1
|
Joorabloo A, Liu T. Recent advances in reactive oxygen species scavenging nanomaterials for wound healing. EXPLORATION (BEIJING, CHINA) 2024; 4:20230066. [PMID: 38939866 PMCID: PMC11189585 DOI: 10.1002/exp.20230066] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/27/2023] [Indexed: 06/29/2024]
Abstract
Reactive oxygen species play a crucial role in cell signaling pathways during wound healing phases. Treatment strategies to balance the redox level in the deep wound tissue are emerging for wound management. In recent years, reactive oxygen species scavenging agents including natural antioxidants, reactive oxygen species (ROS) scavenging nanozymes, and antioxidant delivery systems have been widely employed to inhibit oxidative stress and promote skin regeneration. Here, the importance of reactive oxygen species in different wound healing phases is critically analyzed. Various cutting-edge bioactive ROS nanoscavengers and antioxidant delivery platforms are discussed. This review also highlights the future directions for wound therapies via reactive oxygen species scavenging. This comprehensive review offers a map of the research on ROS scavengers with redox balancing mechanisms of action in the wound healing process, which benefits development and clinical applications of next-generation ROS scavenging-based nanomaterials in skin regeneration.
Collapse
Affiliation(s)
- Alireza Joorabloo
- NICM Health Research InstituteWestern Sydney UniversityWestmeadAustralia
| | - Tianqing Liu
- NICM Health Research InstituteWestern Sydney UniversityWestmeadAustralia
| |
Collapse
|
2
|
Sattariazar S, Nejad Ebrahimi S, Arsalani N. Enhancing the properties of electrospun polyvinyl Alcohol/Oxidized sodium alginate nanofibers with fluorescence carbon Dots: Preparation and characterization. Int J Pharm 2023; 644:123358. [PMID: 37647981 DOI: 10.1016/j.ijpharm.2023.123358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/13/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
The objective of this study was to develop fluorescence nanofibrous polyvinyl alcohol/oxidized sodium alginate (PVA-OSA) incorporated with carbon dots (CDs) through Schiff-base interaction. The carbon dots used in this study were derived from the polyphenol-enriched extract of pomegranate peel, as established in previous work, as the reinforcing and antioxidant agent to enhance the physicochemical and biological properties of the nanofibers were used. The fabricated nanofibers were characterized using FE-SEM, FT-IR, XRD, and DSC analysis. The FE-SEM results revealed that an increase in the number of CDs in the nanofibers led to a decrease in diameter (809.6 ± 77.1 nm to 273.16 ± 41.1 nm). Furthermore, surface modification caused a significant reduction in the amount of surface roughness of the nanofibers. Incorporating CDs not only reduced the scaffold diameter but also improved its mechanical properties and promoted the growth of fibroblast cells. The ultimate tensile strength of scaffolds with and without CDs was 2.15 ± 0.02 MPa and 1.53 ± 0.74 MPa respectively. The influence of CDs amount on the properties of nanofibers showed that the swelling capacity and degradability of nanofibers can be adjusted by changing the range of CDs. Apart from the aforementioned benefits of incorporating CDs in improving nanofiber properties, their exceptional antioxidant properties can be harnessed for protecting nanofibers against oxidation and as a healing agent in wound dressings.
Collapse
Affiliation(s)
- Simin Sattariazar
- Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Samad Nejad Ebrahimi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran.
| | - Nasser Arsalani
- Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
3
|
Farshidfar N, Fooladi S, Nematollahi MH, Iravani S. Carbon dots with tissue engineering and regenerative medicine applications. RSC Adv 2023; 13:14517-14529. [PMID: 37197681 PMCID: PMC10183719 DOI: 10.1039/d3ra02336b] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023] Open
Abstract
Carbon dots (CDs) with unique physicochemical features such as exceptional biocompatibility, low cost, eco-friendliness, abundant functional groups (e.g., amino, hydroxyl, and carboxyl), high stability, and electron mobility have been broadly investigated in nano- and biomedicine. In addition, the controlled architecture, tunable fluorescence emission/excitation, light-emitting potential, high photostability, high water solubility, low cytotoxicity, and biodegradability make these carbon-based nanomaterials suitable for tissue engineering and regenerative medicine (TE-RM) purposes. However, there are still limited pre- and clinical assessments, because of some important challenges such as the scaffold inconsistency and non-biodegradability in addition to the lack of non-invasive methods to monitor tissue regeneration after implantation. In addition, the eco-friendly synthesis of CDs exhibited some important advantages such as environmentally friendly properties, low cost, and simplicity compared to the conventional synthesis techniques. Several CD-based nanosystems have been designed with stable photoluminescence, high-resolution imaging of live cells, excellent biocompatibility, fluorescence properties, and low cytotoxicity, which make them promising candidates for TE-RM purposes. Combining attractive fluorescence properties, CDs have shown great potential for cell culture and other biomedical applications. Herein, recent advancements and new discoveries of CDs in TE-RM are considered, focusing on challenges and future perspectives.
Collapse
Affiliation(s)
- Nima Farshidfar
- Orthodontic Research Center, School of Dentistry, Shiraz University of Medical Sciences Shiraz Iran
| | - Saba Fooladi
- Student Research Committee, Kerman University of Medical Sciences Kerman Iran
| | - Mohammad Hadi Nematollahi
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences Kerman Iran
- Department of Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences Kerman Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences 81746-73461 Isfahan Iran
| |
Collapse
|
4
|
Antimicrobial activity enhancement of PVA/chitosan films with the additive of CZTS quantum dots. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04615-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
5
|
Pebdeni AB, Hosseini M, Barkhordari A. Smart fluorescence aptasensor using nanofiber functionalized with carbon quantum dot for specific detection of pathogenic bacteria in the wound. Talanta 2022; 246:123454. [DOI: 10.1016/j.talanta.2022.123454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 01/23/2023]
|
6
|
Zeng Q, Han K, Zheng C, Bai Q, Wu W, Zhu C, Zhang Y, Cui N, Lu T. Degradable and self-luminescence porous silicon particles as tissue adhesive for wound closure, monitoring and accelerating wound healing. J Colloid Interface Sci 2021; 607:1239-1252. [PMID: 34583031 DOI: 10.1016/j.jcis.2021.09.092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 01/19/2023]
Abstract
Tissue adhesives have received much attention for their effectiveness in sealing wounds or incisions in clinical surgery, especially in minimally invasive surgery. To meet the safe and smart wound management requirements, ideal tissue adhesives are expected to have high biocompatibility, and be able to accelerate wound closing and healing, and monitor wound healing process. However, few adhesives fit all of the above descriptions. It has been demonstrated that inorganic nanoparticles can directly glue biological tissue based on nano-bridging effect. In this study, self-luminescence porous silicon (LPSi) particles were prepared with degradable and biocompatible properties. In addition, the self-luminescence property of LPSi particles was discovered by In Vivo Imaging System (IVIS) for the first time, which can avoid the limitations of photoluminescence imaging. Due to the oxidation and degradation reaction, LPSi particles not only can be degraded completely in several days, but also showed satisfactory biocompatibility. And their degradation product could promote tube formation of HUVECs. Moreover, owing to the high specific surface area and the outer oxide layer of LPSi particles, LPSi tissue adhesive exhibited strong adhesive strength to pig livers. Furthermore, this adhesive closed wound rapidly, promoted angiogenesis and epidermal regeneration, and facilitated wound healing in a mouse skin incision model. Importantly, the wound healing ratio can be monitored by measuring the self-luminescence intensity of LPSi particles in the wound site. This study reveals that LPSi particles could be employed as a safe and smart wound management tissue adhesive for wound closure, as well as accelerating and monitoring wound healing.
Collapse
Affiliation(s)
- Qingyan Zeng
- Key Laboratory of Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Kai Han
- Key Laboratory of Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Caiyun Zheng
- Key Laboratory of Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Que Bai
- Key Laboratory of Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wendong Wu
- Key Laboratory of Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Chenhao Zhu
- Key Laboratory of Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yanni Zhang
- Key Laboratory of Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Ning Cui
- Key Laboratory of Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Tingli Lu
- Key Laboratory of Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
7
|
Vedhanayagam M, Raja IS, Molkenova A, Atabaev TS, Sreeram KJ, Han DW. Carbon Dots-Mediated Fluorescent Scaffolds: Recent Trends in Image-Guided Tissue Engineering Applications. Int J Mol Sci 2021; 22:5378. [PMID: 34065357 PMCID: PMC8190637 DOI: 10.3390/ijms22105378] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 11/23/2022] Open
Abstract
Regeneration of damaged tissues or organs is one of the significant challenges in tissue engineering and regenerative medicine. Many researchers have fabricated various scaffolds to accelerate the tissue regeneration process. However, most of the scaffolds are limited in clinical trials due to scaffold inconsistency, non-biodegradability, and lack of non-invasive techniques to monitor tissue regeneration after implantation. Recently, carbon dots (CDs) mediated fluorescent scaffolds are widely explored for the application of image-guided tissue engineering due to their controlled architecture, light-emitting ability, higher chemical and photostability, excellent biocompatibility, and biodegradability. In this review, we provide an overview of the recent advancement of CDs in terms of their different synthesis methods, tunable physicochemical, mechanical, and optical properties, and their application in tissue engineering. Finally, this review concludes the further research directions that can be explored to apply CDs in tissue engineering.
Collapse
Affiliation(s)
- Mohan Vedhanayagam
- CATERS Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India;
| | - Iruthayapandi Selestin Raja
- BIO-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Korea; (I.S.R.); (A.M.)
| | - Anara Molkenova
- BIO-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Korea; (I.S.R.); (A.M.)
| | - Timur Sh. Atabaev
- Department of Chemistry, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
| | | | - Dong-Wook Han
- BIO-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Korea; (I.S.R.); (A.M.)
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea
| |
Collapse
|
8
|
Kargozar S, Singh RK, Kim HW, Baino F. "Hard" ceramics for "Soft" tissue engineering: Paradox or opportunity? Acta Biomater 2020; 115:1-28. [PMID: 32818612 DOI: 10.1016/j.actbio.2020.08.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/25/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022]
Abstract
Tissue engineering provides great possibilities to manage tissue damages and injuries in modern medicine. The involvement of hard biocompatible materials in tissue engineering-based therapies for the healing of soft tissue defects has impressively increased over the last few years: in this regard, different types of bioceramics were developed, examined and applied either alone or in combination with polymers to produce composites. Bioactive glasses, carbon nanostructures, and hydroxyapatite nanoparticles are among the most widely-proposed hard materials for treating a broad range of soft tissue damages, from acute and chronic skin wounds to complex injuries of nervous and cardiopulmonary systems. Although being originally developed for use in contact with bone, these substances were also shown to offer excellent key features for repair and regeneration of wounds and "delicate" structures of the body, including improved cell proliferation and differentiation, enhanced angiogenesis, and antibacterial/anti-inflammatory activities. Furthermore, when embedded in a soft matrix, these hard materials can improve the mechanical properties of the implant. They could be applied in various forms and formulations such as fine powders, granules, and micro- or nanofibers. There are some pre-clinical trials in which bioceramics are being utilized for skin wounds; however, some crucial questions should still be addressed before the extensive and safe use of bioceramics in soft tissue healing. For example, defining optimal formulations, dosages, and administration routes remain to be fixed and summarized as standard guidelines in the clinic. This review paper aims at providing a comprehensive picture of the use and potential of bioceramics in treatment, reconstruction, and preservation of soft tissues (skin, cardiovascular and pulmonary systems, peripheral nervous system, gastrointestinal tract, skeletal muscles, and ophthalmic tissues) and critically discusses their pros and cons (e.g., the risk of calcification and ectopic bone formation as well as the local and systemic toxicity) in this regard. STATEMENT OF SIGNIFICANCE: Soft tissues form a big part of the human body and play vital roles in maintaining both structure and function of various organs; however, optimal repair and regeneration of injured soft tissues (e.g., skin, peripheral nerve) still remain a grand challenge in biomedicine. Although polymers were extensively applied to restore the lost or injured soft tissues, the use of bioceramics has the potential to provides new opportunities which are still partially unexplored or at the very beginning. This reviews summarizes the state of the art of bioceramics in this field, highlighting the latest evolutions and the new horizons that can be opened by their use in the context of soft tissue engineering. Existing results and future challenges are discussed in order to provide an up-to-date contribution that is useful to both experienced scientists and early-stage researchers of the biomaterials community.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran.
| | - Rajendra K Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea; Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 330-714, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 330-714, Republic of Korea.
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy.
| |
Collapse
|
9
|
Tian XL, Feng C, Zhao XH. Corrosion Monitoring Effect of Rhodamine-Ethylenediamine on Copper Relics under a Protective Coating. ACS OMEGA 2020; 5:21679-21683. [PMID: 32905468 PMCID: PMC7469396 DOI: 10.1021/acsomega.0c02535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
Fluorescence spectroscopy is a common technique used to monitor early metallic corrosion. The fluorescence response characteristics of rhodamine-ethylenediamine toward Cu2+ have been studied using fluorescence and infrared spectroscopy. Fluorescence microscopy and electrochemical impedance spectroscopy were used to study the monitoring effect of rhodamine-ethylenediamine on the corrosion of copper relics protected by an epoxy coating. The results showed a strong fluorescent response and selectivity toward Cu2+ that existed using rhodamine-ethylenediamine. Early metallic corrosion of copper relics can be effectively monitored upon adding 0.8 wt % rhodamine-ethylenediamine to an epoxy coating. When the soaking time was increased, the fluorescence intensity of the fluorescent area on the coating became stronger. In addition, the area of the luminous coating reached ∼0.06 mm2 and the area of corrosion under the protective coating was ∼0.008 mm2, which was about 1/10 of the fluorescence area observed on the coating.
Collapse
Affiliation(s)
- Xing-Ling Tian
- Chinese
Academy of Cultural Heritage, Beijing 100029, China
| | - Chao Feng
- Beijing
Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xu-Hui Zhao
- Beijing
Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
10
|
Stasyuk AJ, Stasyuk OA, Solà M, Voityuk AA. Triquinoline‐ versus Fullerene‐Based Cycloparaphenylene Ionic Complexes: Comparison of Photoinduced Charge‐Shift Reactions. Chemistry 2020; 26:10896-10902. [DOI: 10.1002/chem.202002179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Anton J. Stasyuk
- Institut de Química Computacional and Departament de Química Universitat de Girona C/ Maria Aurèlia Capmany 69 17003 Girona Spain
| | - Olga A. Stasyuk
- Institut de Química Computacional and Departament de Química Universitat de Girona C/ Maria Aurèlia Capmany 69 17003 Girona Spain
| | - Miquel Solà
- Institut de Química Computacional and Departament de Química Universitat de Girona C/ Maria Aurèlia Capmany 69 17003 Girona Spain
| | - Alexander A. Voityuk
- Institut de Química Computacional and Departament de Química Universitat de Girona C/ Maria Aurèlia Capmany 69 17003 Girona Spain
- Institució Catalana de Recerca i Estudis Avancats (ICREA) 08010 Barcelona Spain
| |
Collapse
|
11
|
Parham S, Kharazi AZ, Bakhsheshi-Rad HR, Ghayour H, Ismail AF, Nur H, Berto F. Electrospun Nano-Fibers for Biomedical and Tissue Engineering Applications: A Comprehensive Review. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2153. [PMID: 32384813 PMCID: PMC7254207 DOI: 10.3390/ma13092153] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 01/03/2023]
Abstract
Pharmaceutical nano-fibers have attracted widespread attention from researchers for reasons such as adaptability of the electro-spinning process and ease of production. As a flexible method for fabricating nano-fibers, electro-spinning is extensively used. An electro-spinning unit is composed of a pump or syringe, a high voltage current supplier, a metal plate collector and a spinneret. Optimization of the attained nano-fibers is undertaken through manipulation of the variables of the process and formulation, including concentration, viscosity, molecular mass, and physical phenomenon, as well as the environmental parameters including temperature and humidity. The nano-fibers achieved by electro-spinning can be utilized for drug loading. The mixing of two or more medicines can be performed via electro-spinning. Facilitation or inhibition of the burst release of a drug can be achieved by the use of the electro-spinning approach. This potential is anticipated to facilitate progression in applications of drug release modification and tissue engineering (TE). The present review aims to focus on electro-spinning, optimization parameters, pharmacological applications, biological characteristics, and in vivo analyses of the electro-spun nano-fibers. Furthermore, current developments and upcoming investigation directions are outlined for the advancement of electro-spun nano-fibers for TE. Moreover, the possible applications, complications and future developments of these nano-fibers are summarized in detail.
Collapse
Affiliation(s)
- Shokoh Parham
- Biomaterials Nanotechnology and Tissue Engineering Faculty, School of Advanced Medical Technology, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran; (S.P.); (A.Z.K.)
| | - Anousheh Zargar Kharazi
- Biomaterials Nanotechnology and Tissue Engineering Faculty, School of Advanced Medical Technology, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran; (S.P.); (A.Z.K.)
| | - Hamid Reza Bakhsheshi-Rad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran;
| | - Hamid Ghayour
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran;
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Center (AMTEC), Universiti Teknologi Malaysia, Skudai, Johor Bahru, Johor 81310, Malaysia;
| | - Hadi Nur
- Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, UTM Skudai, Johor 81310, Malaysia;
- Central Laboratory of Minerals and Advanced Materials, Faculty of Mathematics and Natural Science, Universitas Negeri Malang, Malang 65145, Indonesia
| | - Filippo Berto
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
12
|
Photoluminescent functionalized carbon quantum dots loaded electroactive Silk fibroin/PLA nanofibrous bioactive scaffolds for cardiac tissue engineering. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 202:111680. [PMID: 31810038 DOI: 10.1016/j.jphotobiol.2019.111680] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/23/2019] [Accepted: 10/30/2019] [Indexed: 01/27/2023]
Abstract
Tissue engineering and stem cell rehabilitation are the hopeful aspects that are being investigated for the management of Myocardial Infarction (MI); cardiac patches have been used to start myocardial rejuvenation. In this study, we engineered p-phenylenediamine surface functionalized (modif-CQD) into the Silk fibroin/PLA (SF/PLA) nanofibrous bioactive scaffolds with improved physico-chemical abilities, mechanical and cytocompatibility to cardiomyocytes. The micrograph results visualized the morphological improved spherical modif-CQD have been equivalently spread throughout the SF/PLA bioactive cardiac scaffolds. The fabricated CQD@SF/PLA nanofibrous bioactive scaffolds were highly porous with fully consistent pores; effectively improved young modulus and swelling asset for the suitability and effective implantation efficacy. The scaffolds were prepared with rat cardiomyocytes and cultured for up to 7 days, without electrical incentive. After 7 days of culture, the scaffold pores all over the construct volume were overflowing with cardiomyocytes. The metabolic activity and viability of the cardiomyocytes in CQD@SF/PLA scaffolds were significantly higher than cardiomyocytes in Silk fibroin /PLA scaffolds. The integration of CQD also influenced greatly and increases the expression of cardiac-marker genes. The results of the present investigations evidently recommended that well-organized cardiac nanofibrous scaffold with greater cardiac related mechanical abilities and biocompatibilities for cardiac tissue engineering and nursing care applications.
Collapse
|
13
|
Revisiting fluorescent carbon nanodots for environmental, biomedical applications and puzzle about fluorophore impurities. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.nanoso.2019.100391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Wali A, Gorain M, Inamdar S, Kundu G, Badiger M. In Vivo Wound Healing Performance of Halloysite Clay and Gentamicin-Incorporated Cellulose Ether-PVA Electrospun Nanofiber Mats. ACS APPLIED BIO MATERIALS 2019; 2:4324-4334. [DOI: 10.1021/acsabm.9b00589] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ashwini Wali
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
- Department of Chemical Engineering, Vishwakarma Institute of Technology, Bibwewadi, Pune, Maharashtra 411037, India
| | - Mahadeo Gorain
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, Pune, Maharashtra 411007, India
| | - Satish Inamdar
- Department of Chemical Engineering, Vishwakarma Institute of Technology, Bibwewadi, Pune, Maharashtra 411037, India
| | - Gopal Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, Pune, Maharashtra 411007, India
| | - Manohar Badiger
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| |
Collapse
|
15
|
|
16
|
Designing of sustainable, solid-state and photoluminescence switchable electrospun nanofibrous PVA/WTR-CDs hybrid films: A photophysical study. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.04.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Das B, Girigoswami A, Dutta A, Pal P, Dutta J, Dadhich P, Srivas PK, Dhara S. Carbon Nanodots Doped Super-paramagnetic Iron Oxide Nanoparticles for Multimodal Bioimaging and Osteochondral Tissue Regeneration via External Magnetic Actuation. ACS Biomater Sci Eng 2019; 5:3549-3560. [PMID: 33405737 DOI: 10.1021/acsbiomaterials.9b00571] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Super-paramagnetic iron oxide nanoparticles (SPIONs) have multiple theranostics applications such as T2 contrast agent in magnetic resonance imaging (MRI) and electromagnetic manipulations in biomedical devices, sensors, and regenerative medicines. However, SPIONs suffer from the limitation of free radical generation, and this has a certain limitation in its applicability in tissue imaging and regeneration applications. In the current study, we developed a simple hydrothermal method to prepare carbon quantum dots (CD) doped SPIONs (FeCD) from easily available precursors. The nanoparticles are observed to be cytocompatible, hemocompatible, and capable of scavenging free radicals in vitro. They also have been observed to be useful for bimodal imaging (fluorescence and MRI). Further, 3D printed gelatin-FeCD nanocomposite nanoparticles were prepared and used for tissue engineering using static magnetic actuation. Wharton's jelly derived mesenchymal stem cells (MSCs) were cultured on them with magnetic actuation and implanted at the subcutaneous region. The tissues obtained have shown features of both osteogenic and chondrogenic differentiation of the stem cells in vivo. In vitro, PCR studies show MSCs express gene expression of both bone and cartilage-specific markers, suggesting FeCDs under magnetic actuation can lead MSCs to go through differentiating into an endochondral ossification route.
Collapse
Affiliation(s)
- Bodhisatwa Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Agnishwar Girigoswami
- Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research & Education (CARE), Kelambakkam, Chennai, Tamil Nadu 603103, India
| | - Abir Dutta
- Advanced Technology Development Centre Indian Institute of Technology Kharagpur Kharagpur, West Bengal 721302, India
| | - Pallabi Pal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Joy Dutta
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Prabhash Dadhich
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Pavan Kumar Srivas
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Santanu Dhara
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
18
|
Das B, Pal P, Dadhich P, Dutta J, Dhara S. In Vivo Cell Tracking, Reactive Oxygen Species Scavenging, and Antioxidative Gene Down Regulation by Long-Term Exposure of Biomass-Derived Carbon Dots. ACS Biomater Sci Eng 2018; 5:346-356. [PMID: 33405855 DOI: 10.1021/acsbiomaterials.8b01101] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Biomass derived carbon dots (CD) have been observed to be excellent bioimaging probes due to their nontoxic, stable fluorescence, lesser bleachability, and excellent bioconjugation properties. In the current study, green chili extract derived CD synthesis via microwave irradiation is reported. The time dependent top down degradation of carbonaceous materials to CD are monitored via electron microscopy and correlated with fluorescence intensity. Further, the CD were explored for long-term cell tracking and cell therapy monitoring in a rodent model to study wound healing kinetics. The cells were monitorable up to 21 days (until the entire wound healed). CD were observed to scavenge reactive oxygen species (ROS) in vitro and in vivo and provided control over ROS scavenging enzyme gene expressions via down regulation. Further, it was observed to remodel the wound healing kinetics via altering granulation tissue distribution and formation of microvessels to establish the capability of CD to enhance wound healing.
Collapse
Affiliation(s)
- Bodhisatwa Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Pallabi Pal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Prabhash Dadhich
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Joy Dutta
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Santanu Dhara
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|