1
|
David M, Leirikh T, Shelef O, Gutkin S, Kopp T, Zhou Q, Ma P, Fridman M, Houk KN, Shabat D. Chemiexcitation Acceleration of 1,2-Dioxetanes by Spiro-Fused Six-Member Rings with Electron-Withdrawing Motifs. Angew Chem Int Ed Engl 2024; 63:e202410057. [PMID: 39077893 DOI: 10.1002/anie.202410057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 07/31/2024]
Abstract
The chemiluminescent light-emission pathway of phenoxy-1,2-dioxetane luminophores attracts growing interest within the scientific community. Dioxetane probes undergoing rapid flash-type chemiexcitation exhibit higher detection sensitivity than those with a slow glow-type chemiexcitation rate. We discovered that dioxetanes fused to non-strained six-member rings, with hetero atoms or inductive electron-withdrawing groups, present both accelerated chemiexcitation rates and elevated chemical stability compared to dioxetanes fused to four-member strained rings. DFT computational simulations supported the chemiexcitation acceleration observed by spiro-fused six-member rings with inductive electron-withdrawing groups of dioxetanes. Specifically, a spiro-dioxetane with a six-member sulfone ring exhibited a chemiexcitation rate 293-fold faster than that of spiro-adamantyl-dioxetane. A turn-ON dioxetane probe for the detection of the enzyme β-galactosidase, containing the six-member sulfone unit, exhibited a S/N value of 108 in LB cell growth medium. This probe demonstrated a substantial increase in detection sensitivity towards E. coli bacterial cells expressing β-galactosidase, with an LOD value that is 44-fold more sensitive than that obtained by the adamantyl counterpart. The accelerated chemiexcitation and the elevated chemical stability presented by dioxetane containing a spiro-fused six-member ring with a sulfone inductive electron-withdrawing group, make it an ideal candidate for designing efficient turn-on chemiluminescent probes with exceptionally high detection sensitivity.
Collapse
Affiliation(s)
- Maya David
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Thomas Leirikh
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Omri Shelef
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Sara Gutkin
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Tal Kopp
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Qingyang Zhou
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095, United States
| | - Pengchen Ma
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095, United States
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Micha Fridman
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095, United States
| | - Doron Shabat
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
2
|
Gutkin S, Shelef O, Babjaková Z, Tomanová LA, Babjak M, Kopp T, Zhou Q, Ma P, Fridman M, Spitz U, Houk KN, Shabat D. Boosting Chemiexcitation of Phenoxy-1,2-dioxetanes through 7-Norbornyl and Homocubanyl Spirofusion. JACS AU 2024; 4:3558-3566. [PMID: 39328770 PMCID: PMC11423311 DOI: 10.1021/jacsau.4c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 09/28/2024]
Abstract
The chemiluminescent light-emission pathway of phenoxy-1,2-dioxetane luminophores is increasingly attracting the scientific community's attention. Dioxetane probes that undergo rapid, flash-type chemiexcitation demonstrate higher detection sensitivity than those with a slower, glow-type chemiexcitation rate. This is primarily because the rapid flash-type produces a greater number of photons within a given time. Herein, we discovered that dioxetanes fused to 7-norbornyl and homocubanyl units present accelerated chemiexcitation rates supported by DFT computational simulations. Specifically, the 7-norbornyl and homocubanyl spirofused dioxetanes exhibited a chemiexcitation rate 14.2-fold and 230-fold faster than that of spiro-adamantyl dioxetane, respectively. A turn-ON dioxetane probe for the detection of the enzyme β-galactosidase, containing the 7-norbornyl spirofused unit, exhibited an S/N value of 415 at a low enzyme concentration. This probe demonstrated an increase in detection sensitivity toward β-galactosidase expressing bacteria E. coli with a limit-of-detection value that is 12.8-fold more sensitive than that obtained by the adamantyl counterpart. Interestingly, the computed activation free energies of the homocubanyl and 7-norbornyl units were correlated with their CCsC spiro-angle to corroborate the measured chemiexcitation rates.
Collapse
Affiliation(s)
- Sara Gutkin
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Omri Shelef
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| | | | - Laura Anna Tomanová
- Department of Organic Chemistry, Slovak University of Technology in Bratislava, Radlinskeho 9, Bratislava 81237, Slovakia
| | - Matej Babjak
- Department of Organic Chemistry, Slovak University of Technology in Bratislava, Radlinskeho 9, Bratislava 81237, Slovakia
| | - Tal Kopp
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Qingyang Zhou
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Pengchen Ma
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Micha Fridman
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Urs Spitz
- Biosynth, Rietlistr. 4 Postfach, Staad 125 9422, Switzerland
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Doron Shabat
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
3
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
4
|
Gong J, Wang X, Wu J, Yoon C, Kim Y, Zou J, Mao Z, Kim JS. Diaminonaphthalene Boronic Acid (DANBA): New Approach for Peroxynitrite Sensing Site. Angew Chem Int Ed Engl 2024:e202409295. [PMID: 39150907 DOI: 10.1002/anie.202409295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/18/2024]
Abstract
Selective detection of reactive oxygen species (ROS) is vital for studying their role in brain diseases. Fluorescence probes can distinguish ONOO- species from other ROS; however, their selectivity toward ONOO- species depends on the ONOO- recognition group. Aryl-boronic acids and esters, which are common ONOO- recognition groups, are not selective for ONOO- over H2O2. In this study, we developed a diaminonaphthalene (DAN)-protected boronic acid as a new ONOO- recognition group that selectively reacts with ONOO- over H2O2 and other ROS. Three DAN-protected boronic acid (DANBA)-based fluorophores that emit fluorescence over visible to near-infrared (NIR) regions, Cou-BN, BVP-BN, and HDM-BN, and their aryl-boronic acid-based counterparts (Cou-BO, BVP-BO, and HDM-BO), were developed. The DANBA-based probes exhibited enhanced selectivity toward ONOO- over that of their control group, as well as universality in solution assays and in vitro experiments with PC12 cells. The NIR-emissive HDM-BN was optimized to delineate in vivo ONOO- levels in mouse brains with Parkinson's disease. This DAN-protected boronic acid belongs to a new generation of recognition groups for developing ONOO- probes, and this strategy could be extended to other common hydroxyl-containing dyes to detect ONOO- levels in complex biological systems and processes.
Collapse
Affiliation(s)
- Jiankang Gong
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Xiaoyu Wang
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Jiao Wu
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Changyu Yoon
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Yujin Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Jingwen Zou
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Zhiqiang Mao
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| |
Collapse
|
5
|
Lu Y, Zhang Y, Wu X, Pu R, Yan C, Liu W, Liu X, Guo Z, Zhu WH. A de novo zwitterionic strategy of ultra-stable chemiluminescent probes: highly selective sensing of singlet oxygen in FDA-approved phototherapy. Chem Sci 2024; 15:12431-12441. [PMID: 39118631 PMCID: PMC11304548 DOI: 10.1039/d4sc01915f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/10/2024] [Indexed: 08/10/2024] Open
Abstract
Singlet oxygen (1O2), as a fundamental hallmark in photodynamic therapy (PDT), enables ground-breaking clinical treatment in ablating tumors and killing germs. However, accurate in vivo monitoring of 1O2 remains a significant challenge in probe design, with primary difficulties arising from inherent photo-induced side reactions with poor selectivity. Herein, we report a generalizable zwitterionic strategy for ultra-stable near-infrared (NIR) chemiluminescent probes that ensure a highly specific [2 + 2] cycloaddition between fragile electron-rich enolether units and 1O2 in both cellular and dynamic in vivo domains. Innovatively, zwitterionic chemiluminescence (CL) probes undergo a conversion into an inert ketone excited state with an extremely short lifetime through conical intersection (CI), thereby affording sufficient photostability and suppressing undesired photoreactions. Remarkably, compared with the well-known commercial 1O2 probe SOSG, the zwitterionic probe QMI exhibited an ultra-high signal-to-noise ratio (SNR, over 40-fold). Of particular significance is that the zwitterionic CL probes demonstrate excellent selectivity, high sensitivity, and outstanding photostability, thereby making a breakthrough in real-time tracking of the FDA-approved 5-ALA-mediated in vivo PDT process in living mice. This innovative zwitterionic strategy paves a new pathway for high-performance NIR chemiluminescent probes and high-fidelity feedback on 1O2 for future biological and medical applications.
Collapse
Affiliation(s)
- Yao Lu
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Yutao Zhang
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Xia Wu
- Fluorescence Research Group, Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Ruihua Pu
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Chenxu Yan
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Weimin Liu
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Zhiqian Guo
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
6
|
Liu LH, Shang XZ, Yuan JH, Luo YN, Wang JY, Xue XL, Jiang N, Wang KP, Hu ZQ. A fluorescent probe based on cyclochalcone for detecting peroxynitrite. Photochem Photobiol Sci 2024; 23:1031-1039. [PMID: 38839721 DOI: 10.1007/s43630-024-00565-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/18/2024] [Indexed: 06/07/2024]
Abstract
A novel cyclic chalcone fluorescent probe C-PN was synthesized to detect ONOO-. After reaction with peroxynitrite, the double bond of C-PN in the cyclic chalcone structure was disconnected, which caused the change of intramolecular charge transfer (ICT) effect, emitting blue fluorescence and quenching orange red fluorescence. Visible to the naked eye, the color of the probe solution changed. The probe showed low sensitivity (detection limit = 20.2 nm), short response time (less than 60 s) at low concentration of ONOO-, good visibility, and good selectivity and stability for ONOO-.
Collapse
Affiliation(s)
- Li-Hao Liu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xian-Zhao Shang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jian-Hao Yuan
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yi-Ning Luo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jia-Yi Wang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xiao-Lei Xue
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Nan Jiang
- Genetic Testing Center, Women and Children's Hospital Affiliated to Qingdao University, Qingdao, 266034, Shandong, China.
| | - Kun-Peng Wang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Zhi-Qiang Hu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
7
|
Huang J, Xu M, Cheng P, Yu J, Wu J, Pu K. A Tandem-Locked Chemiluminescent Probe for Imaging of Tumor-Associated Macrophage Polarization. Angew Chem Int Ed Engl 2024; 63:e202319780. [PMID: 38523406 DOI: 10.1002/anie.202319780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/03/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
Tumor-associated macrophages (TAMs) play a role in both pro- and anti-tumor functions; and the targeted polarization from M2 to M1 TAMs has become an effective therapy option. Although detection of M1 TAMs is imperative to assess cancer immunotherapeutic efficacy, existing optical probes suffer from shallow tissue penetration depth and poor specificity toward M1 TAMs. Herein, we report a tandem-locked NIR chemiluminescent (CL) probe for specific detection of M1 TAMs. Through a combined molecular engineering approach via both atomic alternation and introduction of electron-withdrawing groups, near-infrared (NIR) chemiluminophores are screened out to possess record-long emission (over 800 nm), record-high CL quantum yield (2.7 % einstein/mol), and prolonged half-life (7.7 h). Based on an ideal chemiluminophore, the tandem-locked probe (DPDGN) is developed to only activate CL signal in the presence of both tumour (γ-glutamyl transpeptidase) and M1 macrophage biomarkers (nitric oxide). Such a tandem-lock design ensures its high specificity towards M1 macrophages in the tumor microenvironment over those in normal tissues or peripheral blood. Thus, DPDGN permits noninvasive imaging and tracking of M1 TAM in the tumor of living mice during R837 treatment, showing a good correlation with ex vivo methods. This study not only reports a new molecular approach towards highly efficient chemiluminophores but also reveals the first tandem-locked CL probes for enhanced imaging specificity.
Collapse
Affiliation(s)
- Jingsheng Huang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
| | - Mengke Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
| | - Penghui Cheng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
| | - Jie Yu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
| | - Jiayan Wu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
- Lee Kong Chian School of Medicine, Singapore, 636921, Singapore
| |
Collapse
|
8
|
Wang B, Kong Y, Tian X, Xu M. A highly sensitive and selective chemiluminescent probe for peroxynitrite detection in vitro, in vivo and in human liver cancer tissue. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134094. [PMID: 38518698 DOI: 10.1016/j.jhazmat.2024.134094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Peroxynitrite (ONOO-) is one of the important active nitrogen/reactive oxygen species that plays various roles in biological processes, such as inducing apoptosis and necrosis. Recent studies have shown that a significant increases in ONOO- content during tumor development, which is closely related to the level of oxidative stress within the tumor. It has been found that herbicide paraquat (PQ) can significantly increase the level of ONOO- in cells. Therefore, accurate monitoring abnormal changes in ONOO- caused by environmental hazardous materials and tumors is helpful in promoting the diagnosis and treatment of oxidative stress diseases (tumors), evenly environmental detection. Currently, traditional fluorescent probes for ONOO- detection have background interference. To address this, we developed a chemiluminescent probe (CL-1) and a fluorescent probe (Flu-1), using diphenyl phosphonate as a recognition group. CL-1 shows extremely sensitivity (9.8 nM), a high signal-to-noise(S/N) ratio (502), and excellent bioimaging capabilities compared to fluorescent probe (Flu-1). We have successfully used CL-1 to detect ONOO- produced by PQ stimulated cells, as well as endogenous ONOO- in tumor cells, mice, and human liver cancer tissues. Therefore, CL-1 can not only be a valuable tool for visualizing tumor and studying the role of ONOO- in tumor pathology, but the probe has the potential to be a powerful molecular imaging tool for exploring the complex biological role of ONOO- in a variety of biological Settings.
Collapse
Affiliation(s)
- Baoqu Wang
- Centre for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming 650500, China
| | - Yating Kong
- Centre for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming 650500, China
| | - Xiaoxue Tian
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangzhou, Guangdong 510080, China
| | - Min Xu
- Centre for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming 650500, China.
| |
Collapse
|
9
|
Liu J, Huang J, Wei X, Cheng P, Pu K. Near-Infrared Chemiluminescence Imaging of Chemotherapy-Induced Peripheral Neuropathy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310605. [PMID: 38040414 DOI: 10.1002/adma.202310605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/07/2023] [Indexed: 12/03/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) has a high prevalence but is poorly managed for cancer patients due to the lack of reliable and sensitive diagnostic techniques. Molecular optical imaging can provide a noninvasive way for real-time monitoring of CIPN; However, this is not reported, likely due to the absence of optical probes capable of imaging deep into the spinal canal and possessing sufficient sensitivity for minimal dosage through local injection into the dorsal root ganglia. Herein, a near-infrared (NIR) chemiluminophore (MPBD) with a chemiluminescence quantum yield higher than other reported probes is synthesized and a NIR activatable chemiluminescent probe (CalCL) is developed for in vivo imaging of CIPN. CalCL is constructed by caging MPBD with calpain-cleavable peptide moiety while conjugating polyethylene glycol chain to endow water solubility. Due to the deep-tissue penetration of chemiluminescence and specific turn-on response of CalCL toward calpain (a hallmark of CIPN), it allows for sensitive detection of paclitaxel-mediated CIPN in living mice, which is unattainable by fluorescence imaging. This study thus not only develops a highly efficient chemiluminescent probe, but also presents the first optical imaging approach toward high-throughput screening of neurotoxic drugs.
Collapse
Affiliation(s)
- Jing Liu
- School of Chemistry, Chemical Engineering and Biotechnology Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Jingsheng Huang
- School of Chemistry, Chemical Engineering and Biotechnology Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Xin Wei
- School of Chemistry, Chemical Engineering and Biotechnology Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Penghui Cheng
- School of Chemistry, Chemical Engineering and Biotechnology Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
- Lee Kong Chian School of Medicine Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| |
Collapse
|
10
|
Shang Q, Li SH, He YT, Zhang Y, Fu T, Han SS, Huang W, Wang XQ, Xu JH. High Contrast Bioimaging of Tumor and Inflammation with a Bicyclic Dioxetane Chemiluminescent Probe. Anal Chem 2024; 96:2286-2291. [PMID: 38289025 DOI: 10.1021/acs.analchem.3c05062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
The link between inflammation and the evolution of cancer is well established. Visualizing and tracking both tumor proliferation and the associated inflammatory response within a living organism are vital for dissecting the nexus between these two processes and for crafting precise treatment modalities. We report the creation and synthesis of an advanced NIR chemiluminescence probe that stands out for its exceptional selectivity, extraordinary sensitivity at nanomolar concentrations, swift detection capabilities, and broad application prospects. Crucially, this probe has been successfully utilized to image endogenous ONOO- across different inflammation models, including abdominal inflammation triggered by LPS, subcutaneous inflammatory conditions, and tumors grafted onto mice. These findings highlight the significant promise of chemiluminescence imaging in enhancing our grasp of the intricate interplay between cancer and inflammation and in steering the development of potent, targeted therapeutic strategies.
Collapse
Affiliation(s)
- Qian Shang
- Department of Nuclear Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Kangning Road No. 79, Zhuhai 519000, People's Republic of China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemo-metrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Shen-Huan Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemo-metrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Yu-Ting He
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemo-metrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Yun Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemo-metrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Ting Fu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemo-metrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Shi-Song Han
- Department of Nuclear Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Kangning Road No. 79, Zhuhai 519000, People's Republic of China
| | - Wenshan Huang
- Department of Nuclear Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Kangning Road No. 79, Zhuhai 519000, People's Republic of China
| | - Xue-Qiang Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemo-metrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Jie-Hua Xu
- Department of Nuclear Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Kangning Road No. 79, Zhuhai 519000, People's Republic of China
| |
Collapse
|
11
|
Tannous R, Shelef O, Gutkin S, David M, Leirikh T, Ge L, Jaber Q, Zhou Q, Ma P, Fridman M, Spitz U, Houk KN, Shabat D. Spirostrain-Accelerated Chemiexcitation of Dioxetanes Yields Unprecedented Detection Sensitivity in Chemiluminescence Bioassays. ACS CENTRAL SCIENCE 2024; 10:28-42. [PMID: 38292606 PMCID: PMC10823517 DOI: 10.1021/acscentsci.3c01141] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 02/01/2024]
Abstract
Chemiluminescence is a fascinating phenomenon that involves the generation of light through chemical reactions. The light emission from adamantyl-phenoxy-1,2-dioxetanes can glow from minutes to hours depending on the specific substituent present on the dioxetane molecule. In order to improve the light emission properties produced by these chemiluminescent luminophores, it is necessary to induce the chemiexcitation rate to a flash mode, wherein the bulk of light is emitted instantly rather than slowly over time. We report the realization of this goal through the incorporation of spirostrain release into the decomposition of 1,2-dioxetane luminophores. DFT computational simulations provided support for the hypothesis that the spiro-cyclobutyl substituent accelerates chemiexcitation as compared to the unstrained adamantyl substituent. Spiro-linking of cyclobutane and oxetane units led to greater than 100-fold and 1000-fold emission enhancement, respectively. This accelerated chemiexcitation rate increases the detection sensitivity for known chemiluminescent probes to the highest signal-to-noise ratio documented to date. A turn-ON probe, containing a spiro-cyclobutyl unit, for detecting the enzyme β-galactosidase exhibited a limit of detection value that is 125-fold more sensitive than that for the previously described adamantyl analogue. This probe was also able to instantly detect and image β-gal activity with enhanced sensitivity in E. coli bacterial assays.
Collapse
Affiliation(s)
- Rozan Tannous
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Omri Shelef
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Sara Gutkin
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Maya David
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Thomas Leirikh
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Liang Ge
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Qais Jaber
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Qingyang Zhou
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
| | - Pengchen Ma
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
- Department
of Chemistry, School of Chemistry, Xi’an Key Laboratory of
Sustainable Energy Material Chemistry and Engineering Research Center
of Energy Storage Materials and Devices, Ministry of Education, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
| | - Micha Fridman
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Urs Spitz
- BIOSYNTH, Rietlistr. 4 Postfach 125 9422 Staad, Switzerland
| | - Kendall N. Houk
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
| | - Doron Shabat
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
12
|
Lu G, Fan H, Wang K, Tian G, Chen C, Wang Y, Wang L, Fan X. A novel fluorescent probe for the detection of peroxynitrite and its application in mice epileptic brain model. Talanta 2024; 267:125157. [PMID: 37741266 DOI: 10.1016/j.talanta.2023.125157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/25/2023]
Abstract
Herein, a fluorescent probe, GYP, was developed for the detection of ONOO- in KA-induced epileptic brains. In solution, as a ratiometric probe, GYP indicated practical properties including steadiness under wide pH range (3.0-12.0), rapid response (within 20 s), stability over 48 h, high sensitivity (LOD = 0.27 μM) and high selectivity. In living PC12 cells, in spite of the low toxicity, GYP could achieve the time-dependent and dose-dependent imaging of ONOO-, while the generation and elimination were checked by introduction of SIN-1 and NAC, respectively. Further, GYP could cross Blood-Brain Barrier (BBB) rapidly and steadily during the imaging in KA-induced mice epileptic brain model. Thus, this work raised a practical implement for the detection of ONOO- in brain region, which might be helpful for further understanding of the epilepsy mechanism in future.
Collapse
Affiliation(s)
- Guanyi Lu
- Affiliated Hospital of Nantong University, Nantong University, 226001, Nantong, People's Republic of China
| | - Haowen Fan
- Affiliated Hospital of Nantong University, Nantong University, 226001, Nantong, People's Republic of China
| | - Kaidong Wang
- Affiliated Hospital of Nantong University, Nantong University, 226001, Nantong, People's Republic of China
| | - Gaonan Tian
- Affiliated Hospital of Nantong University, Nantong University, 226001, Nantong, People's Republic of China
| | - Chaoyan Chen
- Affiliated Hospital of Nantong University, Nantong University, 226001, Nantong, People's Republic of China
| | - Yao Wang
- Affiliated Hospital of Nantong University, Nantong University, 226001, Nantong, People's Republic of China
| | - Lei Wang
- Affiliated Hospital of Nantong University, Nantong University, 226001, Nantong, People's Republic of China.
| | - Xiangjun Fan
- Affiliated Hospital of Nantong University, Nantong University, 226001, Nantong, People's Republic of China.
| |
Collapse
|
13
|
Pan Y, Yang Q, Xu H, Yuan Z, Xu H. Screening and optimization of a water-soluble near-infrared fluorescent probe for drug-induced liver injury monitoring. Anal Chim Acta 2023; 1276:341654. [PMID: 37573102 DOI: 10.1016/j.aca.2023.341654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/25/2023] [Accepted: 07/24/2023] [Indexed: 08/14/2023]
Abstract
Peroxynitrite (ONOO-) is a potential biomarker of drug-induced liver injury (DILI) and is involved in the process of DILI. Therefore, developing a reliable detection method for ONOO- will greatly contribute to ensuring drug safety and improving treatment efficiency. Here, based on the previous work, two kinds of NIR fluorescence probes PN and SPN were developed with phenyl-hydrazine as the ONOO- recognition group, which based on two fluorophores RN and SRN that are stable to ONOO-. A sensitive NIR probe SPN with good water solubility, low detection limit and good biocompatibility was selected through in vitro spectral property screening. Further experimental results show that there is a good linear relationship between the response intensity of probe SPN to ONOO- and the concentration of ONOO-, and the detection limit can reach 19.7 nM. At the cellular level, probe SPN can achieve a good and specific response to endogenous and exogenous ONOO-. Also, the probe SPN can be used for imaging and detection of DILI in zebrafish level and small animal level, indicating that probe SPN can be used as a powerful tool for diagnosis of DILI and efficacy evaluation of therapeutic drugs.
Collapse
Affiliation(s)
- Yanping Pan
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China; Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Qiuxing Yang
- Cancer Research Center Nantong, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Hong Xu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Zhenwei Yuan
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China.
| | - Hui Xu
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China.
| |
Collapse
|
14
|
Huang C, Zhou W, Wu R, Guan W, Ye N. Recent Advances in Nanomaterial-Based Chemiluminescence Probes for Biosensing and Imaging of Reactive Oxygen Species. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111726. [PMID: 37299629 DOI: 10.3390/nano13111726] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Reactive oxygen species (ROS) play important roles in organisms and are closely related to various physiological and pathological processes. Due to the short lifetime and easy transformation of ROS, the determination of ROS content in biosystem has always been a challenging task. Chemiluminescence (CL) analysis has been widely used in the detection of ROS due to its advantages of high sensitivity, good selectivity and no background signal, among which nanomaterial-related CL probes are rapidly developing. In this review, the roles of nanomaterials in CL systems are summarized, mainly including their roles as catalysts, emitters, and carriers. The nanomaterial-based CL probes for biosensing and bioimaging of ROS developed in the past five years are reviewed. We expect that this review will provide guidance for the design and development of nanomaterial-based CL probes and facilitate the wider application of CL analysis in ROS sensing and imaging in biological systems.
Collapse
Affiliation(s)
- Chuanlin Huang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Wenjuan Zhou
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Riliga Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Weijiang Guan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Nengsheng Ye
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| |
Collapse
|
15
|
Cabello MC, Bartoloni FH, Bastos EL, Baader WJ. The Molecular Basis of Organic Chemiluminescence. BIOSENSORS 2023; 13:bios13040452. [PMID: 37185527 PMCID: PMC10136088 DOI: 10.3390/bios13040452] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023]
Abstract
Bioluminescence (BL) and chemiluminescence (CL) are interesting and intriguing phenomena that involve the emission of visible light as a consequence of chemical reactions. The mechanistic basis of BL and CL has been investigated in detail since the 1960s, when the synthesis of several models of cyclic peroxides enabled mechanistic studies on the CL transformations, which led to the formulation of general chemiexcitation mechanisms operating in BL and CL. This review describes these general chemiexcitation mechanisms-the unimolecular decomposition of cyclic peroxides and peroxide decomposition catalyzed by electron/charge transfer from an external (intermolecular) or an internal (intramolecular) electron donor-and discusses recent insights from experimental and theoretical investigation. Additionally, some recent representative examples of chemiluminescence assays are given.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil
| | - Fernando H Bartoloni
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, Santo André 09210-580, Brazil
| | - Erick L Bastos
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil
| | - Wilhelm J Baader
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil
| |
Collapse
|
16
|
Zhan Z, Chai L, Yang H, Dai Y, Wei Z, Wang D, Lv Y. Endoplasmic Reticulum Peroxynitrite Fluctuations in Hypoxia-Induced Endothelial Injury and Sepsis with a Two-Photon Fluorescence Probe. Anal Chem 2023; 95:5585-5593. [PMID: 36952574 DOI: 10.1021/acs.analchem.2c05040] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Sepsis is a serious systemic inflammatory disease that frequently results in death. Early diagnosis and timely targeted interventions could improve the therapeutic effect. Recent work has revealed that the reactive oxygen species (ROS) in the endoplasmic reticulum (ER) and hypoxia-induced endothelial injury play significant roles in sepsis. However, the relationship between the levels of peroxynitrite (ONOO-) and hypoxia-induced endothelial injury as well as different states of sepsis remain unexplored. Herein, we developed a unique two-photon fluorescent probe (ER-ONOO-) for detecting ONOO- in aqueous solution that has high sensitivity, high selectivity, and ultrafast response time. In addition, ER-ONOO- was successfully used to evaluate the levels of ONOO- at the ER with three kinds of methods in a hypoxia-induced endothelial injury model. Furthermore, ER-ONOO- is capable of monitoring the changes in organ fluorescence through ONOO- variation in different stages of a cecum ligation and puncture (CLP) mouse model. Moreover, we also confirmed that the endoplasmic reticulum stress and oxidative stress participated in the CLP model. Consequently, this research can provide a reliable tool for studying ONOO- fluctuation in sepsis and provide new insights into the pathogenic and therapeutic mechanisms involved.
Collapse
Affiliation(s)
- Zixuan Zhan
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, Laboratory of Ethnopharmacology, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Chai
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, Laboratory of Ethnopharmacology, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Haihui Yang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, Laboratory of Ethnopharmacology, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yongcheng Dai
- Analytical & Testing Center, Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Zeliang Wei
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, Laboratory of Ethnopharmacology, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Denian Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, Laboratory of Ethnopharmacology, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Lv
- Analytical & Testing Center, Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
17
|
Abstract
Chemiluminescent molecules which emit light in response to a chemical reaction are powerful tools for the detection and measurement of biological analytes and enable the understanding of complex biochemical processes in living systems. Triggerable chemiluminescent 1,2-dioxetanes have been studied and tuned over the past decades to advance quantitative measurement of biological analytes and molecular imaging in live cells and animals. A crucial determinant of success for these 1,2-dioxetane based sensors is their chemical structure, which can be manipulated to achieve desired chemical properties. In this Perspective, we survey the structural space of triggerable 1,2-dioxetane and assess how their design features affect chemiluminescence properties including quantum yield, emission wavelength, and decomposition kinetics. Based on this appraisal, we identify some structural modifications of 1,2-dioxetanes that are ripe for exploration in the context of chemiluminescent biological sensors.
Collapse
|
18
|
Kim YL, Plank JT, Li B, Lippert AR. Kinetics-Based Quantification of Peroxynitrite Using the Oxidative Decarbonylation of Isatin. Anal Chem 2022; 94:17803-17809. [PMID: 36520991 DOI: 10.1021/acs.analchem.2c03474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Peroxynitrite and its radical decomposition products are highly reactive nitrogen and oxygen species that can influence the balance between health and disease in multiple organ systems. Despite vigorous research activity, real-time quantitative monitoring of peroxynitrite generated by donor compounds remains challenging. Here, we report a kinetics-based fluorescence method for quantitative tracking of peroxynitrite generation using the oxidative decarbonylation of isatin to form anthranilic acid as a fluorescent probe. This method relies on knowledge of the rate of the reaction of peroxynitrite with the probe, which we measure using stopped-flow fluorescence techniques. To the best of our knowledge, this is the first optical method capable of providing real-time quantitative measures of peroxynitrite concentrations generated from donor compounds, as demonstrated herein for SIN-1 and Angeli's salt.
Collapse
Affiliation(s)
- Yujin L Kim
- Department of Chemistry, Southern Methodist University, Dallas, Texas75275-0314, United States
| | - Joshua T Plank
- Department of Chemistry, Southern Methodist University, Dallas, Texas75275-0314, United States
| | - Bo Li
- Department of Chemistry, Southern Methodist University, Dallas, Texas75275-0314, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas75275-0314, United States
| |
Collapse
|
19
|
Wang BD, Wei R, Gao MJ, Wang YH, Zhang CF, Guo XH, Liang ZS, Zhou JT, Sun JX, Xu JQ, Kang YF. Development of peroxynitrite-responsive fluorescence probe for recognition of drug-induced liver injury. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 283:121755. [PMID: 35985230 DOI: 10.1016/j.saa.2022.121755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/26/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Peroxynitrite (ONOO-) as an active substance, is produced during normal physiological process, which plays an important role in maintaining cell REDOX balance and cell function. Moreover, the peroxynitrite is involved in many diseases and especially can be used as a biomarker of drug-induced liver injury (DILI). Therefore, in this work, we synthesized a fluorescent probe JQ-3 for detecting ONOO-. The results showed the probe JQ-3 possessed excellent selectivity, fast response time (10 min) and low detection limit (32 nM). The probe JQ-3 is almost unaffected by pH, showing the potential application in biological systems. Moreover, the probe JQ-3 can be successfully used for the detection of exogenous and endogenous ONOO- in living cells and zebrafish. At the same time, the DILI was successfully recognized by visualizing ONOO- with JQ-3 in living cells and zebrafish. Therefore, the probe JQ-3 provides a potential tool for detecting ONOO- to understand physiological and pathology processes of disease.
Collapse
Affiliation(s)
- Bing-Dan Wang
- College of Laboratory Medicine, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, and Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Ran Wei
- College of Laboratory Medicine, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, and Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Meng-Jiao Gao
- College of Laboratory Medicine, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, and Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Yi-Hua Wang
- College of Chemical Engineering, Lanzhou University of Arts and Sciences, Lanzhou 730010, China
| | - Chu-Fan Zhang
- College of Laboratory Medicine, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, and Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Xiao-Han Guo
- College of Laboratory Medicine, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, and Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Zi-Shan Liang
- College of Laboratory Medicine, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, and Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Jia-Tong Zhou
- College of Laboratory Medicine, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, and Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Jia-Xing Sun
- College of Laboratory Medicine, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, and Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Jia-Qi Xu
- College of Laboratory Medicine, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, and Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei North University, Zhangjiakou 075000, Hebei Province, China.
| | - Yan-Fei Kang
- College of Laboratory Medicine, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, and Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei North University, Zhangjiakou 075000, Hebei Province, China.
| |
Collapse
|
20
|
Su H, Ji X, Zhang J, Wang N, Wang H, Liu J, Jiao J, Zhao W. Red-emitting Fluorescent Probe for Visualizing Endogenous Peroxynitrite in Live Cells and Inflamed Mouse Model. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Ma L, Yang Q, Zan Q, Tian H, Zhang X, Dong C, Fan L. A benzothiazole-based fluorescence probe for imaging of peroxynitrite during ferroptosis and diagnosis of tumor tissues. Anal Bioanal Chem 2022; 414:7753-7762. [DOI: 10.1007/s00216-022-04307-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/25/2022]
|
22
|
Huang J, Cheng P, Xu C, Liew SS, He S, Zhang Y, Pu K. Chemiluminescent Probes with Long‐Lasting High Brightness for In Vivo Imaging of Neutrophils. Angew Chem Int Ed Engl 2022; 61:e202203235. [DOI: 10.1002/anie.202203235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 12/18/2022]
Affiliation(s)
- Jingsheng Huang
- School of Chemical and Biomedical Engineering 70 Nanyang Drive Singapore 637457 Singapore
| | - Penghui Cheng
- School of Chemical and Biomedical Engineering 70 Nanyang Drive Singapore 637457 Singapore
| | - Cheng Xu
- School of Chemical and Biomedical Engineering 70 Nanyang Drive Singapore 637457 Singapore
| | - Si Si Liew
- School of Chemical and Biomedical Engineering 70 Nanyang Drive Singapore 637457 Singapore
| | - Shasha He
- School of Chemical and Biomedical Engineering 70 Nanyang Drive Singapore 637457 Singapore
| | - Yan Zhang
- National Engineering Research Centre for Nanomedicine College of Life Science and Technology Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering 70 Nanyang Drive Singapore 637457 Singapore
- School of Physical and Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore 636921 Singapore
| |
Collapse
|
23
|
Liu J, Chen Z, Huo H, Chen L, Wu Y, Zhang X, Su L, Li Q, Song J. An Activatable
Near‐Infrared
Molecular Chemiluminescence Probe for Visualization of
NQO1
Activity
In Vivo. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jianyong Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University Fuzhou 350108 P. R. China
| | - Zhongxiang Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University Fuzhou 350108 P. R. China
| | - Hongqi Huo
- Department of Nuclear Medicine Han Dan Central Hospital Handan Hebei 056001 P. R. China
| | - Lanlan Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University Fuzhou 350108 P. R. China
| | - Ying Wu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University Fuzhou 350108 P. R. China
| | - Xuan Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University Fuzhou 350108 P. R. China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University Fuzhou 350108 P. R. China
| | - Qian Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University Fuzhou 350108 P. R. China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University Fuzhou 350108 P. R. China
| |
Collapse
|
24
|
Gu J, Liu Y, Shen J, Cao Y, Zhang L, Lu YD, Wang BZ, Zhu HL. A three-channel fluorescent probe for selective detection of ONOO− and its application to cell imaging. Talanta 2022; 244:123401. [DOI: 10.1016/j.talanta.2022.123401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 01/01/2023]
|
25
|
Gnaim S, Gholap SP, Ge L, Das S, Gutkin S, Green O, Shelef O, Hananya N, Baran PS, Shabat D. Modular Access to Diverse Chemiluminescent Dioxetane-Luminophores through Convergent Synthesis. Angew Chem Int Ed Engl 2022; 61:e202202187. [PMID: 35258138 PMCID: PMC9311660 DOI: 10.1002/anie.202202187] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Indexed: 12/19/2022]
Abstract
Adamantyl-dioxetane luminophores are an important class of chemiluminescent molecular probes for diagnostics and imaging. We have developed a new efficient synthetic route for preparation of adamantyl-enolether as precursors for dioxetane chemiluminescent luminophores. The synthesis is convergent, using an unusual Stille cross-coupling reaction employing a stannane-enolether, to directly afford adamantyl-enolether. In a following simple step, the dioxetane is obtained by oxidation of the enolether precursor with singlet-oxygen. The scope of this synthetic route is broad since a large number of haloaryl substrates are either commercially available or easily accessible. Such a late-stage derivatization strategy simplifies the rapid exploration of novel luminogenic molecular structures in a library format and simplifies the synthesis of known dioxetane luminophores. We expect that this new synthetic strategy will be particularly useful in the design and synthesis of yet unexplored dioxetane chemiluminescent luminophores.
Collapse
Affiliation(s)
- Samer Gnaim
- School of ChemistryRaymond and Beverly Sackler Faculty of Exact Sciences69978Tel AvivIsrael
- Department of ChemistryScripps Research10550 North Torrey Pines RoadLa JollaCA 92037USA
| | - Sachin Popat Gholap
- School of ChemistryRaymond and Beverly Sackler Faculty of Exact Sciences69978Tel AvivIsrael
| | - Liang Ge
- School of ChemistryRaymond and Beverly Sackler Faculty of Exact Sciences69978Tel AvivIsrael
| | - Sayantan Das
- School of ChemistryRaymond and Beverly Sackler Faculty of Exact Sciences69978Tel AvivIsrael
| | - Sara Gutkin
- School of ChemistryRaymond and Beverly Sackler Faculty of Exact Sciences69978Tel AvivIsrael
| | - Ori Green
- School of ChemistryRaymond and Beverly Sackler Faculty of Exact Sciences69978Tel AvivIsrael
| | - Omri Shelef
- School of ChemistryRaymond and Beverly Sackler Faculty of Exact Sciences69978Tel AvivIsrael
| | - Nir Hananya
- School of ChemistryRaymond and Beverly Sackler Faculty of Exact Sciences69978Tel AvivIsrael
| | - Phil S. Baran
- Department of ChemistryScripps Research10550 North Torrey Pines RoadLa JollaCA 92037USA
| | - Doron Shabat
- School of ChemistryRaymond and Beverly Sackler Faculty of Exact Sciences69978Tel AvivIsrael
| |
Collapse
|
26
|
Huang J, Cheng P, Xu C, Liew SS, He S, Zhang Y, Pu K. Chemiluminescent Probes with Long‐Lasting High Brightness for In Vivo Imaging of Neutrophils. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jingsheng Huang
- Nanyang Technological University Chemical and Biomedical Engineering SINGAPORE
| | - Penghui Cheng
- Nanyang Technological University Chemical and Biomedical Engineering SINGAPORE
| | - Cheng Xu
- Nanyang Technological University Chemical and Biomedical Engineering SINGAPORE
| | - Si Si Liew
- Nanyang Technological University Chemical and Biomedical Engineering SINGAPORE
| | - Shasha He
- Nanyang Technological University Chemical and Biomedical Engineering SINGAPORE
| | - Yan Zhang
- Huazhong University of Science and Technology College of Life Science and Technology CHINA
| | - Kanyi Pu
- Nanyang Technological University School of Chemical and Biomedical Engieering 70 Nanyang Drive 637457 Singapore SINGAPORE
| |
Collapse
|
27
|
He L, Liu H, Wu J, Cheng Z, Yu F. Construction of a mitochondria-endoplasmic reticulum dual-targeted red-emitting fluorescent probe for imaging peroxynitrite in living cells and zebrafish. Chem Asian J 2022; 17:e202200388. [PMID: 35521668 DOI: 10.1002/asia.202200388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/28/2022] [Indexed: 11/08/2022]
Abstract
Peroxynitrite (ONOO - ) is one of the important reactive oxygen species, which plays a vital role in the physiological process of intracellular redox balance. Revealing the biological functions of ONOO - will contribute to further understanding of the oxidative process of organisms. In this work, we designed and synthesized a novel red-emitting fluorescent probe MCSA for the detection of ONOO - , which could rapidly respond to ONOO - within 250 s and exhibited high sensitivity to ONOO - with a low detection limit of 78 nM. Co-localization experiments demonstrated MCSA had the ability to localize into the mitochondria and endoplasmic reticulum. What's more, MCSA enabled monitoring ONOO - level changes during tunicamycin-induced endoplasmic reticulum stress. We have also successfully achieved the visual detection of exogenous and endogenous ONOO - in living cells and zebrafish. This work presented a chemical tool for imaging ONOO - in vitro and in vivo.
Collapse
Affiliation(s)
- Lingchao He
- Qufu Normal University, College of Chemistry and Chemical Engineering, CHINA
| | - Heng Liu
- Hainan Medical University, College of Emergency and Trauma, CHINA
| | - Jinsheng Wu
- The First Affiliated Hospital of Hainan Medical University, Department of Radiotherapy, CHINA
| | - Ziyi Cheng
- Hainan Medical University, College of Emergency and Trauma, CHINA
| | - Fabiao Yu
- Hainan Medical University, Institute of Functional Materials and Molecular Imaging, 3 College Road, Longhua District, Haikou, China, 571199, Hainan, CHINA
| |
Collapse
|
28
|
Dou WT, Han HH, Sedgwick AC, Zhu GB, Zang Y, Yang XR, Yoon J, James TD, Li J, He XP. Fluorescent probes for the detection of disease-associated biomarkers. Sci Bull (Beijing) 2022; 67:853-878. [PMID: 36546238 DOI: 10.1016/j.scib.2022.01.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 01/10/2023]
Abstract
Fluorescent probes have emerged as indispensable chemical tools to the field of chemical biology and medicine. The ability to detect intracellular species and monitor physiological processes has not only advanced our knowledge in biology but has provided new approaches towards disease diagnosis. In this review, we detail the design criteria and strategies for some recently reported fluorescent probes that can detect a wide range of biologically important species in cells and in vivo. In doing so, we highlight the importance of each biological species and their role in biological systems and for disease progression. We then discuss the current problems and challenges of existing technologies and provide our perspective on the future directions of the research area. Overall, we hope this review will provide inspiration for researchers and prove as useful guide for the development of the next generation of fluorescent probes.
Collapse
Affiliation(s)
- Wei-Tao Dou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hai-Hao Han
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Adam C Sedgwick
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712-1224, USA
| | - Guo-Biao Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin-Rong Yang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China.
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
29
|
Gnaim S, Gholap SP, Ge L, Das S, Gutkin S, Green O, Shelef O, Hananya N, Baran PS, Shabat D. Modular Access to Diverse Chemiluminescent Dioxetane‐Luminophores through Convergent Synthesis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Samer Gnaim
- School of Chemistry Raymond and Beverly Sackler Faculty of Exact Sciences 69978 Tel Aviv Israel
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Sachin Popat Gholap
- School of Chemistry Raymond and Beverly Sackler Faculty of Exact Sciences 69978 Tel Aviv Israel
| | - Liang Ge
- School of Chemistry Raymond and Beverly Sackler Faculty of Exact Sciences 69978 Tel Aviv Israel
| | - Sayantan Das
- School of Chemistry Raymond and Beverly Sackler Faculty of Exact Sciences 69978 Tel Aviv Israel
| | - Sara Gutkin
- School of Chemistry Raymond and Beverly Sackler Faculty of Exact Sciences 69978 Tel Aviv Israel
| | - Ori Green
- School of Chemistry Raymond and Beverly Sackler Faculty of Exact Sciences 69978 Tel Aviv Israel
| | - Omri Shelef
- School of Chemistry Raymond and Beverly Sackler Faculty of Exact Sciences 69978 Tel Aviv Israel
| | - Nir Hananya
- School of Chemistry Raymond and Beverly Sackler Faculty of Exact Sciences 69978 Tel Aviv Israel
| | - Phil S. Baran
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Doron Shabat
- School of Chemistry Raymond and Beverly Sackler Faculty of Exact Sciences 69978 Tel Aviv Israel
| |
Collapse
|
30
|
Feng Y, Xu S, Song ZL, Ren TB, Huan SY, Yuan L, Zhang XB. Selective detection of ozone in inflamed mice using a novel activatable chemiluminescent probe. Chem Commun (Camb) 2022; 58:4184-4187. [PMID: 35266941 DOI: 10.1039/d2cc00359g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report here an activatable chemiluminescent probe CL-O3 for the high-contrast imaging of O3in vivo. CL-O3 exhibited a high selectivity toward O3 and was able to evaluate the degree of inflammation in mice by detecting endogenous O3 levels in acute inflamed mice.
Collapse
Affiliation(s)
- Yurong Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical En-gineering, Hunan University, Changsha 410082, P. R. China.
| | - Shuai Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical En-gineering, Hunan University, Changsha 410082, P. R. China.
| | - Zhi-Ling Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical En-gineering, Hunan University, Changsha 410082, P. R. China.
| | - Shuang-Yan Huan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical En-gineering, Hunan University, Changsha 410082, P. R. China.
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical En-gineering, Hunan University, Changsha 410082, P. R. China.
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical En-gineering, Hunan University, Changsha 410082, P. R. China.
| |
Collapse
|
31
|
Mao Z, Xiong J, Wang P, An J, Zhang F, Liu Z, Seung Kim J. Activity-based fluorescence probes for pathophysiological peroxynitrite fluxes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214356] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Lu X, Su H, Zhang J, Wang N, Wang H, Liu J, Zhao W. Resorufin-based fluorescent probe with elevated water solubility for visualizing fluctuant peroxynitrite in progression of inflammation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120620. [PMID: 34802934 DOI: 10.1016/j.saa.2021.120620] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Inflammation is a significant protective response in biological systems and associated with various diseases. Peroxynitrite (ONOO-) as a highly active oxidant participates in the inflammatory process of organisms. Thus, it is necessary to construct novel fluorescent probes for exploring inflammation-related diseases through detecting endogenous ONOO-. Resorufin-based fluorescent probes for testing ONOO- were rare and suffered from poor water solubility. In this work, we elaborately designed three resorufin-based incorporating isatin derivatives probes RF-ITs and successfully obtained two highly selective probes RF-IT-OC and RF-IT-EG for ONOO-. Comparing the other two probes, RF-IT-EG containing triethylene glycol monomethyl ether on isatin moiety displayed better water solubility (3.2 mg/L), faster response rate (60 s), larger signal-to-noise ratio (103-fold) and lower detection limit (87 nM) for monitoring ONOO-. The cells imaging results manifested that probe RF-IT-EG could be applied to trace endogenous ONOO- with inappreciable cytotoxicity. Moreover, the RF-IT-EG was capable of tracking the fluctuation of endogenous ONOO- in LPS-stimulated inflamed mouse leg models. This work will provide a faithful and promising probe for illustrating the roles of ONOO- in various inflammation-related diseases.
Collapse
Affiliation(s)
- Xiaoyan Lu
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Huihui Su
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Jian Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China.
| | - Nannan Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Han Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Jinying Liu
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Weili Zhao
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China; School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, 201203, P. R. China.
| |
Collapse
|
33
|
Abstract
Significance: Reactive sulfur and nitrogen species such as hydrogen sulfide (H2S) and nitric oxide (NO•) are ubiquitous cellular signaling molecules that play central roles in physiology and pathophysiology. A deeper understanding of these signaling pathways will offer new opportunities for therapeutic treatments and disease management. Recent Advances: Chemiluminescence methods have been fundamental in detecting and measuring biological reactive sulfur and nitrogen species, and new approaches are emerging for imaging these analytes in living intact specimens. Ozone-based and luminol-based chemiluminescence methods have been optimized for quantitative analysis of hydrogen sulfide and nitric oxide in biological samples and tissue homogenates, and caged luciferin and 1,2-dioxetanes are emerging as a versatile approach for monitoring and imaging reactive sulfur and nitrogen species in living cells and animal models. Critical Issues: This review article will cover the major chemiluminescence approaches for detecting, measuring, and imaging reactive sulfur and nitrogen species in biological systems, including a brief history of the development of the most established approaches and highlights of the opportunities provided by emerging approaches. Future Directions: Emerging chemiluminescence approaches offer new opportunities for monitoring and imaging reactive sulfur and nitrogen species in living cells, animals, and human clinical samples. Widespread adoption and translation of these approaches, however, requires an emphasis on rigorous quantitative methods, reproducibility, and effective technology transfer. Antioxid. Redox Signal. 36, 337-353.
Collapse
Affiliation(s)
- Bo Li
- Department of Chemistry, Southern Methodist University, Dallas, Texas USA
| | - Yujin Lisa Kim
- Department of Chemistry, Southern Methodist University, Dallas, Texas USA
| | - Alexander Ryan Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas USA.,Center for Drug Discovery, Design, and Delivery (CD), Southern Methodist University, Dallas, Texas USA
| |
Collapse
|
34
|
Wang Y, Bian Y, Chen X, Su D. Chemiluminescent Probes Based on 1,2-dioxetane Structures For Bioimaging. Chem Asian J 2022; 17:e202200018. [PMID: 35088544 DOI: 10.1002/asia.202200018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/26/2022] [Indexed: 11/06/2022]
Abstract
Chemiluminescent probes based on 1,2-dioxetane scaffold are one of the most sensitive imaging modalities for detecting disease-related biomarkers and can obtain more accurate biological information in cells and in vivo . Due to the elimination of external light excitation, the background autofluorescence problem in fluorescence technology can be effectively avoided, providing ultra-high sensitivity and signal-to-noise ratio for various applications. In this minireview, we highlight a comprehensive but concise overview of activatable 1,2-dioetxane-based chemiluminescent probes by reporting significant advances in accurate detection and bioimaging. The design principles and applications for reactive species, enzymes, and other disease-related biomarkers are systematically discussed and summarized. The challenges and potential prospects of chemiluminescent probes are also discussed to further promote the development of new chemiluminescence methods for biological analysis and diagnosis.
Collapse
Affiliation(s)
- Yaling Wang
- Beijing University of Technology, Department of chemistry and biology, CHINA
| | - Yongning Bian
- Beijing University of Technology, Department of chemistry and biology, CHINA
| | - Xueqian Chen
- Beijing University of Technology, Department of chemistry and biology, CHINA
| | - Dongdong Su
- Beijing University of Technology, Department of Chemistry and Chemical Engineering, 100 Pingleyuan, Chaoyang District, 100124, Beijing, CHINA
| |
Collapse
|
35
|
Abstract
An efficient construction of amides through NHC-mediated oxidation of imines is described. This work has the advantages of wide scope, fast assembly and high yield, and can avoid the use of coupling agents, such as HATU, DCC, etc.
Collapse
Affiliation(s)
- Shaofa Sun
- College of Chemistry and Biological Sciences, Hubei University of Science and Technology, Hubei, 437100, China
| | - Donghui Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, P. R. China
| | - Fangyi Li
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, P. R. China
| | - Jian Wang
- College of Chemistry and Biological Sciences, Hubei University of Science and Technology, Hubei, 437100, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
36
|
Kumar V, Matai I, Kumar A, Sachdev A. GNP-CeO 2- polyaniline hybrid hydrogel for electrochemical detection of peroxynitrite anion and its integration in a microfluidic platform. Mikrochim Acta 2021; 188:436. [PMID: 34837536 DOI: 10.1007/s00604-021-05105-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/10/2021] [Indexed: 01/11/2023]
Abstract
Peroxynitrite anion (ONOO-) is an important in vivo oxidative stress biomarker whose aberrant levels have pathophysiological implications. In this study, an electrochemical sensor for ONOO- detection was developed based on graphene nanoplatelets-cerium oxide nanocomposite (GNP-CeO2) incorporated polyaniline (PANI) conducting hydrogels. The nanocomposite-hydrogel platform exhibited distinct synergistic advantages in terms of large electroactive surface coverage and providing a conductive pathway for electron transfer. Besides, the 3D porous structure of hydrogel integrated the GNP-CeO2 nanocomposite to provide hybrid materials for the evolution of catalytic activity towards electrochemical oxidation of ONOO-. Various microscopic and spectroscopic characterization techniques endorsed the successful formation of GNP-CeO2-PANI hydrogel. Cyclic voltammetry (CV) measurements of GNP-CeO2-PANI hydrogel modified screen-printed electrodes (SPE) were carried out to record the current changes influenced by ONOO-. The prepared sensor demonstrated a significant dose-dependent increase in CV peak current within a linear range of 5-100 µM (at a potential of 1.12 V), and a detection limit of 0.14 with a sensitivity of 29.35 ± 1.4 μA μM-1. Further, a customized microfluidic flow system was integrated with the GNP-CeO2-PANI hydrogel modified SPE to enable continuous electrochemical detection of ONOO- at low sample volumes. The developed microfluidic electrochemical device demonstrated an excellent sensitivity towards ONOO- under optimal experimental conditions. Overall, the fabricated microfluidic device with hybrid hydrogels as electrochemical interfaces provides a reliable assessment of ONOO- levels. This work offers considerable potential for understanding the oxidative stress-related disease mechanisms through determination of ONOO- in biological samples.
Collapse
Affiliation(s)
- Vijayesh Kumar
- Materials Science & Sensor Application Division, CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Chandigarh, 160030, India
| | - Ishita Matai
- Department of Biotechnology, Amity University Punjab, Mohali, 140306, India.
| | - Ankit Kumar
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Abhay Sachdev
- Materials Science & Sensor Application Division, CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Chandigarh, 160030, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 211002, India.
| |
Collapse
|
37
|
Abstract
Optical imaging is an indispensable tool in clinical diagnostics and fundamental biomedical research. Autofluorescence-free optical imaging, which eliminates real-time optical excitation to minimize background noise, enables clear visualization of biological architecture and physiopathological events deep within living subjects. Molecular probes especially developed for autofluorescence-free optical imaging have been proven to remarkably improve the imaging sensitivity, penetration depth, target specificity, and multiplexing capability. In this Review, we focus on the advancements of autofluorescence-free molecular probes through the lens of particular molecular or photophysical mechanisms that produce long-lasting luminescence after the cessation of light excitation. The versatile design strategies of these molecular probes are discussed along with a broad range of biological applications. Finally, challenges and perspectives are discussed to further advance the next-generation autofluorescence-free molecular probes for in vivo imaging and in vitro biosensors.
Collapse
Affiliation(s)
- Yuyan Jiang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.,School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
38
|
Gutkin S, Gandhesiri S, Brik A, Shabat D. Synthesis and Evaluation of Ubiquitin-Dioxetane Conjugate as a Chemiluminescent Probe for Monitoring Deubiquitinase Activity. Bioconjug Chem 2021; 32:2141-2147. [PMID: 34549948 PMCID: PMC8589252 DOI: 10.1021/acs.bioconjchem.1c00413] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Indexed: 12/27/2022]
Abstract
The removal of ubiquitin (Ub) from a modified protein or Ub chain is a process that occurs regularly by the ubiquitin-proteasome system. This process is known to be mediated by various deubiquitinating enzymes (DUBs) in order to control the protein's half-life and its expression levels among many other signaling processes. Since the function of DUBs is also involved in numerous human diseases, such as cancer, there is an obvious need for an effective diagnostic probe that can monitor the activity of these enzymes. We have developed the first chemiluminescence probe for detection of DUBs activity. The probe was prepared by conjugation of the chemically synthesized C-terminally activated Ub(1-75) with a Gly-enolether precursor. Subsequent oxidation, under aqueous conditions, of the enolether conjuagate with singlet-oxygen furnished the dioxetane probe Ub-CL. This synthesis provides the first example of a dioxetane-luminophore protein conjugate. The probe's ability to detect deubiquitinating activity was successfully validated with three different DUBs. In order to demonstrate the advantage of our new probe, comparison measurements for detection of DUB UCH-L3 activity were performed between the chemiluminescent probe Ub-CL and the well-known Ub-AMC probe. The obtained data showed significantly higher S/N, for probe Ub-CL (>93-fold) in comparison to that observed for Ub-AMC (1.5-fold). We anticipate that the successful design and synthesis of the turn-ON protein-dioxetane conjugate probe, demonstrated in this work, will provide the insight and motivation for preparation of other relevant protein-dioxetane conjugates.
Collapse
Affiliation(s)
- Sara Gutkin
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Satish Gandhesiri
- Schulich
Faculty of Chemistry, Technion-Israel Institute
of Technology, Haifa 3200008, Israel
| | - Ashraf Brik
- Schulich
Faculty of Chemistry, Technion-Israel Institute
of Technology, Haifa 3200008, Israel
| | - Doron Shabat
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
39
|
Li Z, Lu J, Pang Q, You J. Construction of a near-infrared fluorescent probe for ratiometric imaging of peroxynitrite during tumor progression. Analyst 2021; 146:5204-5211. [PMID: 34312630 DOI: 10.1039/d1an00980j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Malignant tumors are one of the main causes for human death and are tightly associated with overexpression of reactive oxygen species (ROS) in pathological processes. Therefore, in vivo monitoring of ROS, especially ONOO-, remains of great significance for diagnosis and therapy of tumors to improve the survival rate. Herein, we designed and constructed a reliable near-infrared (NIR) ratiometric fluorescent biosensor CDMS for monitoring the fluctuations of ONOO- in the process of tumor progression. CDMS featured outstanding stability to photoirradiation, substantial quantum yields, rapid response (<5 s), high selectivity and excellent biocompatibility. Moreover, CDMS exhibited distinct ratiometric fluorescence signal changes after reacting with ONOO-. Fluorescence imaging in immune stimulated cells indicated that CDMS was competent to determine the levels of ONOO- in the cellular level. Remarkably, CDMS was further applied in monitoring the expression of ONOO- in a peritonitis mouse model and tumor-bearing mouse model. Based on the excellent properties of CDMS, the probe exhibited the potential for noninvasive in vivo visualization of ONOO- in the occurrence and process of tumor development. It is envisioned that CDMS can be employed as a promising tool for monitoring the ONOO- fluxes in tumor pathological progression, especially for tumor diagnosis and therapy.
Collapse
Affiliation(s)
- Zan Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P.R. China.
| | - Jiao Lu
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P.R. China.
| | - Qing Pang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P.R. China.
| | - Jinmao You
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P.R. China.
| |
Collapse
|
40
|
Haris U, Kagalwala HN, Kim YL, Lippert AR. Seeking Illumination: The Path to Chemiluminescent 1,2-Dioxetanes for Quantitative Measurements and In Vivo Imaging. Acc Chem Res 2021; 54:2844-2857. [PMID: 34110136 DOI: 10.1021/acs.accounts.1c00185] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chemiluminescence is a fascinating phenomenon that evolved in nature and has been harnessed by chemists in diverse ways to improve life. This Account tells the story of our research group's efforts to formulate and manifest spiroadamantane 1,2-dioxetanes with triggerable chemiluminescence for imaging and monitoring important reactive analytes in living cells, animals, and human clinical samples. Analytes like reactive sulfur, oxygen and nitrogen species, as well as pH and hypoxia can be indicators of cellular function or dysfunction and are often implicated in the causes and effects of disease. We begin with a foundation in binding-based and activity-based fluorescence imaging that has provided transformative tools for understanding biological systems. The intense light sources required for fluorescence excitation, however, introduce autofluorescence and light scattering that reduces sensitivity and complicates in vivo imaging. Our work and the work of our collaborators were the first to demonstrate that spiroadamantane 1,2-dioxetanes had sufficient brightness and biological compatibility for in vivo imaging of enzyme activity and reactive analytes like hydrogen sulfide (H2S) inside of living mice. This launched an era of renewed interest in 1,2-dioxetanes that has resulted in a plethora of new chemiluminescence imaging agents developed by groups around the world. Our own research group focused its efforts on reactive sulfur, oxygen, and nitrogen species, pH, and hypoxia, resulting in a large family of bright chemiluminescent 1,2-dioxetanes validated for cell monitoring and in vivo imaging. These chemiluminescent probes feature low background and high sensitivity that have been proven quite useful for studying signaling, for example, the generation of peroxynitrite (ONOO-) in cellular models of immune function and phagocytosis. This high sensitivity has also enabled real-time quantitative reporting of oxygen-dependent enzyme activity and hypoxia in living cells and tumor xenograft models. We reported some of the first ratiometric chemiluminescent 1,2-dioxetane systems for imaging pH and have introduced a powerful kinetics-based approach for quantification of reactive species like azanone (nitroxyl, HNO) and enzyme activity in living cells. These tools have been applied to untangle complex signaling pathways of peroxynitrite production in radiation therapy and as substrates in a split esterase system to provide an enzyme/substrate pair to rival luciferase/luciferin. Furthermore, we have pushed chemiluminescence toward commercialization and clinical translation by demonstrating the ability to monitor airway hydrogen peroxide in the exhaled breath of asthma patients using transiently produced chemiluminescent 1,2-dioxetanedione intermediates. This body of work shows the powerful possibilities that can emerge when working at the interface of light and chemistry, and we hope that it will inspire future scientists to seek out ever brighter and more illuminating ideas.
Collapse
Affiliation(s)
- Uroob Haris
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Husain N. Kagalwala
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Yujin Lisa Kim
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Alexander R. Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
41
|
Chen J, Huang D, She M, Wang Z, Chen X, Liu P, Zhang S, Li J. Recent Progress in Fluorescent Sensors for Drug-Induced Liver Injury Assessment. ACS Sens 2021; 6:628-640. [PMID: 33475340 DOI: 10.1021/acssensors.0c02343] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Drug-induced liver injury (DILI) is a persistent concern in drug discovery and clinical medicine. The current clinical methods to assay DILI by analyzing the enzymes in serum are still not optimal. Recent studies showed that fluorescent sensors would be efficient tools for detecting the concentration and distribution of DILI indicators with high sensitivity and specificity, in real-time, in situ, and with low damage to biosamples, as well as diagnosing DILI. This review focuses on the assessment of DILI, introduces the current mechanisms of DILI, and summarizes the design strategies of fluorescent sensors for DILI indicators, including ions, small molecules, and related enzymes. Some challenges for developing DILI diagnostic fluorescent sensors are put forward. We believe that these design strategies and challenges to evaluate DILI will inspire chemists and give them opportunities to further develop other fluorescent sensors for accurate diagnoses and therapies for other diseases.
Collapse
Affiliation(s)
- Jiao Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi province 710127, P. R. China
| | - Dongyu Huang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi province 710127, P. R. China
| | - Mengyao She
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi province 710127, P. R. China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; Biomedicine Key Laboratory of Shaanxi Province; Lab of Tissue Engineering, the College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi province 710069, P. R. China
| | - Zesi Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi province 710127, P. R. China
| | - Xi Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi province 710127, P. R. China
| | - Ping Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi province 710127, P. R. China
| | - Shengyong Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi province 710127, P. R. China
| | - Jianli Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi province 710127, P. R. China
| |
Collapse
|
42
|
Takakura H. Molecular Design of d-Luciferin-Based Bioluminescence and 1,2-Dioxetane-Based Chemiluminescence Substrates for Altered Output Wavelength and Detecting Various Molecules. Molecules 2021; 26:molecules26061618. [PMID: 33803935 PMCID: PMC7998607 DOI: 10.3390/molecules26061618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 11/30/2022] Open
Abstract
Optical imaging including fluorescence and luminescence is the most popular method for the in vivo imaging in mice. Luminescence imaging is considered to be superior to fluorescence imaging due to the lack of both autofluorescence and the scattering of excitation light. To date, various luciferin analogs and bioluminescence probes have been developed for deep tissue and molecular imaging. Recently, chemiluminescence probes have been developed based on a 1,2-dioxetane scaffold. In this review, the accumulated findings of numerous studies and the design strategies of bioluminescence and chemiluminescence imaging reagents are summarized.
Collapse
Affiliation(s)
- Hideo Takakura
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| |
Collapse
|
43
|
Huang S, Mo C, Zeng T, Lai Y, Zhou C, Xie S, Chen L, Wang Y, Chen Y, Huang S, Gao L, Lv Z. Lupeol ameliorates LPS/D-GalN induced acute hepatic damage by suppressing inflammation and oxidative stress through TGFβ1-Nrf2 signal pathway. Aging (Albany NY) 2021; 13:6592-6605. [PMID: 33707345 PMCID: PMC7993700 DOI: 10.18632/aging.202409] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/25/2020] [Indexed: 12/12/2022]
Abstract
Acute hepatic damage is a severe condition characterized by inflammation and oxidative stress, which is a serious threat to people's life and health. But there are few effective treatments for acute liver injury. Therefore, safe and effective therapeutic approaches for preventing acute liver damage are urgently needed. Lupeol is a natural compound, which has significant antioxidant and anti-inflammatory properties in liver disease. However, the protective mechanism of lupeol against acute liver injury remains unclear. Here, zebrafish and mutant mice were utilized to investigate the protective effects of lupeol against lipopolysaccharide (LPS)/ D-galactosamine(D-GalN) -induced liver injury and the underlying mechanisms. We found that pretreatment with lupeol attenuated the LPS/D-GalN-induced liver injury by decreasing the infiltration of inflammatory cells and reducing pro-inflammatory cytokines. We also demonstrated that lupeol could protect injured liver from oxidative stress by downregulating the expression of TGFβ1 and upregulating Nrf2. Notably, our experimental results provided the support that lupeol effectively protected against LPS/D-GalN-induced acute liver injury via suppression of inflammation response and oxidative stress, which were largely dependent on the upregulation of the Nrf2 pathway via downregulating TGFβ1.
Collapse
Affiliation(s)
- Sha Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Chan Mo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Ting Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yuqi Lai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Chuying Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Shunwen Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Limei Chen
- Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong, China
| | - Yuhua Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yuyao Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Shaohui Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Zhiping Lv
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| |
Collapse
|
44
|
Xu Y, Yang W, Zhang B. ROS-responsive probes for low-background optical imaging: a review. Biomed Mater 2021; 16:022002. [PMID: 33142272 DOI: 10.1088/1748-605x/abc745] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Optical imaging is a facile tool for visualizing biological processes and disease progression, but its image quality is largely limited by light-induced autofluorescence or background signals. To overcome this issue, low-background optical-imaging techniques including chemiluminescence imaging, afterglow imaging and photoacoustic imaging have been developed, based on their unique working mechanisms, which are: the detection of light emissions from chemical reactions, the cessation of light excitation before signal collection, and the detection of ultrasonic signals instead of light signals, respectively. Stimuli-responsive probes are highly desirable for improved imaging results since they can significantly reduce surrounding interference signals. Reactive oxygen species (ROS), which are closely implicated in a series of diseases such as cancer and inflammation, are frequently employed as initiators for responsive agents to selectively change the imaging signal. Thus, ROS-responsive agents incorporated into low-background imaging techniques can achieve a more promising imaging quality. In this review, recent advances in ROS-responsive probes for low-background optical-imaging techniques are summarized. Moreover, the approaches to improving the sensitivity of probes and tissue penetration depth are discussed in detail. In particular, we highlight the reaction mechanisms between the probes and ROS, revealing the potential for low-background optical imaging.
Collapse
Affiliation(s)
- Yan Xu
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | | | | |
Collapse
|
45
|
Ryan LS, Nakatsuka A, Lippert AR. Photoactivatable 1,2-dioxetane chemiluminophores. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
46
|
Zhan Z, Dai Y, Li Q, Lv Y. Small molecule-based bioluminescence and chemiluminescence probes for sensing and imaging of reactive species. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116129] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
47
|
Huang J, Jiang Y, Li J, Huang J, Pu K. Molecular Chemiluminescent Probes with a Very Long Near‐Infrared Emission Wavelength for in Vivo Imaging. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013531] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jingsheng Huang
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Yuyan Jiang
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Jingchao Li
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Jiaguo Huang
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| |
Collapse
|
48
|
Huang J, Jiang Y, Li J, Huang J, Pu K. Molecular Chemiluminescent Probes with a Very Long Near‐Infrared Emission Wavelength for in Vivo Imaging. Angew Chem Int Ed Engl 2020; 60:3999-4003. [DOI: 10.1002/anie.202013531] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/21/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Jingsheng Huang
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Yuyan Jiang
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Jingchao Li
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Jiaguo Huang
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| |
Collapse
|
49
|
Zhang K, Wang Z, Hu X, Meng J, Bao W, Wang X, Ding W, Tian Z. A long-wavelength turn-on fluorescent probe for intracellular nanomolar level peroxynitrite sensing with second-level response. Talanta 2020; 219:121354. [DOI: 10.1016/j.talanta.2020.121354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 12/11/2022]
|
50
|
Xiong J, Wang W, Wang C, Zhong C, Ruan R, Mao Z, Liu Z. Visualizing Peroxynitrite in Microvessels of the Brain with Stroke Using an Engineered Highly Specific Fluorescent Probe. ACS Sens 2020; 5:3237-3245. [PMID: 33092345 DOI: 10.1021/acssensors.0c01555] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Stroke is one of the leading causes of death and disability in the world, which is associated with malfunction of reactive oxygen species and reactive nitrogen species (ROS/RNS) in cerebral microvessels. In vivo monitoring these species, such as ONOO-, with high selectivity in stroke process is of great significance for early diagnoses and therapies of the disease. Herein, by engineering an indoline-2,3-dione moiety as the recognizing domain, we proposed a novel fluorescence probe Rd-PN2 with highly specific response toward ONOO-, even in the coexistence of other ROS/RNS with high concentration. Rd-PN2 showed high sensitivity and reaction speed in response to ONOO- and exhibited satisfying performances in tracking the endogenously generated ONOO- in living cells and zebrafish. Accordingly, Rd-PN2 can furnish real-time and in vivo visualizing of ONOO- in cerebral microvessels of mice with ischemic and hemorrhagic strokes under two-photon microscopy. This work presented a precisely modulated fluorescence probe for real-time visualizing of ONOO- production in cerebral micovessels, which will also help to acquire more accurate information in the studies of ONOO- functions in the future.
Collapse
Affiliation(s)
- Jianhua Xiong
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Weiwei Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Caixia Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Cheng Zhong
- Hubei Key Laboratory on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Renqiang Ruan
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhiqiang Mao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhihong Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|