. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021110063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Sun L, Ouyang J, Ma Y, Zeng Z, Zeng C, Zeng F, Wu S. An Activatable Probe with Aggregation-Induced Emission for Detecting and Imaging Herbal Medicine Induced Liver Injury with Optoacoustic Imaging and NIR-II Fluorescence Imaging. Adv Healthc Mater 2021; 10:e2100867. [PMID: 34160144 DOI: 10.1002/adhm.202100867] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/06/2021] [Indexed: 12/15/2022]
Abstract
Whilte herbal medicines are widely used for health promotion and therapy for chronic conditions, inappropriate use of them may cause adverse effects like liver injury, and accurately evaluating their hepatotoxicity is of great significance for public health. Herein, an activatable probe QY-N for diagnosing herbal-medicine-induced liver injury by detecting hepatic NO with NIR-II fluorescence and multispectral optoacoustic tomography (MSOT) imaging is demonstrated. The probe includes a bismethoxyphenyl-amine-containing dihydroxanthene serving as electron donor, a quinolinium as electron acceptor, and a butylamine as recognition group and fluorescence quencher. The hepatic level of NO reacts with butylamine, thereby generating the activated probe QY-NO which exhibits a red-shifted absorption band (700-850 nm) for optoacoustic imaging and generates strong emission (910-1110 nm) for NIR-II fluorescence imaging. QY-NO is aggregation-induced-emission (AIE) active, which ensures strong emission in aggregated state. QY-N is utilized in the triptolide-induced liver injury mouse model, and experimental results demonstrate the QY-N can be activated by hepatic NO and thus be used in detecting herbal-medicine-induced liver injury. The temporal and spatial information provided by three-dimensional MSOT images well delineates the site and size of liver injury. Moreover, QY-N has also been employed to monitor rehabilitation of liver injury during treatment process.
Collapse
Affiliation(s)
- Lihe Sun
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates College of Materials Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Juan Ouyang
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates College of Materials Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Yunqing Ma
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates College of Materials Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Zhuo Zeng
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates College of Materials Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Cheng Zeng
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates College of Materials Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Fang Zeng
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates College of Materials Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Shuizhu Wu
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates College of Materials Science and Engineering South China University of Technology Guangzhou 510640 China
| |
Collapse
|
26
|
Wu C, Mao Y, Wang X, Li P, Tang B. Deep-Tissue Fluorescence Imaging Study of Reactive Oxygen Species in a Tumor Microenvironment. Anal Chem 2021; 94:165-176. [PMID: 34802229 DOI: 10.1021/acs.analchem.1c03104] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tumor microenvironment (TME) is the survival environment for tumor cells to proliferate and metastasize in deep tissue. TME contains tumor cells, immune cells, stromal cells and a variety of active molecules including reactive oxygen species (ROS). Inside the TME, ROS regulate the oxidation-reduction (redox) homeostasis and promote oxidative stress. Due to the rapid proliferation ability and specific metabolic patterns of the TME, ROS pervade virtually all complex physiological processes and play irreplaceable roles in protein modification, signal transduction, metabolism, and energy production in various tumors. Therefore, measurements of the dynamically, multicomponent simultaneous changes of ROS in the TME are of great significance to reveal the detailed proliferation and metastasis mechanisms of the tumor. Near-infrared (NIR) and two-photon (TP) fluorescence imaging techniques possess real-time, dynamic, highly sensitive, and highly signal-to-noise ratios with deep tissue penetration abilities. With the rationally designed probes, the NIR and TP fluorescence imaging techniques have been widely used to reveal the mechanisms of how ROS regulates and constructs complex signals and metabolic networks in TME. Therefore, we summarize the design principles and performances of NIR and TP fluorescence imaging of ROS in the TME in the last four years, as well as discuss the advantages and potentials of these works. This Review can provide guidance and prospects for future research work on TME and facilitate the development of antitumor drugs.
Collapse
Affiliation(s)
- Chuanchen Wu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Yuantao Mao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Xin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| |
Collapse
|
27
|
Wang S, Huang Y, Guan X. Fluorescent Probes for Live Cell Thiol Detection. Molecules 2021; 26:3575. [PMID: 34208153 PMCID: PMC8230801 DOI: 10.3390/molecules26123575] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/24/2022] Open
Abstract
Thiols play vital and irreplaceable roles in the biological system. Abnormality of thiol levels has been linked with various diseases and biological disorders. Thiols are known to distribute unevenly and change dynamically in the biological system. Methods that can determine thiols' concentration and distribution in live cells are in high demand. In the last two decades, fluorescent probes have emerged as a powerful tool for achieving that goal for the simplicity, high sensitivity, and capability of visualizing the analytes in live cells in a non-invasive way. They also enable the determination of intracellular distribution and dynamitic movement of thiols in the intact native environments. This review focuses on some of the major strategies/mechanisms being used for detecting GSH, Cys/Hcy, and other thiols in live cells via fluorescent probes, and how they are applied at the cellular and subcellular levels. The sensing mechanisms (for GSH and Cys/Hcy) and bio-applications of the probes are illustrated followed by a summary of probes for selectively detecting cellular and subcellular thiols.
Collapse
Affiliation(s)
| | | | - Xiangming Guan
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, Box 2202C, Brookings, SD 57007, USA; (S.W.); (Y.H.)
| |
Collapse
|
28
|
Dang Y, Ruan L, Tian Y, Xu Z, Zhang W. Nitric Oxide Prodrug Delivery and Release Monitoring Based on a Galactose-Modified Multifunctional Nanoprobe. Anal Chem 2021; 93:7625-7634. [PMID: 34010568 DOI: 10.1021/acs.analchem.1c00287] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Nitric oxide (NO)-based cancer therapy has attracted much attention in recent years owing to its broad effects on cancer. Low concentrations of NO stimulate cancer cell progression, while its higher levels induce cell apoptosis, and thus, it has motivated the development of probes for in situ NO release monitoring. In this work, a galactose-modified benzothiadiazole-based fluorescent probe (GalNONP/C) was synthesized as both a NO-responsive nanoprobe and NO prodrug carrier. The probe exhibited far-red emission in the range from 550 to 800 nm, and the response showed acidity preference. The galactose on the probe enabled selective targeting of hepatocellular carcinoma (HCC) cells by binding to the asialoglycoprotein receptor (ASGPR) on the cell surface. The probe also delivered low-molecular weight NO prodrug JS-K into cells and monitored the real-time release of the generated NO. Furthermore, in vivo NO imaging with tumor targeting was demonstrated in HCC orthotopic transplantation nude mice and liver sections. Compared with the control experiment using a probe without NO prodrug loading, higher fluorescence response of NO was detected in the cell (3.0 times) and liver slices of the HCC tumor model (2.7 times). This strategy may pave the way to develop nanoprobes for in situ NO monitoring and therapy evaluation in NO-related cancer therapy.
Collapse
Affiliation(s)
- Yijing Dang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Liting Ruan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yang Tian
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Wen Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| |
Collapse
|
29
|
Wang M, Wang C, Song W, Zhong W, Sun T, Zhu J, Wang J. A novel borate fluorescent probe for rapid selective intracellular peroxynitrite imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 251:119398. [PMID: 33440285 DOI: 10.1016/j.saa.2020.119398] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/06/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Peroxynitrite (ONOO-) is one of the species of reactive nitrogen (RNS), which plays an important role in antibacterial activity and signal transduction and other physiological and pathological processes. In this paper, based on the benzyl borate group, a new fluorescent probe capable of detecting ONOO- with high selectivity and sensitivity is designed, and the possible mechanism of the interaction between probe and ONOO- is proposed. The probe shows high fluorescence response to ONOO- in a wide pH range (7.0-11.5). Moreover, the probe exhibit good permeability, and the content of ONOO- in cancer cells and normal cells was successfully monitored.
Collapse
Affiliation(s)
- Minmin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, PR China; Nantong Key Laboratory of Intelligent and New Energy Materials, PR China
| | - Chun Wang
- School of Textiles, Nantong University, Nantong 226019, PR China; Nantong Key Laboratory of Intelligent and New Energy Materials, PR China
| | - Wenwu Song
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, PR China
| | - Weiting Zhong
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, PR China
| | - Tongming Sun
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, PR China.
| | - Jinli Zhu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, PR China.
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, PR China; Nantong Key Laboratory of Intelligent and New Energy Materials, PR China.
| |
Collapse
|
30
|
Kim SJ, Park SY, Yoon SA, Kim C, Kang C, Lee MH. Naphthalimide-4-(4-nitrophenyl)thiosemicarbazide: A Fluorescent Probe for Simultaneous Monitoring of Viscosity and Nitric Oxide in Living Cells. Anal Chem 2021; 93:4391-4397. [PMID: 33617243 DOI: 10.1021/acs.analchem.0c04019] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Intracellular viscosity is a physicochemical factor that determines the outcomes of various biological processes, while nitric oxide (NO) is an essential signaling molecule that controls many cellular processes, including oxidative stress. Anticipating that both may be interrelated with a variety of pathologies, their simultaneous measurement would be highly valuable for the investigation of the pathological condition of cells. However, the development of a sensor for such simultaneous detection has not been attempted yet. Herein, we present the synthesis of naphthalimide-4-(4-nitrophenyl)thiosemicarbazide, probe 1, and its application to living cells under conditions of lipopolysaccharide or nystatin treatment, adopted as oxidative stress and altered intracellular viscosity models, respectively. The probe showed increased fluorescence in response to elevation of viscosity and NO levels at 470 and 550 nm, respectively, in the solution studies. When the probe was used for a confocal microscopic study of HeLa cells under stressed conditions, simultaneous monitoring of viscosity and NO level elevations was possible through fluorescence imaging using band-pass filters of 420-475 and 505-600 nm, respectively, upon excitation at a wavelength of 405 nm. Interestingly, both the cellular viscosity and NO levels increased together under lipopolysaccharide or nystatin treatment. Therefore, we suggest that probe 1 is a fluorescent chemical probe that enables the monitoring of alterations in intracellular viscosity and NO levels in living cells, which would be valuable in studies of various cellular damage models.
Collapse
Affiliation(s)
- Su Jung Kim
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, Korea
| | - Sun Young Park
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, Korea
| | - Shin A Yoon
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, Korea
| | - Changshin Kim
- The School of East-West Medical Science, Kyung Hee University, Yongin 17104, Korea
| | - Chulhun Kang
- The School of East-West Medical Science, Kyung Hee University, Yongin 17104, Korea
| | - Min Hee Lee
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, Korea
| |
Collapse
|
31
|
Liu C, Liu J, Zhang W, Wang YL, Gao X, Song B, Yuan J, Zhang R. A Ruthenium(II) complex-based probe for colorimetric and luminescent detection and imaging of hydrogen sulfide in living cells and organisms. Anal Chim Acta 2021; 1145:114-123. [PMID: 33453872 DOI: 10.1016/j.aca.2020.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/10/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023]
Abstract
The development of reliable bioanalytical probes for sensitive and specific detection of hydrogen sulfide (H2S) plays important role for better understanding the roles of this biomolecule in living cells and organisms. Taking advantages of unique photophysical properties of ruthenium(II) (Ru(II)) complex, this work presents the development of a responsive Ru(II) complex probe, Ru-PNBD, for colorimetric and luminescent analysis of H2S in living cells and organisms. In aqueous solution, Ru-PNBD is yellow color and non-luminescent because of the photoinduced electron transfer (PET) process from Ru(II) complex luminophore to NBD moiety. The H2S-triggered specific nucleophilic substitution reaction with Ru-PNBD cleaves the NBD moiety to form pink NBD-SH and highly luminescent Ru-PH. The color of the solution thus changes from yellow to pink for colorimetric analysis and the emission intensity is about 65-fold increased for luminescent analysis. Ru-PNBD has high sensitivity and selectivity for H2S detection, low cytotoxicity and good permeability to cell membrane, which allow the application of this probe for H2S imaging in living cells, Daphnia magna, and larval zebrafish. Collectively, this work provides a useful tool for H2S analysis and expands the scope of transition metal complex probes.
Collapse
Affiliation(s)
- Chaolong Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jianping Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Wenzhu Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yong-Lei Wang
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 10691, Sweden
| | - Xiaona Gao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Bo Song
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jingli Yuan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland, 4072, Australia.
| |
Collapse
|
32
|
Huang L, Chen Y, Zhao Y, Wang Y, Xiong J, Zhang J, Wu X, Zhou Y. A ratiometric near-infrared naphthalimide-based fluorescent probe with high sensitivity for detecting Fe2+ in vivo. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
33
|
Vidanapathirana AK, Psaltis PJ, Bursill CA, Abell AD, Nicholls SJ. Cardiovascular bioimaging of nitric oxide: Achievements, challenges, and the future. Med Res Rev 2020; 41:435-463. [PMID: 33075148 DOI: 10.1002/med.21736] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/03/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022]
Abstract
Nitric oxide (NO) is a ubiquitous, volatile, cellular signaling molecule that operates across a wide physiological concentration range (pM-µM) in different tissues. It is a highly diffusible messenger and intermediate in various metabolic pathways. NO plays a pivotal role in maintaining optimum cardiovascular function, particularly by regulating vascular tone and blood flow. This review highlights the need for accurate, real-time bioimaging of NO in clinical diagnostic, therapeutic, monitoring, and theranostic applications within the cardiovascular system. We summarize electrochemical, optical, and nanoscale sensors that allow measurement and imaging of NO, both directly and indirectly via surrogate measurements. The physical properties of NO render it difficult to accurately measure in tissues using direct methods. There are also significant limitations associated with the NO metabolites used as surrogates to indirectly estimate NO levels. All these factors added to significant variability in the measurement of NO using available methodology have led to a lack of sensors and imaging techniques of clinical applicability in relevant vascular pathologies such as atherosclerosis and ischemic heart disease. Challenges in applying current methods to biomedical and clinical translational research, including the wide physiological range of NO and limitations due to the characteristics and toxicity of the sensors are discussed, as are potential targets and modifications for future studies. The development of biocompatible nanoscale sensors for use in combination with existing clinical imaging modalities provides a feasible opportunity for bioimaging NO within the cardiovascular system.
Collapse
Affiliation(s)
- Achini K Vidanapathirana
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia.,Australian Research Council (ARC), Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, Australia.,Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Peter J Psaltis
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia.,Australian Research Council (ARC), Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Christina A Bursill
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia.,Australian Research Council (ARC), Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Andrew D Abell
- Australian Research Council (ARC), Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, Australia.,Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, Australia.,Department of Chemistry, University of Adelaide, Adelaide, South Australia, Australia
| | - Stephen J Nicholls
- Australian Research Council (ARC), Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, Australia.,Monash Cardiovascular Research Centre, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
34
|
Wang L, Zhang J, An X, Duan H. Recent progress on the organic and metal complex-based fluorescent probes for monitoring nitric oxide in living biological systems. Org Biomol Chem 2020; 18:1522-1549. [PMID: 31995085 DOI: 10.1039/c9ob02561h] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nitric oxide (NO) is an important gaseous signaling molecule related to various human diseases. To investigate the biological functions of NO, many strategies have been developed for real-time monitoring the NO levels in biological systems. Among these strategies, fluorescent probes are considered to be one of the most efficient and applicable methods owing to their excellent sensitivity and selectivity, high spatiotemporal resolution, noninvasiveness, and experimental convenience. Therefore, great efforts have been paid to the design, synthesis, and fluorescence investigation of novel NO fluorescent probes in the past several years. However, few of them exhibit practical applications owing to the low concentration, short half-life, and rapid diffusion characteristics of NO in biological systems. Rational design of NO fluorescent probes with excellent selectivity and sensitivity, low cytotoxicity, long-lived fluorescent emission, and low background interference is still a challenge for scientists all over the word. To provide spatial-temporal information, this article focuses on the progress made in the organic and metal complex-based NO fluorescent probes during the past five years. The key structural elements and sensing mechanisms of NO fluorescent probes are discussed. Some novel ratiometric, luminescence, and photoacoustic probes with low background interference and deep tissue penetrating ability are mentioned. All these probes have been used for imaging exogenous and endogenous NO in cells and animal models. More importantly, this article also describes the development of multi-functional NO fluorescent probes, such as organelle targeting probes, dual-analysis probes, and probe-drug conjugates, which will inspire the design of various functional fluorescent probes.
Collapse
Affiliation(s)
- Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, Shandong Province, China. and Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, Shandong Province, China
| | - Juan Zhang
- Shandong Jinan Qilu Science Patent Office Ltd, Ji'nan 250014, Shandong Province, China
| | - Xue An
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250300, Shandong Province, China.
| | - Hongdong Duan
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250300, Shandong Province, China.
| |
Collapse
|
35
|
Li C, Hu W, Wang J, Song X, Xiong X, Liu Z. A highly specific probe for the imaging of inflammation-induced endogenous nitric oxide produced during the stroke process. Analyst 2020; 145:6125-6129. [PMID: 32851996 DOI: 10.1039/d0an00824a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, a turn-on two-photon fluorescent probe (Lyso-TP-NO) for nitric oxide (NO) was developed. It was synthesized using 4-ethylamino-1,8-naphthalimide as the two-photon fluorophore and N-methylaniline moiety as the reaction site. The probe and fluorophore were tested under one- and two-photon modes. The fluorescence intensity of the system was enhanced 23.1-fold after reacting with NO in the one-photon mode. However, the maximal two-photon action cross-section value of 200 GM was obtained under excitation at 840 nm. The probe exhibits high selectivity and sensitivity over other reactive oxygen species (ROS) and reactive nitrogen species (RNS), with a detection limit as low as 3.3 nM. The two-photon fluorescence imaging of living cells and mouse brain tissues can capture inflammation-induced endogenous NO production in lysosomes during stroke occurrence.
Collapse
Affiliation(s)
- Chenchen Li
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China.
| | | | | | | | | | | |
Collapse
|
36
|
Ma S, Sun X, Yu Q, Liu R, Lu Z, He L. Dihydropyridine-coumarin-based fluorescent probe for imaging nitric oxide in living cells. Photochem Photobiol Sci 2020; 19:1230-1235. [PMID: 32756646 DOI: 10.1039/d0pp00201a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nitric oxide (NO) is a messenger molecule in organisms, participating in the regulation of many biological processes. The abnormal expression of NO is often observed in a variety of diseases, including cerebral ischemia, atherosclerosis, and cancer. However, a suitable tool that can directly and sensitively detect NO in vitro and in vivo is important for understanding its various biological functions. In this report, a new fluorescent probe for nitric oxide, DHP-4, was prepared, based on dihydropyridine-coumarin. DHP-4 was able to greatly enhance the fluorescence of NO, but did not affect the fluorescence emissions of other reactive oxygen species and nitrogen species, demonstrating its highly selective and sensitive response to NO. The probe generated stable optical signals in a buffer solution at pH values ranging from 3 to 10. In addition, DHP-4 could detect NO directly, showed low cellular toxicity, and was successfully applied to determine NO in Raw 264.7 cells, indicating its great potential as a tool for investigating the biological roles of NO in vivo.
Collapse
Affiliation(s)
- Sufang Ma
- College of Chemistry, Beijing Normal University, 100875, Beijing, China. .,Shanxi Medical University, 030000, Taiyuan, China.
| | - Xueyi Sun
- Shanxi Medical University, 030000, Taiyuan, China
| | - Qiang Yu
- Shanxi Medical University, 030000, Taiyuan, China
| | - Rui Liu
- College of Chemistry, Beijing Normal University, 100875, Beijing, China
| | - Zhonglin Lu
- College of Chemistry, Beijing Normal University, 100875, Beijing, China
| | - Lan He
- College of Chemistry, Beijing Normal University, 100875, Beijing, China.,National Institute for Food and Drug Control, 100050, Beijing, China
| |
Collapse
|
37
|
Ye M, Hu W, He M, Li C, Zhai S, Liu Z, Wang Y, Zhang H, Li C. Deep imaging for visualizing nitric oxide in lipid droplets: discovering the relationship between nitric oxide and resistance to cancer chemotherapy drugs. Chem Commun (Camb) 2020; 56:6233-6236. [PMID: 32373871 DOI: 10.1039/d0cc01856b] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A near-infrared two-photon fluorescent probe (TAN) was synthesized for selective detection and deep-depth imaging of NO in lipid droplets. All results demonstrated that NO production in lipid droplets is closely correlated with the resistance to anti-tumor drugs, and NO inhibitors can effectively improve the efficacy of chemotherapeutic agents.
Collapse
Affiliation(s)
- Miantai Ye
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Material Science, South-central University for Nationalities, Wuhan 430074, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Chen Y. Recent developments of fluorescent probes for detection and bioimaging of nitric oxide. Nitric Oxide 2020; 98:1-19. [DOI: 10.1016/j.niox.2020.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 12/11/2022]
|
39
|
Yang M, Fan J, Du J, Peng X. Small-molecule fluorescent probes for imaging gaseous signaling molecules: current progress and future implications. Chem Sci 2020; 11:5127-5141. [PMID: 34122970 PMCID: PMC8159392 DOI: 10.1039/d0sc01482f] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/18/2020] [Indexed: 12/11/2022] Open
Abstract
Endogenous gaseous signaling molecules including nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) have been demonstrated to perform significant physiological and pharmacological functions and are associated with various diseases in biological systems. In order to obtain a deeper insight into their roles and mechanisms of action, it is desirable to develop novel techniques for effectively detecting gaseous signaling molecules. Small-molecule fluorescent probes have been proven to be a powerful approach for the detection and imaging of biological messengers by virtue of their non-invasiveness, high selectivity, and real-time in situ detection capability. Based on the intrinsic properties of gaseous signaling molecules, numerous fluorescent probes have been constructed to satisfy various demands. In this perspective, we summarize the recent advances in the field of fluorescent probes for the detection of NO, CO and H2S and illustrate the design strategies and application examples of these probes. Moreover, we also emphasize the challenges and development directions of gasotransmitter-responsive fluorescent probes, hoping to provide a general implication for future research.
Collapse
Affiliation(s)
- Mingwang Yang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology No. 2 Linggong Road Dalian 116024 P. R. China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology No. 2 Linggong Road Dalian 116024 P. R. China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology No. 2 Linggong Road Dalian 116024 P. R. China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology No. 2 Linggong Road Dalian 116024 P. R. China
| |
Collapse
|
40
|
Hou JT, Yu KK, Sunwoo K, Kim WY, Koo S, Wang J, Ren WX, Wang S, Yu XQ, Kim JS. Fluorescent Imaging of Reactive Oxygen and Nitrogen Species Associated with Pathophysiological Processes. Chem 2020. [DOI: 10.1016/j.chempr.2019.12.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
41
|
Xia Q, Wang X, Liu Y, Shen Z, Ge Z, Huang H, Li X, Wang Y. An endoplasmic reticulum-targeted two-photon fluorescent probe for bioimaging of HClO generated during sleep deprivation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117992. [PMID: 31935654 DOI: 10.1016/j.saa.2019.117992] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/18/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
With the development of social society, sleep deprivation has become a serious and common issue. Previous studies documented that there is a correlation between sleep deprivation and oxidative stress. However, the information of sleep deprivation related ROS has rarely been obtained. Also, it has been demonstrated that sleep deprivation can induce endoplasmic reticulum (ER) stress. As such, for a better understanding of sleep deprivation as well as its related diseases, it is important to develop probes with ER-targeting ability for detecting ROS generated in this process. Herein, a novel two-photon fluorescent molecular probe, JX-1, was designed for sensing HClO in live cells and zebrafish. The investigation data showed that in addition to real-time response (about 150 s), the probe also exhibited high sensitivity and selectivity. Moreover, the probe JX-1 demonstrated two-photon fluorescence, low cytotoxicity and ER targeting ability. These prominent properties enabled the utilization of the probe for monitoring exogenous and endogenous HClO in both live cells and zebrafish. Using this useful tool, it was found that sleep deprivation can induce the generation of HClO in zebrafish.
Collapse
Affiliation(s)
- Qineng Xia
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Xiaoyan Wang
- Zhejiang Sian International Hospital, Jiaxing 314031, China
| | - Yanan Liu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Zhangfeng Shen
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Zhigang Ge
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Hong Huang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Xi Li
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Yangang Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| |
Collapse
|
42
|
Li C, Tang WJ, Feng W, Liu C, Song QH. A rapid-response and ratiometric fluorescent probe for nitric oxide: From the mitochondria to the nucleus in live cells. Anal Chim Acta 2020; 1096:148-158. [DOI: 10.1016/j.aca.2019.10.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 01/06/2023]
|
43
|
Maheshwaran D, Nagendraraj T, Sekar Balaji T, Kumaresan G, Senthil Kumaran S, Mayilmurugan R. Smart dual T1 MRI-optical imaging agent based on a rhodamine appended Fe(iii)-catecholate complex. Dalton Trans 2020; 49:14680-14689. [DOI: 10.1039/d0dt02364g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The high spin Fe(iii) complex Fe(RhoCat)3 is reported as a smart dual-modal T1 MRI-optical imaging probe to visualize the NO molecule and an acidic pH environment.
Collapse
Affiliation(s)
- Duraiyarasu Maheshwaran
- Bioinorganic Chemistry Laboratory/Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai 625 021
- India
| | - Thavasilingam Nagendraraj
- Bioinorganic Chemistry Laboratory/Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai 625 021
- India
| | - T. Sekar Balaji
- School of Biological Sciences
- Madurai Kamaraj University
- Madurai 625 021
- India
| | - Ganesan Kumaresan
- School of Biological Sciences
- Madurai Kamaraj University
- Madurai 625 021
- India
| | - S. Senthil Kumaran
- Department of NMR
- All India Institute of Medical Sciences
- New Delhi 110 029
- India
| | - Ramasamy Mayilmurugan
- Bioinorganic Chemistry Laboratory/Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai 625 021
- India
| |
Collapse
|
44
|
Li H, Hao YH, Feng W, Song QH. Rapid and sensitive detection of nitric oxide by a BODIPY-based fluorescent probe in live cells: glutathione effects. J Mater Chem B 2020; 8:9785-9793. [DOI: 10.1039/d0tb01784a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glutathione effects on the sensing reaction toward nitric oxide in live cells.
Collapse
Affiliation(s)
- Hao Li
- Department of Chemistry
- University of Science and Technology of China
- Hefei 230026
- P. R. China
| | - Yu-Hao Hao
- Department of Chemistry
- University of Science and Technology of China
- Hefei 230026
- P. R. China
| | - Wei Feng
- Department of Chemistry
- University of Science and Technology of China
- Hefei 230026
- P. R. China
| | - Qin-Hua Song
- Department of Chemistry
- University of Science and Technology of China
- Hefei 230026
- P. R. China
| |
Collapse
|
45
|
Zuo Y, Wang X, Gou Z, Lin W. Step-wise functionalization of polysiloxane towards a versatile dual-response fluorescent probe and elastomer for the detection of H2S in two-photon and NO in near-infrared modes. Chem Commun (Camb) 2020; 56:1121-1124. [DOI: 10.1039/c9cc08723k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a new approach to construct a dual response fluorescent probe by step-wise functionalization of polysiloxanes.
Collapse
Affiliation(s)
- Yujing Zuo
- Institute of Fluorescent Probes for Biological Imaging
- School of Materials Science and Engineering
- School of Chemistry and Chemical Engineering
- University of Jinan
- P. R. China
| | - Xiaoni Wang
- Institute of Fluorescent Probes for Biological Imaging
- School of Materials Science and Engineering
- School of Chemistry and Chemical Engineering
- University of Jinan
- P. R. China
| | - Zhiming Gou
- Institute of Fluorescent Probes for Biological Imaging
- School of Materials Science and Engineering
- School of Chemistry and Chemical Engineering
- University of Jinan
- P. R. China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging
- School of Materials Science and Engineering
- School of Chemistry and Chemical Engineering
- University of Jinan
- P. R. China
| |
Collapse
|
46
|
Li L, Si Y, He B, Li J. Au-Ag alloy/porous-SiO2 core/shell nanoparticle-based surface-enhanced Raman scattering nanoprobe for ratiometric imaging analysis of nitric oxide in living cells. Talanta 2019; 205:120116. [DOI: 10.1016/j.talanta.2019.120116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/27/2019] [Accepted: 07/03/2019] [Indexed: 01/02/2023]
|
47
|
Chen L, Xu S, Li W, Ren T, Yuan L, Zhang S, Zhang XB. Tumor-acidity activated surface charge conversion of two-photon fluorescent nanoprobe for enhanced cellular uptake and targeted imaging of intracellular hydrogen peroxide. Chem Sci 2019; 10:9351-9357. [PMID: 32110299 PMCID: PMC7017867 DOI: 10.1039/c9sc03781k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/13/2019] [Indexed: 12/22/2022] Open
Abstract
Elevated levels of intracellular hydrogen peroxide (H2O2) are closely related to the development of cancers. Specific imaging of H2O2 in tumor sites would be significant not only for cancer diagnosis but also for gaining a deep understanding of the role of H2O2 in cancer. However, traditional fluorescent probes based only on responses to overexpression levels of H2O2 in cancer cells are insufficient to distinguish cancer cells from other unhealthy or healthy cells in complex biological systems. Herein, we developed a smart, two-photon fluorescent GC-NABP nanoprobe with pH-dependent surface charge conversion for tumor-targeted imaging of H2O2. The nanoprobe was constructed by the self-assembly of amphiphilic GC-NABP, which was synthesized by grafting the hydrophobic, H2O2-responsive and two-photon fluorophore, NABP, onto hydrophilic biopolymer glycol chitosan (GC). Taking advantage of pH-titratable amino groups on GC, the nanoprobe had the capability of surface charge conversion from negative at physiologic pH to positive in the acidic tumor microenvironment. The positive charge of the nanoprobe promoted electrostatic interactions with cell membranes, leading to enhanced cellular uptake in acidic environment. Upon cellular uptake, the high level of H2O2 in tumor cells triggered boronate deprotections of the nanoprobe, generating a "turn-on" fluorescence emission for H2O2 imaging. The nanoprobe exhibited good sensitivity and selectivity to H2O2 with a detection limit down to 110 nM in vitro. The results from flow cytometry and two-photon fluorescence imaging of H2O2 in living cells and tissues evidenced the enhanced cellular uptake and targeted imaging of intracellular H2O2 in acidic environment. Compared to control nanoparticles that lack pH sensitivity, our nanoprobe showed enhanced accumulation in tumor sites and was applied to targeted imaging of H2O2 in a tumor-bearing mouse model. This work demonstrates that the nanoprobe GC-NABP holds great promise for tumor-specific imaging of cellular H2O2, providing a potential tool to explore the role of H2O2 in tumor sites.
Collapse
Affiliation(s)
- Lanlan Chen
- Collaborative Innovation Center of Tumor Marker Detection Technology , Equipment and Diagnosis-Therapy Integration in Universities of Shandong , Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers , College of Chemistry and Chemical Engineering , Linyi University , Linyi , Shandong 276005 , P. R. China . ;
- The Key Lab of Analysis and Detection Technology for Food Safety of the MOE , College of Chemistry , Fuzhou University , Fuzhou 350002 , P. R. China
- State Key Laboratory of Chemo/Biosensing and Chemometrics , Molecular Science and Biomedicine Laboratory , College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China .
| | - Shuai Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics , Molecular Science and Biomedicine Laboratory , College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China .
| | - Wei Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics , Molecular Science and Biomedicine Laboratory , College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China .
| | - Tianbing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics , Molecular Science and Biomedicine Laboratory , College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China .
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics , Molecular Science and Biomedicine Laboratory , College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China .
| | - Shusheng Zhang
- Collaborative Innovation Center of Tumor Marker Detection Technology , Equipment and Diagnosis-Therapy Integration in Universities of Shandong , Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers , College of Chemistry and Chemical Engineering , Linyi University , Linyi , Shandong 276005 , P. R. China . ;
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics , Molecular Science and Biomedicine Laboratory , College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China .
| |
Collapse
|
48
|
Visualizing Nitric oxide in mitochondria and lysosomes of living cells with N-Nitrosation of BODIPY-based fluorescent probes. Anal Chim Acta 2019; 1067:88-97. [DOI: 10.1016/j.aca.2019.03.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/15/2019] [Accepted: 03/21/2019] [Indexed: 12/31/2022]
|
49
|
Wu W, Guan R, Liao X, Yan X, Rees TW, Ji L, Chao H. Bimodal Visualization of Endogenous Nitric Oxide in Lysosomes with a Two-Photon Iridium(III) Phosphorescent Probe. Anal Chem 2019; 91:10266-10272. [PMID: 31291720 DOI: 10.1021/acs.analchem.9b02415] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nitric oxide (NO) is a fundamental signaling molecule that shows complex effects on the catabolic autophagy process, which is closely linked with lysosomal function. In this study, a new lysosome-targeted, pH-independent, and two-photon phosphorescent iridium(III) complex, Ir-BPDA, has been investigated for endogenous NO detection and imaging. The rational design of the probe, as the addition of the morpholine moieties and the substitution of a benzyl group in the amino group in Ir-BPDA, facilitates its accumulation in lysosomes and makes the reaction product with NO, Ir-BPDA-NO, insusceptible in its phosphorescence intensity and lifetime against pH changes (pH 4-10), well suited for lysosomal NO detection (pH 4-6). Furthermore, Ir-BPDA exhibits a fast and 50-fold response to NO in phosphorescence intensity and a two-photon cross-section as high as 60 GM after the reaction, as well as a notably increased phosphorescence lifetime from 200.1 to 619.6 ns. Thus, accompanied by its photostability, Ir-BPDA enabled the detection of NO in the lipopolysaccharide-stimulated macrophages and zebrafish model, revealing the endogenous lysosomal NO distribution during inflammation in vivo by means of both TPM and PLIM imaging techniques.
Collapse
Affiliation(s)
- Weijun Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Ruilin Guan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Xu Yan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Thomas W Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China.,MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering , Hunan University of Science and Technology , Xiangtan , 400201 , P. R. China
| |
Collapse
|
50
|
Zhang Y, Li Z, Hu W, Liu Z. A Mitochondrial-Targeting Near-Infrared Fluorescent Probe for Visualizing and Monitoring Viscosity in Live Cells and Tissues. Anal Chem 2019; 91:10302-10309. [PMID: 31272148 DOI: 10.1021/acs.analchem.9b02678] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The intracellular viscosity is closely related to many functional disorders and diseases. Especially, abnormal mitochondrial viscosity changes are one of the distinct indications in metabolite diffusion as well as mitochondrial metabolism. In this work, we report a novel fluorescent probe (NI-VIS), which uses quinoline as an acceptor group and employs a TICT mechanism (twisted intramolecular charge transfer) to detect viscosity. NI-VIS features a good mitochondrion targeting ability and near-infrared emission. NI-VIS possesses a highly sensitive response toward viscosity changes in aqueous environments. As the viscosity of a DPBS-glycerol system increased from 1.0 to 999 cP, NI-VIS exhibited a hundred-fold enhancement in fluorescence. We demonstrated that after the treatment with ionophores, NI-VIS could identify the variation of mitochondrial viscosity in HeLa cells. The probe also recognized the decrease of mitochondria viscosity during starvation-induced mitophagy. More importantly, NI-VIS was successfully applied to visualize the viscosity variation in cirrhotic liver tissues. Our trial with zebrafish suggested this probe could map the microviscosity in vivo. These findings reveal that NI-VIS can serve as a powerful tool to monitor viscosity of biological samples and shows broad potential applications in the biomedical field.
Collapse
Affiliation(s)
- Yuying Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Zhen Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Wei Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Zhihong Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| |
Collapse
|