1
|
Steinbrueck A, Reback ML, Rumancev C, Siegmund D, Garrevoet J, Falkenberg G, Rosenhahn A, Prokop A, Metzler-Nolte N. Quinizarin Gold(I) N-Heterocyclic Carbene Complexes with Synergistic Activity Against Anthracycline-Resistant Leukaemia Cells: Synthesis and Biological Activity Studies. Chemistry 2025:e202404147. [PMID: 39757433 DOI: 10.1002/chem.202404147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Indexed: 01/07/2025]
Abstract
New, asymmetric quinizarin-Au(I)-NHC complexes were designed, isolated, and fully characterised including by single crystal X-ray crystallography. Cytotoxicity studies showed effective growth inhibition in HeLa cervical cancer cells with IC50 values ranging from 2.4 μM to 5.3 μM. The successful cellular uptake was evidenced by X-ray fluorescence imaging on cryo-preserved whole HeLa cells and the sub-cellular localisation was monitored by live-cell fluorescence microscopy. Notably, complex 2 b showed circumvention of acquired anthracycline resistance in K562 leukaemia cells as well as synergistic activity with doxorubicin against both wild-type and anthracycline-resistant Nalm-6 leukaemia cells. Interestingly, sub-cellular localisation towards mitochondria proved to be more important than the compounds' overall cytotoxicity for potent antiproliferative activity and to achieve effective resistance circumvention.
Collapse
Affiliation(s)
- Axel Steinbrueck
- Faculty of Chemistry and Biochemistry, Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr University Bochum, Universitaetsstrasse 150, 44801, Bochum, Germany
| | - Matthew L Reback
- Faculty of Chemistry and Biochemistry, Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr University Bochum, Universitaetsstrasse 150, 44801, Bochum, Germany
| | - Christoph Rumancev
- Faculty of Chemistry and Biochemistry, Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Universitaetsstrasse 150, 44801, Bochum, Germany
| | - Daniel Siegmund
- Faculty of Chemistry and Biochemistry, Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr University Bochum, Universitaetsstrasse 150, 44801, Bochum, Germany
- Division Energy, Fraunhofer UMSICHT, Osterfelder Str. 3, 46047, Oberhausen, Germany
| | - Jan Garrevoet
- Deutsches Elektronen-Synchrotron DESY, 22607, Hamburg, Germany
| | | | - Axel Rosenhahn
- Faculty of Chemistry and Biochemistry, Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Universitaetsstrasse 150, 44801, Bochum, Germany
| | - Aram Prokop
- Department of Pediatric Hematology/Oncology, Helios Clinics Schwerin, Wismarsche Straße 393-397, 19055, Schwerin, Germany
- Department of Human Medicine, MSH Medical School, Hamburg, University of Applied Sciences and Medical University, Am Kaiserkai 1, 20457, Hamburg, Germany
| | - Nils Metzler-Nolte
- Faculty of Chemistry and Biochemistry, Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr University Bochum, Universitaetsstrasse 150, 44801, Bochum, Germany
| |
Collapse
|
2
|
Zhao Q, Han B, Peng C, Zhang N, Huang W, He G, Li JL. A promising future of metal-N-heterocyclic carbene complexes in medicinal chemistry: The emerging bioorganometallic antitumor agents. Med Res Rev 2024; 44:2194-2235. [PMID: 38591229 DOI: 10.1002/med.22039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024]
Abstract
Metal complexes based on N-heterocyclic carbene (NHC) ligands have emerged as promising broad-spectrum antitumor agents in bioorganometallic medicinal chemistry. In recent decades, studies on cytotoxic metal-NHC complexes have yielded numerous compounds exhibiting superior cytotoxicity compared to cisplatin. Although the molecular mechanisms of these anticancer complexes are not fully understood, some potential targets and modes of action have been identified. However, a comprehensive review of their biological mechanisms is currently absent. In general, apoptosis caused by metal-NHCs is common in tumor cells. They can cause a series of changes after entering cells, such as mitochondrial membrane potential (MMP) variation, reactive oxygen species (ROS) generation, cytochrome c (cyt c) release, endoplasmic reticulum (ER) stress, lysosome damage, and caspase activation, ultimately leading to apoptosis. Therefore, a detailed understanding of the influence of metal-NHCs on cancer cell apoptosis is crucial. In this review, we provide a comprehensive summary of recent advances in metal-NHC complexes that trigger apoptotic cell death via different apoptosis-related targets or signaling pathways, including B-cell lymphoma 2 (Bcl-2 family), p53, cyt c, ER stress, lysosome damage, thioredoxin reductase (TrxR) inhibition, and so forth. We also discuss the challenges, limitations, and future directions of metal-NHC complexes to elucidate their emerging application in medicinal chemistry.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Dermatology & Venerolog, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gu He
- Department of Dermatology & Venerolog, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jun-Long Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Anti-Infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| |
Collapse
|
3
|
Rodríguez-Rubio A, Yuste Á, Torroba T, García-Herbosa G, Cuevas-Vicario JV. Synthesis and Electrochemical Study of Gold(I) Carbene Complexes. Molecules 2024; 29:4081. [PMID: 39274929 PMCID: PMC11487389 DOI: 10.3390/molecules29174081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
In this work, we have prepared and characterized some gold compounds wearing a N-heterocyclic carbene (NHC) ligand as well as alkynyl derivatives with different substituents. The study of their electrochemical behavior reveals that these complexes show an irreversible wave at potentials ranging between -2.79 and -2.91 V, referenced to the ferrocenium/ferrocene pair. DFT calculations indicate that the reduction occurs mainly on the aryl-C≡C fragment. The cyclic voltammetry experiments under CO2 atmosphere show an increase in the faradaic current of the reduction wave compared to the experiments under argon atmosphere, indicating a possible catalytic activity towards the carbon dioxide reduction reaction (CO2RR).
Collapse
Affiliation(s)
| | | | | | | | - José V. Cuevas-Vicario
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain; (A.R.-R.); (Á.Y.); (T.T.); (G.G.-H.)
| |
Collapse
|
4
|
Rehl KM, Selvakumar J, Pitsch RL, Hoang D, Arumugam K, Harshman SW, Gorfe AA, Cho KJ. A new ferrocene derivative blocks K-Ras localization and function by oxidative modification at His95. Life Sci Alliance 2023; 6:e202302094. [PMID: 37666666 PMCID: PMC10477449 DOI: 10.26508/lsa.202302094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023] Open
Abstract
Ras proteins are membrane-bound GTPases that regulate essential cellular processes at the plasma membrane (PM). Constitutively active mutations of K-Ras, one of the three Ras isoforms in mammalian cells, are frequently found in human cancers. Ferrocene derivatives, which elevate cellular reactive oxygen species (ROS), have shown to block the growth of non-small cell lung cancers harboring oncogenic mutant K-Ras. Here, we tested a novel ferrocene derivative on the growth of pancreatic ductal adenocarcinoma and non-small cell lung cancer. Our compound, which elevated cellular ROS levels, inhibited the growth of K-Ras-driven cancers, and abrogated the PM binding and signaling of K-Ras in an isoform-specific manner. These effects were reversed upon antioxidant supplementation, suggesting a ROS-mediated mechanism. We further identified that K-Ras His95 residue plays an important role in this process, and it is putatively oxidized by cellular ROS. Together, our study demonstrates that the redox system directly regulates K-Ras/PM binding and signaling via oxidative modification at the His95, and proposes a role of oncogenic mutant K-Ras in the recently described antioxidant-induced growth and metastasis of K-Ras-driven cancers.
Collapse
Affiliation(s)
- Kristen M Rehl
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Jayaraman Selvakumar
- Department of Chemistry, College of Science and Mathematics, Wright State University, Dayton, OH, USA
| | - Rhonda L Pitsch
- Air Force Research Laboratory, Wright-Patterson AFB, OH, USA
| | - Don Hoang
- Department of Chemistry, College of Science and Mathematics, Wright State University, Dayton, OH, USA
| | - Kuppuswamy Arumugam
- Department of Chemistry, College of Science and Mathematics, Wright State University, Dayton, OH, USA
| | - Sean W Harshman
- Air Force Research Laboratory, Wright-Patterson AFB, OH, USA
| | - Alemayehu A Gorfe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Kwang-Jin Cho
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
5
|
Bhatnagar D, Ladhe S, Kumar D. Discerning the Prospects of miRNAs as a Multi-Target Therapeutic and Diagnostic for Alzheimer's Disease. Mol Neurobiol 2023; 60:5954-5974. [PMID: 37386272 DOI: 10.1007/s12035-023-03446-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Although over the last few decades, numerous attempts have been made to halt Alzheimer's disease (AD) progression and mitigate its symptoms, only a few have been proven beneficial. Most medications available, still only cater to the symptoms of the disease rather than fixing the cause at the root level. A novel approach involving the use of miRNAs, which work on the principle of gene silencing, is being explored by scientists. Naturally present miRNAs in the biological system help to regulate various genes than may be implicated in AD-like BACE-1 and APP. One miRNA thus, holds the power to keep a check on several genes, conferring it the ability to be used as a multi-target therapeutic. With aging and the onset of diseased pathology, dysregulation of these miRNAs is observed. This flawed miRNA expression is responsible for the unusual buildup of amyloid proteins, fibrillation of tau proteins in the brain, neuronal death and other hallmarks leading to AD. The use of miRNA mimics and miRNA inhibitors provides an attractive perspective for fixing the upregulation and downregulation of miRNAs that led to abnormal cellular activities. Furthermore, the detection of miRNAs in the CSF and serum of diseased patients might be considered an earlier biomarker for the disease. While most of the therapies designed around AD have not succeeded completely, the targeting of dysregulated miRNAs in AD patients might give a new direction to scholars to develop an effective treatment for Alzheimer's disease.
Collapse
Affiliation(s)
- Devyani Bhatnagar
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to Be University), Erandwane, Pune, 411038, Maharashtra, India
| | - Shreya Ladhe
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to Be University), Erandwane, Pune, 411038, Maharashtra, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to Be University), Erandwane, Pune, 411038, Maharashtra, India.
- Department of Entomology, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA.
- UC Davis Comprehensive Cancer Center, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA.
| |
Collapse
|
6
|
Wu X, Hua X, Xu K, Song Y, Lv T. Zebrafish in Lung Cancer Research. Cancers (Basel) 2023; 15:4721. [PMID: 37835415 PMCID: PMC10571557 DOI: 10.3390/cancers15194721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Zebrafish is increasingly used as a model organism for cancer research because of its genetic and physiological similarities to humans. Modeling lung cancer (LC) in zebrafish has received significant attention. This review focuses on the insights gained from using zebrafish in LC research. These insights range from investigating the genetic and molecular mechanisms that contribute to the development and progression of LC to identifying potential drug targets, testing the efficacy and toxicity of new therapies, and applying zebrafish for personalized medicine studies. This review provides a comprehensive overview of the current state of LC research performed using zebrafish, highlights the advantages and limitations of this model organism, and discusses future directions in the field.
Collapse
Affiliation(s)
- Xiaodi Wu
- Department of Clinical Medicine, Medical School of Nanjing University, Nanjing 210093, China; (X.W.); (K.X.)
| | - Xin Hua
- Department of Clinical Medicine, Southeast University Medical College, Nanjing 210096, China;
| | - Ke Xu
- Department of Clinical Medicine, Medical School of Nanjing University, Nanjing 210093, China; (X.W.); (K.X.)
| | - Yong Song
- Department of Clinical Medicine, Southeast University Medical College, Nanjing 210096, China;
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Tangfeng Lv
- Department of Clinical Medicine, Medical School of Nanjing University, Nanjing 210093, China; (X.W.); (K.X.)
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| |
Collapse
|
7
|
Salmain M, Gaschard M, Baroud M, Lepeltier E, Jaouen G, Passirani C, Vessières A. Thioredoxin Reductase and Organometallic Complexes: A Pivotal System to Tackle Multidrug Resistant Tumors? Cancers (Basel) 2023; 15:4448. [PMID: 37760418 PMCID: PMC10526406 DOI: 10.3390/cancers15184448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Cancers classified as multidrug-resistant (MDR) are a family of diseases with poor prognosis despite access to increasingly sophisticated treatments. Several mechanisms explain these resistances involving both tumor cells and their microenvironment. It is now recognized that a multi-targeting approach offers a promising strategy to treat these MDR tumors. Inhibition of thioredoxin reductase (TrxR), a key enzyme in maintaining redox balance in cells, is a well-identified target for this approach. Auranofin was the first inorganic gold complex to be described as a powerful inhibitor of TrxR. In this review, we will first recall the main results obtained with this metallodrug. Then, we will focus on organometallic complexes reported as TrxR inhibitors. These include gold(I), gold(III) complexes and metallocifens, i.e., organometallic complexes of Fe and Os derived from tamoxifen. In these families of complexes, similarities and differences in the molecular mechanisms of TrxR inhibition will be highlighted. Finally, the possible relationship between TrxR inhibition and cytotoxicity will be discussed and put into perspective with their mode of action.
Collapse
Affiliation(s)
- Michèle Salmain
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 4 Place Jussieu, F-75005 Paris, France; (M.S.); (M.G.); (G.J.); (A.V.)
| | - Marie Gaschard
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 4 Place Jussieu, F-75005 Paris, France; (M.S.); (M.G.); (G.J.); (A.V.)
| | - Milad Baroud
- Micro & Nanomedecines Translationnelles (MINT), University of Angers, Inserm, The National Center for Scientific Research (CNRS), SFR ICAT, F-49000 Angers, France; (M.B.); (E.L.)
| | - Elise Lepeltier
- Micro & Nanomedecines Translationnelles (MINT), University of Angers, Inserm, The National Center for Scientific Research (CNRS), SFR ICAT, F-49000 Angers, France; (M.B.); (E.L.)
| | - Gérard Jaouen
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 4 Place Jussieu, F-75005 Paris, France; (M.S.); (M.G.); (G.J.); (A.V.)
| | - Catherine Passirani
- Micro & Nanomedecines Translationnelles (MINT), University of Angers, Inserm, The National Center for Scientific Research (CNRS), SFR ICAT, F-49000 Angers, France; (M.B.); (E.L.)
| | - Anne Vessières
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 4 Place Jussieu, F-75005 Paris, France; (M.S.); (M.G.); (G.J.); (A.V.)
| |
Collapse
|
8
|
Rehl KM, Selvakumar J, Hoang D, Arumugam K, Gorfe AA, Cho KJ. A new ferrocene derivative blocks KRAS localization and function by oxidative modification at His95. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534499. [PMID: 37034642 PMCID: PMC10081197 DOI: 10.1101/2023.03.28.534499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Ras proteins are membrane-bound GTPases that regulate essential cellular processes at the plasma membrane (PM). Constitutively active mutations of K-Ras, one of the three Ras isoforms in mammalian cells, are frequently found in human cancers. Ferrocene derivatives, which elevate cellular reactive oxygen species (ROS), have shown to block the growth of non-small cell lung cancers (NSCLCs) harboring oncogenic mutant K-Ras. Here, we developed and tested a novel ferrocene derivative on the growth of human pancreatic ductal adenocarcinoma (PDAC) and NSCLC. Our compound inhibited the growth of K-Ras-dependent PDAC and NSCLC and abrogated the PM binding and signaling of K-Ras, but not other Ras isoforms. These effects were reversed upon antioxidant supplementation, suggesting a ROS-mediated mechanism. We further identified K-Ras His95 residue in the G-domain as being involved in the ferrocene-induced K-Ras PM dissociation via oxidative modification. Together, our studies demonstrate that the redox system directly regulates K-Ras PM binding and signaling via oxidative modification at the His95, and proposes a role of oncogenic mutant K-Ras in the recently described antioxidant-induced metastasis in K-Ras-driven lung cancers.
Collapse
|
9
|
Yang Z, Bian M, Lv L, Chang X, Wen Z, Li F, Lu Y, Liu W. Tumor-Targeting NHC-Au(I) Complex Induces Immunogenic Cell Death in Hepatocellular Carcinoma. J Med Chem 2023; 66:3934-3952. [PMID: 36827091 DOI: 10.1021/acs.jmedchem.2c01798] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Immunogenic cell death (ICD) is a promising direction of cancer immunotherapy in hepatocellular carcinoma (HCC). A series of novel NHC-Au(I) complexes derived from 4,5-diarylimidazole, containing glycyrrhetinic acid (GA) as an efficient targeting ligand for HCC, were herein designed and synthesized. Among these, complex 4C exhibited excellent effectiveness for tumor targeting and antitumor activity, which induced the occurrence of ICD in HCC cells. Additionally, 4C can effectively inhibit TrxR enzyme activity, increase reactive oxygen species (ROS) expression, lead to redox homeostasis disorder, mediate mitochondrial dysfunction and endoplasmic reticulum stress (ERS), and cause the characteristic discharge of damage-associated molecular patterns (DAMPs) in HCC cells. More importantly, 4C showed a great ICD-inducing effect in a vaccination mouse model and activated antitumor immunity in a tumor-bearing C57BL/6 mouse model, which is consistent with the in vitro results. In conclusion, we found the potential of Au(I) complex with HCC-targeted capability for effective tumor immunotherapy.
Collapse
Affiliation(s)
- Zhibin Yang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali 671000, P. R. China
| | - Mianli Bian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Lin Lv
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Xingyu Chang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Zhenfan Wen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Fuwei Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
10
|
De Franco M, Saab M, Porchia M, Marzano C, Nolan SP, Nahra F, Van Hecke K, Gandin V. Unveiling the Potential of Innovative Gold(I) and Silver(I) Selenourea Complexes as Anticancer Agents Targeting TrxR and Cellular Redox Homeostasis. Chemistry 2022; 28:e202201898. [PMID: 36106679 PMCID: PMC10092581 DOI: 10.1002/chem.202201898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Indexed: 11/11/2022]
Abstract
A series of NHC-based selenourea Ag(I) and Au(I) complexes were evaluated for their anticancer potential in vitro, on 2D and 3D human cancer cell systems. All NHC-based selenourea complexes possess an outstanding cytotoxic potency, which was comparable or even better than that of the reference metallodrug auranofin, and were also able to overcome both platinum-based and multi-drug resistances. Intriguingly, their cytotoxic potency did not correlate with solution stability, partition coefficient or cellular uptake. On the other hand, mechanistic studies in cancer cells revealed their ability to strongly and selectively inhibit the redox-regulating enzyme Thioredoxin Reductase (TrxR), being even more effective than auranofin, a well-known TrxR inhibitor, without affecting other redox enzymes such as Glutathione Reductase (GR). The inhibition of TrxR in H157 human cancer cells caused, in turn, the disruption of cellular thiol-redox homeostasis and of mitochondria pathophysiology, ultimately leading to cancer cell death through apoptosis.
Collapse
Affiliation(s)
- Michele De Franco
- Dipartimento di Scienze del FarmacoUniversità degli Studi di PadovaVia F. Marzolo 5I-35131PadovaItaly
| | - Marina Saab
- Department of ChemistryCenter for Sustainable Chemistry Ghent UniversityKrigsman 281, Building S39000 GhentBelgium
| | | | - Cristina Marzano
- Dipartimento di Scienze del FarmacoUniversità degli Studi di PadovaVia F. Marzolo 5I-35131PadovaItaly
| | - Steven P. Nolan
- Department of ChemistryCenter for Sustainable Chemistry Ghent UniversityKrigsman 281, Building S39000 GhentBelgium
| | - Fady Nahra
- Department of ChemistryCenter for Sustainable Chemistry Ghent UniversityKrigsman 281, Building S39000 GhentBelgium
- VITO (Flemish Institute for Technological Research)Boeretang 2002400MolBelgium
| | - Kristof Van Hecke
- Department of ChemistryCenter for Sustainable Chemistry Ghent UniversityKrigsman 281, Building S39000 GhentBelgium
| | - Valentina Gandin
- Dipartimento di Scienze del FarmacoUniversità degli Studi di PadovaVia F. Marzolo 5I-35131PadovaItaly
| |
Collapse
|
11
|
Khan HA, Al‐Hoshani A, Isab AA, Alhomida AS. A Gold(III) Complex with Potential Anticancer Properties. ChemistrySelect 2022. [DOI: 10.1002/slct.202202956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Haseeb A. Khan
- FRCPath, FRSC Department of Biochemistry College of Science King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Ali Al‐Hoshani
- Department of Pharmaceutical Chemistry College of Pharmacy King Saud University Riyadh 11451 Saudi Arabia
| | - Anvarhusein A. Isab
- Department of Chemistry College of Science King Fahd University of Petroleum and Minerals Dhahran Saudi Arabia
| | - Abdullah S. Alhomida
- FRCPath, FRSC Department of Biochemistry College of Science King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| |
Collapse
|
12
|
Movahedpour A, Khatami SH, Karami N, Vakili O, Naeli P, Jamali Z, Shabaninejad Z, Tazik K, Behrouj H, Ghasemi H. Exosomal noncoding RNAs in prostate cancer. Clin Chim Acta 2022; 537:127-132. [DOI: 10.1016/j.cca.2022.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 11/03/2022]
|
13
|
Corpus-Mendoza CI, de Loera D, López-López LI, Acosta B, Vega-Rodríguez S, Navarro-Tovar G. Interactions of Antibacterial Naphthoquinones with Mesoporous Silica Surfaces: A Physicochemical and Theoretical Approach. Pharmaceuticals (Basel) 2022; 15:ph15121464. [PMID: 36558916 PMCID: PMC9787537 DOI: 10.3390/ph15121464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
1,4-naftoquinone (NQ) molecules have been extensively evaluated as potent antibacterial compounds; however, their use is limited, since they have low water solubility and exhibit toxicities in healthy eukaryotic cells. A possible path to overcoming these challenges is the use of particulate vehicles, such as SBA-15, which is a biocompatible and biodegradable mesoporous silica material, that may enhance drug delivery and decrease dosages. In this work, an isotherm model-based adsorption of three NQs into SBA-15 microparticles was evaluated. Interactions between NQs and SBA-15 microparticles were modeled at the B3LYP/6-31+G(d,p) level of theory to understand the nature of such interactions. The results demonstrated that the adsorption of NQ, 2NQ, and 5NQ into SBA-15 fit the Freundlich adsorption model. According to theorical studies, physisorption is mediated by hydrogen bonds, while the most stable interactions occur between the carbonyl group of NQ and silica surfaces. Both experimental and theoretical results contribute to a deeper understanding of the use of SBA-15 or similar particles as nanovehicles in such a way that NQs can be modified in carbonyl or C3 to enhance adsorptions. The theoretical and experimental results were in accordance and contribute to a deeper understanding of how interactions between NQ-type molecules and SiO2 materials occur.
Collapse
Affiliation(s)
- César Iván Corpus-Mendoza
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Manuel Nava 6, Zona Universitaria, San Luis Potosi 78210, Mexico
| | - Denisse de Loera
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Manuel Nava 6, Zona Universitaria, San Luis Potosi 78210, Mexico
| | - Lluvia Itzel López-López
- Instituto de Investigación en Zonas Desérticas, Universidad Autónoma de San Luis Potosí, Del Altair 200, del Llano, San Luis Potosi 78377, Mexico
| | - Brenda Acosta
- Coordinación para la Innovación y Aplicación de la Ciencia y Tecnología, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, Lomas de San Luis, San Luis Potosi 78210, Mexico
- Consejo Nacional de Ciencia y Tecnología, Insurgentes Sur 1582, Crédito Constructor, Benito Juárez, La Ciudad de Mexico 03940, Mexico
| | - Sarai Vega-Rodríguez
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Manuel Nava 6, Zona Universitaria, San Luis Potosi 78210, Mexico
- Correspondence: (S.V.-R.); (G.N.-T.)
| | - Gabriela Navarro-Tovar
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Manuel Nava 6, Zona Universitaria, San Luis Potosi 78210, Mexico
- Consejo Nacional de Ciencia y Tecnología, Insurgentes Sur 1582, Crédito Constructor, Benito Juárez, La Ciudad de Mexico 03940, Mexico
- Correspondence: (S.V.-R.); (G.N.-T.)
| |
Collapse
|
14
|
Zhang J, Li Y, Fang R, Wei W, Wang Y, Jin J, Yang F, Chen J. Organometallic gold(I) and gold(III) complexes for lung cancer treatment. Front Pharmacol 2022; 13:979951. [PMID: 36176441 PMCID: PMC9513137 DOI: 10.3389/fphar.2022.979951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Metal compounds, especially gold complexes, have recently gained increasing attention as possible lung cancer therapeutics. Some gold complexes display not only excellent activity in cisplatin-sensitive lung cancer but also in cisplatin-resistant lung cancer, revealing promising prospects in the development of novel treatments for lung cancer. This review summarizes examples of anticancer gold(I) and gold (III) complexes for lung cancer treatment, including mechanisms of action and approaches adopted to improve their efficiency. Several excellent examples of gold complexes against lung cancer are highlighted.
Collapse
Affiliation(s)
- Juzheng Zhang
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Yanping Li
- School of Public Health, Guilin Medical University, Guilin, China
| | - Ronghao Fang
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Wei Wei
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Yong Wang
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Jiamin Jin
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
- *Correspondence: Feng Yang, mailto:, Jian Chen, mailto:
| | - Jian Chen
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
- *Correspondence: Feng Yang, mailto:, Jian Chen, mailto:
| |
Collapse
|
15
|
Sulfonamide-Derived Dithiocarbamate Gold(I) Complexes Induce the Apoptosis of Colon Cancer Cells by the Activation of Caspase 3 and Redox Imbalance. Biomedicines 2022; 10:biomedicines10061437. [PMID: 35740458 PMCID: PMC9221018 DOI: 10.3390/biomedicines10061437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/26/2022] Open
Abstract
Two new families of dithiocarbamate gold(I) complexes derived from benzenesulfonamide with phosphine or carbene as ancillary ligands have been synthesized and characterized. In the screening of their in vitro activity on human colon carcinoma cells (Caco-2), we found that the more lipophilic complexes—those with the phosphine PPh3—exhibited the highest anticancer activity whilst also displaying significant cancer cell selectivity. [Au(S2CNHSO2C6H5)(PPh3)] (1) and [Au(S2CNHSO2-p-Me-C6H4)(IMePropargyl)] (8) produce cell death, probably by intrinsic apoptosis (mitochondrial membrane potential modification) and caspase 3 activation, causing cell cycle arrest in the G1 phase with p53 activation. Besides this, both complexes might act as multi-target anticancer drugs, as they inhibit the activity of the enzymes thioredoxin reductase (TrxR) and carbonic anhydrase (CA IX) with the alteration of the redox balance, and show a pro-oxidant effect.
Collapse
|
16
|
Lu Y, Ma X, Chang X, Liang Z, Lv L, Shan M, Lu Q, Wen Z, Gust R, Liu W. Recent development of gold(I) and gold(III) complexes as therapeutic agents for cancer diseases. Chem Soc Rev 2022; 51:5518-5556. [PMID: 35699475 DOI: 10.1039/d1cs00933h] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Metal complexes have demonstrated significant antitumor activities and platinum complexes are well established in the clinical application of cancer chemotherapy. However, the platinum-based treatment of different types of cancers is massively hampered by severe side effects and resistance development. Consequently, the development of novel metal-based drugs with different mechanism of action and pharmaceutical profile attracts modern medicinal chemists to design and synthesize novel metal-based agents. Among non-platinum anticancer drugs, gold complexes have gained considerable attention due to their significant antiproliferative potency and efficacy. In most situations, the gold complexes exhibit anticancer activities by targeting thioredoxin reductase (TrxR) or other thiol-rich proteins and enzymes and trigger cell death via reactive oxygen species (ROS). Interestingly, gold complexes were recently reported to elicit biochemical hallmarks of immunogenic cell death (ICD) as an ICD inducer. In this review, the recent progress of gold(I) and gold(III) complexes is comprehensively summarized, and their activities and mechanism of action are documented.
Collapse
Affiliation(s)
- Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xiaoyan Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xingyu Chang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhenlin Liang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lin Lv
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Min Shan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Qiuyue Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhenfan Wen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ronald Gust
- Institute of Pharmacy/Pharmaceutical Chemistry, University of Innsbruck, Center for Chemistry and Biomedicine, Innsbruck, Austria.
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,State key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
17
|
Xiao Q, Liu Y, Jiang G, Liu Y, Huang Y, Liu W, Zhang Z. Heteroleptic Gold(I)-bisNHC complex with excellent activity in vitro, ex vivo and in vivo against endometrial cancer. Eur J Med Chem 2022; 236:114302. [DOI: 10.1016/j.ejmech.2022.114302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 01/02/2023]
|
18
|
Reinhard GL, Jayaraman S, Prybil JW, Arambula JF, Arumugam K. Detailed structural and spectroscopic elucidation of ferrocenium coupled N-heterocyclic carbene gold(I) complexes. Dalton Trans 2022; 51:1533-1541. [PMID: 34989720 PMCID: PMC9069980 DOI: 10.1039/d1dt03174k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Unambiguous assignment of redox sites on ferrocene coupled N-heterocyclic carbene gold(I) complexes [(Fc-NHC)2Au(I)]+ is critical to gain a greater mechanistic understanding of their activity in a cellular environment. Such information can be garnered with isolation and detailed characterization of the oxidized version of [(Fc-NHC)2Au(I)]+. Herein we disclose a study that unambiguously illustrates redox events pertaining to [(Fc-NHC)2Au(I)]+ that stem exclusively from ferrocene sites. This work also describes novel synthetic methodologies for isolating ferrocenium coupled N-heterocyclic carbene gold(I) complexes.
Collapse
Affiliation(s)
- Garrett L Reinhard
- Department of Chemistry, Wright State University, Dayton, OH 45435, USA.
| | | | - Joshua W Prybil
- Department of Chemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Jonathan F Arambula
- Department of Chemistry & Biochemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
19
|
Williams A, Villamor L, Fussell J, Loveless R, Smeyne D, Philp J, Shaikh A, Sittaramane V. Discovery of Quinoline-Derived Trifluoromethyl Alcohols as Antiepileptic and Analgesic Agents That Block Sodium Channels. ChemMedChem 2021; 17:e202100547. [PMID: 34632703 DOI: 10.1002/cmdc.202100547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/30/2021] [Indexed: 11/08/2022]
Abstract
The discovery of novel analgesic agents with high potency, low toxicity and low addictive properties remain a priority. This study aims to identify the analgesic potential of quinoline derived α-trifluoromethylated alcohols (QTA) and their mechanism of action. We synthesized and characterized several compounds of QTAs and screened them for antiepileptic and analgesic activity using zebrafish larvae in high thorough-put behavior analyses system. Toxicity and behavioral screening of 9 compounds (C1-C9) identified four candidates (C2, C3, C7 and C9) with antiepileptic properties that induces specific and reversible reduction in photomotor activity. Importantly, compounds C2 and C3 relieved the thermal pain response in zebrafish larvae indicating analgesic property. Further, using novel in vivo CoroNa green assay, we show that compounds C2 and C3 block sodium channels and reduce inflammatory sodium signals released by peripheral nerve and tissue damage. Thus, we have identified novel QTA compounds with antiepileptic and analgesic properties which could alleviate neuropathic pain.
Collapse
Affiliation(s)
- Ashley Williams
- Department of Biology, Georgia Southern University, Statesboro, GA, 30460, USA
| | - Laurie Villamor
- Department of Biology, Georgia Southern University, Statesboro, GA, 30460, USA
| | - Jake Fussell
- Department of Biology, Georgia Southern University, Statesboro, GA, 30460, USA
| | - Reid Loveless
- Department of Biology, Georgia Southern University, Statesboro, GA, 30460, USA
| | - Dylan Smeyne
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, GA30460, USA
| | - Jack Philp
- Department of Biology, Georgia Southern University, Statesboro, GA, 30460, USA
| | - Abid Shaikh
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, GA30460, USA
| | - Vinoth Sittaramane
- Department of Biology, Georgia Southern University, Statesboro, GA, 30460, USA
| |
Collapse
|
20
|
Sen S, Perrin MW, Sedgwick AC, Lynch VM, Sessler JL, Arambula JF. Covalent and non-covalent albumin binding of Au(i) bis-NHCs via post-synthetic amide modification. Chem Sci 2021; 12:7547-7553. [PMID: 34163845 PMCID: PMC8171490 DOI: 10.1039/d1sc01055g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/24/2021] [Indexed: 12/21/2022] Open
Abstract
Recent decades have witnessed the emergence of Au(i) bis-N-heterocyclic carbenes (NHCs) as potential anticancer agents. However, these systems exhibit little interaction with serum proteins (e.g., human serum albumin), which presumably impacts their pharmacokinetic profile and tumor exposure. Anticancer drugs bound to human serum albumin (HSA) often benefit from significant advantages, including longer circulatory half-lives, tumor targeted delivery, and easier administration relative to the drug alone. In this work, we present Au(i) bis-NHCs complexes, 7 and 9, capable of binding to HSA. Complex 7 contains a reactive maleimide moiety for covalent protein conjugation, whereas its congener 9 contains a naphthalimide fluorophore for non-covalent binding. A similar drug motif was used in both cases. Complexes 7 and 9 were prepared from a carboxylic acid functionalized Au(i) bis-NHC (complex 2) using a newly developed post-synthetic amide functionalization protocol that allows coupling to both aliphatic and aromatic amines. Analytical, and in vitro techniques were used to confirm protein binding, as well as cellular uptake and antiproliferative activity in A549 human lung cancer cells. The present findings highlight a hitherto unexplored approach to modifying Au(i) bis-NHC drug candidates for protein ligation and serve to showcase the relative benefits of covalent and non-covalent HSA binding.
Collapse
Affiliation(s)
- Sajal Sen
- Department of Chemistry, The University of Texas at Austin 105 E 24th Street A5300 Austin TX 78712-1224 USA
| | - Mark W Perrin
- Department of Chemistry, The University of Texas at Austin 105 E 24th Street A5300 Austin TX 78712-1224 USA
| | - Adam C Sedgwick
- Department of Chemistry, The University of Texas at Austin 105 E 24th Street A5300 Austin TX 78712-1224 USA
| | - Vincent M Lynch
- Department of Chemistry, The University of Texas at Austin 105 E 24th Street A5300 Austin TX 78712-1224 USA
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin 105 E 24th Street A5300 Austin TX 78712-1224 USA
| | - Jonathan F Arambula
- Department of Chemistry, The University of Texas at Austin 105 E 24th Street A5300 Austin TX 78712-1224 USA
| |
Collapse
|
21
|
Gallati CM, Goetzfried SK, Ortmeier A, Sagasser J, Wurst K, Hermann M, Baecker D, Kircher B, Gust R. Synthesis, characterization and biological activity of bis[3-ethyl-4-aryl-5-(2-methoxypyridin-5-yl)-1-propyl-1,3-dihydro-2H-imidazol-2-ylidene]gold(i) complexes. Dalton Trans 2021; 50:4270-4279. [PMID: 33688890 DOI: 10.1039/d0dt03902k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A series of bis[3-ethyl-4-aryl-5-(2-methoxypyridin-5-yl)-1-propyl-1,3-dihydro-2H-imidazol-2-ylidene]gold(i) complexes (2a-f) containing methyl, fluoro or methoxy substituents at various positions in the 4-aryl ring was synthesized and evaluated for their anti-cancer properties in A2780 (wild-type and Cisplatin-resistant) ovarian carcinoma as well as LAMA 84 (imatinib-sensitive and -resistant) and HL-60 leukemia cell lines. The bis-NHC gold(i) complexes were more active compared to their related mono-NHC gold(i) analogues and reduced proliferation and metabolic activity in a low micromolar range. With the exception of 2d (3-F), the compounds displayed higher potency than the established drugs Auranofin and Cisplatin. The lack of effects against non-cancerous lung fibroblast SV-80 cells indicated a high selectivity towards tumor cells. All tested complexes generated reactive oxygen species in A2780cis cells; however, the induction of apoptosis was very low. Furthermore, thioredoxin reductase is not the main target of these complexes, because its inhibition pattern did not correlate with their biological activity.
Collapse
Affiliation(s)
- Caroline Marie Gallati
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Rosa LB, Aires RL, Oliveira LS, Fontes JV, Miguel DC, Abbehausen C. A "Golden Age" for the discovery of new antileishmanial agents: Current status of leishmanicidal gold complexes and prospective targets beyond the trypanothione system. ChemMedChem 2021; 16:1681-1695. [PMID: 33615725 DOI: 10.1002/cmdc.202100022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 12/11/2022]
Abstract
Leishmaniasis is one of the most neglected diseases worldwide and is considered a serious public health issue. The current therapeutic options have several disadvantages that make the search for new therapeutics urgent. Gold compounds are emerging as promising candidates based on encouraging in vitro and limited in vivo results for several AuI and AuIII complexes. The antiparasitic mechanisms of these molecules remain only partially understood. However, a few studies have proposed the trypanothione redox system as a target, similar to the mammalian thioredoxin system, pointed out as the main target for several gold compounds with significant antitumor activity. In this review, we present the current status of the investigation and design of gold compounds directed at treating leishmaniasis. In addition, we explore potential targets in Leishmania parasites beyond the trypanothione system, taking into account previous studies and structure modulation performed for gold-based compounds.
Collapse
Affiliation(s)
- Leticia B Rosa
- Institute of Biology, University of Campinas UNICAMP, Campinas, SP, Brazil
| | - Rochanna L Aires
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| | - Laiane S Oliveira
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| | - Josielle V Fontes
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| | - Danilo C Miguel
- Institute of Biology, University of Campinas UNICAMP, Campinas, SP, Brazil
| | - Camilla Abbehausen
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| |
Collapse
|
23
|
Chupakhin E, Krasavin M. Thioredoxin reductase inhibitors: updated patent review (2017-present). Expert Opin Ther Pat 2021; 31:745-758. [PMID: 33666133 DOI: 10.1080/13543776.2021.1899160] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Thioredoxin reductase (TrxR) is a selenocysteine-containing enzyme which is responsible - as a part of the thioredoxin system - for maintaining redox homeostasis in cells. It is upregulated in cancerous state as a defense against oxidative stress. TrxR has been mostly considered an anticancer drug target although it has applications in other therapeutic areas such as neurodegeneration, inflammation, microbial infections, and neonatal hyperoxic lung injury.Areas covered: The present review covers the patent literature that appeared in the period 2017-2020, i.e. since the publication of the previous expert opinion patent review on TrxR inhibitors. The recent additions to the following traditional classes of inhibitors are discussed: metal complexes, Michael acceptors as well as arsenic and selenium compounds. At the same time, a novel group of nitro (hetero)aromatic compounds have emerged which likely acts via covalent inhibition mechanism. Several miscellaneous chemotypes are grouped under Miscellaneous subsection.Expert opinion: While specificity over glutathione reductase is achieved easily, TrxR is still moving toward the later stages of development at a very slow rate. Michael acceptors, particularly based on TRXR substrate-mimicking scaffolds, are gaining impetus and so are dual and hybrid compounds. The development prospects of the emerging nitro (hetero)aromatic chemotypes remain uncertain.
Collapse
Affiliation(s)
- Evgeny Chupakhin
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg Russian Federation.,Institute for Living Systems, Immanuel Kant Baltic Federal University, Kaliningrad Russian Federation
| | - Mikhail Krasavin
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg Russian Federation.,Institute for Living Systems, Immanuel Kant Baltic Federal University, Kaliningrad Russian Federation
| |
Collapse
|
24
|
Selvakumar J, Simpson SM, Zurek E, Arumugam K. An electrochemically controlled release of NHCs using iron bis(dithiolene) N-heterocyclic carbene complexes. Inorg Chem Front 2021. [DOI: 10.1039/d0qi00638f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A series of five coordinated [Fe(NHC)(S2C2R2)2] complexes were isolated and subjected to electrochemical reduction for the facile release of NHCs in the catalytic media.
Collapse
Affiliation(s)
| | - Scott M. Simpson
- Department of Chemistry
- St. Bonaventure University
- St. Bonaventure
- USA
| | - Eva Zurek
- Department of Chemistry
- State University of New York at Buffalo
- Buffalo
- USA
| | | |
Collapse
|
25
|
Sen S, Hufnagel S, Maier EY, Aguilar I, Selvakumar J, DeVore JE, Lynch VM, Arumugam K, Cui Z, Sessler JL, Arambula JF. Rationally Designed Redox-Active Au(I) N-Heterocyclic Carbene: An Immunogenic Cell Death Inducer. J Am Chem Soc 2020; 142:20536-20541. [PMID: 33237764 DOI: 10.1021/jacs.0c09753] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Immunogenic cell death (ICD) is a way of reengaging the tumor-specific immune system. ICD can be induced by treatment with chemotherapeutics. However, only a limited number of drugs and other treatment modalities have been shown to elicit the biomarker responses characteristic of ICD and to provide an anticancer benefit in vivo. Here, we report a rationally designed redox-active Au(I) bis-N-heterocyclic carbene that induces ICD both in vitro and in vivo. This work benefits from a synthetic pathway that allows for the facile preparation of asymmetric redox-active Au(I) bis-N-heterocyclic carbenes.
Collapse
Affiliation(s)
- Sajal Sen
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Stephanie Hufnagel
- College of Pharmacy, University of Texas at Austin, 2409 University Avenue, Austin, Texas 78712, United States
| | - Esther Y Maier
- Drug Dynamics Institute, College of Pharmacy, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, Texas 78723, United States
| | - Isaiah Aguilar
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Jayaraman Selvakumar
- Department of Chemistry, Wright State University, 3640 Colonel Glenn Hwy, Dayton, Ohio 45435, United States
| | - Jennie E DeVore
- Drug Dynamics Institute, College of Pharmacy, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, Texas 78723, United States
| | - Vincent M Lynch
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Kuppuswamy Arumugam
- Department of Chemistry, Wright State University, 3640 Colonel Glenn Hwy, Dayton, Ohio 45435, United States
| | - Zhengrong Cui
- College of Pharmacy, University of Texas at Austin, 2409 University Avenue, Austin, Texas 78712, United States
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Jonathan F Arambula
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| |
Collapse
|
26
|
|
27
|
Shen GN, Wang C, Luo YH, Wang JR, Wang R, Xu WT, Zhang Y, Zhang Y, Zhang DJ, Jin CH. 2-(6-Hydroxyhexylthio)-5,8-dimethoxy-1,4-naphthoquinone Induces Apoptosis through ROS-Mediated MAPK, STAT3, and NF- κB Signalling Pathways in Lung Cancer A549 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:7375862. [PMID: 32849902 PMCID: PMC7441457 DOI: 10.1155/2020/7375862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 06/08/2020] [Accepted: 07/08/2020] [Indexed: 12/22/2022]
Abstract
Two novel compounds, 2-(2-hydroxyethylthio)-5,8-dimethoxy-1,4-naphthoquinone (HEDMNQ) and 2-(6-hydroxyhexylthio)-5,8-dimethoxy-1,4-naphthoquinone (HHDMNQ), were synthesized to investigate the kill effects and mechanism of 1,4-naphthoquinone derivatives in lung cancer cells. The results of the CCK-8 assay showed that HEDMNQ and HHDMNQ had significant cytotoxic effects on A549, NCI-H23, and NCI-H460 NSCLC cells. Flow cytometry and western blot results indicated that HHDMNQ induced A549 cell cycle arrest at the G2/M phase by decreasing the expression levels of cyclin-dependent kinase 1/2 and cyclin B1. Fluorescence microscopy and flow cytometry results indicated that HHDMNQ could induce A549 cell apoptosis, and western blot analysis showed that HHDMNQ induced apoptosis through regulating the mitochondria pathway, as well as the MAPK, STAT3, and NF-κB signalling pathways. Flow cytometry results showed that intracellular reactive oxygen species (ROS) levels were increased after HHDMNQ treatment, and western blot showed that ROS could modulate the intrinsic pathway and MAPK, STAT3, and NF-κB signalling pathways. These effects were blocked by the ROS inhibitor N-acetyl-L-cysteine in A549 cells. Our findings suggest that compared with HEDMNQ, HHDMNQ had the stronger ability to inhibit the cell viability of lung cancer cells and induce apoptosis by regulating the ROS-mediated intrinsic pathway and MAPK/STAT3/NF-κB signalling pathways. Thus, HHDMNQ might be a potential antitumour compound for treating lung cancer.
Collapse
Affiliation(s)
- Gui-Nan Shen
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Cheng Wang
- Pharmacy Department, Daqing Oilfield General Hospital, Daqing 163001, China
| | - Ying-Hua Luo
- Department of Grass Science, College of Animal Science & Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Jia-Ru Wang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Rui Wang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Wan-Ting Xu
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Yi Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Dong-Jie Zhang
- Department of Food Science and Engineering, College of Food Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
- National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang 163319, China
| | - Cheng-Hao Jin
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
- Department of Food Science and Engineering, College of Food Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
- National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang 163319, China
| |
Collapse
|
28
|
Wilson CS, Prior TJ, Sandland J, Savoie H, Boyle RW, Murray BS. Homo‐ and Hetero‐dinuclear Arene‐Linked Osmium(II) and Ruthenium(II) Organometallics: Probing the Impact of Metal Variation on Reactivity and Biological Activity. Chemistry 2020; 26:11593-11603. [DOI: 10.1002/chem.202002052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/31/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Christopher S. Wilson
- Department of Chemistry and Biochemistry University of Hull Cottingham Road Hull HU6 7RX UK
| | - Timothy J. Prior
- Department of Chemistry and Biochemistry University of Hull Cottingham Road Hull HU6 7RX UK
| | - Jordon Sandland
- Department of Chemistry and Biochemistry University of Hull Cottingham Road Hull HU6 7RX UK
| | - Huguette Savoie
- Department of Chemistry and Biochemistry University of Hull Cottingham Road Hull HU6 7RX UK
| | - Ross W. Boyle
- Department of Chemistry and Biochemistry University of Hull Cottingham Road Hull HU6 7RX UK
| | - Benjamin S. Murray
- Department of Chemistry and Biochemistry University of Hull Cottingham Road Hull HU6 7RX UK
| |
Collapse
|
29
|
Sen S, Perrin MW, Sedgwick AC, Dunsky EY, Lynch VM, He XP, Sessler JL, Arambula JF. Toward multifunctional anticancer therapeutics: post-synthetic carbonate functionalisation of asymmetric Au(i) bis-N-heterocyclic carbenes. Chem Commun (Camb) 2020; 56:7877-7880. [PMID: 32520019 PMCID: PMC7368814 DOI: 10.1039/d0cc03339a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A post-synthetic strategy is reported that allows for functionalisation of Au(i)-bis NHCs via carbonate formation. The scope of this methodology was explored using both aromatic and aliphatic alcohols. As a demonstration of potential utility, the fluorescent Au(i)-bis NHC conjugate 5 was prepared; it was found to have enhanced stability when formulated with bovine serum albumin, localise within the mitochondria of A549 cells and do so without compromising the high cytotoxicity seen for the parent Au(i)-bis NHC system.
Collapse
Affiliation(s)
- Sajal Sen
- Department of Chemistry, University of Texas at Austin, 105 E 24th street A5300, Austin, TX 78712-1224, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Srinivasa Reddy T, Privér SH, Mirzadeh N, Luwor RB, Ganga Reddy V, Ramesan S, Bhargava SK. Antitumor and Antiangiogenic Properties of Gold(III) Complexes Containing Cycloaurated Triphenylphosphine Sulfide Ligands. Inorg Chem 2020; 59:5662-5673. [PMID: 32255617 DOI: 10.1021/acs.inorgchem.0c00423] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A family of stable anticancer gold(III)-based therapeutic complexes containing cyclometalated triphenylphosphine sulfide ligands have been prepared. The anticancer properties of the newly developed complexes [AuCl2{κ2-2-C6H4P(S)Ph2}] (1), [Au(κ2-S2CNEt2){κ2-2-C6H4P(S)Ph2}]PF6 (2), [AuCl(dppe){κC-2-C6H4P(S)Ph2}]Cl (3), and [Au(dppe){κ2-2-C6H4P(S)Ph2}][PF6]2 (4) were investigated toward five human cancer cell lines [cervical (HeLa), lung (A549), prostate (PC3), fibrosarcoma (HT1080), and breast (MDA-MB-231)]. In vitro cytotoxicity studies revealed that compounds 2-4 displayed potent cell growth inhibition (IC50 values in the range of 0.17-2.50 μM), comparable to, or better than, clinically used cisplatin (0.63-6.35 μM). Preliminary mechanistic studies using HeLa cells indicate that the cytotoxic effects of the compounds involve apoptosis induction through ROS accumulation. Compound 2 also demonstrated significant inhibition of endothelial cell migration and tube formation in the angiogenesis process. Evaluation of the in vivo antitumor activity of compound 2 in nude mice bearing cervical cancer cell (HeLa) xenografts indicated significant tumor growth inhibition (55%) with 1 mg/kg dose (every 3 days) compared with the same dose of cisplatin (28%). These results demonstrate the potential of gold(III) complexes containing cyclometalated triphenylphosphine sulfide ligands as novel metal-based anticancer agents.
Collapse
Affiliation(s)
- T Srinivasa Reddy
- Centre for Advanced Materials and Industrial Chemistry, School of Science, RMIT University, G.P.O. Box 2476, Melbourne 3001, Australia
| | - Steven H Privér
- Centre for Advanced Materials and Industrial Chemistry, School of Science, RMIT University, G.P.O. Box 2476, Melbourne 3001, Australia
| | - Nedaossadat Mirzadeh
- Centre for Advanced Materials and Industrial Chemistry, School of Science, RMIT University, G.P.O. Box 2476, Melbourne 3001, Australia
| | - Rodney B Luwor
- Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville 3050, Australia
| | - Velma Ganga Reddy
- Centre for Advanced Materials and Industrial Chemistry, School of Science, RMIT University, G.P.O. Box 2476, Melbourne 3001, Australia
| | - Shwathy Ramesan
- School of Engineering, RMIT University, G.P.O. Box 2476, Melbourne 3001, Australia
| | - Suresh K Bhargava
- Centre for Advanced Materials and Industrial Chemistry, School of Science, RMIT University, G.P.O. Box 2476, Melbourne 3001, Australia
| |
Collapse
|
31
|
Cytotoxicity and reactivity of a redox active 1,4-quinone-pyrazole compound and its Ru(II)-p-cymene complex. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
32
|
Recent progress in the development of organometallics for the treatment of cancer. Curr Opin Chem Biol 2019; 56:28-34. [PMID: 31812831 DOI: 10.1016/j.cbpa.2019.11.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 01/04/2023]
Abstract
From their early successes in medicine, organometallic compounds continue to attract interest as potential chemotherapeutics to treat a range of diseases. Here, we show from recent literature selected largely from the last two years that organometallics offer unique opportunities in medicine and, increasingly, a mechanistic-based approach is applied to their development, which has not always been the case.
Collapse
|
33
|
Cao S, Fan J, Sun W, Li F, Li K, Tai X, Peng X. A novel Mn-Cu bimetallic complex for enhanced chemodynamic therapy with simultaneous glutathione depletion. Chem Commun (Camb) 2019; 55:12956-12959. [PMID: 31602444 DOI: 10.1039/c9cc06040e] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A bimetallic complex, containing Mn(ii) and Cu(ii) moieties, was synthesized for chemodynamic therapy (CDT) of cancer. The complex was capable of generating a hydroxyl radical (˙OH) via a Fenton-like reaction involving a Mn complex, and simultaneously depleting glutathione via a Cu complex induced oxidative reaction, thereby enhancing the efficiency of CDT.
Collapse
Affiliation(s)
- Shuhua Cao
- College of Chemistry, Chemical and Environmental Engineering, Weifang University, No. 5147 Dongfeng Street, Weifang, 261061, China. and State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, P. R. China.
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, P. R. China.
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, P. R. China.
| | - Fahui Li
- School of Pharmacy, Weifang Medical University, No. 7166 Baotong Street, Weifang, 261053, China
| | - Kaoxue Li
- College of Chemistry, Chemical and Environmental Engineering, Weifang University, No. 5147 Dongfeng Street, Weifang, 261061, China.
| | - Xishi Tai
- College of Chemistry, Chemical and Environmental Engineering, Weifang University, No. 5147 Dongfeng Street, Weifang, 261061, China.
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, P. R. China.
| |
Collapse
|
34
|
Kim I, Bang WY, Park WH, Han EH, Lee E. Photo-crosslinkable elastomeric protein-derived supramolecular peptide hydrogel with controlled therapeutic CO-release. NANOSCALE 2019; 11:17327-17333. [PMID: 31517371 DOI: 10.1039/c9nr06115k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
As an attempt to establish a method for efficient and safe administration of therapeutic carbon monoxide (CO) to the human body, supramolecular nanoplatforms incorporated with CO-releasing molecules (CORMs) have recently been developed. In particular, hydrogel scaffolds have attracted considerable attention due to the possibility of site-specific and controlled liberation of CO. However, it would be greatly beneficial to enhance the mechanical strength of hydrogels to widen their applicability in biomedical, pharmaceutical, and surgical sectors. Herein, we report a visible light-mediated crosslinkable supramolecular CO-releasing hydrogel (CORH), based on the fibrillar assembly of elastomeric protein-derived tyrosine-containing short peptides. A photo-driven dimerization of tyrosine moieties located on the fibrillar surface of CORH, accelerated by a Ru-based catalyst, results in the entanglement and bundling of nanofibrils that significantly increases the mechanical strength and stability of the CORH, which allows prolonged CO-liberation through limiting the contact of CORMs with water molecules. The contact probability of a CORM with water determined by the spatial position of the CORM on the fibrils containing a crosslinkable tyrosine moiety that affects CO-releasing behavior was confirmed by adjusting the CORM position closer to or farther from the tyrosine in the peptide sequence. A bulky CORM closely located to the tyrosine in a peptide inhibited the effective dityrosine formation of tyrosine on the fibril surface, resulting in loose bundling of nanofibrils in the CORH and facilitating the release of CO through the exchange with water. The photo-crosslinked CORH demonstrated a potent cytoprotective effect on oxidatively stressed cardiomyocytes, as expected. This work could provide a useful insight for the practical application of gasotransmitters as functional nanomaterials in pharmaceutical and biomedical fields.
Collapse
Affiliation(s)
- Inhye Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| | - Woo-Young Bang
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| | - Won Ho Park
- Department of Advanced Organic Materials and Textile Engineering System, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Eun Hee Han
- Division of Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Republic of Korea.
| | - Eunji Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
35
|
Sen S, Li Y, Lynch V, Arumugam K, Sessler JL, Arambula JF. Expanding the biological utility of bis-NHC gold(i) complexes through post synthetic carbamate conjugation. Chem Commun (Camb) 2019; 55:10627-10630. [PMID: 31429450 PMCID: PMC7039396 DOI: 10.1039/c9cc05635a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report the synthesis of a novel hydroxyl-functionalised heteroleptic bis-NHC gold(i) complex that permits conjugation to various amines via carbamate bond formation. The resulting derivatives were studied in vitro using cell proliferation assays and fluorescent microscopic imaging of human cancer cell lines.
Collapse
Affiliation(s)
- Sajal Sen
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712-1224, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Montanel‐Pérez S, Elizalde R, Laguna A, Villacampa MD, Gimeno MC. Synthesis of Bioactive
N
‐Acyclic Gold(I) and Gold(III) Diamino Carbenes with Different Ancillary Ligands. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900606] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Sara Montanel‐Pérez
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC‐Universidad de Zaragoza 50009 Zaragoza Spain
| | - Raquel Elizalde
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC‐Universidad de Zaragoza 50009 Zaragoza Spain
| | - Antonio Laguna
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC‐Universidad de Zaragoza 50009 Zaragoza Spain
| | - M. Dolores Villacampa
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC‐Universidad de Zaragoza 50009 Zaragoza Spain
| | - M. Concepción Gimeno
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC‐Universidad de Zaragoza 50009 Zaragoza Spain
| |
Collapse
|
37
|
Ullah F, Shanmuganathan S, Schindler C, Jones PG, Heinicke JW. Influence of pyrido-annulation on N,N′-dineopentyl-imidazolin-2-ylidene and associated transition metal complexes; comparison with benzo-, naphtho- and quinoxalino-annulation. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
38
|
Jayaraman S, Guel RAC, Malek K, Arumugam K. Di- μ-acetato-bis{[3-benzyl-1-(2,4,6-trimethylphenyl)imidazol-2-ylidene]silver(I)}. IUCRDATA 2019; 4:x191003. [PMID: 37621914 PMCID: PMC10448773 DOI: 10.1107/s2414314619010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/12/2019] [Indexed: 11/10/2022] Open
Abstract
The title compound, [Ag2(C2H3O2)2(C19H20N2)2] (2), was readily synthesized by treatment of 3-benzyl-1-(2,4,6-trimethylphenyl)imidazolium chloride with silver acetate. The solution structure of the complex was analyzed by NMR spectroscopy, while the solid-state structure was confirmed by single-crystal X-ray diffraction studies. Compound 2 crystallizes in the triclinic space group P 1 ¯ , with a silver-to-carbene bond length (Ag-CNHC) of 2.084 (3) Å. The molecule resides on an inversion center, so that only half of the molecule is crystallographically unique. The planes defined by the two imidazole rings are parallel to each other, but not coplanar [interplanar distance is 0.662 (19) Å]. The dihedral angles between the imidazole ring and the benzyl and mesityl rings are 77.87 (12) and 72.86 (11)°, respectively. The crystal structure features π-π stacking interactions between the benzylic groups of inversion-related (-x + 1, -y + 1, -z + 1) molecules and C-H ⋯ π interactions.
Collapse
Affiliation(s)
- Selvakumar Jayaraman
- Department of Chemistry, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA
| | | | - Kotiba Malek
- Department of Chemistry, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA
| | - Kuppuswamy Arumugam
- Department of Chemistry, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA
| |
Collapse
|
39
|
Hanna J, Hossain GS, Kocerha J. The Potential for microRNA Therapeutics and Clinical Research. Front Genet 2019; 10:478. [PMID: 31156715 PMCID: PMC6532434 DOI: 10.3389/fgene.2019.00478] [Citation(s) in RCA: 530] [Impact Index Per Article: 88.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/03/2019] [Indexed: 12/15/2022] Open
Abstract
As FDA-approved small RNA drugs start to enter clinical medicine, ongoing studies for the microRNA (miRNA) class of small RNAs expand its preclinical and clinical research applications. A growing number of reports suggest a significant utility of miRNAs as biomarkers for pathogenic conditions, modulators of drug resistance, and/or as drugs for medical intervention in almost all human health conditions. The pleiotropic nature of this class of nonprotein-coding RNAs makes them particularly attractive drug targets for diseases with a multifactorial origin and no current effective treatments. As candidate miRNAs begin to proceed toward initiation and completion of potential phase 3 and 4 trials in the future, the landscape of both diagnostic and interventional medicine will arguably continue to evolve. In this mini-review, we discuss miRNA drug discovery development and their current status in clinical trials.
Collapse
Affiliation(s)
- Johora Hanna
- Nova Clinical Research, LLC, Bradenton, FL, United States
| | - Gazi S Hossain
- Nova Clinical Research, LLC, Bradenton, FL, United States
| | - Jannet Kocerha
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, GA, United States
| |
Collapse
|
40
|
Bian M, Fan R, Zhao S, Liu W. Targeting the Thioredoxin System as a Strategy for Cancer Therapy. J Med Chem 2019; 62:7309-7321. [PMID: 30963763 DOI: 10.1021/acs.jmedchem.8b01595] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Thioredoxin reductase (TrxR) participates in the regulation of redox reactions in organisms. It works mainly via its substrate molecule, thioredoxin, to maintain the redox balance and regulate signal transduction, which controls cell proliferation, differentiation, death, and other important physiological processes. In recent years, increasing evidence has shown that the overactivation of TrxR is related to the development of tumors. The exploration of TrxR-targeted antitumor drugs has attracted wide attention and is expected to provide new therapies for cancer treatment. In this perspective, we highlight the specific relationship between TrxR and apoptotic signaling pathways. The cytoplasm and mitochondria both contain TrxR, resulting in the activation of apoptosis. TrxR activity influences reactive oxygen species (ROS) and further regulates the inflammatory signaling pathway. In addition, we discuss representative TrxR inhibitors with anticancer activity and analyze the challenges in developing TrxR inhibitors as anticancer drugs.
Collapse
Affiliation(s)
- Mianli Bian
- Institute of Chinese Medicine, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , P. R. China
| | - Rong Fan
- Institute of Chinese Medicine, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , P. R. China
| | - Sai Zhao
- Institute of Chinese Medicine, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , P. R. China.,Institute of New Medicine Research , Nanjing Hicin Pharmaceutical Co. Ltd. , Nanjing 210046 , P. R. China
| | - Wukun Liu
- Institute of Chinese Medicine, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , P. R. China.,State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing 210009 , P. R. China
| |
Collapse
|
41
|
Selvakumar J, Miles MH, Grossie DA, Arumugam K. Synthesis and molecular structure of biologically significant bis(1,3-dimesityl-4,5-naphthoquinoimidazol-2-ylidene)gold(I) complexes with chloride and dichloridoaurate counter-ions. Acta Crystallogr C Struct Chem 2019; 75:462-468. [PMID: 30957792 PMCID: PMC6452777 DOI: 10.1107/s2053229619003292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/07/2019] [Indexed: 12/16/2022] Open
Abstract
Diffraction-quality single crystals of two gold(I) complexes, namely bis(1,3-dimesityl-4,5-naphthoquinoimidazol-2-ylidene)gold(I) chloride benzene monosolvate, [Au(C29H26N2O2)2]Cl·C6H6 or [(NQMes)2Au]Cl·C6H6, 2, and bis(1,3-dimesityl-4,5-naphthoquinoimidazol-2-ylidene)gold(I) dichloridoaurate(I) dichloromethane disolvate, [Au(C29H26N2O2)2][AuCl2]·2CH2Cl2 or [(NQMes)2Au][AuCl2]·2CH2Cl2, 4, were isolated and studied with the aid of single-crystal X-ray diffraction analysis. Compound 2 crystallizes in a monoclinic space group C2/c with eight molecules in the unit cell, while compound 4 crystallizes in the triclinic space group P-1 with two molecules in the unit cell. The crystal lattice of compound 2 reveals C-H...Cl- interactions that are present throughout the entire structure representing head-to-tail contacts between the aromatic (C-H) hydrogens of naphthoquinone and Cl- counter-ions. Compound 4 stacks with the aid of short interactions between a naphthoquinone O atom of one molecule and the mesityl methyl group of another molecule along the a axis, leading to a one-dimensional strand that is held together by strong π-η2 interactions between the imidazolium backbone and the [AuCl2]- counter-ion. The bond angles defined by the AuI atom and two carbene C atoms [C(carbene)-Au-C(carbene)] in compounds 2 and 4 are nearly rectilinear, with an average value of ∼174.1 [2]°. Though 2 and 4 share the same cation, they differ in their counter-anion, which alters the crystal lattice of the two compounds. The knowledge gleaned from these studies is expected to be useful in understanding the molecular interactions of 2 and 4 under physiological conditions.
Collapse
Affiliation(s)
- Jayaraman Selvakumar
- Department of Chemistry, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA
| | - Meredith H. Miles
- Department of Chemistry, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA
| | - David A. Grossie
- Department of Chemistry, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA
| | - Kuppuswamy Arumugam
- Department of Chemistry, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA
| |
Collapse
|
42
|
Sharma A, Arambula JF, Koo S, Kumar R, Singh H, Sessler JL, Kim JS. Hypoxia-targeted drug delivery. Chem Soc Rev 2019; 48:771-813. [PMID: 30575832 PMCID: PMC6361706 DOI: 10.1039/c8cs00304a] [Citation(s) in RCA: 321] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hypoxia is a state of low oxygen tension found in numerous solid tumours. It is typically associated with abnormal vasculature, which results in a reduced supply of oxygen and nutrients, as well as impaired delivery of drugs. The hypoxic nature of tumours often leads to the development of localized heterogeneous environments characterized by variable oxygen concentrations, relatively low pH, and increased levels of reactive oxygen species (ROS). The hypoxic heterogeneity promotes tumour invasiveness, metastasis, angiogenesis, and an increase in multidrug-resistant proteins. These factors decrease the therapeutic efficacy of anticancer drugs and can provide a barrier to advancing drug leads beyond the early stages of preclinical development. This review highlights various hypoxia-targeted and activated design strategies for the formulation of drugs or prodrugs and their mechanism of action for tumour diagnosis and treatment.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Chemistry, Korea University, Seoul, 02841, Korea.
| | | | | | | | | | | | | |
Collapse
|
43
|
Mora M, Gimeno MC, Visbal R. Recent advances in gold–NHC complexes with biological properties. Chem Soc Rev 2019; 48:447-462. [DOI: 10.1039/c8cs00570b] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This tutorial review covers the recent advances made in the study of gold complexes containing N-heterocyclic carbene ligands with biological properties.
Collapse
Affiliation(s)
- Malka Mora
- Departamento de Ciencias Naturales y Exactas
- Universidad de la Costa
- 080002 Barranquilla
- Colombia
| | - M. Concepción Gimeno
- Departamento de Química Inorgánica
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)
- CSIC-Universidad de Zaragoza
- 50009 Zaragoza
- Spain
| | - Renso Visbal
- Departamento de Ciencias Naturales y Exactas
- Universidad de la Costa
- 080002 Barranquilla
- Colombia
- Departamento de Gestión Industrial
| |
Collapse
|
44
|
Schmidt C, Albrecht L, Balasupramaniam S, Misgeld R, Karge B, Brönstrup M, Prokop A, Baumann K, Reichl S, Ott I. A gold(i) biscarbene complex with improved activity as a TrxR inhibitor and cytotoxic drug: comparative studies with different gold metallodrugs. Metallomics 2019; 11:533-545. [DOI: 10.1039/c8mt00306h] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A stable gold(i) biscarbene complex with improved activity as a TrxR inhibitor and cytotoxic metallodrug.
Collapse
|
45
|
Zeng L, Li J, Zhang C, Zhang YK, Zhang W, Huang J, Ashby CR, Chen ZS, Chao H. An organoruthenium complex overcomes ABCG2-mediated multidrug resistance via multiple mechanisms. Chem Commun (Camb) 2019; 55:3833-3836. [DOI: 10.1039/c9cc00882a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An organoruthenium complex, RuF, via multiple mechanisms, exhibited effective anticancer activity in vitro and in vivo for surmounting multidrug resistance mediated by the ABCG2 transporter.
Collapse
Affiliation(s)
- Leli Zeng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Jia Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Chen Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Yun-Kai Zhang
- College of Pharmacy and Health Sciences
- St. John's University
- New York
- USA
| | - Wei Zhang
- College of Pharmacy and Health Sciences
- St. John's University
- New York
- USA
- Institute of Plastic Surgery
| | - Juanjuan Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Charles R. Ashby
- College of Pharmacy and Health Sciences
- St. John's University
- New York
- USA
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences
- St. John's University
- New York
- USA
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| |
Collapse
|
46
|
Ortega E, Yellol JG, Rothemund M, Ballester FJ, Rodríguez V, Yellol G, Janiak C, Schobert R, Ruiz J. A new C,N-cyclometalated osmium(ii) arene anticancer scaffold with a handle for functionalization and antioxidative properties. Chem Commun (Camb) 2018; 54:11120-11123. [PMID: 30204166 DOI: 10.1039/c8cc06427j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A series of six osmium(ii) complexes of the type [(η6-p-cymene)Os(C^N)X] (X = chlorido or acetato) containing benzimidazole C^N ligands with an ester group as a handle for further functionalization have been synthesized. They exhibit IC50 values in the low micromolar range in a panel of cisplatin (CDDP)-resistant cancer cells (approximately 10× more cytotoxic than CDDP in MCF-7), decrease the levels of intracellular ROS and reduce the NAD+ coenzyme, and inhibit tubulin polymerization. This discovery could open the door to a new large family of osmium(ii)-based bioconjugates with diverse modes of action.
Collapse
Affiliation(s)
- Enrique Ortega
- Departamento de Química Inorgánica and Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, and Biomedical Research Institute of Murcia (IMIB-Arrixaca), E-30071 Murcia, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Tunes LG, Allen JM, Zayas RM, do Monte-Neto RL. Planarians as models to investigate the bioactivity of gold(I) complexes in vivo. Sci Rep 2018; 8:16180. [PMID: 30385794 PMCID: PMC6212559 DOI: 10.1038/s41598-018-34558-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/18/2018] [Indexed: 02/02/2023] Open
Abstract
Gold(I)-containing complexes are used in drug discovery research for rheumatoid arthritis, cancer, and parasitic infections. In this study, we tested the bioactivity of gold(I) complexes in vivo using planarians. The planarian Schmidtea mediterranea possesses orthologues of tumor suppressor genes, such as p53, that, when silenced, cause deregulation of cell proliferation and apoptosis. In this context, we tested two triethylphosphine-gold(I) complexes (AdO and AdT) to determine if they can attenuate phenotypes that result from p53 inhibition. First, we identified the drug concentration that did not affect survival or regeneration and evaluated the drug's effect on cell division and apoptosis. We found that AdT treatment decreased the number of mitotic cells and that all drug treatments increased the number of apoptotic cells. We then performed p53(RNAi) and drug treatments concomitantly and observed the phenotype progression. Drug treatment increased survival three-fold and decreased apoptosis, which resulted in an attenuated phenotype. Our results indicate that planarians can be treated with gold(I) complexes, and that this treatment can diminish the p53(RNAi) phenotype and extend survival. In this work we show that planarians can be used as a model to study the in vivo effect of gold(I) complexes and to further investigate their mechanisms of action.
Collapse
Affiliation(s)
- Luiza G Tunes
- Instituto René Rachou - Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
- Department of Biology, San Diego State University, San Diego, California, USA
| | - John M Allen
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Ricardo M Zayas
- Department of Biology, San Diego State University, San Diego, California, USA.
| | | |
Collapse
|
48
|
Kim I, Han EH, Bang W, Ryu J, Min J, Nam HC, Park WH, Chung Y, Lee E. Supramolecular Carbon Monoxide‐Releasing Peptide Hydrogel Patch. ADVANCED FUNCTIONAL MATERIALS 2018; 28. [DOI: 10.1002/adfm.201803051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Indexed: 01/06/2025]
Abstract
AbstractCarbon monoxide (CO) is recently accepted as a therapeutic molecule that exhibits remarkable biological actions, including anti‐inflammation, antiapoptosis, and cytoprotection, at a physiological level. For clinical use without the side effect of tissue hypoxia, which arises from the uncontrolled administration of CO in the human body, CO‐releasing molecules (CORMs) are developed to ensure safe and efficient CO‐delivery. Herein, a syringe‐injectable CO‐releasing peptide hydrogel (COH) and a corresponding bioadhesive hydrogel patch (COHP), developed by rational supramolecular chemistry, to enhance the therapeutic efficacy of CO with controllable CO‐release to a specific tissue is report. The injectable COH is prepared by self‐assembly of the CORM‐attached peptides with a gel‐forming diphenylalanine‐derivative, resulting in fibrillar networks and exhibiting prolonged CO‐release compared with CORMs. Furthermore, Ca2+‐chelating and mussel‐derived catechol‐functionalized peptides are introduced to afford a mechanically rigid, bioadhesive COHP that elicits cytoprotective and anti‐inflammatory activities. The supramolecular COHP can be utilized in the efficient CO‐delivery to the site of interest by conformal contacts, making it a promising scaffold for biomedical applications.
Collapse
Affiliation(s)
- Inhye Kim
- School of Materials Science and Engineering Gwangju Institute of Science and Technology Gwangju 61005 Republic of Korea
- Graduate School of Analytical Science and Technology Chungnam National University Daejeon 34134 Republic of Korea
| | - Eun Hee Han
- Division of Bioconvergence Analysis Korea Basic Science Institute Cheongju 28119 Republic of Korea
- Immunotherapy Convergence Research Center Korea Research Institute of Bioscience and Biotechnology Daejeon 34141 Republic of Korea
| | - Woo‐Young Bang
- Graduate School of Analytical Science and Technology Chungnam National University Daejeon 34134 Republic of Korea
| | - Jooyeon Ryu
- Graduate School of Analytical Science and Technology Chungnam National University Daejeon 34134 Republic of Korea
| | - Jin‐Young Min
- Graduate School of Analytical Science and Technology Chungnam National University Daejeon 34134 Republic of Korea
- Division of Bioconvergence Analysis Korea Basic Science Institute Cheongju 28119 Republic of Korea
| | - Hyeong Chan Nam
- Department of Advanced Organic Materials and Textile Engineering System Chungnam National University Daejeon 34134 Republic of Korea
| | - Won Ho Park
- Department of Advanced Organic Materials and Textile Engineering System Chungnam National University Daejeon 34134 Republic of Korea
| | - Young‐Ho Chung
- Division of Bioconvergence Analysis Korea Basic Science Institute Cheongju 28119 Republic of Korea
| | - Eunji Lee
- School of Materials Science and Engineering Gwangju Institute of Science and Technology Gwangju 61005 Republic of Korea
| |
Collapse
|
49
|
Wang JR, Shen GN, Luo YH, Piao XJ, Shen M, Liu C, Wang Y, Meng LQ, Zhang Y, Wang H, Li JQ, Xu WT, Liu Y, Sun HN, Han YH, Jin MH, Cao LK, Jin CH. The compound 2-(naphthalene-2-thio)-5,8-dimethoxy-1,4-naphthoquinone induces apoptosis via reactive oxygen species-regulated mitogen-activated protein kinase, protein kinase B, and signal transducer and activator of transcription 3 signaling in human gastric cancer cells. Drug Dev Res 2018; 79:295-306. [PMID: 30222185 DOI: 10.1002/ddr.21442] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/12/2018] [Accepted: 06/18/2018] [Indexed: 12/18/2022]
Abstract
Hit, Lead & Candidate Discovery It is reported that 1,4-naphthoquinones and their derivatives have potent antitumor activity in various cancers, although their clinical application is limited by observed side effects. To improve the therapeutic efficacy of naphthoquinones in the treatment of cancer and to reduce side effects, we synthesized a novel naphthoquinone derivative, 2-(naphthalene-2-thio)-5,8-dimethoxy-1,4-naphthoquinone (NTDMNQ). In this study, we explored the effects of NTDMNQ on apoptosis in gastric cancer cells with a focus on reactive oxygen species (ROS) production. Our results demonstrated that NTDMNQ exhibited the cytotoxic effects on gastric cancer cells in a dose-dependent manner. NTDMNQ significantly induced mitochondrial-related apoptosis in AGS cells and increased the accumulation of ROS. However, pre-treatment with N-acetyl-L-cysteine (NAC), an ROS scavenger, inhibited the NTDMNQ-induced apoptosis. In addition, NTDMNQ increased the phosphorylation of p38 kinase and c-Jun N-terminal kinase (JNK) and decreased the phosphorylation of extracellular signal-regulated kinase (ERK), protein kinase B (Akt), and Signal Transducer and Activator of Transcription 3 (STAT3); these effects were blocked by mitogen-activated protein kinase (MAPK) inhibitor and NAC. Taken together, the present findings indicate that NTDMNQ-induced gastric cancer cell apoptosis via ROS-mediated regulation of the MAPK, Akt, and STAT3 signaling pathways. Therefore, NTDMNQ may be a potential treatment for gastric cancer as well as other tumor types.
Collapse
Affiliation(s)
- Jia-Ru Wang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Gui-Nan Shen
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Ying-Hua Luo
- College of Animal Science & Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xian-Ji Piao
- Department of Gynaecology and Obstetrics, The Fifth Affiliated Hospital of Harbin Medical University, Daqing, China
| | - Meng Shen
- College of Food Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Chang Liu
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yue Wang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Ling-Qi Meng
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yi Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hao Wang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jin-Qian Li
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Wan-Ting Xu
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yang Liu
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hu-Nan Sun
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Ying-Hao Han
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Mei-Hua Jin
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Long-Kui Cao
- College of Food Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Cheng-Hao Jin
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China.,College of Food Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
50
|
Zhang C, Maddelein ML, Wai-Yin Sun R, Gornitzka H, Cuvillier O, Hemmert C. Pharmacomodulation on Gold-NHC complexes for anticancer applications - is lipophilicity the key point? Eur J Med Chem 2018; 157:320-332. [PMID: 30099254 DOI: 10.1016/j.ejmech.2018.07.070] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/24/2018] [Accepted: 07/29/2018] [Indexed: 12/20/2022]
Abstract
A series of four new mononuclear cationic gold(I) complexes containing nitrogen functionalized N-heterocyclic carbenes (NHCs) was synthesized and fully characterized by spectroscopic methods. The X-ray structures of three complexes are presented. These lipophilic gold(I) complexes originate from a pharmacomodulation of previously described gold(I)-NHC complexes, by replacing an aliphatic spacer with an aromatic one. The Log P values of the resulting complexes increased by 0.7-1.5, depending on the substituents in comparison to the aliphatic-linker systems. The new series of complexes has been investigated in vitro for their anti-cancer activities in PC-3 (prostate cancer) and T24 (bladder cancer) cell lines and in the non-cancerous MC3T3 (osteoblast) cell line. All tested complexes show high activities against the cancer cell lines with GI50 values lower than 500 nM. One complex (11) has been selected for further investigations. It has been tested in vitro in six cancer cell lines from different origins (prostate, bladder, lung, bone, liver and breast) and two non-cancerous cell lines (osteoblasts, fibroblasts). Moreover, cellular uptake measurements were indicative of a good bioavailability. By various biochemical assays, this complex was found to effectively inhibit the thioredoxin reductase (TrxR) and its cytotoxicity towards prostate PC-3, bladder T24 and liver HepG2 cells was found to be ROS-dependent.
Collapse
Affiliation(s)
- Chen Zhang
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marie-Lise Maddelein
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Raymond Wai-Yin Sun
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, PR China
| | - Heinz Gornitzka
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Olivier Cuvillier
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | | |
Collapse
|