1
|
Marchi-Delapierre C, Cavazza C, Ménage S. EcNikA, a versatile tool in the field of artificial metalloenzymes. J Inorg Biochem 2025; 262:112740. [PMID: 39426332 DOI: 10.1016/j.jinorgbio.2024.112740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/14/2024] [Accepted: 09/15/2024] [Indexed: 10/21/2024]
Abstract
This review describes the multiple advantages of using of EcNikA, a nickel transport protein, in the design of artificial metalloenzymes as alternative catalysts for synthetic biology. The rationale behind the strategy of artificial enzyme design is discussed, with particular emphasis on de novo active site reconstitution. The impact of the protein scaffold on the artificial active site and thus the final catalytic properties is detailed, highlighting the considerable aptitude of hybrid systems to catalyze selective reactions, from alkene to thioether transformations (epoxidation, hydroxychlorination, sulfoxidation). The different catalytic approaches - from in vitro to in cristallo - are compared, revealing the considerable advantages of protein crystals in terms of stabilization and acceleration of reaction kinetics. The versatility of proteins, based on metal and ligand diversity and medium/physical conditions, are thus illustrated for oxidation catalysis.
Collapse
Affiliation(s)
| | - Christine Cavazza
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, CBM, F-38000 Grenoble, France
| | - Stéphane Ménage
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, CBM, F-38000 Grenoble, France.
| |
Collapse
|
2
|
Morita Y, Kubo H, Matsumoto R, Fujieda N. A thiopyridine-bound mirror-image copper center in an artificial non-heme metalloenzyme. J Inorg Biochem 2024; 260:112694. [PMID: 39167879 DOI: 10.1016/j.jinorgbio.2024.112694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024]
Abstract
Artificial metalloenzymes, in which a metal complex and protein matrix are combined, have been synthesized to catalyze stereoselective reactions using the chiral environment provided by the protein cavity. Artificial metalloenzymes can be engineered by the chemical modification and mutagenesis of the protein matrix. We developed artificial non-heme metalloenzymes using a cupin superfamily protein (TM1459) with a 4-His tetrad-metal-binding motif. The Cu-bound H52A/C106D mutant with 3-His triad showed a S-enantioselective Michael addition of nitromethane to α,β-unsaturated ketone, 2-aza-chalcone 1. In this study, we demonstrated a chemical modification near the copper-binding site of this mutant to reverse its enantioselectivity. For chemical modification, the amino acid on the Si-face of the binding state of 1 to the copper center was replaced with Cys, followed by reaction with 4,4'-dithiopyridine (4-PDS) to form S-(pyridin-4-ylthio)cysteine (Cys-4py). Cu-bound I49C-4py/H52A/C106D showed reversal of the enantioselectivity from S-form to R-form (ee = 71%, (R)). The effect of steric hindrance of the amino acids at position 49 on enantioselectivity was investigated using I49X/H52A/C106D mutants (X = A, C, I, F, and W). Additionally, chemical modification with 2,2'-dithiopyridine (2-PDS) produced I49-2py/H52A/C106D, which showed lower R-enantioselectivity than I49-4py/H52A/C106D. Among the mutants, the 4py-modification on the Si-face was the most effective in reversing the enantioselectivity. By tuning the Re-face side, the H54A mutation introduced into the I49C-4py/H52A/C106D increased the R-enantioselectivity (ee = 88%, (R)). X-ray crystallography revealed a coordinated structure with ligation of thiopyridine in Cu-bound I49C-4py/H52A/H54A/C106D.
Collapse
Affiliation(s)
- Yoshitsugu Morita
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599-8531, Japan.
| | - Hiroki Kubo
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599-8531, Japan
| | - Ryusei Matsumoto
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599-8531, Japan
| | - Nobutaka Fujieda
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599-8531, Japan.
| |
Collapse
|
3
|
Brouwer B, Della-Felice F, Illies JH, Iglesias-Moncayo E, Roelfes G, Drienovská I. Noncanonical Amino Acids: Bringing New-to-Nature Functionalities to Biocatalysis. Chem Rev 2024; 124:10877-10923. [PMID: 39329413 PMCID: PMC11467907 DOI: 10.1021/acs.chemrev.4c00136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024]
Abstract
Biocatalysis has become an important component of modern organic chemistry, presenting an efficient and environmentally friendly approach to synthetic transformations. Advances in molecular biology, computational modeling, and protein engineering have unlocked the full potential of enzymes in various industrial applications. However, the inherent limitations of the natural building blocks have sparked a revolutionary shift. In vivo genetic incorporation of noncanonical amino acids exceeds the conventional 20 amino acids, opening new avenues for innovation. This review provides a comprehensive overview of applications of noncanonical amino acids in biocatalysis. We aim to examine the field from multiple perspectives, ranging from their impact on enzymatic reactions to the creation of novel active sites, and subsequent catalysis of new-to-nature reactions. Finally, we discuss the challenges, limitations, and promising opportunities within this dynamic research domain.
Collapse
Affiliation(s)
- Bart Brouwer
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Franco Della-Felice
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Jan Hendrik Illies
- Department
of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - Emilia Iglesias-Moncayo
- Department
of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - Gerard Roelfes
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Ivana Drienovská
- Department
of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Birch-Price Z, Hardy FJ, Lister TM, Kohn AR, Green AP. Noncanonical Amino Acids in Biocatalysis. Chem Rev 2024; 124:8740-8786. [PMID: 38959423 PMCID: PMC11273360 DOI: 10.1021/acs.chemrev.4c00120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
In recent years, powerful genetic code reprogramming methods have emerged that allow new functional components to be embedded into proteins as noncanonical amino acid (ncAA) side chains. In this review, we will illustrate how the availability of an expanded set of amino acid building blocks has opened a wealth of new opportunities in enzymology and biocatalysis research. Genetic code reprogramming has provided new insights into enzyme mechanisms by allowing introduction of new spectroscopic probes and the targeted replacement of individual atoms or functional groups. NcAAs have also been used to develop engineered biocatalysts with improved activity, selectivity, and stability, as well as enzymes with artificial regulatory elements that are responsive to external stimuli. Perhaps most ambitiously, the combination of genetic code reprogramming and laboratory evolution has given rise to new classes of enzymes that use ncAAs as key catalytic elements. With the framework for developing ncAA-containing biocatalysts now firmly established, we are optimistic that genetic code reprogramming will become a progressively more powerful tool in the armory of enzyme designers and engineers in the coming years.
Collapse
Affiliation(s)
| | | | | | | | - Anthony P. Green
- Manchester Institute of Biotechnology,
School of Chemistry, University of Manchester, Manchester M1 7DN, U.K.
| |
Collapse
|
5
|
Chen W, Chen B, Li X, Xu G, Yang L, Wu J, Yu H. Non-canonical amino acids uncover the significant impact of Tyr671 on Taq DNA polymerase catalytic activity. FEBS J 2024; 291:2876-2896. [PMID: 38362811 DOI: 10.1111/febs.17091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/20/2023] [Accepted: 02/01/2024] [Indexed: 02/17/2024]
Abstract
Responsible for synthesizing the complementary strand of the DNA template, DNA polymerase is a crucial enzyme in DNA replication, recombination and repair. A highly conserved tyrosine (Tyr), located at the C-terminus of the O-helix in family A DNA polymerases, plays a critical role in enzyme activity and fidelity. Here, we combined the technology of genetic code extension to incorporate non-canonical amino acids and molecular dynamics (MD) simulations to uncover the mechanisms by which Tyr671 impacts substrate binding and conformation transitions in a DNA polymerase from Thermus aquaticus. Five non-canonical amino acids, namely l-3,4-dihydroxyphenylalanine (l-DOPA), p-aminophenylalanine (pAF), p-acetylphenylalanine (pAcF), p-cyanophenylalanine (pCNF) and p-nitrophenylalanine (pNTF), were individually incorporated at position 671. Strikingly, Y671pAF and Y671DOPA were active, but with lower activity compared to Y671F and wild-type. Y671pAF showed a higher fidelity than the Y671F, despite both possessing lower fidelity than the wild-type. Metadynamics and long-timescale MD simulations were carried out to probe the role of mutations in affecting protein structure, including open conformation, open-to-closed conformation transition, closed conformation, and closed-to-open conformation transition. The MD simulations clearly revealed that the size of the 671 amino acid residue and interactions with substrate or nearby residues were critical for Tyr671 to determine enzyme activity and fidelity.
Collapse
Affiliation(s)
- Wanyi Chen
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, China
| | - Binbin Chen
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, China
| | - Xinjia Li
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, China
| | - Gang Xu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Lirong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, China
| | - Jianping Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, China
| | - Haoran Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, China
| |
Collapse
|
6
|
Williams TL, Taily IM, Hatton L, Berezin AA, Wu Y, Moliner V, Świderek K, Tsai Y, Luk LYP. Secondary Amine Catalysis in Enzyme Design: Broadening Protein Template Diversity through Genetic Code Expansion. Angew Chem Int Ed Engl 2024; 63:e202403098. [PMID: 38545954 PMCID: PMC11497281 DOI: 10.1002/anie.202403098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Indexed: 04/20/2024]
Abstract
Secondary amines, due to their reactivity, can transform protein templates into catalytically active entities, accelerating the development of artificial enzymes. However, existing methods, predominantly reliant on modified ligands or N-terminal prolines, impose significant limitations on template selection. In this study, genetic code expansion was used to break this boundary, enabling secondary amines to be incorporated into alternative proteins and positions of choice. Pyrrolysine analogues carrying different secondary amines could be incorporated into superfolder green fluorescent protein (sfGFP), multidrug-binding LmrR and nucleotide-binding dihydrofolate reductase (DHFR). Notably, the analogue containing a D-proline moiety demonstrated both proteolytic stability and catalytic activity, conferring LmrR and DHFR with the desired transfer hydrogenation activity. While the LmrR variants were confined to the biomimetic 1-benzyl-1,4-dihydronicotinamide (BNAH) as the hydride source, the optimal DHFR variant favorably used the pro-R hydride from NADPH for stereoselective reactions (e.r. up to 92 : 8), highlighting that a switch of protein template could broaden the nucleophile option for catalysis. Owing to the cofactor compatibility, the DHFR-based secondary amine catalysis could be integrated into an enzymatic recycling scheme. This established method shows substantial potential in enzyme design, applicable from studies on enzyme evolution to the development of new biocatalysts.
Collapse
Affiliation(s)
- Thomas L. Williams
- School of Chemistry and Cardiff Catalysis InstituteCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUnited Kingdom
| | - Irshad M. Taily
- School of Chemistry and Cardiff Catalysis InstituteCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUnited Kingdom
| | - Lewis Hatton
- School of Chemistry and Cardiff Catalysis InstituteCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUnited Kingdom
| | - Andrey A Berezin
- School of Chemistry and Cardiff Catalysis InstituteCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUnited Kingdom
| | - Yi‐Lin Wu
- School of Chemistry and Cardiff Catalysis InstituteCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUnited Kingdom
| | - Vicent Moliner
- BioComp Group, Institute of Advanced Materials (INAM)Universitat Jaume I12071CastellóSpain
| | - Katarzyna Świderek
- BioComp Group, Institute of Advanced Materials (INAM)Universitat Jaume I12071CastellóSpain
| | - Yu‐Hsuan Tsai
- Institute of Molecular PhysiologyShenzhen Bay LaboratoryGaoke International Innovation CenterGuangming District518132Shenzhen, GuangdongChina
| | - Louis Y. P. Luk
- School of Chemistry and Cardiff Catalysis InstituteCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUnited Kingdom
| |
Collapse
|
7
|
Xu Y, Li F, Xie H, Liu Y, Han W, Wu J, Cheng L, Wang C, Li Z, Wang L. Directed evolution of Escherichia coli surface-displayed Vitreoscilla hemoglobin as an artificial metalloenzyme for the synthesis of 5-imino-1,2,4-thiadiazoles. Chem Sci 2024; 15:7742-7748. [PMID: 38784746 PMCID: PMC11110144 DOI: 10.1039/d4sc00005f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Artificial metalloenzymes (ArMs) are constructed by anchoring organometallic catalysts to an evolvable protein scaffold. They present the advantages of both components and exhibit considerable potential for the in vivo catalysis of new-to-nature reactions. Herein, Escherichia coli surface-displayed Vitreoscilla hemoglobin (VHbSD-Co) that anchored the cobalt porphyrin cofactor instead of the original heme cofactor was used as an artificial thiourea oxidase (ATOase) to synthesize 5-imino-1,2,4-thiadiazoles. After two rounds of directed evolution using combinatorial active-site saturation test/iterative saturation mutagenesis (CAST/ISM) strategy, the evolved six-site mutation VHbSD-Co (6SM-VHbSD-Co) exhibited significant improvement in catalytic activity, with a broad substrate scope (31 examples) and high yields with whole cells. This study shows the potential of using VHb ArMs in new-to-nature reactions and demonstrates the applicability of E. coli surface-displayed methods to enhance catalytic properties through the substitution of porphyrin cofactors in hemoproteins in vivo.
Collapse
Affiliation(s)
- Yaning Xu
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University Changchun 130023 P. R. China
| | - Fengxi Li
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University Changchun 130023 P. R. China
| | - Hanqing Xie
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University Changchun 130023 P. R. China
| | - Yuyang Liu
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University Changchun 130023 P. R. China
| | - Weiwei Han
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University Changchun 130023 P. R. China
| | - Junhao Wu
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University Changchun 130023 P. R. China
| | - Lei Cheng
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University Changchun 130023 P. R. China
| | - Chunyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University Changchun 130023 P. R. China
| | - Zhengqiang Li
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University Changchun 130023 P. R. China
| | - Lei Wang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University Changchun 130023 P. R. China
| |
Collapse
|
8
|
Wang L, Zhang M, Teng H, Wang Z, Wang S, Li P, Wu J, Yang L, Xu G. Rationally introducing non-canonical amino acids to enhance catalytic activity of LmrR for Henry reaction. BIORESOUR BIOPROCESS 2024; 11:26. [PMID: 38647789 PMCID: PMC10992053 DOI: 10.1186/s40643-024-00744-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/19/2024] [Indexed: 04/25/2024] Open
Abstract
The use of enzymes to catalyze Henry reaction has advantages of mild reaction conditions and low contamination, but low enzyme activity of promiscuous catalysis limits its application. Here, rational design was first performed to identify the key amino acid residues in Henry reaction catalyzed by Lactococcal multidrug resistance Regulator (LmrR). Further, non-canonical amino acids were introduced into LmrR, successfully obtaining variants that enhanced the catalytic activity of LmrR. The best variant, V15CNF, showed a 184% increase in enzyme activity compared to the wild type, and was 1.92 times more effective than the optimal natural amino acid variant, V15F. Additionally, this variant had a broad substrate spectrum, capable of catalyzing reactions between various aromatic aldehydes and nitromethane, with product yielded ranging from 55 to 99%. This study improved enzymatic catalytic activity by enhancing affinity between the enzyme and substrates, while breaking limited types of natural amino acid residues by introducing non-canonical amino acids into the enzyme, providing strategies for molecular modifications.
Collapse
Affiliation(s)
- Lan Wang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Mengting Zhang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Haidong Teng
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Zhe Wang
- Huadong Medicine Co., Ltd, Hangzhou, 310011, Zhejiang, China
| | - Shulin Wang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Pengcheng Li
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Jianping Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Lirong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Gang Xu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China.
| |
Collapse
|
9
|
Hanreich S, Bonandi E, Drienovská I. Design of Artificial Enzymes: Insights into Protein Scaffolds. Chembiochem 2023; 24:e202200566. [PMID: 36418221 DOI: 10.1002/cbic.202200566] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
The design of artificial enzymes has emerged as a promising tool for the generation of potent biocatalysts able to promote new-to-nature reactions with improved catalytic performances, providing a powerful platform for wide-ranging applications and a better understanding of protein functions and structures. The selection of an appropriate protein scaffold plays a key role in the design process. This review aims to give a general overview of the most common protein scaffolds that can be exploited for the generation of artificial enzymes. Several examples are discussed and categorized according to the strategy used for the design of the artificial biocatalyst, namely the functionalization of natural enzymes, the creation of a new catalytic site in a protein scaffold bearing a wide hydrophobic pocket and de novo protein design. The review is concluded by a comparison of these different methods and by our perspective on the topic.
Collapse
Affiliation(s)
- Stefanie Hanreich
- Department of Chemistry and Pharmaceutical Sciences Vrije Universiteit, Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam (The, Netherlands
| | - Elisa Bonandi
- Department of Chemistry and Pharmaceutical Sciences Vrije Universiteit, Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam (The, Netherlands
| | - Ivana Drienovská
- Department of Chemistry and Pharmaceutical Sciences Vrije Universiteit, Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam (The, Netherlands
| |
Collapse
|
10
|
Van Stappen C, Deng Y, Liu Y, Heidari H, Wang JX, Zhou Y, Ledray AP, Lu Y. Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere. Chem Rev 2022; 122:11974-12045. [PMID: 35816578 DOI: 10.1021/acs.chemrev.2c00106] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes catalyze a variety of reactions using a limited number of natural amino acids and metallocofactors. Therefore, the environment beyond the primary coordination sphere must play an important role in both conferring and tuning their phenomenal catalytic properties, enabling active sites with otherwise similar primary coordination environments to perform a diverse array of biological functions. However, since the interactions beyond the primary coordination sphere are numerous and weak, it has been difficult to pinpoint structural features responsible for the tuning of activities of native enzymes. Designing artificial metalloenzymes (ArMs) offers an excellent basis to elucidate the roles of these interactions and to further develop practical biological catalysts. In this review, we highlight how the secondary coordination spheres of ArMs influence metal binding and catalysis, with particular focus on the use of native protein scaffolds as templates for the design of ArMs by either rational design aided by computational modeling, directed evolution, or a combination of both approaches. In describing successes in designing heme, nonheme Fe, and Cu metalloenzymes, heteronuclear metalloenzymes containing heme, and those ArMs containing other metal centers (including those with non-native metal ions and metallocofactors), we have summarized insights gained on how careful controls of the interactions in the secondary coordination sphere, including hydrophobic and hydrogen bonding interactions, allow the generation and tuning of these respective systems to approach, rival, and, in a few cases, exceed those of native enzymes. We have also provided an outlook on the remaining challenges in the field and future directions that will allow for a deeper understanding of the secondary coordination sphere a deeper understanding of the secondary coordintion sphere to be gained, and in turn to guide the design of a broader and more efficient variety of ArMs.
Collapse
Affiliation(s)
- Casey Van Stappen
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yunling Deng
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yiwei Liu
- Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Hirbod Heidari
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Jing-Xiang Wang
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yu Zhou
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Aaron P Ledray
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States.,Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
11
|
Liu Y, Lai KL, Vong K. Transition Metal Scaffolds Used To Bring New‐to‐Nature Reactions into Biological Systems. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yifei Liu
- Department of Chemistry The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| | - Ka Lun Lai
- Department of Chemistry The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| | - Kenward Vong
- Department of Chemistry The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| |
Collapse
|
12
|
Martins FL, Pordea A, Jäger CM. Computationally driven design of an artificial metalloenzyme using supramolecular anchoring strategies of iridium complexes to alcohol dehydrogenase. Faraday Discuss 2022; 234:315-335. [PMID: 35156975 DOI: 10.1039/d1fd00070e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Artificial metalloenzymes (ArMs) confer non-biological reactivities to biomolecules, whilst taking advantage of the biomolecular architecture in terms of their selectivity and renewable origin. In particular, the design of ArMs by the supramolecular anchoring of metal catalysts to protein hosts provides flexible and easy to optimise systems. The use of cofactor dependent enzymes as hosts gives the advantage of both a (hydrophobic) binding site for the substrate and a cofactor pocket to accommodate the catalyst. Here, we present a computationally driven design approach of ArMs for the transfer hydrogenation reaction of cyclic imines, starting from the NADP+-dependent alcohol dehydrogenase from Thermoanaerobacter brockii (TbADH). We tested and developed a molecular docking workflow to define and optimize iridium catalysts with high affinity for the cofactor binding site of TbADH. The workflow uses high throughput docking of compound libraries to identify key structural motifs for high affinity, followed by higher accuracy docking methods on smaller, focused ligand and catalyst libraries. Iridium sulfonamide catalysts were selected and synthesised, containing either a triol, a furane, or a carboxylic acid to provide the interaction with the cofactor binding pocket. IC50 values of the resulting complexes during TbADH-catalysed alcohol oxidation were determined by competition experiments and were between 4.410 mM and 0.052 mM, demonstrating the affinity of the iridium complexes for either the substrate or the cofactor binding pocket of TbADH. The catalytic activity of the free iridium complexes in solution showed a maximal turnover number (TON) of 90 for the reduction of salsolidine by the triol-functionalised iridium catalyst, whilst in the presence of TbADH, only the iridium catalyst with the triol anchoring functionality showed activity for the same reaction (TON of 36 after 24 h). The observation that the artificial metalloenzymes developed here lacked stereoselectivity demonstrates the need for the further investigation and optimisation of the ArM. Our results serve as a starting point for the design of robust artificial metalloenzymes, exploiting supramolecular anchoring to natural NAD(P)H binding pockets.
Collapse
Affiliation(s)
- Floriane L Martins
- Sustainable Process Technologies, Faculty of Engineering, University of Nottingham, Nottingham, UK.
| | - Anca Pordea
- Sustainable Process Technologies, Faculty of Engineering, University of Nottingham, Nottingham, UK.
| | - Christof M Jäger
- Sustainable Process Technologies, Faculty of Engineering, University of Nottingham, Nottingham, UK.
| |
Collapse
|
13
|
Sánchez-Aparicio JE, Sciortino G, Mates-Torres E, Lledós A, Maréchal JD. Successes and challenges in multiscale modelling of artificial metalloenzymes: the case study of POP-Rh 2 cyclopropanase. Faraday Discuss 2022; 234:349-366. [PMID: 35147145 DOI: 10.1039/d1fd00069a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular modelling applications in metalloenzyme design are still scarce due to a series of challenges. On top of that, the simulations of metal-mediated binding and the identification of catalytic competent geometries require both large conformational exploration and simulation of fine electronic properties. Here, we demonstrate how the incorporation of new tools in multiscale strategies, namely substrate diffusion exploration, allows taking a step further. As a showcase, the enantioselective profiles of the most outstanding variants of an artificial Rh2-based cyclopropanase (GSH, HFF and RFY) developed by Lewis and co-workers (Nat. Commun., 2015, 6, 7789 and Nat. Chem., 2018, 10, 318-324) have been rationalized. DFT calculations on the free-cofactor-mediated process identify the carbene insertion and the cyclopropanoid formation as crucial events, the latter being the enantiodetermining step, which displays up to 8 competitive orientations easily altered by the protein environment. The key intermediates of the reaction were docked into the protein scaffold showing that some mutated residues have direct interaction with the cofactor and/or the co-substrate. These interactions take the form of a direct coordination of Rh in GSH and HFF and a strong hydrophobic patch with the carbene moiety in RFY. Posterior molecular dynamics sustain that the cofactor induces global re-arrangements of the protein. Finally, massive exploration of substrate diffusion, based on the GPathFinder approach, defines this event as the origin of the enantioselectivity in GSH and RFY. For HFF, fine molecular dockings suggest that it is likely related to local interactions upon diffusion. This work shows how modelling of long-range mutations on the catalytic profiles of metalloenzymes may be unavoidable and software simulating substrate diffusion should be applied.
Collapse
Affiliation(s)
| | - Giuseppe Sciortino
- InSiliChem, Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Eric Mates-Torres
- InSiliChem, Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Agustí Lledós
- InSiliChem, Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Jean-Didier Maréchal
- InSiliChem, Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
14
|
Chen D, Li Y, Li X, Savidge T, Qian Y, Fan X. Factors determining the enzyme catalytic power caused by noncovalent interactions: Charge alterations in enzyme active sites. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
15
|
Synthesis, optical and magnetic research of nicotinic acid ligand Zn, Cd, Mn and Co complexes. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Leveson-Gower R, Zhou Z, Drienovská I, Roelfes G. Unlocking Iminium Catalysis in Artificial Enzymes to Create a Friedel-Crafts Alkylase. ACS Catal 2021; 11:6763-6770. [PMID: 34168902 PMCID: PMC8218303 DOI: 10.1021/acscatal.1c00996] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/10/2021] [Indexed: 02/08/2023]
Abstract
The construction and engineering of artificial enzymes consisting of abiological catalytic moieties incorporated into protein scaffolds is a promising strategy to realize non-natural mechanisms in biocatalysis. Here, we show that incorporation of the noncanonical amino acid para-aminophenylalanine (pAF) into the nonenzymatic protein scaffold LmrR creates a proficient and stereoselective artificial enzyme (LmrR_pAF) for the vinylogous Friedel-Crafts alkylation between α,β-unsaturated aldehydes and indoles. pAF acts as a catalytic residue, activating enal substrates toward conjugate addition via the formation of intermediate iminium ion species, while the protein scaffold provides rate acceleration and stereoinduction. Improved LmrR_pAF variants were identified by low-throughput directed evolution advised by alanine-scanning to obtain a triple mutant that provided higher yields and enantioselectivities for a range of aliphatic enals and substituted indoles. Analysis of Michaelis-Menten kinetics of LmrR_pAF and evolved mutants reveals that different activities emerge via evolutionary pathways that diverge from one another and specialize catalytic reactivity. Translating this iminium-based catalytic mechanism into an enzymatic context will enable many more biocatalytic transformations inspired by organocatalysis.
Collapse
Affiliation(s)
- Reuben
B. Leveson-Gower
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Zhi Zhou
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG, Groningen, The Netherlands
| | | | - Gerard Roelfes
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
17
|
Biggs GS, Klein OJ, Maslen SL, Skehel JM, Rutherford TJ, Freund SMV, Hollfelder F, Boss SR, Barker PD. Controlled Ligand Exchange Between Ruthenium Organometallic Cofactor Precursors and a Naïve Protein Scaffold Generates Artificial Metalloenzymes Catalysing Transfer Hydrogenation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- George S. Biggs
- Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Oskar James Klein
- Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
- Department of Biochemistry University of Cambridge Tennis Court Road Cambridge CB2 1GA UK
| | - Sarah L. Maslen
- MRC Laboratory of Molecular Biology Francis Crick Avenue, Cambridge Biomedical Campus Cambridge CB2 0QH UK
| | - J. Mark Skehel
- MRC Laboratory of Molecular Biology Francis Crick Avenue, Cambridge Biomedical Campus Cambridge CB2 0QH UK
| | - Trevor J. Rutherford
- MRC Laboratory of Molecular Biology Francis Crick Avenue, Cambridge Biomedical Campus Cambridge CB2 0QH UK
| | - Stefan M. V. Freund
- MRC Laboratory of Molecular Biology Francis Crick Avenue, Cambridge Biomedical Campus Cambridge CB2 0QH UK
| | - Florian Hollfelder
- Department of Biochemistry University of Cambridge Tennis Court Road Cambridge CB2 1GA UK
| | - Sally R. Boss
- Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Paul D. Barker
- Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
18
|
Biggs GS, Klein OJ, Maslen SL, Skehel JM, Rutherford TJ, Freund SMV, Hollfelder F, Boss SR, Barker PD. Controlled Ligand Exchange Between Ruthenium Organometallic Cofactor Precursors and a Naïve Protein Scaffold Generates Artificial Metalloenzymes Catalysing Transfer Hydrogenation. Angew Chem Int Ed Engl 2021; 60:10919-10927. [PMID: 33616271 PMCID: PMC8251807 DOI: 10.1002/anie.202015834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Indexed: 11/05/2022]
Abstract
Many natural metalloenzymes assemble from proteins and biosynthesised complexes, generating potent catalysts by changing metal coordination. Here we adopt the same strategy to generate artificial metalloenzymes (ArMs) using ligand exchange to unmask catalytic activity. By systematically testing RuII (η6 -arene)(bipyridine) complexes designed to facilitate the displacement of functionalised bipyridines, we develop a fast and robust procedure for generating new enzymes via ligand exchange in a protein that has not evolved to bind such a complex. The resulting metal cofactors form peptidic coordination bonds but also retain a non-biological ligand. Tandem mass spectrometry and 19 F NMR spectroscopy were used to characterise the organometallic cofactors and identify the protein-derived ligands. By introduction of ruthenium cofactors into a 4-helical bundle, transfer hydrogenation catalysts were generated that displayed a 35-fold rate increase when compared to the respective small molecule reaction in solution.
Collapse
Affiliation(s)
- George S. Biggs
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Oskar James Klein
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Department of BiochemistryUniversity of CambridgeTennis Court RoadCambridgeCB2 1GAUK
| | - Sarah L. Maslen
- MRC Laboratory of Molecular BiologyFrancis Crick Avenue, Cambridge Biomedical CampusCambridgeCB2 0QHUK
| | - J. Mark Skehel
- MRC Laboratory of Molecular BiologyFrancis Crick Avenue, Cambridge Biomedical CampusCambridgeCB2 0QHUK
| | - Trevor J. Rutherford
- MRC Laboratory of Molecular BiologyFrancis Crick Avenue, Cambridge Biomedical CampusCambridgeCB2 0QHUK
| | - Stefan M. V. Freund
- MRC Laboratory of Molecular BiologyFrancis Crick Avenue, Cambridge Biomedical CampusCambridgeCB2 0QHUK
| | - Florian Hollfelder
- Department of BiochemistryUniversity of CambridgeTennis Court RoadCambridgeCB2 1GAUK
| | - Sally R. Boss
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Paul D. Barker
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| |
Collapse
|
19
|
Pagar AD, Patil MD, Flood DT, Yoo TH, Dawson PE, Yun H. Recent Advances in Biocatalysis with Chemical Modification and Expanded Amino Acid Alphabet. Chem Rev 2021; 121:6173-6245. [PMID: 33886302 DOI: 10.1021/acs.chemrev.0c01201] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The two main strategies for enzyme engineering, directed evolution and rational design, have found widespread applications in improving the intrinsic activities of proteins. Although numerous advances have been achieved using these ground-breaking methods, the limited chemical diversity of the biopolymers, restricted to the 20 canonical amino acids, hampers creation of novel enzymes that Nature has never made thus far. To address this, much research has been devoted to expanding the protein sequence space via chemical modifications and/or incorporation of noncanonical amino acids (ncAAs). This review provides a balanced discussion and critical evaluation of the applications, recent advances, and technical breakthroughs in biocatalysis for three approaches: (i) chemical modification of cAAs, (ii) incorporation of ncAAs, and (iii) chemical modification of incorporated ncAAs. Furthermore, the applications of these approaches and the result on the functional properties and mechanistic study of the enzymes are extensively reviewed. We also discuss the design of artificial enzymes and directed evolution strategies for enzymes with ncAAs incorporated. Finally, we discuss the current challenges and future perspectives for biocatalysis using the expanded amino acid alphabet.
Collapse
Affiliation(s)
- Amol D Pagar
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Mahesh D Patil
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Dillon T Flood
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon 16499, Korea
| | - Philip E Dawson
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| |
Collapse
|
20
|
Naowarojna N, Cheng R, Lopez J, Wong C, Qiao L, Liu P. Chemical modifications of proteins and their applications in metalloenzyme studies. Synth Syst Biotechnol 2021; 6:32-49. [PMID: 33665390 PMCID: PMC7897936 DOI: 10.1016/j.synbio.2021.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/14/2020] [Accepted: 01/03/2021] [Indexed: 12/21/2022] Open
Abstract
Protein chemical modifications are important tools for elucidating chemical and biological functions of proteins. Several strategies have been developed to implement these modifications, including enzymatic tailoring reactions, unnatural amino acid incorporation using the expanded genetic codes, and recognition-driven transformations. These technologies have been applied in metalloenzyme studies, specifically in dissecting their mechanisms, improving their enzymatic activities, and creating artificial enzymes with non-natural activities. Herein, we summarize some of the recent efforts in these areas with an emphasis on a few metalloenzyme case studies.
Collapse
Affiliation(s)
| | | | - Juan Lopez
- Department of Chemistry, Boston University, Boston, MA, 02215, United States
| | - Christina Wong
- Department of Chemistry, Boston University, Boston, MA, 02215, United States
| | - Lu Qiao
- Department of Chemistry, Boston University, Boston, MA, 02215, United States
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, MA, 02215, United States
| |
Collapse
|
21
|
Vong K, Nasibullin I, Tanaka K. Exploring and Adapting the Molecular Selectivity of Artificial Metalloenzymes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200316] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kenward Vong
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- GlycoTargeting Research Laboratory, RIKEN Baton Zone Program, Wako, Saitama 351-0198, Japan
| | - Igor Nasibullin
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, Kazan 420008, Russia
| | - Katsunori Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, Kazan 420008, Russia
- GlycoTargeting Research Laboratory, RIKEN Baton Zone Program, Wako, Saitama 351-0198, Japan
| |
Collapse
|
22
|
Vornholt T, Christoffel F, Pellizzoni MM, Panke S, Ward TR, Jeschek M. Systematic engineering of artificial metalloenzymes for new-to-nature reactions. SCIENCE ADVANCES 2021; 7:eabe4208. [PMID: 33523952 DOI: 10.1126/sciadv.abe4208] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Artificial metalloenzymes (ArMs) catalyzing new-to-nature reactions could play an important role in transitioning toward a sustainable economy. While ArMs have been created for various transformations, attempts at their genetic optimization have been case specific and resulted mostly in modest improvements. To realize their full potential, methods to rapidly discover active ArM variants for ideally any reaction of interest are required. Here, we introduce a reaction-independent, automation-compatible platform, which relies on periplasmic compartmentalization in Escherichia coli to rapidly and reliably engineer ArMs based on the biotin-streptavidin technology. We systematically assess 400 ArM mutants for five bioorthogonal transformations involving different metals, reaction mechanisms, and reactants, which include novel ArMs for gold-catalyzed hydroamination and hydroarylation. Activity enhancements up to 15-fold highlight the potential of the systematic approach. Furthermore, we suggest smart screening strategies and build machine learning models that accurately predict ArM activity from sequence, which has crucial implications for future ArM development.
Collapse
Affiliation(s)
- Tobias Vornholt
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering, Basel, Switzerland
| | - Fadri Christoffel
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering, Basel, Switzerland
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, CH-4002 Basel, Switzerland
| | - Michela M Pellizzoni
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering, Basel, Switzerland
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, CH-4002 Basel, Switzerland
| | - Sven Panke
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering, Basel, Switzerland
| | - Thomas R Ward
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering, Basel, Switzerland
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, CH-4002 Basel, Switzerland
| | - Markus Jeschek
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland.
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering, Basel, Switzerland
| |
Collapse
|
23
|
Drienovská I, Scheele RA, Gutiérrez de Souza C, Roelfes G. A Hydroxyquinoline-Based Unnatural Amino Acid for the Design of Novel Artificial Metalloenzymes. Chembiochem 2020; 21:3077-3081. [PMID: 32585070 PMCID: PMC7689906 DOI: 10.1002/cbic.202000306] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/25/2020] [Indexed: 11/11/2022]
Abstract
We have examined the potential of the noncanonical amino acid (8-hydroxyquinolin-3-yl)alanine (HQAla) for the design of artificial metalloenzymes. HQAla, a versatile chelator of late transition metals, was introduced into the lactococcal multidrug-resistance regulator (LmrR) by stop codon suppression methodology. LmrR_HQAla was shown to complex efficiently with three different metal ions, CuII , ZnII and RhIII to form unique artificial metalloenzymes. The catalytic potential of the CuII -bound LmrR_HQAla enzyme was shown through its ability to catalyse asymmetric Friedel-Craft alkylation and water addition, whereas the ZnII -coupled enzyme was shown to mimic natural Zn hydrolase activity.
Collapse
Affiliation(s)
- Ivana Drienovská
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Remkes A. Scheele
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Cora Gutiérrez de Souza
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Gerard Roelfes
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| |
Collapse
|
24
|
Biggs GS, Klein OJ, Boss SR, Barker PD. Unlocking the Full Evolutionary Potential of Artificial Metalloenzymes Through Direct Metal-Protein Coordination : A review of recent advances for catalyst development. JOHNSON MATTHEY TECHNOLOGY REVIEW 2020. [DOI: 10.1595/205651320x15928204097766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Generation of artificial metalloenzymes (ArMs) has gained much inspiration from the general understanding of natural metalloenzymes. Over the last decade, a multitude of methods generating transition metal-protein hybrids have been developed and many of these new-to-nature constructs
catalyse reactions previously reserved for the realm of synthetic chemistry. This perspective will focus on ArMs incorporating 4d and 5d transition metals. It aims to summarise the significant advances made to date and asks whether there are chemical strategies, used in nature to optimise
metal catalysts, that have yet to be fully recognised in the synthetic enzyme world, particularly whether artificial enzymes produced to date fully take advantage of the structural and energetic context provided by the protein. Further, the argument is put forward that, based on precedence,
in the majority of naturally evolved metalloenzymes the direct coordination bonding between the metal and the protein scaffold is integral to catalysis. Therefore, the protein can attenuate metal activity by positioning ligand atoms in the form of amino acids, as well as making non-covalent
contributions to catalysis, through intermolecular interactions that pre-organise substrates and stabilise transition states. This highlights the often neglected but crucial element of natural systems that is the energetic contribution towards activating metal centres through protein fold
energy. Finally, general principles needed for a different approach to the formation of ArMs are set out, utilising direct coordination inspired by the activation of an organometallic cofactor upon protein binding. This methodology, observed in nature, delivers true interdependence between
metal and protein. When combined with the ability to efficiently evolve enzymes, new problems in catalysis could be addressed in a faster and more specific manner than with simpler small molecule catalysts.
Collapse
Affiliation(s)
- George S. Biggs
- Department of Chemistry, University of Cambridge Lensfield Road, Cambridge, CB2 1EW UK
| | - Oskar James Klein
- Department of Chemistry, University of Cambridge Lensfield Road, Cambridge, CB2 1EW UK
| | - Sally R. Boss
- Department of Chemistry, University of Cambridge Lensfield Road, Cambridge, CB2 1EW UK
| | - Paul D. Barker
- Department of Chemistry, University of Cambridge Lensfield Road, Cambridge, CB2 1EW UK
| |
Collapse
|
25
|
|
26
|
Jarvis AG. Designer metalloenzymes for synthetic biology: Enzyme hybrids for catalysis. Curr Opin Chem Biol 2020; 58:63-71. [PMID: 32768658 DOI: 10.1016/j.cbpa.2020.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/14/2020] [Accepted: 06/11/2020] [Indexed: 02/09/2023]
Abstract
Combining organometallics and biology has generated broad interest from scientists working on applications from in situ drug release to biocatalysis. Engineered enzymes and biohybrid catalysts (also referred to as artificial enzymes) have introduced a wide range of abiotic chemistry into biocatalysis. Predominantly, this work has concentrated on using these catalysts for single step in vitro reactions. However, the promise of using these hybrid catalysts in vivo and combining them with synthetic biology and metabolic engineering is vast. This report will briefly review recent advances in artificial metalloenzyme design, followed by summarising recent studies that have looked at the use of these hybrid catalysts in vivo and in enzymatic cascades, therefore exploring their potential for synthetic biology.
Collapse
Affiliation(s)
- Amanda G Jarvis
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Rd, Edinburgh, EH9 3FJ, UK.
| |
Collapse
|
27
|
Himiyama T, Okamoto Y. Artificial Metalloenzymes: From Selective Chemical Transformations to Biochemical Applications. Molecules 2020; 25:molecules25132989. [PMID: 32629938 PMCID: PMC7411666 DOI: 10.3390/molecules25132989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 11/16/2022] Open
Abstract
Artificial metalloenzymes (ArMs) comprise a synthetic metal complex in a protein scaffold. ArMs display performances combining those of both homogeneous catalysts and biocatalysts. Specifically, ArMs selectively catalyze non-natural reactions and reactions inspired by nature in water under mild conditions. In the past few years, the construction of ArMs that possess a genetically incorporated unnatural amino acid and the directed evolution of ArMs have become of great interest in the field. Additionally, biochemical applications of ArMs have steadily increased, owing to the fact that compartmentalization within a protein scaffold allows the synthetic metal complex to remain functional in a sea of inactivating biomolecules. In this review, we present updates on: 1) the newly reported ArMs, according to their type of reaction, and 2) the unique biochemical applications of ArMs, including chemoenzymatic cascades and intracellular/in vivo catalysis. We believe that ArMs have great potential as catalysts for organic synthesis and as chemical biology tools for pharmaceutical applications.
Collapse
Affiliation(s)
- Tomoki Himiyama
- National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka 563-8577, Japan;
- DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Ikeda, Osaka 563-8577, Japan
| | - Yasunori Okamoto
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki aza Aoba, Aoba-ku, Sendai 980-8578, Japan
- Correspondence: ; Tel.: +81-22-795-5264
| |
Collapse
|
28
|
Sheng X, Kazemi M, Planas F, Himo F. Modeling Enzymatic Enantioselectivity using Quantum Chemical Methodology. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00983] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xiang Sheng
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden
| | - Masoud Kazemi
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden
| | - Ferran Planas
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden
| | - Fahmi Himo
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden
| |
Collapse
|
29
|
Vornholt T, Jeschek M. The Quest for Xenobiotic Enzymes: From New Enzymes for Chemistry to a Novel Chemistry of Life. Chembiochem 2020; 21:2241-2249. [PMID: 32294286 DOI: 10.1002/cbic.202000121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/13/2020] [Indexed: 12/19/2022]
Abstract
Enzyme engineering has made impressive progress in the past decades, paving the way for the widespread use of enzymes for various purposes. In contrast to "classical" enzyme engineering, which focuses on optimizing specific properties of natural enzymes, a more recent trend towards the creation of artificial enzymes that catalyze fundamentally distinct, new-to-nature reactions is observable. While approaches for creating such enzymes differ significantly, they share the common goal of enabling biocatalytic novelty to broaden the range of applications for enzymes. Although most artificial enzymes reported to date are only moderately active and barely function in vivo, they have the potential to endow cells with capabilities that were previously out of reach and thus herald a new wave of "functional xenobiology". Herein, we highlight recent developments in the field of artificial enzymes with a particular focus on challenges and opportunities for their use in xenobiology.
Collapse
Affiliation(s)
- Tobias Vornholt
- Department of Biosystems Science and Engineering ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Markus Jeschek
- Department of Biosystems Science and Engineering ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| |
Collapse
|
30
|
Alonso-Cotchico L, Rodrı́guez-Guerra J, Lledós A, Maréchal JD. Molecular Modeling for Artificial Metalloenzyme Design and Optimization. Acc Chem Res 2020; 53:896-905. [PMID: 32233391 DOI: 10.1021/acs.accounts.0c00031] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Artificial metalloenzymes (ArMs) are obtained by inserting homogeneous catalysts into biological scaffolds and are among the most promising strategies in the quest for new-to-nature biocatalysts. The quality of their design strongly depends on how three partners interact: the biological host, the "artificial cofactor," and the substrate. However, structural characterization of functional artificial metalloenzymes by X-ray or NMR is often partial, elusive, or absent. How the cofactor binds to the protein, how the receptor reorganizes upon the binding of the cofactor and the substrate, and which are the binding mode(s) of the substrate for the reaction to proceed are key questions that are frequently unresolved yet crucial for ArM design. Such questions may eventually be solved by molecular modeling but require a step change beyond the current state-of-the-art methodologies.Here, we summarize our efforts in the study of ArMs, presenting both the development of computational strategies and their application. We first focus on our integrative computational framework that incorporates a variety of methods such as protein-ligand docking, classical molecular dynamics (MD), and pure quantum mechanical (QM) methods, which, when properly combined, are able to depict questions that range from host-cofactor binding predictions to simulations of entire catalytic mechanisms. We also pay particular attention to the protein-ligand docking strategies that we have developed to accurately predict the binding of transition metal-containing molecules to proteins. While this aspect is fundamental to many bioinorganic fields beyond ArMs, it has been disregarded from the molecular modeling landscape until very recently.Next we describe how to apply this computational framework to particular ArMs including systems previously characterized experimentally as well as others where computation served to guide the design. We start with the prediction of the interactions between homogeneous catalysts and biological hosts. Protein-ligand docking is pivotal at that stage, but it needs to be combined with QM/MM or MD approaches when the binding of the cofactor implies significant conformational changes of the protein or involve changes of the electronic state of the metal.Then, we summarize molecular modeling studies aimed at identifying cofactor-substrate arrangements inside the ArM active pocket that are consistent with its reactivity. These calculations stand on "Theozyme"-like dockings, MD-refined or not, which provide molecular rationale of the catalytic profiles of the artificial systems.In the third section, we present case studies to decode the entire catalytic mechanism of two ArMs: (1) an iridium based asymmetric transfer hydrogenase obtained by insertion of Noyori's catalyst into streptavidin and (2) a metallohydrolase achieved by including a receptor. Transition states, second coordination sphere effects, as well as motions of the cofactors are identified as drivers of the enantiomeric profiles.Finally, we report computer-aided designs of ArMs to guide experiments toward chemical and mutational changes that improve their activity and/or enantioselective profiles and expand toward future directions.
Collapse
Affiliation(s)
- Lur Alonso-Cotchico
- Departament de Quı́mica, Universitat Autònoma de Barcelona, Edifici C.n., 08193 Cerdanyola del Vallès, Barcelona Spain
| | - Jaime Rodrı́guez-Guerra
- Departament de Quı́mica, Universitat Autònoma de Barcelona, Edifici C.n., 08193 Cerdanyola del Vallès, Barcelona Spain
| | - Agustí Lledós
- Departament de Quı́mica, Universitat Autònoma de Barcelona, Edifici C.n., 08193 Cerdanyola del Vallès, Barcelona Spain
| | - Jean-Didier Maréchal
- Departament de Quı́mica, Universitat Autònoma de Barcelona, Edifici C.n., 08193 Cerdanyola del Vallès, Barcelona Spain
| |
Collapse
|
31
|
Enzymes with noncanonical amino acids. Curr Opin Chem Biol 2020; 55:136-144. [DOI: 10.1016/j.cbpa.2020.01.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/10/2019] [Accepted: 01/15/2020] [Indexed: 12/19/2022]
|
32
|
Horne WS, Grossmann TN. Proteomimetics as protein-inspired scaffolds with defined tertiary folding patterns. Nat Chem 2020; 12:331-337. [PMID: 32029906 DOI: 10.1038/s41557-020-0420-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/09/2020] [Indexed: 12/29/2022]
Abstract
Proteins have evolved as a variable platform that provides access to molecules with diverse shapes, sizes and functions. These features have inspired chemists for decades to seek artificial mimetics of proteins with improved or novel properties. Such work has focused primarily on small protein fragments, often isolated secondary structures; however, there has lately been a growing interest in the design of artificial molecules that mimic larger, more complex tertiary folds. In this Perspective, we define these agents as 'proteomimetics' and discuss the recent advances in the field. Proteomimetics can be divided into three categories: protein domains with side-chain functionality that alters the native linear-chain topology; protein domains in which the chemical composition of the polypeptide backbone has been partially altered; and protein-like folded architectures that are composed entirely of non-natural monomer units. We give an overview of these proteomimetic approaches and outline remaining challenges facing the field.
Collapse
Affiliation(s)
- W Seth Horne
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Tom N Grossmann
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
33
|
Markel U, Essani KD, Besirlioglu V, Schiffels J, Streit WR, Schwaneberg U. Advances in ultrahigh-throughput screening for directed enzyme evolution. Chem Soc Rev 2020; 49:233-262. [PMID: 31815263 DOI: 10.1039/c8cs00981c] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Enzymes are versatile catalysts and their synthetic potential has been recognized for a long time. In order to exploit their full potential, enzymes often need to be re-engineered or optimized for a given application. (Semi-) rational design has emerged as a powerful means to engineer proteins, but requires detailed knowledge about structure function relationships. In turn, directed evolution methodologies, which consist of iterative rounds of diversity generation and screening, can improve an enzyme's properties with virtually no structural knowledge. Current diversity generation methods grant us access to a vast sequence space (libraries of >1012 enzyme variants) that may hide yet unexplored catalytic activities and selectivity. However, the time investment for conventional agar plate or microtiter plate-based screening assays represents a major bottleneck in directed evolution and limits the improvements that are obtainable in reasonable time. Ultrahigh-throughput screening (uHTS) methods dramatically increase the number of screening events per time, which is crucial to speed up biocatalyst design, and to widen our knowledge about sequence function relationships. In this review, we summarize recent advances in uHTS for directed enzyme evolution. We shed light on the importance of compartmentalization to preserve the essential link between genotype and phenotype and discuss how cells and biomimetic compartments can be applied to serve this function. Finally, we discuss how uHTS can inspire novel functional metagenomics approaches to identify natural biocatalysts for novel chemical transformations.
Collapse
Affiliation(s)
- Ulrich Markel
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany.
| | | | | | | | | | | |
Collapse
|
34
|
Punt PM, Stratmann LM, Sevim S, Knauer L, Strohmann C, Clever GH. Heteroleptic Coordination Environments in Metal-Mediated DNA G-Quadruplexes. Front Chem 2020; 8:26. [PMID: 32064249 PMCID: PMC7000376 DOI: 10.3389/fchem.2020.00026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/09/2020] [Indexed: 12/28/2022] Open
Abstract
The presence of metal centers with often highly conserved coordination environments is crucial for roughly half of all proteins, having structural, regulatory, or enzymatic function. To understand and mimic the function of metallo-enzymes, bioinorganic chemists pursue the challenge of synthesizing model compounds with well-defined, often heteroleptic metal sites. Recently, we reported the design of tailored homoleptic coordination environments for various transition metal cations based on unimolecular DNA G-quadruplex structures, templating the regioselective positioning of imidazole ligandosides LI. Here, we expand this modular system to more complex, heteroleptic coordination environments by combining LI with a new benzoate ligandoside LB within the same oligonucleotide. The modifications still allow the correct folding of parallel tetramolecular and antiparallel unimolecular G-quadruplexes. Interestingly, the incorporation of LB results in strong destabilization expressed in lower thermal denaturation temperatures Tm. While no transition metal cations could be bound by G-quadruplexes containing only LB, heteroleptic derivatives containing both LI and LB were found to complex CuII, NiII, and ZnII. Especially in case of CuII we found strong stabilizations of up to ΔTm = +34°C. The here shown system represents an important step toward the design of more complex coordination environments inside DNA scaffolds, promising to culminate in the preparation of functional metallo-DNAzymes.
Collapse
Affiliation(s)
- Philip M Punt
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Lukas M Stratmann
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Sinem Sevim
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Lena Knauer
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Carsten Strohmann
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Guido H Clever
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
35
|
|
36
|
Drienovská I, Roelfes G. Expanding the enzyme universe with genetically encoded unnatural amino acids. Nat Catal 2020. [DOI: 10.1038/s41929-019-0410-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
37
|
Abril P, Del Río MP, López JA, Lledós A, Ciriano MA, Tejel C. Inner-Sphere Oxygen Activation Promoting Outer-Sphere Nucleophilic Attack on Olefins. Chemistry 2019; 25:14546-14554. [PMID: 31432579 DOI: 10.1002/chem.201903068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/19/2019] [Indexed: 01/18/2023]
Abstract
Alkoxylation and hydroxylation reactions of 1,5-cyclooctadiene (cod) in an iridium complex with alcohols and water promoted by the reduction of oxygen to hydrogen peroxide are described. The exo configuration of the OH/OR groups in the products agrees with nucleophilic attack at the external face of the olefin as the key step. The reactions also require the presence of a coordinating protic acid (such as picolinic acid (Hpic)) and involve the participation of a cationic diolefin iridium(III) complex, [Ir(cod)(pic)2 ]+ , which has been isolated. Independently, this cation is also involved in easy alkoxy group exchange reactions, which are very unusual for organic ethers. DFT studies on the mechanism of olefin alkoxylation mediated by oxygen show a low-energy proton-coupled electron-transfer step connecting a superoxide-iridium(II) complex with hydroperoxide-iridium(III) intermediates, rather than peroxide complexes. Accordingly, a more complex reaction, with up to four different products, occurred upon reacting the diolefin-peroxide iridium(III) complex with Hpic. Moreover, such hydroperoxide intermediates are the origin of the regio- and stereoselectivity of the hydroxylation/alkoxylation reactions. If this protocol is applied to the diolefin-rhodium(I) complex [Rh(pic)(cod)], free alkyl ethers ORC8 H11 (R=Me, Et) resulted, and the reaction is enantioselective if a chiral amino acid, such as l-proline, is used instead of Hpic.
Collapse
Affiliation(s)
- Paula Abril
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - M Pilar Del Río
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - José A López
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Agustí Lledós
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Miguel A Ciriano
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Cristina Tejel
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| |
Collapse
|
38
|
Leveson-Gower RB, Mayer C, Roelfes G. The importance of catalytic promiscuity for enzyme design and evolution. Nat Rev Chem 2019. [DOI: 10.1038/s41570-019-0143-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
39
|
Davis H, Ward TR. Artificial Metalloenzymes: Challenges and Opportunities. ACS CENTRAL SCIENCE 2019; 5:1120-1136. [PMID: 31404244 PMCID: PMC6661864 DOI: 10.1021/acscentsci.9b00397] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Indexed: 05/04/2023]
Abstract
Artificial metalloenzymes (ArMs) result from the incorporation of an abiotic metal cofactor within a protein scaffold. From the earliest techniques of transition metals adsorbed on silk fibers, the field of ArMs has expanded dramatically over the past 60 years to encompass a range of reaction classes and inspired approaches: Assembly of the ArMs has taken multiple forms with both covalent and supramolecular anchoring strategies, while the scaffolds have been intuitively selected and evolved, repurposed, or designed in silico. Herein, we discuss some of the most prominent recent examples of ArMs to highlight the challenges and opportunities presented by the field.
Collapse
|
40
|
Alonso-Cotchico L, Rodríguez-Guerra Pedregal J, Lledós A, Maréchal JD. The Effect of Cofactor Binding on the Conformational Plasticity of the Biological Receptors in Artificial Metalloenzymes: The Case Study of LmrR. Front Chem 2019; 7:211. [PMID: 31024897 PMCID: PMC6467942 DOI: 10.3389/fchem.2019.00211] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/18/2019] [Indexed: 12/21/2022] Open
Abstract
The design of Artificial Metalloenzymes (ArMs), which result from the incorporation of organometallic cofactors into biological structures, has grown steadily in the last two decades and important new-to-Nature reactions have been reached. These type of exercises could greatly benefit from an understanding of the structural impact that the inclusion of organometallic moieties may have on the biological host. To date though, our understanding of this phenomenon is highly partial. This lack of knowledge is one of the elements that condition that first-generation ArMs generally display relatively poor catalytic profiles. In this work, we approach this matter by assessing the dynamics and stability of a series of ArMs resulting from the inclusion, via different anchoring strategies, of a variety of organometallic cofactors into the Lactococcal multidrug resistance regulator (LmrR) protein. To this aim, we coupled standard force field-based techniques such as Protein-Ligand Docking and Molecular Dynamics simulations with a variety of trajectory convergence analyses, capable of assessing both the stability and flexibility of the different systems under study upon the binding of cofactors. Together with the experimental evidence obtained in other studies, we provide an overview on how these changes can affect the catalytic outcomes obtained from the different ArMs. Fundamentally, our results show that the convergence analysis used in this work can assess how the inclusion of synthetic metallic cofactors in proteins can condition different structural modulations of their host. Those conformational modifications are key to the success of the desired catalytic activity and their proper identification can be wisely used to improve the quality and the rate of success of the ArMs.
Collapse
Affiliation(s)
- Lur Alonso-Cotchico
- Departament de Química, Universitat Autònoma de Barcelona, Barcelona, Spain.,Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands
| | | | - Agustí Lledós
- Departament de Química, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | |
Collapse
|
41
|
Alonso-Cotchico L, Sciortino G, Vidossich P, Rodríguez-Guerra Pedregal J, Drienovská I, Roelfes G, Lledós A, Maréchal JD. Integrated Computational Study of the Cu-Catalyzed Hydration of Alkenes in Water Solvent and into the Context of an Artificial Metallohydratase. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04919] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lur Alonso-Cotchico
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Barcelona, Spain
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Giuseppe Sciortino
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Barcelona, Spain
| | - Pietro Vidossich
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Barcelona, Spain
- COBO Computational Bio-Organic Chemistry Bogotá, Department of Chemistry, Universidad de los Andes, Carrera 1 N° 18A 10, Bogotá 111711, Colombia
| | | | - Ivana Drienovská
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Gerard Roelfes
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Agusti Lledós
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Barcelona, Spain
| | - Jean-Didier Maréchal
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Barcelona, Spain
| |
Collapse
|
42
|
Abstract
Many artificial enzymes that catalyze redox reactions have important energy, environmental, and medical applications. Native metalloenzymes use a set of redox-active amino acids and cofactors as redox centers, with a potential range between -700 and +800 mV versus standard hydrogen electrode (SHE, all reduction potentials are versus SHE). The redox potentials and the orientation of redox centers in native metalloproteins are optimal for their redox chemistry. However, the limited number and potential range of native redox centers challenge the design and optimization of novel redox chemistry in metalloenzymes. Artificial metalloenzymes use non-native redox centers and could go far beyond the natural range of redox potentials for novel redox chemistry. In addition to designing protein monomers, strategies for increasing the electron transfer rate in self-assembled protein complexes and protein-electrode or -nanomaterial interfaces will be discussed. Redox reactions in proteins occur on redox active amino acid residues (Tyr, Trp, Met, Cys, etc.) and cofactors (iron sulfur clusters, flavin, heme, etc.). The redox potential of these redox centers cover a ∼1.5 V range and is optimized for their specific functions. Despite recent progress, tuning the redox potential for amino acid residues or cofactors remains challenging. Many redox-active unnatural amino acids (UAAs) can be incorporated into protein via genetic codon expansion. Their redox potentials extend the range of physiologically relevant potentials. Indeed, installing new redox cofactors with fined-tuned redox potentials is essential for designing novel redox enzymes. By combining UAA and redox cofactor incorporation, we harnessed light energy to reduce CO2 in a fluorescent protein, mimicking photosynthetic apparatus in nature. Manipulating the position and reduction potential of redox centers inside proteins is important for optimizing the electron transfer rate and the activity of artificial enzymes. Learning from the native electron transfer complex, protein-protein interactions can be enhanced by increasing the electrostatic interaction between proteins. An artificial oxidase showed close to native enzyme activity with optimized interaction with electron transfer partner and increased electron transfer efficiency. In addition to the de novo design of protein-protein interaction, protein self-assembly methods using scaffolds, such as proliferating cell nuclear antigen, to efficiently anchor enzymes and their redox partners. The self-assembly process enhances electron transfer efficiency and enzyme activity by bringing redox centers into close proximity of each other. In addition to protein self-assembly, protein-electrode or protein-nanomaterial self-assembly can also promote efficient electron transfer from inorganic materials to enzyme active sites. Such hybrid systems combine the efficiency of enzyme reactions and the robustness of electrodes or nanomaterials, often with advantageous catalytic activities. By combining these strategies, we can not only mimic some of nature's most fascinating reactions, such as photosynthesis and aerobic respiration, but also transcend nature toward environmental, energy, and health applications.
Collapse
Affiliation(s)
- Yang Yu
- Department of Biochemical Engineering and Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian
District, Beijing 100081, China
| | - Xiaohong Liu
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Jiangyun Wang
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| |
Collapse
|
43
|
Abstract
![]()
The biotechnological revolution has made it
possible to create
enzymes for many reactions by directed evolution. However, because
of the immense number of possibilities, the availability of enzymes
that possess a basal level of the desired catalytic activity is a
prerequisite for success. For new-to-nature reactions, artificial
metalloenzymes (ARMs), which are rationally designed hybrids of proteins
and catalytically active transition-metal complexes, can be such a
starting point. This Account details our efforts toward the
creation of ARMs for
the catalysis of new-to-nature reactions. Key to our approach is the
notion that the binding of substrates, that is, effective molarity,
is a key component to achieving large accelerations in catalysis.
For this reason, our designs are based on the multidrug resistance
regulator LmrR, a dimeric transcription factor with a large, hydrophobic
binding pocket at its dimer interface. In this pocket, there are two
tryptophan moieties, which are important for promiscuous binding of
planar hydrophobic conjugated compounds by π-stacking. The catalytic
machinery is introduced either by the covalent linkage of a catalytically
active metal complex or via the ligand or supramolecular assembly,
taking advantage of the two central tryptophan moieties for noncovalent
binding of transition-metal complexes. Designs based on the
chemical modification of LmrR were successful
in catalysis, but this approach proved too laborious to be practical.
Therefore, expanded genetic code methodologies were used to introduce
metal binding unnatural amino acids during LmrR biosynthesis in vivo.
These ARMs have been successfully applied in Cu(II) catalyzed Friedel–Crafts
alkylation of indoles. The extension to MDRs from the TetR family
resulted in ARMs capable of providing the opposite enantiomer of the
Friedel–Crafts product. We have employed a computationally
assisted redesign of these ARMs to create a more active and selective
artificial hydratase, introducing a glutamate as a general base at
a judicious position so it can activate and direct the incoming water
nucleophile. A supramolecularly assembled ARM from LmrR and
copper(II)–phenanthroline
was successful in Friedel–Crafts alkylation reactions, giving
rise to up to 94% ee. Also, hemin was bound, resulting in an artificial
heme enzyme for enantioselective cyclopropanation reactions. The importance
of structural dynamics of LmrR was suggested by computational studies,
which showed that the pore can open up to allow access of substrates
to the catalytic iron center, which, according to the crystal structure,
is deeply buried inside the protein. Finally, the assembly approaches
were combined to introduce both
a catalytic and a regulatory domain, resulting in an ARM that was
specifically activated in the presence of Fe(II) salts but not Zn(II)
salts. Our work demonstrates that LmrR is a privileged scaffold
for ARM
design: It allows for multiple assembly methods and even combinations
of these, it can be applied in a variety of different catalytic reactions,
and it shows significant structural dynamics that contribute to achieving
the desired catalytic activity. Moreover, both the creation via expanded
genetic code methods as well as the supramolecular assembly make LmrR-based
ARMs highly suitable for achieving the ultimate goal of the integration
of ARMs in biosynthetic pathways in vivo to create a hybrid metabolism.
Collapse
Affiliation(s)
- Gerard Roelfes
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
44
|
Mayer C. Selection, Addiction and Catalysis: Emerging Trends for the Incorporation of Noncanonical Amino Acids into Peptides and Proteins in Vivo. Chembiochem 2019; 20:1357-1364. [PMID: 30618145 PMCID: PMC6563710 DOI: 10.1002/cbic.201800733] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Indexed: 12/22/2022]
Abstract
Expanding the genetic code of organisms by incorporating noncanonical amino acids (ncAAs) into target proteins through the suppression of stop codons in vivo has profoundly impacted how we perform protein modification or detect proteins and their interaction partners in their native environment. Yet, with genetic code expansion strategies maturing over the past 15 years, new applications that make use—or indeed repurpose—these techniques are beginning to emerge. This Concept article highlights three of these developments: 1) The incorporation of ncAAs for the biosynthesis and selection of bioactive macrocyclic peptides with novel ring architectures, 2) synthetic biocontainment strategies based on the addiction of microorganisms to ncAAs, and 3) enzyme design strategies, in which ncAAs with unique functionalities enable the catalysis of new‐to‐nature reactions. Key advances in all three areas are presented and potential future applications discussed.
Collapse
Affiliation(s)
- Clemens Mayer
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
45
|
Karimiavargani M, Tada S, Minagawa N, Shimizu Y, Hirose T, Ito Y, Uzawa T. Phosphorogenic and spontaneous formation of tris(bipyridine)ruthenium in peptide scaffolds. J Pept Sci 2019; 25:e3158. [PMID: 30784138 DOI: 10.1002/psc.3158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 01/23/2019] [Accepted: 01/26/2019] [Indexed: 01/03/2023]
Abstract
Redox-active ruthenium complexes have been widely used in various fields; however, the harsh conditions required for their synthesis are not always conducive to their subsequent use in biological applications. In this study, we demonstrate the spontaneous formation of a derivative of tris(bipyridine)ruthenium at 37°C through the coordination of three bipyridyl ligands incorporated into a peptide to a ruthenium ion. Specifically, we synthesized six bipyridyl-functionalized peptides with randomly chosen sequences. The six peptides bound to ruthenium ions and exhibited similar spectroscopic and electrochemical features to tris(bipyridine)ruthenium, indicating the formation of ruthenium complexes as we anticipated. The photo-excited triplet state of the ruthenium complex formed in the peptides exhibited an approximately 1.6-fold longer lifetime than that of tris(bipyridine)ruthenium. We also found that the photo-excited state of the ruthenium complexes was able to transfer an electron to methyl viologen, indicating that the ruthenium complexes formed in the peptides had the same ability to transfer charge as tris(bipyridine)ruthenium. We believe that this strategy of producing ruthenium complexes in peptides under mild conditions will pave the way for developing new metallopeptides and metalloproteins containing functional metal-complexes.
Collapse
Affiliation(s)
- Marziyeh Karimiavargani
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Seiichi Tada
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, Saitama, 351-0198, Japan
| | - Noriko Minagawa
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, Saitama, 351-0198, Japan
| | - Yoshihiro Shimizu
- Laboratory for Cell-Free Protein Synthesis, RIKEN Center for Biosystems Dynamics Research (BDR), Osaka, 565-0874, Japan
| | - Takuji Hirose
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, Saitama, 351-0198, Japan
| | - Takanori Uzawa
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, Saitama, 351-0198, Japan
| |
Collapse
|
46
|
Natoli SN, Hartwig JF. Noble-Metal Substitution in Hemoproteins: An Emerging Strategy for Abiological Catalysis. Acc Chem Res 2019; 52:326-335. [PMID: 30693758 PMCID: PMC11620731 DOI: 10.1021/acs.accounts.8b00586] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Enzymes have evolved to catalyze a range of biochemical transformations with high efficiencies and unparalleled selectivities, including stereoselectivities, regioselectivities, chemoselectivities, and substrate selectivities, while typically operating under mild aqueous conditions. These properties have motivated extensive research to identify or create enzymes with reactivity that complements or even surpasses the reactivity of small-molecule catalysts for chemical reactions. One of the limitations preventing the wider use of enzymes in chemical synthesis, however, is the narrow range of bond constructions catalyzed by native enzymes. One strategy to overcome this limitation is to create artificial metalloenzymes (ArMs) that combine the molecular recognition of nature with the reactivity discovered by chemists. This Account describes a new approach for generating ArMs by the formal replacement of the natural iron found in the porphyrin IX (PIX) of hemoproteins with noble metals. Analytical techniques coupled with studies of chemical reactivity have demonstrated that expression of apomyoglobins and apocytochrome P450s (for which "apo-" denotes the cofactor-free protein) followed by reconstitution with metal-PIX cofactors in vitro creates proteins with little perturbation of the native structure, suggesting that the cofactors likely reside within the native active site. By means of this metal substitution strategy, a large number of ArMs have been constructed that contain varying metalloporphyrins and mutations of the protein. The studies discussed in this Account encompass the use of ArMs containing noble metals to catalyze a range of abiological transformations with high chemoselectivity, enantioselectivity, diastereoselectivity, and regioselectivity. These transformations include intramolecular and intermolecular insertion of carbenes into C-H, N-H, and S-H bonds, cyclopropanation of vinylarenes and of internal and nonconjugated alkenes, and intramolecular insertions of nitrenes into C-H bonds. The rates of intramolecular insertions into C-H bonds catalyzed by thermophilic P450 enzymes reconstituted with an Ir(Me)-PIX cofactor are now comparable to the rates of reactions catalyzed by native enzymes and, to date, 1000 times greater than those of any previously reported ArM. This reactivity also encompasses the selective intermolecular insertion of the carbene from ethyl diazoacetate into C-H bonds over dimerization of the carbene to form alkenes, a class of carbene insertion or selectivity not reported to occur with small-molecule catalysts. These combined results highlight the potential of well-designed ArMs to catalyze abiological transformations that have been challenging to achieve with any type of catalyst. The metal substitution strategy described herein should complement the reactivity of native enzymes and expand the scope of enzyme-catalyzed reactions.
Collapse
Affiliation(s)
- Sean N. Natoli
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, and Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - John F. Hartwig
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, and Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
47
|
Mayer C, Dulson C, Reddem E, Thunnissen AWH, Roelfes G. Directed Evolution of a Designer Enzyme Featuring an Unnatural Catalytic Amino Acid. Angew Chem Int Ed Engl 2019; 58:2083-2087. [PMID: 30575260 PMCID: PMC6519144 DOI: 10.1002/anie.201813499] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 11/15/2022]
Abstract
The impressive rate accelerations that enzymes display in nature often result from boosting the inherent catalytic activities of side chains by their precise positioning inside a protein binding pocket. Such fine-tuning is also possible for catalytic unnatural amino acids. Specifically, the directed evolution of a recently described designer enzyme, which utilizes an aniline side chain to promote a model hydrazone formation reaction, is reported. Consecutive rounds of directed evolution identified several mutations in the promiscuous binding pocket, in which the unnatural amino acid is embedded in the starting catalyst. When combined, these mutations boost the turnover frequency (kcat ) of the designer enzyme by almost 100-fold. This results from strengthening the catalytic contribution of the unnatural amino acid, as the engineered designer enzymes outperform variants, in which the aniline side chain is replaced with a catalytically inactive tyrosine residue, by more than 200-fold.
Collapse
Affiliation(s)
- Clemens Mayer
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49474AGGroningenThe Netherlands
| | - Christopher Dulson
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49474AGGroningenThe Netherlands
| | - Eswar Reddem
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49474AGGroningenThe Netherlands
| | - Andy‐Mark W. H. Thunnissen
- Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Gerard Roelfes
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49474AGGroningenThe Netherlands
| |
Collapse
|
48
|
Wang Y, Astruc D, Abd-El-Aziz AS. Metallopolymers for advanced sustainable applications. Chem Soc Rev 2019; 48:558-636. [PMID: 30506080 DOI: 10.1039/c7cs00656j] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Since the development of metallopolymers, there has been tremendous interest in the applications of this type of materials. The interest in these materials stems from their potential use in industry as catalysts, biomedical agents in healthcare, energy storage and production as well as climate change mitigation. The past two decades have clearly shown exponential growth in the development of many new classes of metallopolymers that address these issues. Today, metallopolymers are considered to be at the forefront for discovering new and sustainable heterogeneous catalysts, therapeutics for drug-resistant diseases, energy storage and photovoltaics, molecular barometers and thermometers, as well as carbon dioxide sequesters. The focus of this review is to highlight the advances in design of metallopolymers with specific sustainable applications.
Collapse
Affiliation(s)
- Yanlan Wang
- Liaocheng University, Department of Chemistry and Chemical Engineering, 252059, Liaocheng, China.
| | | | | |
Collapse
|
49
|
Mayer C, Dulson C, Reddem E, Thunnissen AMWH, Roelfes G. Directed Evolution of a Designer Enzyme Featuring an Unnatural Catalytic Amino Acid. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Clemens Mayer
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9474 AG Groningen The Netherlands
| | - Christopher Dulson
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9474 AG Groningen The Netherlands
| | - Eswar Reddem
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9474 AG Groningen The Netherlands
| | - Andy-Mark W. H. Thunnissen
- Groningen Biomolecular Sciences and Biotechnology Institute; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Gerard Roelfes
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9474 AG Groningen The Netherlands
| |
Collapse
|
50
|
Clarke DE, Noguchi H, Gryspeerdt JLAG, De Feyter S, Voet ARD. Artificial β-propeller protein-based hydrolases. Chem Commun (Camb) 2019; 55:8880-8883. [DOI: 10.1039/c9cc04388h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We investigated symmetrical β-propeller protein scaffolds as artificial hydrolases and discovered their catalytic mechanism to be centred around a threonine–histidine dyad.
Collapse
Affiliation(s)
- David E. Clarke
- Division of Molecular Imaging and Photonics
- Department of Chemistry
- KU Leuven
- Leuven
- Belgium
| | - Hiroki Noguchi
- Laboratory of Biomolecular Modelling and Design
- Department of Chemistry
- KU Leuven
- 3001 Leuven
- Belgium
| | | | - Steven De Feyter
- Division of Molecular Imaging and Photonics
- Department of Chemistry
- KU Leuven
- Leuven
- Belgium
| | - Arnout R. D. Voet
- Laboratory of Biomolecular Modelling and Design
- Department of Chemistry
- KU Leuven
- 3001 Leuven
- Belgium
| |
Collapse
|