1
|
Huang R, Qiao Q, Seah D, Shen T, Wu X, de Moliner F, Wang C, Ding N, Chi W, Sun H, Vendrell M, Xu Z, Fang Y, Liu X. Precision Molecular Engineering of Compact Near-Infrared Fluorophores. J Am Chem Soc 2025. [PMID: 39901830 DOI: 10.1021/jacs.4c16087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Organic fluorophores with near-infrared (NIR) emission and reduced molecular size are crucial for advancing bioimaging and biosensing technologies. Traditional methods, such as conjugation expansion and heteroatom engineering, often fail to reduce fluorophore size without sacrificing NIR emission properties. Addressing this challenge, our study utilized quantum chemical calculations and structure-property relationship analysis to establish an iterative design approach and enable precision engineering for compact, single-benzene-based NIR fluorophores. These newly developed fluorophores exhibit emissions up to 759 nm and maintain molecular weights as low as 192 g/mol, approximately 50% of that of Cy7. Additionally, they display unique environmental sensitivity─nonemissive in aqueous solutions but highly emissive in lipid environments. This property significantly enhances their utility in wash-free imaging of live cells. Our findings mark a substantial breakthrough in fluorophore engineering, paving the way for more efficient and adaptable imaging methodologies.
Collapse
Affiliation(s)
- Rongrong Huang
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Qinglong Qiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Deborah Seah
- Centre for Inflammation Research and IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU Edinburgh, United Kingdom
| | - Tianruo Shen
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Xia Wu
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Fabio de Moliner
- Centre for Inflammation Research and IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU Edinburgh, United Kingdom
| | - Chao Wang
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Nannan Ding
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Weijie Chi
- Collaborative Innovation Center of One Health, School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan 570228, P. R. China
| | - Huaming Sun
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Marc Vendrell
- Centre for Inflammation Research and IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU Edinburgh, United Kingdom
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| |
Collapse
|
2
|
Falco N, Griffin ME. Discovering microbiota functions via chemical probe incorporation for targeted sequencing. Curr Opin Chem Biol 2025; 84:102551. [PMID: 39615426 DOI: 10.1016/j.cbpa.2024.102551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 01/16/2025]
Abstract
Our microbiota plays crucial roles in immune development and homeostasis and has been implicated in virtually all major diseases of the 21st century. Nevertheless, our understanding of the exact microbial functions that underlie these correlations remains extremely limited, due in large part to the difficulty of profiling cellular activities within non-model organisms and complex communities. Over the past decade, new flow cytometric approaches have been developed to distinguish specific microbial populations based on their interactions with metabolite analogs, modified biomolecules, and reactive compounds. By selecting and separating active microbes via fluorescence-activated cell sorting, PRobe INcorporation for Targeted sequencing (PRINT-seq) has inspired innovative approaches to identify and characterize functional members of our microbiota. Here, we provide a broad overview of this evolving technology and summarize how this method has been recently employed as a diagnostic fingerprint for diverse microbial activities.
Collapse
Affiliation(s)
- Natalie Falco
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Matthew E Griffin
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA; Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
3
|
Lewis B, Oludiran A, Progulske-Fox A, Dunn W. Labelling of a live obligate anaerobe using fluorescent D-amino acids. Anaerobe 2025; 91:102939. [PMID: 39814196 DOI: 10.1016/j.anaerobe.2025.102939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
The probing of live bacteria via the incorporation of fluorescent D-amino acids (FDAAs) during peptidoglycan synthesis has been shown to be practical for visualizing both gram-positive and gram-negative bacterial species. This study demonstrates the reliability and applications of FDAA labelling for the fluorescent imaging of an obligate anaerobe.
Collapse
Affiliation(s)
- Benjamin Lewis
- Center for Molecular Microbiology, University of Florida, Gainesville, FL, 32610, USA
| | - Adenrele Oludiran
- Center for Molecular Microbiology, University of Florida, Gainesville, FL, 32610, USA
| | - Ann Progulske-Fox
- Center for Molecular Microbiology, University of Florida, Gainesville, FL, 32610, USA.
| | - William Dunn
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| |
Collapse
|
4
|
Baudoin M, Chouquet A, Nguyen M, Zapun A, Pérès B, Morlot C, Durmort C, Wong YS. To click or not to click for short pulse-labeling of the bacterial cell wall. RSC Adv 2024; 14:33133-33142. [PMID: 39434986 PMCID: PMC11492190 DOI: 10.1039/d4ra04945d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024] Open
Abstract
A method of choice to study the spatio-temporal dynamics of bacterial cell growth and division is to analyze the localization of cell wall synthesis regions by fluorescence microscopy. For this, nascent cell wall biopolymers need to be labeled with fluorescent reporters, like fluorescent d-alanines (FDAs) that can be incorporated into the peptidoglycan. To achieve high spatial and temporal resolution, dense, high-intensity fluorescence labeling must be obtained in the shortest possible time. However, modifications carried by d-Ala can hinder their uptake by the enzymes that incorporate them into the peptidoglycan, such as the d,d-transpeptidases. Conversely, these modifications can impede the elimination of the incorporated d-Ala derivatives by d,d-carboxypeptidases, making the labeling more persistent. In this context, we synthesized clickable d-Alas and tested their incorporation into the peptidoglycan using different labeling approaches, prior or after their conjugation to clickable fluorescent dyes through SPAAC reaction. Our data allow ranking of the d-Ala derivatives in terms of their ease of incorporation and resistance to trimming during one-step, "one-pot" two-step or sequential two-step labeling strategies. We further show that a hybrid "one-step" approach, in which a FDA is used in combination with clickable choline and fluorescent dye, enables two-color co-labeling of peptidoglycan and teichoic acids. Finally, we identify a strategy compatible with the cell fixation required for super-resolution microscopy, by combining one-step labeling with FDA and sequential two-step labeling with clickable choline and fluorescent dye, allowing to obtain two-color high-resolution images of peptidoglycan and teichoic acid synthesis regions.
Collapse
Affiliation(s)
| | - Anne Chouquet
- Univ. Grenoble Alpes, CNRS, CEA, IBS 38000 Grenoble France
| | - Mai Nguyen
- Univ. Grenoble Alpes, CNRS, CEA, IBS 38000 Grenoble France
| | - André Zapun
- Univ. Grenoble Alpes, CNRS, CEA, IBS 38000 Grenoble France
| | - Basile Pérès
- Univ. Grenoble Alpes, CNRS, DPM 38000 Grenoble France
| | - Cécile Morlot
- Univ. Grenoble Alpes, CNRS, CEA, IBS 38000 Grenoble France
| | - Claire Durmort
- Univ. Grenoble Alpes, CNRS, CEA, IBS 38000 Grenoble France
| | | |
Collapse
|
5
|
Chimileski S, Borisy GG, Dewhirst FE, Mark Welch JL. Tip extension and simultaneous multiple fission in a filamentous bacterium. Proc Natl Acad Sci U S A 2024; 121:e2408654121. [PMID: 39226354 PMCID: PMC11406273 DOI: 10.1073/pnas.2408654121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
Organisms display an immense variety of shapes, sizes, and reproductive strategies. At microscopic scales, bacterial cell morphology and growth dynamics are adaptive traits that influence the spatial organization of microbial communities. In one such community-the human dental plaque biofilm-a network of filamentous Corynebacterium matruchotii cells forms the core of bacterial consortia known as hedgehogs, but the processes that generate these structures are unclear. Here, using live-cell time-lapse microscopy and fluorescent D-amino acids to track peptidoglycan biosynthesis, we report an extraordinary example of simultaneous multiple division within the domain Bacteria. We show that C. matruchotii cells elongate at one pole through tip extension, similar to the growth strategy of soil-dwelling Streptomyces bacteria. Filaments elongate rapidly, at rates more than five times greater than other closely related bacterial species. Following elongation, many septa form simultaneously, and each cell divides into 3 to 14 daughter cells, depending on the length of the mother filament. The daughter cells then nucleate outgrowth of new thinner vegetative filaments, generating the classic "whip handle" morphology of this taxon. Our results expand the known diversity of bacterial cell cycles and help explain how this filamentous bacterium can compete for space, access nutrients, and form important interspecies interactions within dental plaque.
Collapse
Affiliation(s)
- Scott Chimileski
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543
| | - Gary G Borisy
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543
- Department of Microbiology, American Dental Association Forsyth Institute, Cambridge, MA 02142
| | - Floyd E Dewhirst
- Department of Microbiology, American Dental Association Forsyth Institute, Cambridge, MA 02142
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115
| | - Jessica L Mark Welch
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543
- Department of Microbiology, American Dental Association Forsyth Institute, Cambridge, MA 02142
| |
Collapse
|
6
|
Lee MMS, Yu EY, Chau JHC, Lam JWY, Kwok RTK, Tang BZ. Expanding Our Horizons: AIE Materials in Bacterial Research. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2407707. [PMID: 39246197 DOI: 10.1002/adma.202407707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/11/2024] [Indexed: 09/10/2024]
Abstract
Bacteria share a longstanding and complex relationship with humans, playing a role in protecting gut health and sustaining the ecosystem to cause infectious diseases and antibiotic resistance. Luminogenic materials that share aggregation-induced emission (AIE) characteristics have emerged as a versatile toolbox for bacterial studies through fluorescence visualization. Numerous research efforts highlight the superiority of AIE materials in this field. Recent advances in AIE materials in bacterial studies are categorized into four areas: understanding bacterial interactions, antibacterial strategies, diverse applications, and synergistic applications with bacteria. Initial research focuses on visualizing the unseen bacteria and progresses into developing strategies involving electrostatic interactions, amphiphilic AIE luminogens (AIEgens), and various AIE materials to enhance bacterial affinity. Recent progress in antibacterial strategies includes using photodynamic and photothermal therapies, bacterial toxicity studies, and combined therapies. Diverse applications from environmental disinfection to disease treatment, utilizing AIE materials in antibacterial coatings, bacterial sensors, wound healing materials, etc., are also provided. Finally, synergistic applications combining AIE materials with bacteria to achieve enhanced outcomes are explored. This review summarizes the developmental trend of AIE materials in bacterial studies and is expected to provide future research directions in advancing bacterial methodologies.
Collapse
Affiliation(s)
- Michelle M S Lee
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Eric Y Yu
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Joe H C Chau
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Jacky W Y Lam
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Ryan T K Kwok
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China
| |
Collapse
|
7
|
Hardo G, Li R, Bakshi S. Quantitative microbiology with widefield microscopy: navigating optical artefacts for accurate interpretations. NPJ IMAGING 2024; 2:26. [PMID: 39234390 PMCID: PMC11368818 DOI: 10.1038/s44303-024-00024-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/21/2024] [Indexed: 09/06/2024]
Abstract
Time-resolved live-cell imaging using widefield microscopy is instrumental in quantitative microbiology research. It allows researchers to track and measure the size, shape, and content of individual microbial cells over time. However, the small size of microbial cells poses a significant challenge in interpreting image data, as their dimensions approache that of the microscope's depth of field, and they begin to experience significant diffraction effects. As a result, 2D widefield images of microbial cells contain projected 3D information, blurred by the 3D point spread function. In this study, we employed simulations and targeted experiments to investigate the impact of diffraction and projection on our ability to quantify the size and content of microbial cells from 2D microscopic images. This study points to some new and often unconsidered artefacts resulting from the interplay of projection and diffraction effects, within the context of quantitative microbiology. These artefacts introduce substantial errors and biases in size, fluorescence quantification, and even single-molecule counting, making the elimination of these errors a complex task. Awareness of these artefacts is crucial for designing strategies to accurately interpret micrographs of microbes. To address this, we present new experimental designs and machine learning-based analysis methods that account for these effects, resulting in accurate quantification of microbiological processes.
Collapse
Affiliation(s)
- Georgeos Hardo
- Department of Engineering, University of Cambridge, Cambridge, UK
| | - Ruizhe Li
- Department of Engineering, University of Cambridge, Cambridge, UK
| | - Somenath Bakshi
- Department of Engineering, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Koatale PC, Welling MM, Mdanda S, Mdlophane A, Takyi-Williams J, Durandt C, van den Bout I, Cleeren F, Sathekge MM, Ebenhan T. Evaluation of [ 68Ga]Ga-DOTA-AeK as a Potential Imaging Tool for PET Imaging of Cell Wall Synthesis in Bacterial Infections. Pharmaceuticals (Basel) 2024; 17:1150. [PMID: 39338315 PMCID: PMC11434960 DOI: 10.3390/ph17091150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
The ability of bacteria to recycle exogenous amino acid-based peptides and amino sugars for peptidoglycan biosynthesis was extensively investigated using optical imaging. In particular, fluorescent AeK-NBD was effectively utilized to study the peptidoglycan recycling pathway in Gram-negative bacteria. Based on these promising results, we were inspired to develop the radioactive AeK conjugate [68Ga]Ga-DOTA-AeK for the in vivo localization of bacterial infection using PET/CT. An easy-to-implement radiolabeling procedure for DOTA-AeK with [68Ga]GaCI3 followed by solid-phase purification was successfully established to obtain [68Ga]Ga-DOTA-AeK with a radiochemical purity of ≥95%. [68Ga]Ga-DOTA-AeK showed good stability over time with less protein binding under physiological conditions. The bacterial incorporation of [68Ga]Ga-DOTA-AeK and its fluorescent Aek-NBD analog were investigated in live and heat-killed Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Unfortunately, no conclusive in vitro intracellular uptake of [68Ga]Ga-DOTA-AeK was observed for E. coli or S. aureus live and heat-killed bacterial strains (p > 0.05). In contrast, AeK-NBD showed significantly higher intracellular incorporation in live bacteria compared to the heat-killed control (p < 0.05). Preliminary biodistribution studies of [68Ga]Ga-DOTA-AeK in a dual-model of chronic infection and inflammation revealed limited localization at the infection site with non-specific accumulation in response to inflammatory markers. Finally, our study demonstrates proof that the intracellular incorporation of AeK is necessary for successful bacteria-specific imaging using PET/CT. Therefore, Ga-68 was not a suitable radioisotope for tracing the bacterial uptake of AeK tripeptide, as it required chelation with a bulky metal chelator such as DOTA, which may have limited its active membrane transportation. An alternative for optimization is to explore diverse chemical structures of AeK that would allow for radiolabeling with 18F or 11C.
Collapse
Affiliation(s)
- Palesa C. Koatale
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa; (P.C.K.); (S.M.); (A.M.); (M.M.S.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa
| | - Mick M. Welling
- Department of Radiology, Interventional Molecular Imaging Laboratory, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Sipho Mdanda
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa; (P.C.K.); (S.M.); (A.M.); (M.M.S.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa
| | - Amanda Mdlophane
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa; (P.C.K.); (S.M.); (A.M.); (M.M.S.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa
| | - John Takyi-Williams
- Therapeutics Systems Research Laboratories (TSRL), Inc., Ann Arbor, MI 48109, USA;
| | - Chrisna Durandt
- Department of Medical Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria 0001, South Africa;
- South African Medical Research Council Extramural Unit for Stem Cell Research and Therapy, University of Pretoria, Pretoria 0001, South Africa
| | - Iman van den Bout
- Department of Physiology, University of Pretoria, Pretoria 0001, South Africa;
| | - Frederik Cleeren
- Department of Pharmacy and Pharmacological Sciences, Radiopharmaceutical Research, KU Leuven, 3000 Leuven, Belgium;
| | - Mike M. Sathekge
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa; (P.C.K.); (S.M.); (A.M.); (M.M.S.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa
| | - Thomas Ebenhan
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa; (P.C.K.); (S.M.); (A.M.); (M.M.S.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa
| |
Collapse
|
9
|
Li Y, Zhou Y, Du Y, Gao P, Yang L, Wang W. In vivo Labeling and Intravital Imaging of Bacterial Infection using a Near-infrared Fluorescent D-Amino Acid Probe. Chembiochem 2024; 25:e202400283. [PMID: 38715148 DOI: 10.1002/cbic.202400283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/28/2024] [Indexed: 06/27/2024]
Abstract
Bacterial infections still pose a severe threat to public health, necessitating novel tools for real-time analysis of microbial behaviors in living organisms. While genetically engineered strains with fluorescent or luminescent reporters are commonly used in tracking bacteria, their in vivo uses are often limited. Here, we report a near-infrared fluorescent D-amino acid (FDAA) probe, Cy7ADA, for in situ labeling and intravital imaging of bacterial infections in mice. Cy7ADA probe effectively labels various bacteria in vitro and pathogenic Staphylococcus aureus in mice after intraperitoneal injection. Because of Cy7's high tissue penetration and the quick excretion of free probes via urine, real-time visualization of the pathogens in a liver abscess model via intravital confocal microscopy is achieved. The biodistributions, including their intracellular localization within Kupffer cells, are revealed. Monitoring bacterial responses to antibiotics also demonstrates Cy7ADA's capability to reflect the bacterial load dynamics within the host. Furthermore, Cy7ADA facilitates three-dimensional pathogen imaging in tissue-cleared liver samples, showcasing its potential for studying the biogeography of microbes in different organs. Integrating near-infrared FDAA probes with intravital microscopy holds promise for wide applications in studying bacterial infections in vivo.
Collapse
Affiliation(s)
- Yixuan Li
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, China
| | - Yingjun Zhou
- State Key Laboratory of Genetic Engineering, Department of Microbiology, Microbiome Center, School of Life Sciences, Fudan University, Shanghai, China
| | - Yahui Du
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Po Gao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, China
| | - Liqun Yang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, China
| | - Wei Wang
- State Key Laboratory of Genetic Engineering, Department of Microbiology, Microbiome Center, School of Life Sciences, Fudan University, Shanghai, China
- Beijing National Laboratory for Molecular Sciences, Beijing, China
| |
Collapse
|
10
|
Yang L, Lawhorn S, Bongrand C, Kosmopoulos JC, Kuwabara J, VanNieuwenhze M, Mandel MJ, McFall-Ngai M, Ruby E. Bacterial growth dynamics in a rhythmic symbiosis. Mol Biol Cell 2024; 35:ar79. [PMID: 38598294 PMCID: PMC11238090 DOI: 10.1091/mbc.e24-01-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
The symbiotic relationship between the bioluminescent bacterium Vibrio fischeri and the bobtail squid Euprymna scolopes serves as a valuable system to investigate bacterial growth and peptidoglycan (PG) synthesis within animal tissues. To better understand the growth dynamics of V. fischeri in the crypts of the light-emitting organ of its juvenile host, we showed that, after the daily dawn-triggered expulsion of most of the population, the remaining symbionts rapidly proliferate for ∼6 h. At that point the population enters a period of extremely slow growth that continues throughout the night until the next dawn. Further, we found that PG synthesis by the symbionts decreases as they enter the slow-growing stage. Surprisingly, in contrast to the most mature crypts (i.e., Crypt 1) of juvenile animals, most of the symbiont cells in the least mature crypts (i.e., Crypt 3) were not expelled and, instead, remained in the slow-growing state throughout the day, with almost no cell division. Consistent with this observation, the expression of the gene encoding the PG-remodeling enzyme, L,D-transpeptidase (LdtA), was greatest during the slowly growing stage of Crypt 1 but, in contrast, remained continuously high in Crypt 3. Finally, deletion of the ldtA gene resulted in a symbiont that grew and survived normally in culture, but was increasingly defective in competing against its parent strain in the crypts. This result suggests that remodeling of the PG to generate additional 3-3 linkages contributes to the bacterium's fitness in the symbiosis, possibly in response to stresses encountered during the very slow-growing stage.
Collapse
Affiliation(s)
- Liu Yang
- Carnegie Institution for Science, Pasadena, CA 91101
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI 96848
| | - Susannah Lawhorn
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI 96848
| | - Clotilde Bongrand
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI 96848
| | - James C. Kosmopoulos
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706
| | - Jill Kuwabara
- Carnegie Institution for Science, Pasadena, CA 91101
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI 96848
| | | | - Mark J. Mandel
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706
| | - Margaret McFall-Ngai
- Carnegie Institution for Science, Pasadena, CA 91101
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI 96848
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Edward Ruby
- Carnegie Institution for Science, Pasadena, CA 91101
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI 96848
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
11
|
Zheng Y, Zhu X, Jiang M, Cao F, You Q, Chen X. Development and Applications of D-Amino Acid Derivatives-based Metabolic Labeling of Bacterial Peptidoglycan. Angew Chem Int Ed Engl 2024; 63:e202319400. [PMID: 38284300 DOI: 10.1002/anie.202319400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 01/30/2024]
Abstract
Peptidoglycan, an essential component within the cell walls of virtually all bacteria, is composed of glycan strands linked by stem peptides that contain D-amino acids. The peptidoglycan biosynthesis machinery exhibits high tolerance to various D-amino acid derivatives. D-amino acid derivatives with different functionalities can thus be specifically incorporated into and label the peptidoglycan of bacteria, but not the host mammalian cells. This metabolic labeling strategy is highly selective, highly biocompatible, and broadly applicable, which has been utilized in various fields. This review introduces the metabolic labeling strategies of peptidoglycan by using D-amino acid derivatives, including one-step and two-step strategies. In addition, we emphasize the various applications of D-amino acid derivative-based metabolic labeling, including bacterial peptidoglycan visualization (existence, biosynthesis, and dynamics, etc.), bacterial visualization (including bacterial imaging and visualization of growth and division, metabolic activity, antibiotic susceptibility, etc.), pathogenic bacteria-targeted diagnostics and treatment (positron emission tomography (PET) imaging, photodynamic therapy, photothermal therapy, gas therapy, immunotherapy, etc.), and live bacteria-based therapy. Finally, a summary of this metabolic labeling and an outlook is provided.
Collapse
Affiliation(s)
- Yongfang Zheng
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou, 350007, P.R. China
| | - Xinyu Zhu
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou, 350007, P.R. China
| | - Mingyi Jiang
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou, 350007, P.R. China
| | - Fangfang Cao
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Qing You
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| |
Collapse
|
12
|
Medici IF, Bartrolí L, Guaimas FF, Fulgenzi FR, Molina CL, Sánchez IE, Comerci DJ, Mongiardini E, Soler-Bistué A. The distinct cell physiology of Bradyrhizobium at the population and cellular level. BMC Microbiol 2024; 24:129. [PMID: 38643099 PMCID: PMC11031950 DOI: 10.1186/s12866-024-03272-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/22/2024] [Indexed: 04/22/2024] Open
Abstract
The α-Proteobacteria belonging to Bradyrhizobium genus are microorganisms of extreme slow growth. Despite their extended use as inoculants in soybean production, their physiology remains poorly characterized. In this work, we produced quantitative data on four different isolates: B. diazoefficens USDA110, B. diazoefficiens USDA122, B. japonicum E109 and B. japonicum USDA6 which are representative of specific genomic profiles. Notably, we found conserved physiological traits conserved in all the studied isolates: (i) the lag and initial exponential growth phases display cell aggregation; (ii) the increase in specific nutrient concentration such as yeast extract and gluconate hinders growth; (iii) cell size does not correlate with culture age; and (iv) cell cycle presents polar growth. Meanwhile, fitness, cell size and in vitro growth widely vary across isolates correlating to ribosomal RNA operon number. In summary, this study provides novel empirical data that enriches the comprehension of the Bradyrhizobium (slow) growth dynamics and cell cycle.
Collapse
Affiliation(s)
- Ian F Medici
- Instituto de Investigaciones Biotecnológicas, IIB-IIBIO, Universidad Nacional de San Martín- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. 25 de Mayo y Francia CP (1650), San Martín, Prov. de Buenos Aires, Argentina
| | - Leila Bartrolí
- Instituto de Investigaciones Biotecnológicas, IIB-IIBIO, Universidad Nacional de San Martín- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. 25 de Mayo y Francia CP (1650), San Martín, Prov. de Buenos Aires, Argentina
| | - Francisco F Guaimas
- Instituto de Investigaciones Biotecnológicas, IIB-IIBIO, Universidad Nacional de San Martín- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. 25 de Mayo y Francia CP (1650), San Martín, Prov. de Buenos Aires, Argentina
| | - Fabiana R Fulgenzi
- Instituto de Investigaciones Biotecnológicas, IIB-IIBIO, Universidad Nacional de San Martín- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. 25 de Mayo y Francia CP (1650), San Martín, Prov. de Buenos Aires, Argentina
| | - Charo Luciana Molina
- Instituto de Investigaciones Biotecnológicas, IIB-IIBIO, Universidad Nacional de San Martín- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. 25 de Mayo y Francia CP (1650), San Martín, Prov. de Buenos Aires, Argentina
| | - Ignacio Enrique Sánchez
- Laboratorio de Fisiología de Proteínas, Facultad de Ciencias Exactas y Naturales, CONICET Instituto de Química Biológica, Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Diego J Comerci
- Instituto de Investigaciones Biotecnológicas, IIB-IIBIO, Universidad Nacional de San Martín- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. 25 de Mayo y Francia CP (1650), San Martín, Prov. de Buenos Aires, Argentina
| | - Elías Mongiardini
- Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, UNLP y CCT-La Plata-CONICET, La Plata, Argentina
| | - Alfonso Soler-Bistué
- Instituto de Investigaciones Biotecnológicas, IIB-IIBIO, Universidad Nacional de San Martín- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. 25 de Mayo y Francia CP (1650), San Martín, Prov. de Buenos Aires, Argentina.
| |
Collapse
|
13
|
Sorlin A, López-Álvarez M, Biboy J, Gray J, Rabbitt SJ, Rahim JU, Lee SH, Bobba KN, Blecha J, Parker MF, Flavell RR, Engel J, Ohliger M, Vollmer W, Wilson DM. Peptidoglycan-Targeted [ 18F]3,3,3-Trifluoro-d-alanine Tracer for Imaging Bacterial Infection. JACS AU 2024; 4:1039-1047. [PMID: 38559735 PMCID: PMC10976610 DOI: 10.1021/jacsau.3c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 04/04/2024]
Abstract
Imaging is increasingly used to detect and monitor bacterial infection. Both anatomic (X-rays, computed tomography, ultrasound, and MRI) and nuclear medicine ([111In]-WBC SPECT, [18F]FDG PET) techniques are used in clinical practice but lack specificity for the causative microorganisms themselves. To meet this challenge, many groups have developed imaging methods that target pathogen-specific metabolism, including PET tracers integrated into the bacterial cell wall. We have previously reported the d-amino acid derived PET radiotracers d-methyl-[11C]-methionine, d-[3-11C]-alanine, and d-[3-11C]-alanine-d-alanine, which showed robust bacterial accumulation in vitro and in vivo. Given the clinical importance of radionuclide half-life, in the current study, we developed [18F]3,3,3-trifluoro-d-alanine (d-[18F]-CF3-ala), a fluorine-18 labeled tracer. We tested the hypothesis that d-[18F]-CF3-ala would be incorporated into bacterial peptidoglycan given its structural similarity to d-alanine itself. NMR analysis showed that the fluorine-19 parent amino acid d-[19F]-CF3-ala was stable in human and mouse serum. d-[19F]-CF3-ala was also a poor substrate for d-amino acid oxidase, the enzyme largely responsible for mammalian d-amino acid metabolism and a likely contributor to background signals using d-amino acid derived PET tracers. In addition, d-[19F]-CF3-ala showed robust incorporation into Escherichia coli peptidoglycan, as detected by HPLC/mass spectrometry. Based on these promising results, we developed a radiosynthesis of d-[18F]-CF3-ala via displacement of a bromo-precursor with [18F]fluoride followed by chiral stationary phase HPLC. Unexpectedly, the accumulation of d-[18F]-CF3-ala by bacteria in vitro was highest for Gram-negative pathogens in particular E. coli. In a murine model of acute bacterial infection, d-[18F]-CF3-ala could distinguish live from heat-killed E. coli, with low background signals. These results indicate the viability of [18F]-modified d-amino acids for infection imaging and indicate that improved specificity for bacterial metabolism can improve tracer performance.
Collapse
Affiliation(s)
- Alexandre
M. Sorlin
- Department
of Radiology, Biomedical Imaging University
of California, San Francisco, San Francisco, California 94158, United States
| | - Marina López-Álvarez
- Department
of Radiology, Biomedical Imaging University
of California, San Francisco, San Francisco, California 94158, United States
| | - Jacob Biboy
- The
Centre for Bacterial Cell Biology, Newcastle
University Newcastle, Newcastle
upon Tyne NE2 4AX, United Kingdom
| | - Joe Gray
- The
Centre for Bacterial Cell Biology, Newcastle
University Newcastle, Newcastle
upon Tyne NE2 4AX, United Kingdom
| | - Sarah J. Rabbitt
- Department
of Radiology, Biomedical Imaging University
of California, San Francisco, San Francisco, California 94158, United States
| | - Junaid Ur Rahim
- Department
of Radiology, Biomedical Imaging University
of California, San Francisco, San Francisco, California 94158, United States
| | - Sang Hee Lee
- Department
of Radiology, Biomedical Imaging University
of California, San Francisco, San Francisco, California 94158, United States
| | - Kondapa Naidu Bobba
- Department
of Radiology, Biomedical Imaging University
of California, San Francisco, San Francisco, California 94158, United States
| | - Joseph Blecha
- Department
of Radiology, Biomedical Imaging University
of California, San Francisco, San Francisco, California 94158, United States
| | - Mathew F.L. Parker
- Department
of Radiology, Biomedical Imaging University
of California, San Francisco, San Francisco, California 94158, United States
- Department
of Psychiatry, Renaissance School of Medicine
at Stony Brook University, Stony Brook, New York 11794, United States
| | - Robert R. Flavell
- Department
of Radiology, Biomedical Imaging University
of California, San Francisco, San Francisco, California 94158, United States
- UCSF
Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94158, United States
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, San
Francisco, California 94158, United States
| | - Joanne Engel
- Department
of Medicine, University of California, San
Francisco, San Francisco, California 94158, United States
- Department
of Microbiology and Immunology, University
of California, San Francisco, San
Francisco, California 94158, United States
| | - Michael Ohliger
- Department
of Radiology, Biomedical Imaging University
of California, San Francisco, San Francisco, California 94158, United States
- Department
of Radiology, Zuckerberg San Francisco General
Hospital, San Francisco, California 94110, United States
| | - Waldemar Vollmer
- The
Centre for Bacterial Cell Biology, Newcastle
University Newcastle, Newcastle
upon Tyne NE2 4AX, United Kingdom
- Institute
for Molecular Bioscience, The University
of Queensland, Brisbane 4072, Australia
| | - David M. Wilson
- Department
of Radiology, Biomedical Imaging University
of California, San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
14
|
Zheng Y, Jiang M, Zhu X, Chen Y, Feng L, Zhu H. Metabolic labeling-mediated visualization, capture, and inactivation of Gram-positive bacteria via biotin-streptavidin interactions. Chem Commun (Camb) 2024. [PMID: 38477080 DOI: 10.1039/d4cc00517a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
We introduce a biotinylated D-amino acid probe capable of metabolically incorporating into bacterial PG. Leveraging the robust affinity between biotin and streptavidin, the probe has demonstrated efficacy in imaging, capture, and targeted inactivation of Gram-positive bacteria through synergistic pairings with commercially available streptavidin-modified fluorescent dyes and nanomaterials. The versatility of the probe is underscored by its compatibility with a variety of commercially available streptavidin-modified reagents. This adaptability allows the probe to be applied across diverse scenarios by integrating with these commercial reagents.
Collapse
Affiliation(s)
- Yongfang Zheng
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China.
| | - Mingyi Jiang
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China.
| | - Xinyu Zhu
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China.
| | - Yuyuan Chen
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China.
| | - Lisha Feng
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China.
| | - Hu Zhu
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China.
| |
Collapse
|
15
|
Bartlett TM, Sisley TA, Mychack A, Walker S, Baker RW, Rudner DZ, Bernhardt TG. FacZ is a GpsB-interacting protein that prevents aberrant division-site placement in Staphylococcus aureus. Nat Microbiol 2024; 9:801-813. [PMID: 38443581 PMCID: PMC10914604 DOI: 10.1038/s41564-024-01607-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 01/15/2024] [Indexed: 03/07/2024]
Abstract
Staphylococcus aureus is a Gram-positive pathogen responsible for antibiotic-resistant infections. To identify vulnerabilities in cell envelope biogenesis that may overcome resistance, we enriched for S. aureus transposon mutants with defects in cell surface integrity or cell division by sorting for cells that stain with propidium iodide or have increased light-scattering properties, respectively. Transposon sequencing of the sorted populations identified more than 20 previously uncharacterized factors impacting these processes. Cells inactivated for one of these proteins, factor preventing extra Z-rings (FacZ, SAOUHSC_01855), showed aberrant membrane invaginations and multiple FtsZ cytokinetic rings. These phenotypes were suppressed in mutants lacking the conserved cell-division protein GpsB, which forms an interaction hub bridging envelope biogenesis factors with the cytokinetic ring in S. aureus. FacZ was found to interact directly with GpsB in vitro and in vivo. We therefore propose that FacZ is an envelope biogenesis factor that antagonizes GpsB function to prevent aberrant division events in S. aureus.
Collapse
Affiliation(s)
- Thomas M Bartlett
- Department of Microbiology Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Tyler A Sisley
- Department of Microbiology Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Aaron Mychack
- Department of Microbiology Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Suzanne Walker
- Department of Microbiology Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Richard W Baker
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David Z Rudner
- Department of Microbiology Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Thomas G Bernhardt
- Department of Microbiology Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Tang W, Wei Y, Ni Z, Hou K, Luo XM, Wang H. IgA-mediated control of host-microbial interaction during weaning reaction influences gut inflammation. Gut Microbes 2024; 16:2323220. [PMID: 38439579 PMCID: PMC10936605 DOI: 10.1080/19490976.2024.2323220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/21/2024] [Indexed: 03/06/2024] Open
Abstract
The mechanisms of how host-microbe mutualistic relationships are established at weaning contingently upon B-cell surveillance remain inadequately elucidated. We found that CD138+ plasmacyte (PC)-mediated promotion of IgA response regulates the symbiosis between Bacteroides uniformis (B. uniformis) and the host during the weaning period. The IgA-skewed response of CD138+ PCs is essential for B. uniformis to occupy a defined gut luminal niche, thereby fostering stable colonization. Furthermore, B. uniformis within the natural gut niche was perturbed in the absence of IgA, resulting in exacerbated gut inflammation in IgA-deficient mice and weaned piglets. Thus, we propose that the priming and maintenance of intestinal IgA response from CD138+ PCs are required for host-microbial symbiosis, whereas the perturbation of which would enhance inflammation in weaning process.
Collapse
Affiliation(s)
- Wenjie Tang
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yusen Wei
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Zhixiang Ni
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Kangwei Hou
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
| | - Haifeng Wang
- College of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Zhang C, Manley S. Super-Resolution Microscopy of the Bacterial Cell Wall Labeled by Fluorescent D-Amino Acids. Methods Mol Biol 2024; 2727:83-94. [PMID: 37815710 DOI: 10.1007/978-1-0716-3491-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Fluorescent D-amino acids (FDAAs) enable in situ visualization of bacterial cell wall synthesis via their incorporation into peptidoglycan (PG) crosslinks. When combined with super-resolution microscopy, FDAAs allow the details of cell wall synthesis to be resolved beyond the diffraction limit of visible light. Here, we describe using the super-resolution method of single-molecule localization microscopy (SMLM) in conjunction with two newly synthesized FDAAs (sCy5DA and sCy5DL_amide) to resolve bacterial PG at the nanoscale in a variety of species, including Gram-negative, Gram-positive, and mycobacteria.
Collapse
Affiliation(s)
- Chen Zhang
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Suliana Manley
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
18
|
Hajjo H, Bhardwaj N, Gefen T, Geva-Zatorsky N. Combinatorial fluorescent labeling of live anaerobic bacteria via the incorporation of azide-modified sugars into newly synthesized macromolecules. Nat Protoc 2023; 18:3767-3786. [PMID: 37821626 DOI: 10.1038/s41596-023-00896-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 07/25/2023] [Indexed: 10/13/2023]
Abstract
The human gut microbiome modulates physiological functions and pathologies; however, a mechanistic understanding of microbe-host and microbe-microbe interactions remains elusive owing to a lack of suitable approaches to monitor obligate anaerobic bacterial populations. Common genetically encoded fluorescent protein reporters, derived from the green fluorescent protein, require an oxidation step for fluorescent light emission and therefore are not suitable for use in anaerobic microbes residing in the intestine. Fluorescence in situ hybridization is a useful alternative to visualize bacterial communities in their natural niche; however, it requires tissue fixation. We therefore developed an approach for the real-time detection and monitoring of live communities of anaerobic gut commensals in their natural environment. We leverage the bacterial cells' reliance on sugars for macromolecule synthesis in combinatorial click chemistry labeling, where the addition of azide-modified sugars to the culturing media enables the fluorescence labeling of newly synthesized molecules via the addition of combinations of exogenous fluorophores conjugated to cyclooctynes. This process is suitable for labeling communities of live anaerobic gut bacteria with combinations of fluorophores that do not require oxygen to mature and fluoresce, and that can be detected over time in their natural environments. The labeling procedure requires 4-9 d, depending on the varying growth rates of different bacterial strains, and an additional 1-2 d for the detection and monitoring steps. The protocol can be completed by users with basic expertise in bacterial culturing.
Collapse
Affiliation(s)
- Haitham Hajjo
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Rappaport Technion Integrated Cancer Center, Haifa, Israel
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Neerupma Bhardwaj
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Rappaport Technion Integrated Cancer Center, Haifa, Israel
| | - Tal Gefen
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Rappaport Technion Integrated Cancer Center, Haifa, Israel
| | - Naama Geva-Zatorsky
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Rappaport Technion Integrated Cancer Center, Haifa, Israel.
- CIFAR, MaRS Centre, Toronto, Ontario, Canada.
| |
Collapse
|
19
|
Zhang H, Venkatesan S, Ng E, Nan B. Coordinated peptidoglycan synthases and hydrolases stabilize the bacterial cell wall. Nat Commun 2023; 14:5357. [PMID: 37660104 PMCID: PMC10475089 DOI: 10.1038/s41467-023-41082-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/21/2023] [Indexed: 09/04/2023] Open
Abstract
Peptidoglycan (PG) defines cell shape and protects bacteria against osmotic stress. The growth and integrity of PG require coordinated actions between synthases that insert new PG strands and hydrolases that generate openings to allow the insertion. However, the mechanisms of their coordination remain elusive. Moenomycin that inhibits a family of PG synthases known as Class-A penicillin-binding proteins (aPBPs), collapses rod shape despite aPBPs being non-essential for rod-like morphology in the bacterium Myxococcus xanthus. Here, we demonstrate that inhibited PBP1a2, an aPBP, accelerates the degradation of cell poles by DacB, a hydrolytic PG peptidase. Moenomycin promotes the binding between DacB and PG and thus reduces the mobility of DacB through PBP1a2. Conversely, DacB also regulates the distribution and dynamics of aPBPs. Our findings clarify the action of moenomycin and suggest that disrupting the coordination between PG synthases and hydrolases could be more lethal than eliminating individual enzymes.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Srutha Venkatesan
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Emily Ng
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Beiyan Nan
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
20
|
Lakey BD, Alberge F, Parrell D, Wright ER, Noguera DR, Donohue TJ. The role of CenKR in the coordination of Rhodobacter sphaeroides cell elongation and division. mBio 2023; 14:e0063123. [PMID: 37283520 PMCID: PMC10470753 DOI: 10.1128/mbio.00631-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 06/08/2023] Open
Abstract
Cell elongation and division are essential aspects of the bacterial life cycle that must be coordinated for viability and replication. The impact of misregulation of these processes is not well understood as these systems are often not amenable to traditional genetic manipulation. Recently, we reported on the CenKR two-component system (TCS) in the Gram-negative bacterium Rhodobacter sphaeroides that is genetically tractable, widely conserved in α-proteobacteria, and directly regulates the expression of components crucial for cell elongation and division, including genes encoding subunit of the Tol-Pal complex. In this work, we show that overexpression of cenK results in cell filamentation and chaining. Using cryo-electron microscopy (cryo-EM) and cryo-electron tomography (cryo-ET), we generated high-resolution two-dimensional (2D) images and three-dimensional (3D) volumes of the cell envelope and division septum of wild-type cells and a cenK overexpression strain finding that these morphological changes stem from defects in outer membrane (OM) and peptidoglycan (PG) constriction. By monitoring the localization of Pal, PG biosynthesis, and the bacterial cytoskeletal proteins MreB and FtsZ, we developed a model for how increased CenKR activity leads to changes in cell elongation and division. This model predicts that increased CenKR activity decreases the mobility of Pal, delaying OM constriction, and ultimately disrupting the midcell positioning of MreB and FtsZ and interfering with the spatial regulation of PG synthesis and remodeling. IMPORTANCE By coordinating cell elongation and division, bacteria maintain their shape, support critical envelope functions, and orchestrate division. Regulatory and assembly systems have been implicated in these processes in some well-studied Gram-negative bacteria. However, we lack information on these processes and their conservation across the bacterial phylogeny. In R. sphaeroides and other α-proteobacteria, CenKR is an essential two-component system (TCS) that regulates the expression of genes known or predicted to function in cell envelope biosynthesis, elongation, and/or division. Here, we leverage unique features of CenKR to understand how increasing its activity impacts cell elongation/division and use antibiotics to identify how modulating the activity of this TCS leads to changes in cell morphology. Our results provide new insight into how CenKR activity controls the structure and function of the bacterial envelope, the localization of cell elongation and division machinery, and cellular processes in organisms with importance in health, host-microbe interactions, and biotechnology.
Collapse
Affiliation(s)
- Bryan D. Lakey
- Wisconsin Energy Institute, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - François Alberge
- Wisconsin Energy Institute, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Daniel Parrell
- Wisconsin Energy Institute, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Elizabeth R. Wright
- Wisconsin Energy Institute, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Cryo-Electron Microscopy Research Center,Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Midwest Center for Cryo-Electron Tomography, Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Daniel R. Noguera
- Wisconsin Energy Institute, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy J. Donohue
- Wisconsin Energy Institute, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
21
|
Bartlett TM, Sisley TA, Mychack A, Walker S, Baker RW, Rudner DZ, Bernhardt TG. Identification of FacZ as a division site placement factor in Staphylococcus aureus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538170. [PMID: 37162900 PMCID: PMC10168275 DOI: 10.1101/2023.04.24.538170] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Staphylococcus aureus is a gram-positive pathogen responsible for life-threatening infections that are difficult to treat due to antibiotic resistance. The identification of new vulnerabilities in essential processes like cell envelope biogenesis represents a promising avenue towards the development of anti-staphylococcal therapies that overcome resistance. To this end, we performed cell sorting-based enrichments for S. aureus mutants with defects in envelope integrity and cell division. We identified many known envelope biogenesis factors as well as a large collection of new factors with roles in this process. Mutants inactivated for one of the hits, the uncharacterized SAOUHSC_01855 protein, displayed aberrant membrane invaginations and multiple FtsZ cytokinetic ring structures. This factor is broadly distributed among Firmicutes, and its inactivation in B. subtilis similarly caused division and membrane defects. We therefore renamed the protein FacZ (Firmicute-associated coordinator of Z-rings). In S. aureus, inactivation of the conserved cell division protein GpsB suppressed the division and morphological defects of facZ mutants. Additionally, FacZ and GpsB were found to interact directly in a purified system. Thus, FacZ is a novel antagonist of GpsB function with a conserved role in controlling division site placement in S. aureus and other Firmicutes.
Collapse
Affiliation(s)
- Thomas M. Bartlett
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Tyler A. Sisley
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Aaron Mychack
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Suzanne Walker
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard W. Baker
- Department of Biochemistry & Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David Z. Rudner
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas G. Bernhardt
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Wang T, Shen P, He Y, Zhang Y, Liu J. Spatial transcriptome uncovers rich coordination of metabolism in E. coli K12 biofilm. Nat Chem Biol 2023:10.1038/s41589-023-01282-w. [PMID: 37055614 DOI: 10.1038/s41589-023-01282-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 02/02/2023] [Indexed: 04/15/2023]
Abstract
Microbial communities often display region-specific properties, which give rise to complex interactions and emergent behaviors that are critical to the homeostasis and stress response of the communities. However, systems-level understanding of these properties still remains elusive. In this study, we established RAINBOW-seq and profiled the transcriptome of Escherichia coli biofilm communities with high spatial resolution and high gene coverage. We uncovered three modes of community-level coordination, including cross-regional resource allocation, local cycling and feedback signaling, which were mediated by strengthened transmembrane transport and spatially specific activation of metabolism. As a consequence of such coordination, the nutrient-limited region of the community maintained an unexpectedly high level of metabolism, enabling it to express many signaling genes and functionally unknown genes with potential sociality functions. Our work provides an extended understanding of the metabolic interplay in biofilms and presents a new approach of investigating complex interactions in bacterial communities on the systems level.
Collapse
Affiliation(s)
- Tianmin Wang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Ping Shen
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Yihui He
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Yuzhen Zhang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Jintao Liu
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
23
|
Caldwell M, Hughes M, Wei F, Ngo C, Pascua R, Pugazhendhi AS, Coathup MJ. Promising applications of D-amino acids in periprosthetic joint infection. Bone Res 2023; 11:14. [PMID: 36894568 PMCID: PMC9998894 DOI: 10.1038/s41413-023-00254-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 03/11/2023] Open
Abstract
Due to the rise in our aging population, a disproportionate demand for total joint arthroplasty (TJA) in the elderly is forecast. Periprosthetic joint infection (PJI) represents one of the most challenging complications that can occur following TJA, and as the number of primary and revision TJAs continues to rise, an increasing PJI burden is projected. Despite advances in operating room sterility, antiseptic protocols, and surgical techniques, approaches to prevent and treat PJI remain difficult, primarily due to the formation of microbial biofilms. This difficulty motivates researchers to continue searching for an effective antimicrobial strategy. The dextrorotatory-isoforms of amino acids (D-AAs) are essential components of peptidoglycan within the bacterial cell wall, providing strength and structural integrity in a diverse range of species. Among many tasks, D-AAs regulate cell morphology, spore germination, and bacterial survival, evasion, subversion, and adhesion in the host immune system. When administered exogenously, accumulating data have demonstrated that D-AAs play a pivotal role against bacterial adhesion to abiotic surfaces and subsequent biofilm formation; furthermore, D-AAs have substantial efficacy in promoting biofilm disassembly. This presents D-AAs as promising and novel targets for future therapeutic approaches. Despite their emerging antibacterial efficacy, their role in disrupting PJI biofilm formation, the disassembly of established TJA biofilm, and the host bone tissue response remains largely unexplored. This review aims to examine the role of D-AAs in the context of TJAs. Data to date suggest that D-AA bioengineering may serve as a promising future strategy in the prevention and treatment of PJI.
Collapse
Affiliation(s)
- Matthew Caldwell
- Biionix Cluster & College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Megan Hughes
- School of Biosciences, Cardiff University, CF10 3AT, Wales, UK
| | - Fei Wei
- Biionix Cluster & College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Christopher Ngo
- Biionix Cluster & College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Raven Pascua
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Abinaya Sindu Pugazhendhi
- Biionix Cluster & College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Melanie J Coathup
- Biionix Cluster & College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA.
| |
Collapse
|
24
|
de Moliner F, Konieczna Z, Mendive‐Tapia L, Saleeb RS, Morris K, Gonzalez‐Vera JA, Kaizuka T, Grant SGN, Horrocks MH, Vendrell M. Small Fluorogenic Amino Acids for Peptide-Guided Background-Free Imaging. Angew Chem Int Ed Engl 2023; 62:e202216231. [PMID: 36412996 PMCID: PMC10108274 DOI: 10.1002/anie.202216231] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022]
Abstract
The multiple applications of super-resolution microscopy have prompted the need for minimally invasive labeling strategies for peptide-guided fluorescence imaging. Many fluorescent reporters display limitations (e.g., large and charged scaffolds, non-specific binding) as building blocks for the construction of fluorogenic peptides. Herein we have built a library of benzodiazole amino acids and systematically examined them as reporters for background-free fluorescence microscopy. We have identified amine-derivatized benzoselenadiazoles as scalable and photostable amino acids for the straightforward solid-phase synthesis of fluorescent peptides. Benzodiazole amino acids retain the binding capabilities of bioactive peptides and display excellent signal-to-background ratios. Furthermore, we have demonstrated their application in peptide-PAINT imaging of postsynaptic density protein-95 nanoclusters in the synaptosomes from mouse brain tissues.
Collapse
Affiliation(s)
| | | | | | | | - Katie Morris
- EaStCHEM School of ChemistryThe University of EdinburghUK
| | | | - Takeshi Kaizuka
- Centre for Clinical Brain SciencesThe University of EdinburghUK
| | | | | | - Marc Vendrell
- Centre for Inflammation ResearchThe University of EdinburghUK
| |
Collapse
|
25
|
de Moliner F, Konieczna Z, Mendive‐Tapia L, Saleeb RS, Morris K, Gonzalez‐Vera JA, Kaizuka T, Grant SGN, Horrocks MH, Vendrell M. Small Fluorogenic Amino Acids for Peptide-Guided Background-Free Imaging. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202216231. [PMID: 38515539 PMCID: PMC10952862 DOI: 10.1002/ange.202216231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Indexed: 11/23/2022]
Abstract
The multiple applications of super-resolution microscopy have prompted the need for minimally invasive labeling strategies for peptide-guided fluorescence imaging. Many fluorescent reporters display limitations (e.g., large and charged scaffolds, non-specific binding) as building blocks for the construction of fluorogenic peptides. Herein we have built a library of benzodiazole amino acids and systematically examined them as reporters for background-free fluorescence microscopy. We have identified amine-derivatized benzoselenadiazoles as scalable and photostable amino acids for the straightforward solid-phase synthesis of fluorescent peptides. Benzodiazole amino acids retain the binding capabilities of bioactive peptides and display excellent signal-to-background ratios. Furthermore, we have demonstrated their application in peptide-PAINT imaging of postsynaptic density protein-95 nanoclusters in the synaptosomes from mouse brain tissues.
Collapse
Affiliation(s)
| | | | | | | | - Katie Morris
- EaStCHEM School of ChemistryThe University of EdinburghUK
| | | | - Takeshi Kaizuka
- Centre for Clinical Brain SciencesThe University of EdinburghUK
| | | | | | - Marc Vendrell
- Centre for Inflammation ResearchThe University of EdinburghUK
| |
Collapse
|
26
|
Choo PY, Wang CY, VanNieuwenhze MS, Kline KA. Spatial and temporal localization of cell wall associated pili in Enterococcus faecalis. Mol Microbiol 2023; 119:1-18. [PMID: 36420961 PMCID: PMC10107303 DOI: 10.1111/mmi.15008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
Enterococcus faecalis virulence requires cell wall-associated proteins, including the sortase-assembled endocarditis and biofilm associated pilus (Ebp), important for biofilm formation in vitro and in vivo. The current paradigm for sortase-assembled pilus biogenesis in Gram-positive bacteria is that sortases attach substrates to lipid II peptidoglycan (PG) precursors, prior to their incorporation into the growing cell wall. Contrary to prevailing dogma, by following the distribution of Ebp and PG throughout the E. faecalis cell cycle, we found that cell surface Ebp do not co-localize with newly synthesized PG. Instead, surface-exposed Ebp are localized to the older cell hemisphere and excluded from sites of new PG synthesis at the septum. Moreover, Ebp deposition on the younger hemisphere of the E. faecalis diplococcus appear as foci adjacent to the nascent septum. We propose a new model whereby sortase substrate deposition can occur on older PG rather than at sites of new cell wall synthesis. Consistent with this model, we demonstrate that sequestering lipid II to block PG synthesis via ramoplanin, does not impact new Ebp deposition at the cell surface. These data support an alternative paradigm for sortase substrate deposition in E. faecalis, in which Ebp are anchored directly onto uncrosslinked cell wall, independent of new PG synthesis.
Collapse
Affiliation(s)
- Pei Yi Choo
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Charles Y Wang
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | | | - Kimberly A Kline
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
27
|
Xiong J, Cao Y, Zhao H, Chen J, Cai X, Li X, Liu Y, Xiao H, Ge J. Cooperative Antibacterial Enzyme-Ag-Polymer Nanocomposites. ACS NANO 2022; 16:19013-19024. [PMID: 36350784 DOI: 10.1021/acsnano.2c07930] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Biomacromolecules such as enzymes and proteins with bactericidal activity are promising for antibacterial applications in a mild, biocompatible, and environmentally friendly manner. However, low bactericidal efficiency has hindered its applications. Nanobiohybrids, constructed from biomacromolecules and functional nanomaterials, could enhance the function of biomacromolecules. However, the incompatibility between biological components and nanomaterials is still the major challenge of designing nanobiohybrids. Here, we rationally design lysozyme-Ag-polymer nanocomposites, which display high stability and antibacterial activity in a cooperative manner. The sufficient presence of Ag-N coordination between Ag and the polymer/protein contributed to the high stability of the nanocomposites. Compared with lysozyme and commercial silver nanoparticles (AgNPs) alone, the enzyme-Ag-polymer nanocomposites showed dramatically enhanced antibacterial activity. We propose a tightly encapsulated invasion (TEI) mechanism for a greatly improved antibacterial activity. The bacteria closely interacted with nanocomposites, and cell walls were hydrolyzed by lysozyme especially, facilitating the penetration of silver into the bacteria, and then reactive oxygen species (ROS) generated by silver to kill bacteria. In addition, the specific TEI mechanism resulted in high biocompatibility toward mammalian cells.
Collapse
Affiliation(s)
- Jiarong Xiong
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing100084, P. R. China
| | - Yufei Cao
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing100084, P. R. China
| | - Haotian Zhao
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Jiaqi Chen
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing100084, P. R. China
| | - Xinyi Cai
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing100084, P. R. China
| | - Xiaoyang Li
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing100084, P. R. China
| | - Yu Liu
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing100084, P. R. China
| | - Hai Xiao
- Department of Chemistry, Tsinghua University, Beijing100084, P. R. China
| | - Jun Ge
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing100084, P. R. China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen518055, P. R. China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen518107, P. R. China
| |
Collapse
|
28
|
Song WF, Yao WQ, Chen QW, Zheng D, Han ZY, Zhang XZ. In Situ Bioorthogonal Conjugation of Delivered Bacteria with Gut Inhabitants for Enhancing Probiotics Colonization. ACS CENTRAL SCIENCE 2022; 8:1306-1317. [PMID: 36188344 PMCID: PMC9523781 DOI: 10.1021/acscentsci.2c00533] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 06/16/2023]
Abstract
Clinical treatment efficacy of oral bacterial therapy has been largely limited by insufficient gut retention of probiotics. Here, we developed a bioorthogonal-mediated bacterial delivery strategy for enhancing probiotics colonization by modulating bacterial adhesion between probiotics and gut inhabitants. Metabolic amino acid engineering was applied to metabolically incorporate azido-decorated d-alanine into peptidoglycans of gut inhabitants, which could enable in situ bioorthogonal conjugation with dibenzocyclooctyne (DBCO)-modified probiotics. Both in vitro and in vivo studies demonstrated that the occurrence of the bioorthogonal reaction between azido- and DBCO-modified bacteria could result in obvious bacterial adhesion even in a complex physiological environment. DBCO-modified Clostridium butyricum (C. butyricum) also showed more efficient reservation in the gut and led to obvious disease relief in dextran sodium sulfate-induced colitis mice. This strategy highlights metabolically modified gut inhabitants as artificial reaction sites to bind with DBCO-decorated probiotics via bioorthogonal reactions, which shows great potential for enhancing bacterial colonization.
Collapse
|
29
|
Zhang C, Reymond L, Rutschmann O, Meyer MA, Denereaz J, Qiao J, Ryckebusch F, Griffié J, Stepp WL, Manley S. Fluorescent d-Amino Acids for Super-resolution Microscopy of the Bacterial Cell Wall. ACS Chem Biol 2022; 17:2418-2424. [PMID: 35994360 DOI: 10.1021/acschembio.2c00496] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Fluorescent d-amino acids (FDAAs) have previously been developed to enable in situ highlighting of locations of bacterial cell wall growth. Most bacterial cells lie at the edge of the diffraction limit of visible light; thus, resolving the precise details of peptidoglycan (PG) biosynthesis requires super-resolution microscopy after probe incorporation. Single molecule localization microscopy (SMLM) has stringent requirements on the fluorophore photophysical properties and therefore has remained challenging in this context. Here, we report the synthesis and characterization of new FDAAs compatible with one-step labeling and SMLM imaging. We demonstrate the incorporation of our probes and their utility for visualizing PG at the nanoscale in Gram-negative, Gram-positive, and mycobacteria species. This improved FDAA toolkit will endow researchers with a nanoscale perspective on the spatial distribution of PG biosynthesis for a broad range of bacterial species.
Collapse
Affiliation(s)
- Chen Zhang
- Institute of Physics, School of Basic Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Luc Reymond
- Biomolecular Screening Core Facility, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Ophélie Rutschmann
- Global Health Institute, School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Mischa A Meyer
- Institute of Physics, School of Basic Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland.,Global Health Institute, School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Julien Denereaz
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne (UNIL), Lausanne 1015, Switzerland
| | - Jiangtao Qiao
- Environmental Engineering Institute, School of Architecture, Civil and Environmental Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Faustine Ryckebusch
- Global Health Institute, School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Juliette Griffié
- Institute of Physics, School of Basic Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Willi L Stepp
- Institute of Physics, School of Basic Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Suliana Manley
- Institute of Physics, School of Basic Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
30
|
Benson S, de Moliner F, Tipping W, Vendrell M. Miniaturized Chemical Tags for Optical Imaging. Angew Chem Int Ed Engl 2022; 61:e202204788. [PMID: 35704518 PMCID: PMC9542129 DOI: 10.1002/anie.202204788] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Indexed: 11/06/2022]
Abstract
Recent advances in optical bioimaging have prompted the need for minimal chemical reporters that can retain the molecular recognition properties and activity profiles of biomolecules. As a result, several methodologies to reduce the size of fluorescent and Raman labels to a few atoms (e.g., single aryl fluorophores, Raman-active triple bonds and isotopes) and embed them into building blocks (e.g., amino acids, nucleobases, sugars) to construct native-like supramolecular structures have been described. The integration of small optical reporters into biomolecules has also led to smart molecular entities that were previously inaccessible in an expedite manner. In this article, we review recent chemical approaches to synthesize miniaturized optical tags as well as some of their multiple applications in biological imaging.
Collapse
Affiliation(s)
- Sam Benson
- Centre for Inflammation ResearchThe University of EdinburghEdinburghEH16 4TJUK
| | - Fabio de Moliner
- Centre for Inflammation ResearchThe University of EdinburghEdinburghEH16 4TJUK
| | - William Tipping
- Centre for Molecular NanometrologyThe University of StrathclydeGlasgowG1 1RDUK
| | - Marc Vendrell
- Centre for Inflammation ResearchThe University of EdinburghEdinburghEH16 4TJUK
| |
Collapse
|
31
|
Xu Y, Hernández-Rocamora VM, Lorent JH, Cox R, Wang X, Bao X, Stel M, Vos G, van den Bos RM, Pieters RJ, Gray J, Vollmer W, Breukink E. Metabolic labeling of the bacterial peptidoglycan by functionalized glucosamine. iScience 2022; 25:104753. [PMID: 35942089 PMCID: PMC9356107 DOI: 10.1016/j.isci.2022.104753] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/09/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022] Open
Abstract
N-Acetylglucosamine (GlcNAc) is an essential monosaccharide required in almost all organisms. Fluorescent labeling of the peptidoglycan (PG) on N-acetylglucosamine has been poorly explored. Here, we report on the labeling of the PG with a bioorthogonal handle on the GlcNAc. We developed a facile one-step synthesis of uridine diphosphate N-azidoacetylglucosamine (UDP-GlcNAz) using the glycosyltransferase OleD, followed by in vitro incorporation of GlcNAz into the peptidoglycan precursor Lipid II and fluorescent labeling of the azido group via click chemistry. In a PG synthesis assay, fluorescent GlcNAz-labeled Lipid II was incorporated into peptidoglycan by the DD-transpeptidase activity of bifunctional class A penicillin-binding proteins. We further demonstrate the incorporation of GlcNAz into the PG layer of OleD-expressed bacteria by feeding with 2-chloro-4-nitrophenyl GlcNAz (GlcNAz-CNP). Hence, our labeling method using the heterologous expression of OleD is useful to study PG synthesis and possibly other biological processes involving GlcNAc metabolism in vivo. Peptidoglycan consists of N-acetylglucosamine, N-acetylmuramic acid, and amino acids We developed a one-step synthesis of azide-labeled UDP-N-acetylglucosamine In vivo generated azide-labeled UDP-N-acetylglucosamine gets incorporated into peptidoglycan Bacteria were fluorescently labeled on N-acetylglucosamine of peptidoglycan
Collapse
Affiliation(s)
- Yang Xu
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | | | - Joseph H. Lorent
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Ruud Cox
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Xiaoqi Wang
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Xue Bao
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Marjon Stel
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 Utrecht, the Netherlands
| | - Gaël Vos
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 Utrecht, the Netherlands
| | - Ramon M. van den Bos
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Roland J. Pieters
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 Utrecht, the Netherlands
| | - Joe Gray
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
- Corresponding author
| |
Collapse
|
32
|
Söderström B, Pittorino MJ, Daley DO, Duggin IG. Assembly dynamics of FtsZ and DamX during infection-related filamentation and division in uropathogenic E. coli. Nat Commun 2022; 13:3648. [PMID: 35752634 PMCID: PMC9233674 DOI: 10.1038/s41467-022-31378-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/15/2022] [Indexed: 11/09/2022] Open
Abstract
During infection of bladder epithelial cells, uropathogenic Escherichia coli (UPEC) can stop dividing and grow into highly filamentous forms. Here, we find that some filaments of E. coli UTI89 released from infected cells grow very rapidly and by more than 100 μm before initiating division, whereas others do not survive, suggesting that infection-related filamentation (IRF) is a stress response that promotes bacterial dispersal. IRF is accompanied by unstable, dynamic repositioning of FtsZ division rings. In contrast, DamX, which is associated with normal cell division and is also essential for IRF, is distributed uniformly around the cell envelope during filamentation. When filaments initiate division to regenerate rod cells, DamX condenses into stable rings prior to division. The DamX rings maintain consistent thickness during constriction and remain at the septum until after membrane fusion. Deletion of damX affects vegetative cell division in UTI89 (but not in the model E. coli K-12), and, during infection, blocks filamentation and reduces bacterial cell integrity. IRF therefore involves DamX distribution throughout the membrane and prevention of FtsZ ring stabilization, leading to cell division arrest. DamX then reassembles into stable division rings for filament division, promoting dispersal and survival during infection.
Collapse
Affiliation(s)
- Bill Söderström
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, 2007, NSW, Australia.
| | - Matthew J Pittorino
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, 2007, NSW, Australia
| | - Daniel O Daley
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, 106 91, Sweden
| | - Iain G Duggin
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, 2007, NSW, Australia
| |
Collapse
|
33
|
Benson S, de Moliner F, Tipping W, Vendrell M. Miniaturized Chemical Tags for Optical Imaging. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sam Benson
- The University of Edinburgh Centre for Inflammation Research UNITED KINGDOM
| | - Fabio de Moliner
- The University of Edinburgh Centre for Inflammation Research UNITED KINGDOM
| | - William Tipping
- University of Strathclyde Centre for Molecular Nanometrology UNITED KINGDOM
| | - Marc Vendrell
- University of Edinburgh Centre for Inflammation Research 47 Little France Crescent EH16 4TJ Edinburgh UNITED KINGDOM
| |
Collapse
|
34
|
Pan Y, Zheng H, Li G, Li Y, Jiang J, Chen J, Xie Q, Wu D, Ma R, Liu X, Xu S, Jiang J, Cai X, Gao M, Wang W, Zuilhof H, Ye M, Li R. Antibiotic-Like Activity of Atomic Layer Boron Nitride for Combating Resistant Bacteria. ACS NANO 2022; 16:7674-7688. [PMID: 35511445 DOI: 10.1021/acsnano.1c11353] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The global rise of antimicrobial resistance (AMR) that increasingly invalidates conventional antibiotics has become a huge threat to human health. Although nanosized antibacterial agents have been extensively explored, they cannot sufficiently discriminate between microbes and mammals, which necessitates the exploration of other antibiotic-like candidates for clinical uses. Herein, two-dimensional boron nitride (BN) nanosheets are reported to exhibit antibiotic-like activity to AMR bacteria. Interestingly, BN nanosheets had AMR-independent antibacterial activity without triggering secondary resistance in long-term use and displayed excellent biocompatibility in mammals. They could target key surface proteins (e.g., FtsP, EnvC, TolB) in cell division, resulting in impairment of Z-ring constriction for inhibition of bacteria growth. Notably, BN nanosheets had potent antibacterial effects in a lung infection model by P. aeruginosa (AMR), displaying a 2-fold increment of survival rate. Overall, these results suggested that BN nanosheets could be a promising nano-antibiotic to combat resistant bacteria and prevent AMR evolution.
Collapse
Affiliation(s)
- Yanxia Pan
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Huizhen Zheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Guanna Li
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, Wageningen 6703 WE, The Netherlands
- Biobased Chemistry and Technology, Wageningen University, P.O. Box 17, Wageningen 6700 AA, The Netherlands
| | - Yanan Li
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jie Jiang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jie Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Qianqian Xie
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Di Wu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Ronglin Ma
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Xi Liu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Shujuan Xu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jun Jiang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Xiaoming Cai
- School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Meng Gao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Weili Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, Wageningen 6703 WE, The Netherlands
- Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mingliang Ye
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
35
|
da Silva RAG, Tay WH, Ho FK, Tanoto FR, Chong KKL, Choo PY, Ludwig A, Kline KA. Enterococcus faecalis alters endo-lysosomal trafficking to replicate and persist within mammalian cells. PLoS Pathog 2022; 18:e1010434. [PMID: 35390107 PMCID: PMC9017951 DOI: 10.1371/journal.ppat.1010434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/19/2022] [Accepted: 03/10/2022] [Indexed: 12/02/2022] Open
Abstract
Enterococcus faecalis is a frequent opportunistic pathogen of wounds, whose infections are associated with biofilm formation, persistence, and recalcitrance toward treatment. We have previously shown that E. faecalis wound infection persists for at least 7 days. Here we report that viable E. faecalis are present within both immune and non-immune cells at the wound site up to 5 days after infection, raising the prospect that intracellular persistence contributes to chronic E. faecalis infection. Using in vitro keratinocyte and macrophage infection models, we show that E. faecalis becomes internalized and a subpopulation of bacteria can survive and replicate intracellularly. E. faecalis are internalized into keratinocytes primarily via macropinocytosis into single membrane-bound compartments and can persist in late endosomes up to 24 h after infection in the absence of colocalization with the lysosomal protease Cathepsin D or apparent fusion with the lysosome, suggesting that E. faecalis blocks endosomal maturation. Indeed, intracellular E. faecalis infection results in heterotypic intracellular trafficking with partial or absent labelling of E. faecalis-containing compartments with Rab5 and Rab7, small GTPases required for the endosome-lysosome trafficking. In addition, E. faecalis infection results in marked reduction of Rab5 and Rab7 protein levels which may also contribute to attenuated Rab incorporation into E. faecalis-containing compartments. Finally, we demonstrate that intracellular E. faecalis derived from infected keratinocytes are significantly more efficient in reinfecting new keratinocytes. Together, these data suggest that intracellular proliferation of E. faecalis may contribute to its persistence in the face of a robust immune response, providing a primed reservoir of bacteria for subsequent reinfection.
Collapse
Affiliation(s)
- Ronni A. G. da Silva
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Drug Resistance Interdisciplinary Research Group, Singapore
| | - Wei Hong Tay
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Foo Kiong Ho
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Frederick Reinhart Tanoto
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Kelvin K. L. Chong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Pei Yi Choo
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Alexander Ludwig
- School of Biological Sciences, Nanyang Technological University, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore
| | - Kimberly A. Kline
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Drug Resistance Interdisciplinary Research Group, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
36
|
Mukunda DC, Rodrigues J, Joshi VK, Raghushaker CR, Mahato KK. A comprehensive review on LED-induced fluorescence in diagnostic pathology. Biosens Bioelectron 2022; 209:114230. [PMID: 35421670 DOI: 10.1016/j.bios.2022.114230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 11/02/2022]
Abstract
Sensitivity, specificity, mobility, and affordability are important criteria to consider for developing diagnostic instruments in common use. Fluorescence spectroscopy has been demonstrating substantial potential in the clinical diagnosis of diseases and evaluating the underlying causes of pathogenesis. A higher degree of device integration with appropriate sensitivity and reasonable cost would further boost the value of the fluorescence techniques in clinical diagnosis and aid in the reduction of healthcare expenses, which is a key economic concern in emerging markets. Light-emitting diodes (LEDs), which are inexpensive and smaller are attractive alternatives to conventional excitation sources in fluorescence spectroscopy, are gaining a lot of momentum in the development of affordable, compact analytical instruments of clinical relevance. The commercial availability of a broad range of LED wavelengths (255-4600 nm) has opened up new avenues for targeting a wide range of clinically significant molecules (both endogenous and exogenous), thereby diagnosing a range of clinical illnesses. As a result, we have specifically examined the uses of LED-induced fluorescence (LED-IF) in preclinical and clinical evaluations of pathological conditions, considering the present advancements in the field.
Collapse
Affiliation(s)
| | - Jackson Rodrigues
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Vijay Kumar Joshi
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Chandavalli Ramappa Raghushaker
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India.
| |
Collapse
|
37
|
Banahene N, Kavunja HW, Swarts BM. Chemical Reporters for Bacterial Glycans: Development and Applications. Chem Rev 2022; 122:3336-3413. [PMID: 34905344 PMCID: PMC8958928 DOI: 10.1021/acs.chemrev.1c00729] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bacteria possess an extraordinary repertoire of cell envelope glycans that have critical physiological functions. Pathogenic bacteria have glycans that are essential for growth and virulence but are absent from humans, making them high-priority targets for antibiotic, vaccine, and diagnostic development. The advent of metabolic labeling with bioorthogonal chemical reporters and small-molecule fluorescent reporters has enabled the investigation and targeting of specific bacterial glycans in their native environments. These tools have opened the door to imaging glycan dynamics, assaying and inhibiting glycan biosynthesis, profiling glycoproteins and glycan-binding proteins, and targeting pathogens with diagnostic and therapeutic payload. These capabilities have been wielded in diverse commensal and pathogenic Gram-positive, Gram-negative, and mycobacterial species─including within live host organisms. Here, we review the development and applications of chemical reporters for bacterial glycans, including peptidoglycan, lipopolysaccharide, glycoproteins, teichoic acids, and capsular polysaccharides, as well as mycobacterial glycans, including trehalose glycolipids and arabinan-containing glycoconjugates. We cover in detail how bacteria-targeting chemical reporters are designed, synthesized, and evaluated, how they operate from a mechanistic standpoint, and how this information informs their judicious and innovative application. We also provide a perspective on the current state and future directions of the field, underscoring the need for interdisciplinary teams to create novel tools and extend existing tools to support fundamental and translational research on bacterial glycans.
Collapse
Affiliation(s)
- Nicholas Banahene
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, United States
- Biochemistry, Cell, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, United States
| | - Herbert W. Kavunja
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, United States
- Biochemistry, Cell, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, United States
| | | |
Collapse
|
38
|
Weaver AI, Alvarez L, Rosch KM, Ahmed A, Wang GS, van Nieuwenhze MS, Cava F, Dörr T. Lytic transglycosylases mitigate periplasmic crowding by degrading soluble cell wall turnover products. eLife 2022; 11:e73178. [PMID: 35073258 PMCID: PMC8820737 DOI: 10.7554/elife.73178] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/23/2022] [Indexed: 11/25/2022] Open
Abstract
The peptidoglycan cell wall is a predominant structure of bacteria, determining cell shape and supporting survival in diverse conditions. Peptidoglycan is dynamic and requires regulated synthesis of new material, remodeling, and turnover - or autolysis - of old material. Despite exploitation of peptidoglycan synthesis as an antibiotic target, we lack a fundamental understanding of how peptidoglycan synthesis and autolysis intersect to maintain the cell wall. Here, we uncover a critical physiological role for a widely misunderstood class of autolytic enzymes, lytic transglycosylases (LTGs). We demonstrate that LTG activity is essential to survival by contributing to periplasmic processes upstream and independent of peptidoglycan recycling. Defects accumulate in Vibrio cholerae LTG mutants due to generally inadequate LTG activity, rather than absence of specific enzymes, and essential LTG activities are likely independent of protein-protein interactions, as heterologous expression of a non-native LTG rescues growth of a conditional LTG-null mutant. Lastly, we demonstrate that soluble, uncrosslinked, endopeptidase-dependent peptidoglycan chains, also detected in the wild-type, are enriched in LTG mutants, and that LTG mutants are hypersusceptible to the production of diverse periplasmic polymers. Collectively, our results suggest that LTGs prevent toxic crowding of the periplasm with synthesis-derived peptidoglycan polymers and, contrary to prevailing models, that this autolytic function can be temporally separate from peptidoglycan synthesis.
Collapse
Affiliation(s)
- Anna Isabell Weaver
- Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
- Department of Microbiology, Cornell UniversityIthacaUnited States
| | - Laura Alvarez
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå UniversityUmeåSweden
| | - Kelly M Rosch
- Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Asraa Ahmed
- Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell UniversityIthacaUnited States
| | - Garrett Sean Wang
- Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Michael S van Nieuwenhze
- Department of Molecular and Cellular Biochemistry, Indiana UniversityBloomingtonSweden
- Department of Chemistry, Indiana UniversityBloomingtonUnited States
| | - Felipe Cava
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå UniversityUmeåSweden
| | - Tobias Dörr
- Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
- Department of Microbiology, Cornell UniversityIthacaUnited States
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell UniversityIthacaUnited States
| |
Collapse
|
39
|
Nunez N, Derré-Bobillot A, Trainel N, Lakisic G, Lecomte A, Mercier-Nomé F, Cassard AM, Bierne H, Serror P, Archambaud C. The unforeseen intracellular lifestyle of Enterococcus faecalis in hepatocytes. Gut Microbes 2022; 14:2058851. [PMID: 35373699 PMCID: PMC8986240 DOI: 10.1080/19490976.2022.2058851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Enterococcus faecalis is a bacterial species present at a subdominant level in the human gut microbiota. This commensal turns into an opportunistic pathogen under specific conditions involving dysbiosis and host immune deficiency. E. faecalis is one of the rare pathobionts identified to date as contributing to liver damage in alcoholic liver disease. We have previously observed that E. faecalis is internalized in hepatocytes. Here, the survival and fate of E. faecalis was examined in hepatocytes, the main epithelial cell type in the liver. Although referred to as an extracellular pathogen, we demonstrate that E. faecalis is able to survive and divide in hepatocytes, and form intracellular clusters in two distinct hepatocyte cell lines, in primary mouse hepatocytes, as well as in vivo. This novel process extends to kidney cells. Unraveling the intracellular lifestyle of E. faecalis, our findings contribute to the understanding of pathobiont-driven diseases.
Collapse
Affiliation(s)
- Natalia Nunez
- Université -Saclay, Inrae, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Nicolas Trainel
- Université Paris-Saclay, Inserm U996, Inflammation, Microbiome and Immunosurveillance, Clamart, France
| | - Goran Lakisic
- Université -Saclay, Inrae, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Alexandre Lecomte
- Université -Saclay, Inrae, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Françoise Mercier-Nomé
- Université Paris-Saclay, INSERM, CNRS, Institut Paris Saclay d’Innovation Thérapeutique, Châtenay-Malabry, France
| | - Anne-Marie Cassard
- Université Paris-Saclay, Inserm U996, Inflammation, Microbiome and Immunosurveillance, Clamart, France
| | - Hélène Bierne
- Université -Saclay, Inrae, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Pascale Serror
- Université -Saclay, Inrae, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Cristel Archambaud
- Université -Saclay, Inrae, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
40
|
Liu J, Xing WY, Zhang JY, Zeng X, Yang Y, Zhang CC. Functions of the Essential Gene mraY in Cellular Morphogenesis and Development of the Filamentous Cyanobacterium Anabaena PCC 7120. Front Microbiol 2021; 12:765878. [PMID: 34745074 PMCID: PMC8566892 DOI: 10.3389/fmicb.2021.765878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/01/2021] [Indexed: 11/30/2022] Open
Abstract
Bacterial cell shape is determined by the peptidoglycan (PG) layer. The cyanobacterium Anabaena sp. PCC 7120 (Anabaena) is a filamentous strain with ovoid-shaped cells connected together with incomplete cell constriction. When deprived of combined nitrogen in the growth medium, about 5–10% of the cells differentiate into heterocysts, cells devoted to nitrogen fixation. It has been shown that PG synthesis is modulated during heterocyst development and some penicillin-binding proteins (PBPs) participating in PG synthesis are required for heterocyst morphogenesis or functioning. Anabaena has multiple PBPs with functional redundancy. In this study, in order to examine the function of PG synthesis and its relationship with heterocyst development, we created a conditional mutant of mraY, a gene necessary for the synthesis of the PG precursor, lipid I. We show that mraY is required for cell and filament integrity. Furthermore, when mraY expression was being limited, persistent septal PG synthetic activity was observed, resulting in increase in cell width. Under non-permissive conditions, filaments and cells were rapidly lysed, and no sign of heterocyst development within the time window allowed was detected after nitrogen starvation. When mraY expression was being limited, a high percentage of heterocyst doublets were found. These doublets are formed likely as a consequence of delayed cell division and persistent septal PG synthesis. MraY interacts with components of both the elongasome and the divisome, in particular those directly involved in PG synthesis, including HetF, which is required for both cell division and heterocyst formation.
Collapse
Affiliation(s)
- Jing Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wei-Yue Xing
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Ju-Yuan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaoli Zeng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yiling Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Cheng-Cai Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Institut WUT-AMU, Aix-Marseille University and Wuhan University of Technology, Wuhan, China
| |
Collapse
|
41
|
The bacterial tyrosine kinase system CpsBCD governs the length of capsule polymers. Proc Natl Acad Sci U S A 2021; 118:2103377118. [PMID: 34732571 DOI: 10.1073/pnas.2103377118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2021] [Indexed: 12/17/2022] Open
Abstract
Many pathogenic bacteria are encased in a layer of capsular polysaccharide (CPS). This layer is important for virulence by masking surface antigens, preventing opsonophagocytosis, and avoiding mucus entrapment. The bacterial tyrosine kinase (BY-kinase) regulates capsule synthesis and helps bacterial pathogens to survive different host niches. BY-kinases autophosphorylate at the C-terminal tyrosine residues upon external stimuli, but the role of phosphorylation is still unclear. Here, we report that the BY-kinase CpsCD is required for growth in Streptococcus pneumoniae Cells lacking a functional cpsC or cpsD accumulated low molecular weight CPS and lysed because of the lethal sequestration of the lipid carrier undecaprenyl phosphate, resulting in inhibition of peptidoglycan (PG) synthesis. CpsC interacts with CpsD and the polymerase CpsH. CpsD phosphorylation reduces the length of CPS polymers presumably by controlling the activity of CpsC. Finally, pulse-chase experiments reveal the spatiotemporal coordination between CPS and PG synthesis. This coordination is dependent on CpsC and CpsD. Together, our study provides evidence that BY-kinases regulate capsule polymer length by fine-tuning CpsC activity through autophosphorylation.
Collapse
|
42
|
Unipolar Peptidoglycan Synthesis in the Rhizobiales Requires an Essential Class A Penicillin-Binding Protein. mBio 2021; 12:e0234621. [PMID: 34544272 PMCID: PMC8546619 DOI: 10.1128/mbio.02346-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Members of the Rhizobiales are polarly growing bacteria that lack homologs of the canonical Rod complex. To investigate the mechanisms underlying polar cell wall synthesis, we systematically probed the function of cell wall synthesis enzymes in the plant pathogen Agrobacterium tumefaciens. The development of fluorescent d-amino acid dipeptide (FDAAD) probes, which are incorporated into peptidoglycan by penicillin-binding proteins in A. tumefaciens, enabled us to monitor changes in growth patterns in the mutants. Use of these fluorescent cell wall probes and peptidoglycan compositional analysis demonstrate that a single class A penicillin-binding protein is essential for polar peptidoglycan synthesis. Furthermore, we find evidence of an additional mode of cell wall synthesis that requires ld-transpeptidase activity. Genetic analysis and cell wall targeting antibiotics reveal that the mechanism of unipolar growth is conserved in Sinorhizobium and Brucella. This work provides insights into unipolar peptidoglycan biosynthesis employed by the Rhizobiales during cell elongation.
Collapse
|
43
|
Briggs NS, Bruce KE, Naskar S, Winkler ME, Roper DI. The Pneumococcal Divisome: Dynamic Control of Streptococcus pneumoniae Cell Division. Front Microbiol 2021; 12:737396. [PMID: 34737730 PMCID: PMC8563077 DOI: 10.3389/fmicb.2021.737396] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/15/2021] [Indexed: 12/14/2022] Open
Abstract
Cell division in Streptococcus pneumoniae (pneumococcus) is performed and regulated by a protein complex consisting of at least 14 different protein elements; known as the divisome. Recent findings have advanced our understanding of the molecular events surrounding this process and have provided new understanding of the mechanisms that occur during the division of pneumococcus. This review will provide an overview of the key protein complexes and how they are involved in cell division. We will discuss the interaction of proteins in the divisome complex that underpin the control mechanisms for cell division and cell wall synthesis and remodelling that are required in S. pneumoniae, including the involvement of virulence factors and capsular polysaccharides.
Collapse
Affiliation(s)
- Nicholas S. Briggs
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Kevin E. Bruce
- Department of Biology, Indiana University Bloomington, Bloomington, IN, United States
| | - Souvik Naskar
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Malcolm E. Winkler
- Department of Biology, Indiana University Bloomington, Bloomington, IN, United States
| | - David I. Roper
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
44
|
Brown AR, Wodzanowski KA, Santiago CC, Hyland SN, Follmar JL, Asare-Okai P, Grimes CL. Protected N-Acetyl Muramic Acid Probes Improve Bacterial Peptidoglycan Incorporation via Metabolic Labeling. ACS Chem Biol 2021; 16:1908-1916. [PMID: 34506714 DOI: 10.1021/acschembio.1c00268] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metabolic glycan probes have emerged as an excellent tool to investigate vital questions in biology. Recently, methodology to incorporate metabolic bacterial glycan probes into the cell wall of a variety of bacterial species has been developed. In order to improve this method, a scalable synthesis of the peptidoglycan precursors is developed here, allowing for access to essential peptidoglycan immunological fragments and cell wall building blocks. The question was asked if masking polar groups of the glycan probe would increase overall incorporation, a common strategy exploited in mammalian glycobiology. Here, we show, through cellular assays, that E. coli do not utilize peracetylated peptidoglycan substrates but do employ methyl esters. The 10-fold improvement of probe utilization indicates that (i) masking the carboxylic acid is favorable for transport and (ii) bacterial esterases are capable of removing the methyl ester for use in peptidoglycan biosynthesis. This investigation advances bacterial cell wall biology, offering a prescription on how to best deliver and utilize bacterial metabolic glycan probes.
Collapse
Affiliation(s)
- Ashley R. Brown
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Kimberly A. Wodzanowski
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Cintia C. Santiago
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Stephen N. Hyland
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Julianna L. Follmar
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - PapaNii Asare-Okai
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Catherine Leimkuhler Grimes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
45
|
Luong P, Dube DH. Dismantling the bacterial glycocalyx: Chemical tools to probe, perturb, and image bacterial glycans. Bioorg Med Chem 2021; 42:116268. [PMID: 34130219 DOI: 10.1016/j.bmc.2021.116268] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/20/2022]
Abstract
The bacterial glycocalyx is a quintessential drug target comprised of structurally distinct glycans. Bacterial glycans bear unusual monosaccharide building blocks whose proper construction is critical for bacterial fitness, survival, and colonization in the human host. Despite their appeal as therapeutic targets, bacterial glycans are difficult to study due to the presence of rare bacterial monosaccharides that are linked and modified in atypical manners. Their structural complexity ultimately hampers their analytical characterization. This review highlights recent advances in bacterial chemical glycobiology and focuses on the development of chemical tools to probe, perturb, and image bacterial glycans and their biosynthesis. Current technologies have enabled the study of bacterial glycosylation machinery even in the absence of detailed structural information.
Collapse
Affiliation(s)
- Phuong Luong
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, USA
| | - Danielle H Dube
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, USA.
| |
Collapse
|
46
|
Aliashkevich A, Cava F. LD-transpeptidases: the great unknown among the peptidoglycan cross-linkers. FEBS J 2021; 289:4718-4730. [PMID: 34109739 DOI: 10.1111/febs.16066] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/05/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022]
Abstract
The peptidoglycan (PG) cell wall is an essential polymer for the shape and viability of bacteria. Its protective role is in great part provided by its mesh-like character. Therefore, PG-cross-linking enzymes like the penicillin-binding proteins (PBPs) are among the best targets for antibiotics. However, while PBPs have been in the spotlight for more than 50 years, another class of PG-cross-linking enzymes called LD-transpeptidases (LDTs) seemed to contribute less to PG synthesis and, thus, has kept an aura of mystery. In the last years, a number of studies have associated LDTs with cell wall adaptation to stress including β-lactam antibiotics, outer membrane stability, and toxin delivery, which has shed light onto the biological meaning of these proteins. Furthermore, as some species display a great abundance of LD-cross-links in their cell wall, it has been hypothesized that LDTs could also be the main synthetic PG-transpeptidases in some bacteria. In this review, we introduce these enzymes and their role in PG biosynthesis and we highlight the most recent advances in understanding their biological role in diverse species.
Collapse
Affiliation(s)
- Alena Aliashkevich
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Sweden
| | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Sweden
| |
Collapse
|
47
|
Chen R, Song J, Lin L, Liu J, Yang C, Wang W. Visualizing the Growth and Division of Rat Gut Bacteria by D-Amino Acid-Based in vivo Labeling and FISH Staining. Front Mol Biosci 2021; 8:681938. [PMID: 34124162 PMCID: PMC8193097 DOI: 10.3389/fmolb.2021.681938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/04/2021] [Indexed: 12/16/2022] Open
Abstract
Rat is a widely used mammalian model for gut microbiota research. However, due to the difficulties of individual in vitro culture of many of the gut bacteria, much information about the microbial behaviors in the rat gut remains largely unknown. Here, to characterize the in situ growth and division of rat gut bacteria, we apply a chemical strategy that integrates the use of sequential tagging with D-amino acid-based metabolic probes (STAMP) with fluorescence in situ hybridization (FISH) to rat gut microbiota. Following sequential gavages of two different fluorescent D-amino acid probes to rats, the resulting dually labeled gut bacteria provides chronological information of their in situ cell wall synthesis. After taxonomical labeling with FISH probes, most of which are newly designed in this study, we successfully identify the growth patterns of 15 bacterial species, including two that have not been cultured separately in the laboratory. Furthermore, using our labeling protocol, we record Butyrivibrio fibrisolvens cells growing at different growth stages of a complete cell division cycle, which offers a new scope for understanding basic microbial activities in the gut of mammalian hosts.
Collapse
Affiliation(s)
- Ru Chen
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jia Song
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liyuan Lin
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Liu
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Wei Wang
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
48
|
Trouve J, Zapun A, Arthaud C, Durmort C, Di Guilmi AM, Söderström B, Pelletier A, Grangeasse C, Bourgeois D, Wong YS, Morlot C. Nanoscale dynamics of peptidoglycan assembly during the cell cycle of Streptococcus pneumoniae. Curr Biol 2021; 31:2844-2856.e6. [PMID: 33989523 DOI: 10.1016/j.cub.2021.04.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/09/2021] [Accepted: 04/16/2021] [Indexed: 12/15/2022]
Abstract
Dynamics of cell elongation and septation are key determinants of bacterial morphogenesis. These processes are intimately linked to peptidoglycan synthesis performed by macromolecular complexes called the elongasome and the divisome. In rod-shaped bacteria, cell elongation and septation, which are dissociated in time and space, have been well described. By contrast, in ovoid-shaped bacteria, the dynamics and relationships between these processes remain poorly understood because they are concomitant and confined to a nanometer-scale annular region at midcell. Here, we set up a metabolic peptidoglycan labeling approach using click chemistry to image peptidoglycan synthesis by single-molecule localization microscopy in the ovoid bacterium Streptococcus pneumoniae. Our nanoscale-resolution data reveal spatiotemporal features of peptidoglycan assembly and fate along the cell cycle and provide geometrical parameters that we used to construct a morphogenesis model of the ovoid cell. These analyses show that septal and peripheral peptidoglycan syntheses first occur within a single annular region that later separates in two concentric regions and that elongation persists after septation is completed. In addition, our data reveal that freshly synthesized peptidoglycan is remodeled all along the cell cycle. Altogether, our work provides evidence that septal peptidoglycan is synthesized from the beginning of the cell cycle and is constantly remodeled through cleavage and insertion of material at its periphery. The ovoid-cell morphogenesis would thus rely on the relative dynamics between peptidoglycan synthesis and cleavage rather than on the existence of two distinct successive phases of peripheral and septal synthesis.
Collapse
Affiliation(s)
- Jennyfer Trouve
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | - André Zapun
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | | | - Claire Durmort
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | | | - Bill Söderström
- The ithree institute, University of Technology Sydney, Ultimo, NSW 2007, Australia; Structural Cellular Biology Unit, Okinawa Institute of Science and Technology, 904-0495 Okinawa, Japan
| | - Anais Pelletier
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS, Univ. Lyon 1, UMR 5086, Lyon 69007, France
| | - Christophe Grangeasse
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS, Univ. Lyon 1, UMR 5086, Lyon 69007, France
| | | | | | - Cecile Morlot
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France.
| |
Collapse
|
49
|
Zhang H, Venkatesan S, Nan B. Myxococcus xanthus as a Model Organism for Peptidoglycan Assembly and Bacterial Morphogenesis. Microorganisms 2021; 9:microorganisms9050916. [PMID: 33923279 PMCID: PMC8144978 DOI: 10.3390/microorganisms9050916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022] Open
Abstract
A fundamental question in biology is how cell shapes are genetically encoded and enzymatically generated. Prevalent shapes among walled bacteria include spheres and rods. These shapes are chiefly determined by the peptidoglycan (PG) cell wall. Bacterial division results in two daughter cells, whose shapes are predetermined by the mother. This makes it difficult to explore the origin of cell shapes in healthy bacteria. In this review, we argue that the Gram-negative bacterium Myxococcus xanthus is an ideal model for understanding PG assembly and bacterial morphogenesis, because it forms rods and spheres at different life stages. Rod-shaped vegetative cells of M. xanthus can thoroughly degrade their PG and form spherical spores. As these spores germinate, cells rebuild their PG and reestablish rod shape without preexisting templates. Such a unique sphere-to-rod transition provides a rare opportunity to visualize de novo PG assembly and rod-like morphogenesis in a well-established model organism.
Collapse
|
50
|
Benson S, de Moliner F, Fernandez A, Kuru E, Asiimwe NL, Lee JS, Hamilton L, Sieger D, Bravo IR, Elliot AM, Feng Y, Vendrell M. Photoactivatable metabolic warheads enable precise and safe ablation of target cells in vivo. Nat Commun 2021; 12:2369. [PMID: 33888691 PMCID: PMC8062536 DOI: 10.1038/s41467-021-22578-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 03/19/2021] [Indexed: 02/02/2023] Open
Abstract
Photoactivatable molecules enable ablation of malignant cells under the control of light, yet current agents can be ineffective at early stages of disease when target cells are similar to healthy surrounding tissues. In this work, we describe a chemical platform based on amino-substituted benzoselenadiazoles to build photoactivatable probes that mimic native metabolites as indicators of disease onset and progression. Through a series of synthetic derivatives, we have identified the key chemical groups in the benzoselenadiazole scaffold responsible for its photodynamic activity, and subsequently designed photosensitive metabolic warheads to target cells associated with various diseases, including bacterial infections and cancer. We demonstrate that versatile benzoselenadiazole metabolites can selectively kill pathogenic cells - but not healthy cells - with high precision after exposure to non-toxic visible light, reducing any potential side effects in vivo. This chemical platform provides powerful tools to exploit cellular metabolic signatures for safer therapeutic and surgical approaches.
Collapse
Affiliation(s)
- Sam Benson
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Fabio de Moliner
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Antonio Fernandez
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Erkin Kuru
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | - Nicholas L Asiimwe
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST) & Bio-Med Program KIST-School UST, Seoul, South Korea
| | - Jun-Seok Lee
- Department of Pharmacology, Korea University College of Medicine, Seoul, South Korea
| | - Lloyd Hamilton
- The Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Dirk Sieger
- The Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Isabel R Bravo
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Abigail M Elliot
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Yi Feng
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK.
| | - Marc Vendrell
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|