1
|
Nandhini K, Ilanchelian M. Orange-Red-Emitting Carbon Dots for Bilirubin Detection and Its Antibacterial Activity Against Escherichia coli and Staphylococcus aureus. ACS APPLIED BIO MATERIALS 2024; 7:2936-2950. [PMID: 38593036 DOI: 10.1021/acsabm.4c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In this study, orange-red-emitting carbon dots (OR-CDs) were prepared from p-phenylenediamine (p-PDA) and urea as starting precursors through the hydrothermal method. The OR-CDs exhibited bright orange-red fluorescence at 618 nm when excited at 480 nm. The obtained OR-CDs exhibited stable photophysical properties under different physiological conditions. The unique photophysical property of OR-CDs were then utilized for fluorometric determination of bilirubin. The fluorometric assay revealed that the fluorescence intensity of OR-CDs is gradually quenched upon the addition of bilirubin (1-20 μM). The mechanism of fluorescence quenching was evaluated by steady-state fluorescence analysis and time-correlated single photon counting measurements. The OR-CDs showed good selectivity and sensitivity toward bilirubin over other common interfering biomolecules. The present fluorometric assay showed a linear response toward bilirubin between 1 and 10 μM with a limit of detection of 4.80 nM. Further, a fluorescence test cotton swab-based detection probe has been successfully developed by incorporating OR-CDs for the point-of-care detection of bilirubin in biofluids. Furthermore, a light-emitting diode light that emits orange-red light was prepared by embedding the OR-CDs within the poly(vinyl alcohol) polymer matrix. Moreover, the antibacterial activity of OR-CDs was tested against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. The antibacterial efficacy of OR-CDs was demonstrated by various mechanisms, such as reactive oxygen species generation, destruction of cell structure, chemical binding to membrane, and surface wrapping. Interestingly, the survival assay against L929 fibroblast cells exhibits favorable biocompatibility and bioimaging.
Collapse
Affiliation(s)
- Karuppasamy Nandhini
- Department of Chemistry, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | | |
Collapse
|
2
|
Astolfi BS, Bessas NC, Graminha AE, Becceneri AB, da Silva RS, de Lima RG. Gelatin Carbon Dots Interaction with Nitrosyl Ruthenium Complex: Fluorescence Quenching and Chemiluminescence Mechanisms. J Fluoresc 2023:10.1007/s10895-023-03490-y. [PMID: 37948004 DOI: 10.1007/s10895-023-03490-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Carbon dots (CDs) exhibit luminescence, biocompatibility, and higher water solubility. This material has been developed for biological applications, specifically in bioimaging. In this work, the gelatin carbon dots (CDg) was obtained from commercial gelatin using a hydrothermal method in domestic microwave, and the suppression fluorescent mechanism were enhanced by the addition of the [RuII(bdq)(NO)(tpy)]3+ (Rubdq-NO+) complex ion. After purification through a dialysis bag, the resulting CDs (CDg) exhibit fluorescent emission at 400 nm and maintained fluorescence stability in an aqueous solution (pH = 7) for 30 days under 5 ◦C. Fluorescence quenching studies revealed an electrostatic interaction between the negative charge from CDg (δ = - 20 mV) and the positively charged nitrosyl (NO+) ligand of the ruthenium complex (Rubdq-NO+), resulting in quenching of the CDg fluorescence due to the inner filter effects (IFE). The chemiluminescence reaction of CDg and Rubdq-NO-CDg in presence of norepinephrine (NOR) were evaluated. NOR in PBS are liable to undergo spontaneous oxidation to quinone form (NOR-quinone). CDg are believed interact with NOR-quinone and an electron transfer occur obtained CDg+ accompanied to green emission fluorescence (520 nm). While for Rubdq-NO-CDg in presence of NOR, the green emission occurs accompanied by NO0 release using DAF-2 probe.
Collapse
Affiliation(s)
- Bianca Soares Astolfi
- Instituto de Ciências Exatas e Naturais do Pontal, ICENP, Universidade Federal de Uberlândia, Rua Vinte, Tupã, Ituiutaba, MG, 1600, 38304-402, Brazil
| | - Naiara Cristina Bessas
- Instituto de Ciências Exatas e Naturais do Pontal, ICENP, Universidade Federal de Uberlândia, Rua Vinte, Tupã, Ituiutaba, MG, 1600, 38304-402, Brazil
- Instituto de Química, Universidade Federal de Uberlândia, Avenida João Naves de Ávila, Uberlândia, MG, 2121, 38400-902, Brazil
| | - Angelica Ellen Graminha
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP, Avenida do Café s/n, Vila Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil
- Instituto de Química, Universidade do Estado de São Paulo, Av. Prof. Francisco Degni, 55, Araraquara, São Paulo, 14800-900, Brazil
| | - Amanda Blanque Becceneri
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP, Avenida do Café s/n, Vila Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil
| | - Roberto Santana da Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP, Avenida do Café s/n, Vila Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil
| | - Renata Galvão de Lima
- Instituto de Ciências Exatas e Naturais do Pontal, ICENP, Universidade Federal de Uberlândia, Rua Vinte, Tupã, Ituiutaba, MG, 1600, 38304-402, Brazil.
- Instituto de Química, Universidade Federal de Uberlândia, Avenida João Naves de Ávila, Uberlândia, MG, 2121, 38400-902, Brazil.
| |
Collapse
|
3
|
Fallah S, Baharfar R, Samadi-Maybodi A. Simple and green approach for photoluminescent carbon dots prepared from faba bean seeds as a luminescent probe for determination of Hg + ions and cell imaging. LUMINESCENCE 2023; 38:1929-1937. [PMID: 37591667 DOI: 10.1002/bio.4581] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/29/2023] [Accepted: 08/15/2023] [Indexed: 08/19/2023]
Abstract
In this research, for the first time, a dedicated sensor was designed to detect Hg+ ions using photoluminescent carbon dots (CDs). Due to the preferred green synthesis of CDs from bio-resources, carbohydrate-rich faba bean seeds as a potential carbon precursor were applied to the synthesis of CDs. The CDs were prepared from the faba bean seeds using the hydrothermal method in an aqueous solution in the absence of substances such as an acid or base and any other additives. The synthesized CDs exhibited maximum emission intensity at 387 nm when excited at 310 nm and their luminescence quantum yield was calculated to be ~5.94%. Then, the fluorescence emission of CDs was examined in the presence of different metal ions. Results revealed that the CDs had good selectivity towards the Hg+ ions, so the fluorescence emission was significantly changed in the presence of these ions with a limit of detection (LOD) as low as 0.35 μM. Furthermore, because of their very low cytotoxicity, these CDs can be applied for cell imaging.
Collapse
Affiliation(s)
- Soheila Fallah
- Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | | | | |
Collapse
|
4
|
Bu Q, Li P, Xia Y, Hu D, Li W, Shi D, Song K. Design, Synthesis, and Biomedical Application of Multifunctional Fluorescent Polymer Nanomaterials. Molecules 2023; 28:molecules28093819. [PMID: 37175229 PMCID: PMC10179976 DOI: 10.3390/molecules28093819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Luminescent polymer nanomaterials not only have the characteristics of various types of luminescent functional materials and a wide range of applications, but also have the characteristics of good biocompatibility and easy functionalization of polymer nanomaterials. They are widely used in biomedical fields such as bioimaging, biosensing, and drug delivery. Designing and constructing new controllable synthesis methods for multifunctional fluorescent polymer nanomaterials with good water solubility and excellent biocompatibility is of great significance. Exploring efficient functionalization methods for luminescent materials is still one of the core issues in the design and development of new fluorescent materials. With this in mind, this review first introduces the structures, properties, and synthetic methods regarding fluorescent polymeric nanomaterials. Then, the functionalization strategies of fluorescent polymer nanomaterials are summarized. In addition, the research progress of multifunctional fluorescent polymer nanomaterials for bioimaging is also discussed. Finally, the synthesis, development, and application fields of fluorescent polymeric nanomaterials, as well as the challenges and opportunities of structure-property correlations, are comprehensively summarized and the corresponding perspectives are well illustrated.
Collapse
Affiliation(s)
- Qingpan Bu
- School of Life Science, Changchun Normal University, Changchun 130032, China
| | - Ping Li
- School of Life Science, Changchun Normal University, Changchun 130032, China
| | - Yunfei Xia
- School of Life Science, Changchun Normal University, Changchun 130032, China
| | - Die Hu
- School of Life Science, Changchun Normal University, Changchun 130032, China
| | - Wenjing Li
- School of Education, Changchun Normal University, Changchun 130032, China
| | - Dongfang Shi
- Institute of Science, Technology and Innovation, Changchun Normal University, Changchun 130032, China
| | - Kai Song
- School of Life Science, Changchun Normal University, Changchun 130032, China
- Institute of Science, Technology and Innovation, Changchun Normal University, Changchun 130032, China
| |
Collapse
|
5
|
Xu L, Luo Z, Liu Q, Wang C, Zhou F, Zhou M. Metal-polyphenol polymer modified polydopamine for chemo-photothermal therapy. Front Chem 2023; 11:1124448. [PMID: 36762199 PMCID: PMC9902594 DOI: 10.3389/fchem.2023.1124448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
Chemotherapy combined with photothermal therapy (PTT) is a new way to improve the curative effect of cancer treatment. Here, we developed a multifunctional nanoparticle, namely PTX@mPDA@Fe-GA with the loading of a chemotherapeutic drug paclitaxel (PTX) for targeted and synergistic chemotherapy/photothermal therapy in lung cancer. Fe-gallic acid (Fe-GA) was coated on the surface of mesoporous polydopamine (mPDA) nanoparticles, and then the PTX was placed in the mesopores. The drug release of the loaded PTX exhibited pH- and thermal-dual responsive manner. Both mPDA and Fe-GA have high photothermal conversion ability and play a role in photothermal therapy. In addition, the results revealed that mPDA@Fe-GA had excellent biocompatibility and low hemolysis rate. The PTX-loaded mPDA@Fe-GA not only has excellent killing effect on lung cancer cells (A549) in vitro, but also can significantly suppress the growth of A549 subcutaneous tumor in nude mice. In a nutshell, the developed multifunctional nanoparticles integrate photothermal therapy and efficient chemotherapeutic drug delivery, providing new therapeutic ideas in the fight against lung cancer.
Collapse
Affiliation(s)
- Li Xu
- Department of Respiratory Medicine, Jinshan District Central Hospital affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Zhibing Luo
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qing Liu
- Department of Respiratory Medicine, Jinshan District Central Hospital affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Chuancui Wang
- Department of Respiratory Medicine, Jinshan District Central Hospital affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Fei Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China,*Correspondence: Fei Zhou, ; Min Zhou,
| | - Min Zhou
- Department of Respiratory Medicine, Jinshan District Central Hospital affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China,*Correspondence: Fei Zhou, ; Min Zhou,
| |
Collapse
|
6
|
Wu C, Zheng Y, Wang W, Liu Y, Yu J, Liu Y. Phase Behavior and Aggregate Transition Based on Co-assembly of Negatively Charged Carbon Dots and a pH-Responsive Tertiary Amine Cationic Surfactant. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13771-13781. [PMID: 36318637 DOI: 10.1021/acs.langmuir.2c01895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We studied the co-assembly of an oppositely changed binary mixture of selenium-doped carbon quantum dots (Se-CQDs) and N,N-dimethyl octylamide-propyl tertiary amine (DOAPA) through turbidity, ζ potential measurement, and cryogenic transmission electron microscopy (cryo-TEM) with the aim of fabricating supramolecular assemblies with multiple dimensions and novel morphologies. The Se-CQD/DOAPA binary mixture exhibited abundant phase behavior, in which an isotropic phase (I1) was first observed, followed by turbidity (T), precipitation (P), and a second isotropic phase (I2), as the DOAPA concentration increased. Then we focused on investigating the morphologies of samples. In cryo-TEM observations, spherical aggregates were observed in all phase sequences, whereas the aggregates have different ζ potentials and sizes. In the I2 phase, interesting nanocapsule-like aggregates and spindle-like aggregates can be identified in addition to spherical aggregates. In combination with the rheological behaviors of the I2 phase solution and the detailed structure of the aggregates from enlarged cryo-TEM images, it is possible that the Se-CQDs and DOAPA co-assemble with novel network-like building blocks. The turbid solutions were found to be responsive to pH in phase P, and spherical aggregates were obtained at pH 6.5 but turned into vesicles when the pH reached 5.0. On the basis of these findings, CQDs and surfactants can be good structural building blocks for supramolecular structures, and the diverse morphologies of aggregates offer the prospect of multiple applications in the future.
Collapse
Affiliation(s)
- Chunxian Wu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou510006, P. R. China
| | - Yin Zheng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou510006, P. R. China
| | - Wentao Wang
- Department of Radiochemistry, China Institute of Atomic Energy, Beijing102413, P. R. China
| | - Yong Liu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou510006, P. R. China
| | - JieYao Yu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou510006, P. R. China
| | - Yi Liu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou510006, P. R. China
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou510006, P. R. China
| |
Collapse
|
7
|
Wang Y, Li X, Zhao S, Wang B, Song X, Xiao J, Lan M. Synthesis strategies, luminescence mechanisms, and biomedical applications of near-infrared fluorescent carbon dots. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214703] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Rehman Y, Qutaish H, Kim JH, Huang XF, Alvi S, Konstantinov K. Microenvironmental Behaviour of Nanotheranostic Systems for Controlled Oxidative Stress and Cancer Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2462. [PMID: 35889688 PMCID: PMC9319169 DOI: 10.3390/nano12142462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023]
Abstract
The development of smart, efficient and multifunctional material systems for diseases treatment are imperative to meet current and future health challenges. Nanomaterials with theranostic properties have offered a cost effective and efficient solution for disease treatment, particularly, metal/oxide based nanotheranostic systems already offering therapeutic and imaging capabilities for cancer treatment. Nanoparticles can selectively generate/scavenge ROS through intrinsic or external stimuli to augment/diminish oxidative stress. An efficient treatment requires higher oxidative stress/toxicity in malignant disease, with a minimal level in surrounding normal cells. The size, shape and surface properties of nanoparticles are critical parameters for achieving a theranostic function in the microenvironment. In the last decade, different strategies for the synthesis of biocompatible theranostic nanostructures have been introduced. The exhibition of therapeutics properties such as selective reactive oxygen species (ROS) scavenging, hyperthermia, antibacterial, antiviral, and imaging capabilities such as MRI, CT and fluorescence activity have been reported in a variety of developed nanosystems to combat cancer, neurodegenerative and emerging infectious diseases. In this review article, theranostic in vitro behaviour in relation to the size, shape and synthesis methods of widely researched and developed nanosystems (Au, Ag, MnOx, iron oxide, maghemite quantum flakes, La2O3-x, TaOx, cerium nanodots, ITO, MgO1-x) are presented. In particular, ROS-based properties of the nanostructures in the microenvironment for cancer therapy are discussed. The provided overview of the biological behaviour of reported metal-based nanostructures will help to conceptualise novel designs and synthesis strategies for the development of advanced nanotheranostic systems.
Collapse
Affiliation(s)
- Yaser Rehman
- Institute for Superconducting and Electronics Materials (ISEM), University of Wollongong (UOW), Wollongong, NSW 2522, Australia; (Y.R.); (H.Q.); (J.H.K.)
- Illawarra Health & Medical Research Institute (IHMRI), University of Wollongong (UOW), Wollongong, NSW 2522, Australia;
| | - Hamzeh Qutaish
- Institute for Superconducting and Electronics Materials (ISEM), University of Wollongong (UOW), Wollongong, NSW 2522, Australia; (Y.R.); (H.Q.); (J.H.K.)
| | - Jung Ho Kim
- Institute for Superconducting and Electronics Materials (ISEM), University of Wollongong (UOW), Wollongong, NSW 2522, Australia; (Y.R.); (H.Q.); (J.H.K.)
| | - Xu-Feng Huang
- Illawarra Health & Medical Research Institute (IHMRI), University of Wollongong (UOW), Wollongong, NSW 2522, Australia;
| | - Sadia Alvi
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia;
| | - Konstantin Konstantinov
- Institute for Superconducting and Electronics Materials (ISEM), University of Wollongong (UOW), Wollongong, NSW 2522, Australia; (Y.R.); (H.Q.); (J.H.K.)
- Illawarra Health & Medical Research Institute (IHMRI), University of Wollongong (UOW), Wollongong, NSW 2522, Australia;
| |
Collapse
|
9
|
Podkolodnaya YA, Kokorina AA, Ponomaryova TS, Goryacheva OA, Drozd DD, Khitrov MS, Huang L, Yu Z, Tang D, Goryacheva IY. Luminescent Composite Carbon/SiO2 Structures: Synthesis and Applications. BIOSENSORS 2022; 12:bios12060392. [PMID: 35735539 PMCID: PMC9221055 DOI: 10.3390/bios12060392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 02/07/2023]
Abstract
Luminescent carbon nanostructures (CNSs) have attracted great interest from the scientific community due to their photoluminescent properties, structural features, low toxicity, and a great variety of possible applications. Unfortunately, a few problems hinder their further development. These include the difficulties of separating a mixture of nanostructures after synthesis and the dependence of their properties on the environment and the aggregate state. The application of a silica matrix to obtain luminescent composite particles minimizes these problems and improves optical properties, reduces photoluminescence quenching, and leads to wider applications. We describe two methods for the formation of silica composites containing CNSs: inclusion of CNSs into silica particles and their grafting onto the silica surface. Moreover, we present approaches to the synthesis of multifunctional particles. They combine the unique properties of silica and fluorescent CNSs, as well as magnetic, photosensitizing, and luminescent properties via the combination of functional nanoparticles such as iron oxide nanoparticles, titanium dioxide nanoparticles, quantum dots (QDs), and gold nanoclusters (AuNCs). Lastly, we discuss the advantages and challenges of these structures and their applications. The novelty of this review involves the detailed description of the approaches for the silica application as a matrix for the CNSs. This will support researchers in solving fundamental and applied problems of this type of carbon-based nanoobjects.
Collapse
Affiliation(s)
- Yuliya A. Podkolodnaya
- Department of Inorganic Chemistry, Chemical Institute, Saratov State University, Astrakhanskaya Street 83, 410012 Saratov, Russia; (Y.A.P.); (T.S.P.); (O.A.G.); (D.D.D.); (M.S.K.); (I.Y.G.)
| | - Alina A. Kokorina
- Department of Inorganic Chemistry, Chemical Institute, Saratov State University, Astrakhanskaya Street 83, 410012 Saratov, Russia; (Y.A.P.); (T.S.P.); (O.A.G.); (D.D.D.); (M.S.K.); (I.Y.G.)
- Correspondence: ; Tel.: +7-(951)-8861027
| | - Tatiana S. Ponomaryova
- Department of Inorganic Chemistry, Chemical Institute, Saratov State University, Astrakhanskaya Street 83, 410012 Saratov, Russia; (Y.A.P.); (T.S.P.); (O.A.G.); (D.D.D.); (M.S.K.); (I.Y.G.)
| | - Olga A. Goryacheva
- Department of Inorganic Chemistry, Chemical Institute, Saratov State University, Astrakhanskaya Street 83, 410012 Saratov, Russia; (Y.A.P.); (T.S.P.); (O.A.G.); (D.D.D.); (M.S.K.); (I.Y.G.)
| | - Daniil D. Drozd
- Department of Inorganic Chemistry, Chemical Institute, Saratov State University, Astrakhanskaya Street 83, 410012 Saratov, Russia; (Y.A.P.); (T.S.P.); (O.A.G.); (D.D.D.); (M.S.K.); (I.Y.G.)
| | - Mikhail S. Khitrov
- Department of Inorganic Chemistry, Chemical Institute, Saratov State University, Astrakhanskaya Street 83, 410012 Saratov, Russia; (Y.A.P.); (T.S.P.); (O.A.G.); (D.D.D.); (M.S.K.); (I.Y.G.)
| | - Lingting Huang
- Key Laboratory for Analytical Science of Food Safety and Biology, Department of Chemistry, Fuzhou University, Fuzhou 350108, China; (L.H.); (Z.Y.); (D.T.)
| | - Zhichao Yu
- Key Laboratory for Analytical Science of Food Safety and Biology, Department of Chemistry, Fuzhou University, Fuzhou 350108, China; (L.H.); (Z.Y.); (D.T.)
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety and Biology, Department of Chemistry, Fuzhou University, Fuzhou 350108, China; (L.H.); (Z.Y.); (D.T.)
| | - Irina Yu. Goryacheva
- Department of Inorganic Chemistry, Chemical Institute, Saratov State University, Astrakhanskaya Street 83, 410012 Saratov, Russia; (Y.A.P.); (T.S.P.); (O.A.G.); (D.D.D.); (M.S.K.); (I.Y.G.)
| |
Collapse
|
10
|
Yusuf VF, Atulbhai SV, Bhattu S, Malek NI, Kailasa SK. Recent developments on carbon dots-based green analytical methods: New opportunities in fluorescence assay of pesticides, drugs and biomolecules. NEW J CHEM 2022. [DOI: 10.1039/d2nj01401g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescent carbon dots (CDs) grabs huge attention in analytical and bioanalytical applications due to their high selectivity towards target analyte, specificity, photostability, and quantum yield. Cost-effective and biocompatible properties of...
Collapse
|
11
|
Chen BB, Huang CZ. Preparation of carbon dots and their sensing applications. SENSING AND BIOSENSING WITH OPTICALLY ACTIVE NANOMATERIALS 2022:9-40. [DOI: 10.1016/b978-0-323-90244-1.00005-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
12
|
Wang G, Ren H, Chen Q, Zhou M, Xie F, Yan M, Wang Q, Bi H. Eco‐friendly
PCL
@
CDs
biomaterials via phytic acid,
CDs
‐cocatalyzed polymerization for rifapentin delivery. J Appl Polym Sci 2021. [DOI: 10.1002/app.51984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Guoyu Wang
- College of Chemistry and Chemical Engineering Anhui University Hefei China
| | - Huifang Ren
- College of Chemistry and Chemical Engineering Anhui University Hefei China
| | - Qiuyang Chen
- College of Chemistry and Chemical Engineering Anhui University Hefei China
| | - Mingchen Zhou
- College of Chemistry and Chemical Engineering Anhui University Hefei China
| | - Fei Xie
- College of Chemistry and Chemical Engineering Anhui University Hefei China
| | - Manqing Yan
- College of Chemistry and Chemical Engineering Anhui University Hefei China
| | - Qiyang Wang
- College of Chemistry and Chemical Engineering Anhui University Hefei China
| | - Hong Bi
- College of Chemistry and Chemical Engineering Anhui University Hefei China
| |
Collapse
|
13
|
Zhang S, Chen K, Zhu L, Xu M, Song Y, Zhang Z, Du M. Direct growth of two-dimensional phthalocyanine-based COF on Cu-MOF to construct a photoelectrochemical-electrochemical dual-mode biosensing platform for high-efficiency determination of Cr(III). Dalton Trans 2021; 50:14285-14295. [PMID: 34553722 DOI: 10.1039/d1dt02710g] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A photoelectrochemical (PEC)-electrochemical (EC) dual-mode biosensing strategy based on COF@MOF heterostructure was developed for efficiently analyzing Cr(III) ions. A two-dimensional phthalocyanine-based COF (CoPc-PT-COF) was in situ grown on a Cu-based MOF (Cu-MOF) substrate via covalent binding between carboxyl groups in Cu-MOF and amino groups in CoPc-PT-COF (denoted as CoPc-PT-COF@Cu-MOF). The coexistence of both phthalocyanine and bipyridine in CoPc-PT-COF@Cu-MOF affords the outperformed electro- and photo-activities, thus serving as a photoelectric beacon with favorable energy-band configuration and amplified electrochemical response. Due to the high porosity and rich functionality of the obtained heterostructure, the DNA strands can be tightly anchored over CoPc-PT-COF@Cu-MOF via diverse interactions. Thanks to the specific recognition between DNA strands and Cr3+ ions, the CoPc-PT-COF@Cu-MOF-based biosensor can be used to determine Cr3+ ions in an aqueous environment by PEC-EC mode. The gained biosensor shows an extremely low limit of detection (LOD) of 14.5 fM (for PEC) and 22.9 fM (for EC) within the Cr3+ concentration range from 0.1 pM to 100 nM, along with high selectivity, good reproducibility and stability. Moreover, this novel biosensor exhibits acceptable applicability for analyzing the trace Cr3+ from diverse samples (e.g., river and tap water). As a result, this work provides new insights into the construction of a high-efficiency PEC-EC dual-mode biosensor for detecting heavy metal ions from complex environments.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China.
| | - Kun Chen
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China.
| | - Lei Zhu
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China.
| | - Miaoran Xu
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China.
| | - Yingpan Song
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China.
| | - Zhihong Zhang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China.
| | - Miao Du
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China.
| |
Collapse
|
14
|
Yang C, Gao M, Zhao H, Liu Y, Gao N, Jing J, Zhang X. A dual-functional biomimetic-mineralized nanoplatform for glucose detection and therapy with cancer cells in vitro. J Mater Chem B 2021; 9:3885-3891. [PMID: 33928327 DOI: 10.1039/d1tb00324k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glucose detection is a crucial topic in the diagnosis of numerous diseases, such as hypoglycemia or diabetes mellitus. Research indicates that people with diabetes mellitus are at a higher risk of developing various types of cancer. A nanoplatform that combines both diabetes diagnosis and cancer therapy might be regarded as a more effective way to solve the above-mentioned problem. However, none of the known sensors has a smart strategy that can work as a fluorescent glucose sensor and a cancer therapeutic platform simultaneously. Here, we developed a pH responsive biomimetic-mineralized nanoplatform (denoted as CaCO3-PDA@DOX-GOx) for glucose detection in serum samples and applied it to treat the tumor cells combined chemotherapy with the starvation therapy in vitro. Doxorubicin (DOX) and glucose oxidase (GOx) were loaded through the mesoporous CaCO3-PDA nanoparticles (m-CaCO3-PDA NPs). The fluorescence of DOX is quenched as a result of fluorescence resonance energy transfer (FRET) caused by the broad absorption of m-CaCO3-PDA NPs. The nanoplatform would recover fluorescence under lower pH values due to the catalytic reaction of GOx with glucose or tumor microenvironment (TME), which leads to the elimination of FRET. Its application as a glucose sensor is indicated with a linear relationship in the range of 0.01-1.0 mM of glucose and limit of detection is calculated by 6 μM. This nanoplatform also has a TME-responsive antitumor effect and fluorescence imaging functionality, which provide a new idea for cancer therapy together with glucose monitoring in diabetes.
Collapse
Affiliation(s)
- Chunlei Yang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering. Beijing Institute of Technology, Beijing, 100081, P. R. China.
| | - Mengxu Gao
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering. Beijing Institute of Technology, Beijing, 100081, P. R. China.
| | - Hengzhi Zhao
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering. Beijing Institute of Technology, Beijing, 100081, P. R. China.
| | - Yazhou Liu
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering. Beijing Institute of Technology, Beijing, 100081, P. R. China.
| | - Na Gao
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering. Beijing Institute of Technology, Beijing, 100081, P. R. China.
| | - Jing Jing
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering. Beijing Institute of Technology, Beijing, 100081, P. R. China.
| | - Xiaoling Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering. Beijing Institute of Technology, Beijing, 100081, P. R. China.
| |
Collapse
|
15
|
Abbasi Kajani A, Haghjooy Javanmard S, Asadnia M, Razmjou A. Recent Advances in Nanomaterials Development for Nanomedicine and Cancer. ACS APPLIED BIO MATERIALS 2021; 4:5908-5925. [PMID: 35006909 DOI: 10.1021/acsabm.1c00591] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer is considered one of the leading causes of death, with a growing number of cases worldwide. However, the early diagnosis and efficient therapy of cancer have remained a critical challenge. The emergence of nanomedicine has opened up a promising window to address the drawbacks of cancer detection and treatment. A wide range of engineered nanomaterials and nanoplatforms with different shapes, sizes, and composition has been developed for various biomedical applications. Nanomaterials have been increasingly used in various applications in bioimaging, diagnosis, and therapy of cancers. Recently, numerous multifunctional and smart nanoparticles with the ability of simultaneous diagnosis and targeted cancer therapy have been reported. The multidisciplinary attempts led to the development of several exciting clinically approved nanotherapeutics. The nanobased materials and devices have also been used extensively to develop point-of-care and highly sensitive methods of cancer detection. In this review article, the most significant achievements and latest advances in the nanomaterials development for cancer nanomedicine are critically discussed. In addition, the future perspectives of this field are evaluated.
Collapse
Affiliation(s)
- Abolghasem Abbasi Kajani
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Mohsen Asadnia
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Amir Razmjou
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 73441-81746, Iran
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| |
Collapse
|
16
|
Vedhanayagam M, Raja IS, Molkenova A, Atabaev TS, Sreeram KJ, Han DW. Carbon Dots-Mediated Fluorescent Scaffolds: Recent Trends in Image-Guided Tissue Engineering Applications. Int J Mol Sci 2021; 22:5378. [PMID: 34065357 PMCID: PMC8190637 DOI: 10.3390/ijms22105378] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 11/23/2022] Open
Abstract
Regeneration of damaged tissues or organs is one of the significant challenges in tissue engineering and regenerative medicine. Many researchers have fabricated various scaffolds to accelerate the tissue regeneration process. However, most of the scaffolds are limited in clinical trials due to scaffold inconsistency, non-biodegradability, and lack of non-invasive techniques to monitor tissue regeneration after implantation. Recently, carbon dots (CDs) mediated fluorescent scaffolds are widely explored for the application of image-guided tissue engineering due to their controlled architecture, light-emitting ability, higher chemical and photostability, excellent biocompatibility, and biodegradability. In this review, we provide an overview of the recent advancement of CDs in terms of their different synthesis methods, tunable physicochemical, mechanical, and optical properties, and their application in tissue engineering. Finally, this review concludes the further research directions that can be explored to apply CDs in tissue engineering.
Collapse
Affiliation(s)
- Mohan Vedhanayagam
- CATERS Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India;
| | - Iruthayapandi Selestin Raja
- BIO-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Korea; (I.S.R.); (A.M.)
| | - Anara Molkenova
- BIO-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Korea; (I.S.R.); (A.M.)
| | - Timur Sh. Atabaev
- Department of Chemistry, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
| | | | - Dong-Wook Han
- BIO-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Korea; (I.S.R.); (A.M.)
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea
| |
Collapse
|
17
|
Gao Z, Li C, Shen J, Ding D. Organic optical agents for image-guided combined cancer therapy. Biomed Mater 2021; 16. [PMID: 33873169 DOI: 10.1088/1748-605x/abf980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/19/2021] [Indexed: 01/10/2023]
Abstract
As a promising non-invasive treatment method, phototherapy has attracted extensive attention in the field of combined cancer therapy. Among various optical agents, organic ones have been considered as a promising clinical phototheranostic agent due to its high safety and non-toxic property. In addition, due to the clear structure, facile processability, organic optical agents can be easily endowed with multiple imaging and phototherapeutic functions, significantly simplifying the relatively complex system of imaging-guided combined cancer therapy. This review summarizes the recent research on organic optical agents in imaging-guided combined cancer therapy. The application of organic optical agents in a variety of combined cancer therapeutic modes guided by imaging are introduced respectively, including photodynamic and photothermal combined therapy, phototherapy-combined cancer chemotherapy, and phototherapy-combined cancer immunotherapy. Finally, the concluding remarks and the future prospects are discussed.
Collapse
Affiliation(s)
- Zhiyuan Gao
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin 300041, People's Republic of China.,Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Cong Li
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin 300041, People's Republic of China
| | - Jing Shen
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin 300041, People's Republic of China
| | - Dan Ding
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin 300041, People's Republic of China.,Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
18
|
Zhou C, Li H, Liu Y, Wang K. Design and Synthesis of Dual-Responsive Carbon Nanodots Loaded with Cisplatin for Targeted Therapy of Lung Cancer Therapy and Nursing Care. J CLUST SCI 2021. [DOI: 10.1007/s10876-020-01959-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Shen D, Duley WW, Peng P, Xiao M, Feng J, Liu L, Zou G, Zhou YN. Moisture-Enabled Electricity Generation: From Physics and Materials to Self-Powered Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003722. [PMID: 33185944 DOI: 10.1002/adma.202003722] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/11/2020] [Indexed: 05/24/2023]
Abstract
The exploration of the utilization of sustainable, green energy represents one way in which it is possible to ameliorate the growing threat of the global environmental issues and the crisis in energy. Moisture, which is ubiquitous on Earth, contains a vast reservoir of low-grade energy in the form of gaseous water molecules and water droplets. It has now been found that a number of functionalized materials can generate electricity directly from their interaction with moisture. This suggests that electrical energy can be harvested from atmospheric moisture and enables the creation of a new range of self-powered devices. Herein, the basic mechanisms of moisture-induced electricity generation are discussed, the recent advances in materials (including carbon nanoparticles, graphene materials, metal oxide nanomaterials, biofibers, and polymers) for harvesting electrical energy from moisture are summarized, and some strategies for improving energy conversion efficiency and output power in these devices are provided. The potential applications of moisture electrical generators in self-powered electronics, healthcare, security, information storage, artificial intelligence, and Internet-of-things are also discussed. Some remaining challenges are also considered, together with a number of suggestions for potential new developments of this emerging technology.
Collapse
Affiliation(s)
- Daozhi Shen
- Institute for Quantum Computing, Department of Chemistry, Centre for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Walter W Duley
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Peng Peng
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, P. R. China
| | - Ming Xiao
- Centre for Advanced Materials Joining, Waterloo Institute for Nanotechnology, Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Jiayun Feng
- Centre for Advanced Materials Joining, Waterloo Institute for Nanotechnology, Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Lei Liu
- State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084, P. R. China
| | - Guisheng Zou
- State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084, P. R. China
| | - Y Norman Zhou
- Centre for Advanced Materials Joining, Waterloo Institute for Nanotechnology, Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
20
|
Lu H, Tang SY, Yun G, Li H, Zhang Y, Qiao R, Li W. Modular and Integrated Systems for Nanoparticle and Microparticle Synthesis-A Review. BIOSENSORS 2020; 10:E165. [PMID: 33153122 PMCID: PMC7693962 DOI: 10.3390/bios10110165] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 01/22/2023]
Abstract
Nanoparticles (NPs) and microparticles (MPs) have been widely used in different areas of research such as materials science, energy, and biotechnology. On-demand synthesis of NPs and MPs with desired chemical and physical properties is essential for different applications. However, most of the conventional methods for producing NPs/MPs require bulky and expensive equipment, which occupies large space and generally need complex operation with dedicated expertise and labour. These limitations hinder inexperienced researchers to harness the advantages of NPs and MPs in their fields of research. When problems individual researchers accumulate, the overall interdisciplinary innovations for unleashing a wider range of directions are undermined. In recent years, modular and integrated systems are developed for resolving the ongoing dilemma. In this review, we focus on the development of modular and integrated systems that assist the production of NPs and MPs. We categorise these systems into two major groups: systems for the synthesis of (1) NPs and (2) MPs; systems for producing NPs are further divided into two sections based on top-down and bottom-up approaches. The mechanisms of each synthesis method are explained, and the properties of produced NPs/MPs are compared. Finally, we discuss existing challenges and outline the potentials for the development of modular and integrated systems.
Collapse
Affiliation(s)
- Hongda Lu
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia; (H.L.); (G.Y.)
| | - Shi-Yang Tang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Guolin Yun
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia; (H.L.); (G.Y.)
| | - Haiyue Li
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA;
| | - Yuxin Zhang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Ruirui Qiao
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Weihua Li
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| |
Collapse
|
21
|
Du F, Guo Z, Cheng Z, Kremer M, Shuang S, Liu Y, Dong C. Facile synthesis of ultrahigh fluorescence N,S-self-doped carbon nanodots and their multiple applications for H 2S sensing, bioimaging in live cells and zebrafish, and anti-counterfeiting. NANOSCALE 2020; 12:20482-20490. [PMID: 33026004 DOI: 10.1039/d0nr04649c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Green-emissive N,S-self-doped carbon nanodots (N,S-self-CNDs) with an ultrahigh fluorescence (FL) quantum yield (QY) of 60% were synthesized using methyl blue as the only source by a facile hydrothermal approach. The -NH- and -SOx- groups of methyl blue were simultaneously used as nitrogen and sulfur co-dopants to dope into CNDs. The prepared N,S-self-CNDs have an extremely large Stokes shift (∼130 nm) and excitation-independent fluorescence, and are demonstrated to have multiple applications for H2S sensing, bioimaging and anti-counterfeiting. Taking advantage of their excellent optical properties, N,S-self-CNDs could act as a label-free nanoprobe for the detection of H2S. The FL of N,S-self-CNDs could be significantly quenched by H2S because of dynamic quenching, along with excellent selectivity toward H2S from 0.5-15 μM with a detection limit of 46.8 nM. They were successfully employed for the analysis of H2S content in actual samples. Additionally, the nanoprobe was extended to bioimaging in both living PC12 cells and zebrafish, and monitoring H2S in live cells. Furthermore, N,S-self-CNDs have been used to prepare highly fluorescent polymer films by incorporating N,S-self-CNDs in polyvinyl alcohol (PVA). The as-prepared N,S-self-CNDs/PVA films show a prominent dual-mode FL property, implying that they are potential nanomaterials in the anti-counterfeiting field.
Collapse
Affiliation(s)
- Fangfang Du
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| | - Zhonghui Guo
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| | - Zhe Cheng
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| | - Marius Kremer
- Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Shaomin Shuang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| | - Yang Liu
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| | - Chuan Dong
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
22
|
Lee EY, Kim Y, Koo B, Noh GS, Lee H, Shin Y. A novel nucleic acid amplification system based on nano-gap embedded active disk resonators. SENSORS AND ACTUATORS. B, CHEMICAL 2020; 320:128351. [PMID: 32501366 DOI: 10.1016/j.snb.2020.128391] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/15/2020] [Accepted: 05/21/2020] [Indexed: 05/28/2023]
Abstract
Recent advances in nucleic acid based testing using bio-optical sensor approaches have been introduced but most are based on hybridization between the optical sensor and the bio-molecule and not on an amplification mechanism. Direct nucleic acid amplification on an optical sensor has several technical limitations, such as the sensitivity of the temperature sensor, instrument complexity, and high background signal. We here describe a novel nucleic acid amplification method based on a whispering gallery mode active resonator and discuss its potential molecular diagnostic application. By implanting nanoclusters as active compounds, this active resonator operates without tapered fiber coupling and emits a strong photoluminescence signal with low background in the wavelength of low absorption in an aqueous environment that is typical of biosensors. Our method also offers an extremely low detection threshold down to a single copy within 10 min due to the strong light-matter interaction in a nano-gap structure. We envision that this active resonator provides a high refractive index contrast for tight mode confinement with simple alignment as well as the possibility of reducing the device size so that a point-of-care system with low-cost, high-sensitivity and simplicity.
Collapse
Affiliation(s)
- Eun Yeong Lee
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Yeseul Kim
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Bonhan Koo
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Geun Su Noh
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Hansuek Lee
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Yong Shin
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| |
Collapse
|
23
|
Phuong PTM, Won HJ, Robby AI, Kim SG, Im GB, Bhang SH, Lee G, Park SY. NIR-vis-Induced pH-Sensitive TiO 2 Immobilized Carbon Dot for Controllable Membrane-Nuclei Targeting and Photothermal Therapy of Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:37929-37942. [PMID: 32846494 DOI: 10.1021/acsami.0c11979] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study investigated a selective and sensitive theragnosis system for the specific targeting of the membrane and nuclei based on visible-light and pH-responsive TiO2-integrated cross-linked carbon dot (C-CD/TiO2) for tumor detection and controllable photothermal therapy. The cross-linking system was formed by boronate ester linkages between the TiO2-immobilized Dopa-decyl (D-CD) and zwitterionic-formed CD (Z-CD) for nuclear targeting, which showed fluorescence "off" at physiological pH. The fluorescence recovered to the "on" state in acidic cancer cells owing to cleavages of the boronate ester bonds, resulting in the disruption of the Förster resonance energy transfer that generated different CDs useful for tumor-selective biosensors and therapy. D-CD, which is hydrophobic, can penetrate the hydrophobic sites of the cell membrane; it caused a loss in the hydrophobicity of these sites after visible-light irradiation. This was achieved by the photocatalytic activity of the TiO2 modulating energy bandgap, whereas the Z-CD targeted the nucleus, as confirmed by merged confocal microscopy images. D-CD augmented by photothermal heat also exhibited selective anticancer activity in the acidic tumor condition but showed only minimal effects at a normal site at pH 7.4. After C-CD/TiO2 injection to an in vivo tumor model, C-CD/TiO2 efficiently ablated tumors under NIR light irradiation. The C-CD/TiO2 group showed up-regulation of the pro-apoptotic markers such as P53 and BAX in tumor. This material exhibited its potential as a theragnostic sensor with excellent biocompatibility, high sensitivity, selective imaging, and direct anticancer activity via photothermal therapy.
Collapse
Affiliation(s)
- Pham Thi My Phuong
- Department of Green Bio Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
| | - Hyun Jeong Won
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
| | - Akhmad Irhas Robby
- Department of Green Bio Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
| | - Seul Gi Kim
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
| | - Gwang-Bum Im
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gibaek Lee
- Department of Green Bio Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
| | - Sung Young Park
- Department of Green Bio Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
| |
Collapse
|
24
|
Kundu A, Robby AI, Shit A, Jo HJ, Park SY. Construction of FeCo 2O 4@N-Doped Carbon Dots Nanoflowers as Binder Free Electrode for Reduction and Oxidation of Water. MATERIALS 2020; 13:ma13143119. [PMID: 32668661 PMCID: PMC7411927 DOI: 10.3390/ma13143119] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 12/30/2022]
Abstract
Electrochemical water splitting is known as a potential approach for sustainable energy conversion; it produces H2 fuel by utilizing transition metal-based catalysts. We report a facile synthesis of FeCo2O4@carbon dots (CDs) nanoflowers supported on nickel foam through a hydrothermal technique in the absence of organic solvents and an inert environment. The synthesized material with a judicious choice of CDs shows superior performance in hydrogen and oxygen evolution reactions (HER and OER) compared to the FeCo2O4 electrode alone in alkaline media. For HER, the overpotential of 205 mV was able to produce current densities of up to 10 mA cm−2, whereas an overpotential of 393 mV was needed to obtain a current density of up to 50 mA cm−2 for OER. The synergistic effect between CDs and FeCo2O4 accounts for the excellent electrocatalytic activity, since CDs offer exposed active sites and subsequently promote the electrochemical reaction by enhancing the electron transfer processes. Hence, this procedure offers an effective approach for constructing metal oxide-integrated CDs as a catalytic support system to improve the performance of electrochemical water splitting.
Collapse
Affiliation(s)
- Aniruddha Kundu
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380-702, Korea; (A.K.); (A.S.); (H.J.J.)
| | - Akhmad Irhas Robby
- Department of Green Bio Engineering, Korea National University of Transportation, Chungju 380-702, Korea;
| | - Arnab Shit
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380-702, Korea; (A.K.); (A.S.); (H.J.J.)
| | - Hyeong Jun Jo
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380-702, Korea; (A.K.); (A.S.); (H.J.J.)
| | - Sung Young Park
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380-702, Korea; (A.K.); (A.S.); (H.J.J.)
- Department of Green Bio Engineering, Korea National University of Transportation, Chungju 380-702, Korea;
- Department of IT Convergence, Korea National University of Transportation, Chungju 380-702, Korea
- Correspondence:
| |
Collapse
|
25
|
Kundu A, Ryplida B, Park SY. Carbon Dots Integrated NiCo
2
O
4
Hierarchical Nanoneedle Arrays Supported on Ni Foam as Efficient and Stable Electrode for Hydrogen and Oxygen Evolution Reactions. ELECTROANAL 2020. [DOI: 10.1002/elan.202060110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Aniruddha Kundu
- Department of Chemical and Biological Engineering Korea National University of Transportation Chungju 380-702, Republic of Korea
| | - Benny Ryplida
- Department of Green Bio Engineering Korea National University of Transportation Chungju 380-702, Republic of Korea
| | - Sung Young Park
- Department of Chemical and Biological Engineering Korea National University of Transportation Chungju 380-702, Republic of Korea
- Department of Green Bio Engineering Korea National University of Transportation Chungju 380-702, Republic of Korea
| |
Collapse
|
26
|
Sabourian P, Tavakolian M, Yazdani H, Frounchi M, van de Ven TG, Maysinger D, Kakkar A. Stimuli-responsive chitosan as an advantageous platform for efficient delivery of bioactive agents. J Control Release 2020; 317:216-231. [DOI: 10.1016/j.jconrel.2019.11.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 12/31/2022]
|
27
|
Ghiasi B, Mehdipour G, Safari N, Behboudi H, Hashemi M, Omidi M, Sefidbakht Y, Yadegari A, Hamblin MR. Theranostic applications of stimulus-responsive systems based on carbon dots. INT J POLYM MATER PO 2019; 70:117-130. [PMID: 33967355 PMCID: PMC8101985 DOI: 10.1080/00914037.2019.1695207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/09/2019] [Indexed: 12/29/2022]
Abstract
Over recent years, many different nanoparticle-based drug delivery systems (NDDSs) have been developed. Recently the development of stimulus-responsive NDDSs has come into sharper focus. Carbon dots (CDs) possess outstanding features such as useful optical properties, good biocompatibility, and the ability for easy surface modification. Appropriate surface modification can allow these NDDSs to respond to various chemical or physical stimuli that are characteristic of their target cells or tissue (frequently malignant cells or tumors). The present review covers recent developments of CDs in NDDSs with a particular focus on internal stimulus response capability that allows simultaneous imaging and therapeutic delivery (theranostics). Relevant stimuli associated with tumor cells and tumors include pH levels, redox potential, and different enzymatic activities can be used to activate the CDs at the desired sites.
Collapse
Affiliation(s)
- Behrad Ghiasi
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Golnaz Mehdipour
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Nooshin Safari
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | | | - Mohadeseh Hashemi
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
- Biomedical Engineering Department, The University of Texas at Austin, Austin, TX, USA
| | - Meisam Omidi
- School of Dentistry, Marquette University, Milwaukee, WI, USA
| | - Yahya Sefidbakht
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Amir Yadegari
- School of Dentistry, Marquette University, Milwaukee, WI, USA
| | - Michael R. Hamblin
- Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|
28
|
Singh VK, Singh V, Yadav PK, Chandra S, Bano D, Koch B, Talat M, Hasan SH. Nitrogen doped fluorescent carbon quantum dots for on-off-on detection of Hg2+ and glutathione in aqueous medium: Live cell imaging and IMPLICATION logic gate operation. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.112042] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Kim SG, Ryplida B, Phuong PTM, Won HJ, Lee G, Bhang SH, Park SY. Reduction-Triggered Paclitaxel Release Nano-Hybrid System Based on Core-Crosslinked Polymer Dots with a pH-Responsive Shell-Cleavable Colorimetric Biosensor. Int J Mol Sci 2019; 20:E5368. [PMID: 31661903 PMCID: PMC6862247 DOI: 10.3390/ijms20215368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/09/2019] [Accepted: 10/25/2019] [Indexed: 12/22/2022] Open
Abstract
Herein, we describe the fabrication and characterization of carbonized disulfide core-crosslinked polymer dots with pH-cleavable colorimetric nanosensors, based on diol dye-conjugated fluorescent polymer dots (L-PD), for reduction-triggered paclitaxel (PTX) release during fluorescence imaging-guided chemotherapy of tumors. L-PD were loaded with PTX (PTX loaded L-PD), via π-π stackings or hydrophobic interactions, for selective theragnosis by enhanced release of PTX after the cleavage of disulfide bonds by high concentration of glutathione (GSH) in a tumor. The nano-hybrid system showed fluorescence quenching behavior with less than 2% of PTX released under physiological conditions. However, in a tumor microenvironment, the fluorescence recovered at an acidic-pH, and PTX (approximately 100% of the drug release) was released efficiently out of the matrix by reduction caused by the GSH level in the tumor cells, which improved the effectiveness of the cancer treatment. Therefore, the colorimetric nanosensor showed promising potential in distinguishing between normal and cancerous tissues depending on the surrounding pH and GSH concentrations so that PTX can be selectively delivered into cancer cells for improved cancer diagnosis and chemotherapy.
Collapse
Affiliation(s)
- Seul Gi Kim
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380-702, Korea.
| | - Benny Ryplida
- Department of Green Bio Engineering, Korea National University of Transportation, Chungju 380-702, Korea.
| | - Pham Thi My Phuong
- Department of Green Bio Engineering, Korea National University of Transportation, Chungju 380-702, Korea.
| | - Hyun Jeong Won
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380-702, Korea.
| | - Gibaek Lee
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380-702, Korea.
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea.
| | - Sung Young Park
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380-702, Korea.
- Department of Green Bio Engineering, Korea National University of Transportation, Chungju 380-702, Korea.
- Department of IT Convergence, Korea National University of Transportation, Chungju 380-702, Korea.
| |
Collapse
|
30
|
Wang J, Xu M, Wang D, Li Z, Primo FL, Tedesco AC, Bi H. Copper-Doped Carbon Dots for Optical Bioimaging and Photodynamic Therapy. Inorg Chem 2019; 58:13394-13402. [PMID: 31556604 DOI: 10.1021/acs.inorgchem.9b02283] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Carbon dots (CDs), as an effective bioimaging agent, have aroused widespread interest. With the increasing number of CDs used in photodynamic therapy (PDT), developing efficient CDs with multiple functions such as imaging and phototherapy has become a new challenge. Herein, a new type of copper-doped CDs (Cu-CDs) with a high fluorescence quantum yield of 24.4% was synthesized from a copper complex of poly(acrylic acid) through coordination between the carboxyl group and copper ions. Owing to their good solubility, bright fluorescence, and low cytotoxicity, the Cu-CDs can be used for fluorescence imaging in both the HeLa (human cervical cancer) cell line and SH-SY5Y (human neuroblastoma cells) multicellular spheroids (3D MCs). More importantly, the Cu-CDs show a high quantum yield of singlet oxygen (1O2; 36%), good photoinduced cytotoxicity, and effective inhibition of 3D MC growth. Therefore, the Cu-CDs can be used as a promising imaging-guided PDT agent. This study provides a new carbon-based nanomaterial for multifunctional photodiagnostic and therapeutic agents for biological applications.
Collapse
Affiliation(s)
- Jingmin Wang
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing , Anhui University , Hefei 230601 , China
| | - Mingsheng Xu
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing , Anhui University , Hefei 230601 , China
| | - Dong Wang
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing , Anhui University , Hefei 230601 , China
| | - Zhenzhen Li
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing , Anhui University , Hefei 230601 , China
| | - Fernando Lucas Primo
- Department of Bioprocess and Biotechnology, Faculty of Pharmaceutical Sciences of Araraquara , FCF/UNESP , Araraquara , São Paulo 14800-903 , Brazil
| | - Antonio Claudio Tedesco
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing , Anhui University , Hefei 230601 , China.,Department of Chemistry, Center of Nanotechnology and Tissue Engineering, Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto , University of São Paulo , Ribeirão Preto , São Paulo 14040-901 , Brazil
| | - Hong Bi
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing , Anhui University , Hefei 230601 , China
| |
Collapse
|
31
|
Phuong PTM, Jhon H, In I, Park SY. Photothermal-modulated reversible volume transition of wireless hydrogels embedded with redox-responsive carbon dots. Biomater Sci 2019; 7:4800-4812. [PMID: 31528924 DOI: 10.1039/c9bm00734b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The reversible volume transition of redox-responsive hydrogels by near-infrared (NIR) irradiation has recently attracted significant attention as a novel therapy matrix for tracking and treating cancer via stimuli-responsive fluorescence on/off with controllable volume transition via a wireless sensing system. Herein, a NIR-induced redox-sensitive hydrogel was synthesized by blending a hydrogel with IR825-loaded carbon dots (CD) to achieve enhanced mobility of nanoparticles inside a gel network, and reversible volume phase transitions remotely controlled by a smartphone application via the induction of different redox environments. The presence of CD-IR825 in the thermosensitive poly(N-isopropylacrylamide) hydrogel network imparted fluorescence, electronic and photothermal properties to the hydrogels, which resulted in volume shrinkage behavior of the hydrogel upon exposure to NIR laser irradiation due to the redox-sensitive CDs. Under the NIR on/off cycles, the photothermal temperature, fluorescence, and porous structure were reversed after turning off the NIR laser. The hydrogel responsiveness under GSH and NIR light was studied using a wireless device based on the changes in the resistance graph on a smartphone application, generating a fast and simple method for the investigation of hydrogel properties. The in vitro cell viabilities of the MDA-MB cancer cells incubated with the composite hydrogel in the presence of external GSH exhibited a higher photothermal temperature, and the cancer cells were effectively killed after the NIR irradiation. Therefore, the NIR-induced redox-responsive nanocomposite hydrogel prepared herein has potential for use in cancer treatment and will enable the study of nanoparticle motion in hydrogel networks under multiple stimuli via a wireless device using a faster and more convenient method.
Collapse
Affiliation(s)
- Pham Thi My Phuong
- Department of IT Convergence, Korea National University of Transportation, Chungju 380-702, Republic of Korea.
| | - Heesauk Jhon
- Department of Electronics, Information and Communication Engineering, Mokpo National University, Muan-gun 58554, Republic of Korea
| | - Insik In
- Department of IT Convergence, Korea National University of Transportation, Chungju 380-702, Republic of Korea. and Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
| | - Sung Young Park
- Department of IT Convergence, Korea National University of Transportation, Chungju 380-702, Republic of Korea. and Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
| |
Collapse
|
32
|
Phuong PTM, Ryplida B, In I, Park SY. High performance of electrochemical and fluorescent probe by interaction of cell and bacteria with pH-sensitive polymer dots coated surfaces. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:159-168. [DOI: 10.1016/j.msec.2019.03.098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 10/27/2022]
|
33
|
Xiong R, Chen M, Cui X, Wang Q, Liu X, Geng B. Simultaneous and Reversible Triggering of the Phase Transfer and Luminescence Change of Amidine-Modified Carbon Dots by CO 2. ACS APPLIED MATERIALS & INTERFACES 2019; 11:22851-22857. [PMID: 31198041 DOI: 10.1021/acsami.9b05421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The ability to reversibly manipulate the surface nature of luminescent nanoparticles upon external stimulation enables the development of advanced optical probes for biological sensing and data encoding. Herein, we report the synthesis of a new class of smart carbon dots (CDs) via surface modification of amine-enriched CDs with CO2-responsive groups of amidine. We present that alternative CO2 and N2 bubbling can not only lead to a reversible phase transfer of the CDs between an organic phase and an aqueous phase but also give rise to a corresponding reversible luminescence change between blue and cyan-green. We attribute these observations to changes in both the surface chemistry and the emission states of the CDs triggered by the alternative CO2/N2 introduction. We also find a similar luminescence change of the CDs upon alternative exposure to a humid vapor of CO2 and a mixture of NH3 and N2 at room temperature, allowing them to be used as a new class of optical materials for optical encoding.
Collapse
Affiliation(s)
- Rui Xiong
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Centre for Nano Science and Technology , Anhui Normal University , Wuhu 241000 , P. R. China
| | - Meiling Chen
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Centre for Nano Science and Technology , Anhui Normal University , Wuhu 241000 , P. R. China
| | - Xin Cui
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Centre for Nano Science and Technology , Anhui Normal University , Wuhu 241000 , P. R. China
| | - Qi Wang
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Centre for Nano Science and Technology , Anhui Normal University , Wuhu 241000 , P. R. China
| | - Xiaowang Liu
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Centre for Nano Science and Technology , Anhui Normal University , Wuhu 241000 , P. R. China
| | - Baoyou Geng
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Centre for Nano Science and Technology , Anhui Normal University , Wuhu 241000 , P. R. China
| |
Collapse
|
34
|
Pei M, Li G, Ma K, Li J, Wang Y, Liu P. Polymeric prodrug microspheres with tumor intracellular microenvironment bioreducible degradation, pH-triggered “off-on” fluorescence and drug release for precise imaging-guided diagnosis and chemotherapy. Colloids Surf B Biointerfaces 2019; 177:313-320. [DOI: 10.1016/j.colsurfb.2019.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/29/2019] [Accepted: 02/03/2019] [Indexed: 12/14/2022]
|
35
|
Gou S, Shi YE, Li P, Wang H, Li T, Zhuang X, Li W, Wang Z. Stimuli-Responsive Luminescent Copper Nanoclusters in Alginate and Their Sensing Ability for Glucose. ACS APPLIED MATERIALS & INTERFACES 2019; 11:6561-6567. [PMID: 30656937 DOI: 10.1021/acsami.8b20835] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Visually observable pH-responsive luminescent materials are developed by integrating the properties of aggregation-induced emission enhancement of Cu nanoclusters (NCs) and the Ca2+-triggered gelatin of alginate. Sodium alginate, CaCO3 nanoparticles, and Cu NCs are dispersed in aqueous solution, which is in a transparent fluid state, showing weak photoluminescence (PL). The introduced H+ can react with the CaCO3 nanoparticles to produce free Ca2+, which can cross-link the alginate chains into gel networks. Meanwhile, a dramatic increase in the PL intensity of Cu NCs and a blue shift in the PL peak appeared, assigned to the Ca2+-induced enhancement and gelatin-induced enhancement, respectively. Their potential application as a sensor for glucose is also demonstrated based on the principle that glucose oxidase can recognize glucose and produce H+, which further triggers the above-mentioned two-stage enhancement. A linear relationship between the PL intensity and the concentration of glucose in the range of 0.1-2.0 mM is obtained, with the limit of detection calculated as 3.2 × 10-5 M.
Collapse
Affiliation(s)
| | | | | | | | | | - Xuming Zhuang
- College of Chemistry and Chemical Engineering , Yantai University , Yantai 264005 , P. R. China
| | | | | |
Collapse
|
36
|
Behboudi H, Mehdipour G, Safari N, Pourmadadi M, Saei A, Omidi M, Tayebi L, Rahmandoust M. Carbon Quantum Dots in Nanobiotechnology. ADVANCED STRUCTURED MATERIALS 2019. [DOI: 10.1007/978-3-030-10834-2_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
37
|
Tiwari P, Kaur N, Sharma V, Kang H, Uddin J, Mobin SM. Cannabis sativa-derived carbon dots co-doped with N–S: highly efficient nanosensors for temperature and vitamin B12. NEW J CHEM 2019. [DOI: 10.1039/c9nj04061g] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cannabis sativa-derived carbon dots as efficient nanosensors for temperature and vitamin B12.
Collapse
Affiliation(s)
- Pranav Tiwari
- Discipline of Metallurgical Engineering and Material Science
- Indian Institute of Technology Indore
- Indore 453552
- India
| | - Navpreet Kaur
- Discipline of Biosciences and Biomedical Engineering
- Indian Institute of Technology Indore
- Indore 453552
- India
| | - Vinay Sharma
- Discipline of Biosciences and Biomedical Engineering
- Indian Institute of Technology Indore
- Indore 453552
- India
| | - Hyeonggon Kang
- Center for Nanotechnology
- Department of Natural Sciences
- Coppin State University
- Baltimore
- USA
| | - Jamal Uddin
- Center for Nanotechnology
- Department of Natural Sciences
- Coppin State University
- Baltimore
- USA
| | - Shaikh M. Mobin
- Discipline of Metallurgical Engineering and Material Science
- Indian Institute of Technology Indore
- Indore 453552
- India
- Discipline of Biosciences and Biomedical Engineering
| |
Collapse
|
38
|
Gebremedhin KH, Li Y, Yao Q, Xiao M, Gao F, Fan J, Du J, Long S, Peng X. Development of a red-light emission hypoxia-sensitive two-photon fluorescent probe for in vivo nitroreductase imaging. J Mater Chem B 2018; 7:408-414. [PMID: 32254728 DOI: 10.1039/c8tb02635a] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The overexpression of nitroreductase (NTR) in hypoxia has been recognized as a biomarker of highly aggressive disease, and the development of a hypoxia-sensitive two-photon (TP) bioimaging probe with both excitation and emission wavelengths in the red-light region provides favorable deep-tissue imaging with a low background fluorescence signal. Although quite a few TP hypoxia-sensitive fluorescent probes have been reported for NTR detection, their short emission wavelength (<550 nm) limits their application. Herein, we report a red light emissive TP hypoxia-sensitive turn-on probe (NRP) by employing Nile Red as a red-emitting fluorophore and p-nitrobenzene as an NTR recognition group with improved sensitivity. The NRP probe showed obvious strong red-fluorescence enhancement in the presence of NTR and high selectivity toward NTR in aqueous solution. Our in vitro experimental results illustrated that the NRP loaded tumor cells treated under hypoxia display remarkably strong fluorescence in both OP and TP microscopy at 655 nm with 45-fold enhancement, which affords deep-tissue penetration ability. The NRP probe was also successfully applied for imaging NTR in liver tissue slices and a 4T1-bearing mice model, which is important for bioimaging applications.
Collapse
Affiliation(s)
- Kalayou Hiluf Gebremedhin
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, High-Tech district, Dalian 116024, China
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Pei M, Jia X, Li G, Liu P. Versatile Polymeric Microspheres with Tumor Microenvironment Bioreducible Degradation, pH-Activated Surface Charge Reversal, pH-Triggered “off–on” Fluorescence and Drug Release as Theranostic Nanoplatforms. Mol Pharm 2018; 16:227-237. [DOI: 10.1021/acs.molpharmaceut.8b00957] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Mingliang Pei
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xu Jia
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Guoping Li
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Peng Liu
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
40
|
Li MY, Xiao CQ, Xu ZQ, Yin MM, Yang QQ, Yin YL, Liu Y. Role of surface charge on the interaction between carbon nanodots and human serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 204:484-494. [PMID: 29966904 DOI: 10.1016/j.saa.2018.06.082] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/11/2018] [Accepted: 06/21/2018] [Indexed: 06/08/2023]
Abstract
Carbon nanodots (Cdots) have aroused widespread concerns in the field of biomedical applications. In order to achieve better implications of behavior of Cdots in the biological environment, an array of spectroscopic, electrochemical and calorimetric techniques were performed to study the interaction of Cdots possessing different charges with human serum albumin (HSA) in physiological condition. Two polymer, polyethylene glycol (PEG) and polyetherimide (PEI), were applied to passivate the bare Cdots to achieve the Cdots with different surface charge, namely negatively charged PEG Cdots and positively charged PEI Cdots. The fluorescence of HSA was obviously quenched by both Cdots in a charge-independent behavior through a dynamic collision mechanism. Moreover, the association affinity of PEG Cdots or PEI Cdots bound to HSA was very close to each other. In addition, PEG Cdots with diverse content exhibited little effects on the secondary structure of HSA while only high content of PEI Cdots induced obvious conformation perturbation of HSA. The electrostatic forces dominate the association between HSA and PEI Cdots while the association of PEG Cdots to HSA is initiated by hydrophobic and van der Waals forces. Furthermore, the results of isothermal titration calorimetry revealed that both the interaction was driven by favorable entropy and enthalpy, which confirmed that these association processes are thermodynamically spontaneous. Finally, the sites marker competitive experiment showed that the association sites of Cdots with HSA exhibit a charge dependent manner, namely PEG Cdots effectively occupy the site I of HSA while the association sites of PEI Cdots are mainly located in site II.
Collapse
Affiliation(s)
- Meng-Ying Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, PR China
| | - Chang-Qing Xiao
- Hubei Key Laboratory of Purification and Application of Plant Anticancer Active Ingredients, School of Chemistry and Life Sciences, Hubei University of Education, Wuhan 430205, PR China
| | - Zi-Qiang Xu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, PR China.
| | - Miao-Miao Yin
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Qi-Qi Yang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Yu-Lin Yin
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Yi Liu
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China; College of Chemistry and Material Sciences, Guangxi Teachers Education University, Nanning 530001, PR China; College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China.
| |
Collapse
|
41
|
Mazrad ZAI, Phuong PTM, Choi CA, In I, Lee KD, Park SY. pH/Redox-Triggered Photothermal Treatment for Cancer Therapy Based on a Dual-Responsive Cationic Polymer Dot. ChemMedChem 2018; 13:2437-2447. [DOI: 10.1002/cmdc.201800538] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Zihnil Adha Islamy Mazrad
- Department of IT Convergence; Korea National University of Transportation; Chungju 380-702 Republic of Korea
| | - Pham Thi My Phuong
- Department of IT Convergence; Korea National University of Transportation; Chungju 380-702 Republic of Korea
| | - Cheong A. Choi
- Department of Chemical & Biological Engineering; Korea National University of Transportation; Chungju 380-702 Republic of Korea
| | - Insik In
- Department of IT Convergence; Korea National University of Transportation; Chungju 380-702 Republic of Korea
- Department of Polymer Science and Engineering; Korea National University of Transportation; Chungju 380-702 Republic of Korea
| | - Kang Dae Lee
- Department of Otolaryngology-Head and Neck Surgery; Kosin University College of Medicine; Busan 49267 Republic of Korea
| | - Sung Young Park
- Department of IT Convergence; Korea National University of Transportation; Chungju 380-702 Republic of Korea
- Department of Chemical & Biological Engineering; Korea National University of Transportation; Chungju 380-702 Republic of Korea
| |
Collapse
|
42
|
Haque A, Al-Balushi RA, Al-Busaidi IJ, Khan MS, Raithby PR. Rise of Conjugated Poly-ynes and Poly(Metalla-ynes): From Design Through Synthesis to Structure-Property Relationships and Applications. Chem Rev 2018; 118:8474-8597. [PMID: 30112905 DOI: 10.1021/acs.chemrev.8b00022] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Conjugated poly-ynes and poly(metalla-ynes) constitute an important class of new materials with potential application in various domains of science. The key factors responsible for the diverse usage of these materials is their intriguing and tunable chemical and photophysical properties. This review highlights fascinating advances made in the field of conjugated organic poly-ynes and poly(metalla-ynes) incorporating group 4-11 metals. This includes several important aspects of conjugated poly-ynes viz. synthetic protocols, bonding, electronic structure, nature of luminescence, structure-property relationships, diverse applications, and concluding remarks. Furthermore, we delineated the future directions and challenges in this particular area of research.
Collapse
Affiliation(s)
- Ashanul Haque
- Department of Chemistry , Sultan Qaboos University , P.O. Box 36, Al-Khod 123 , Sultanate of Oman
| | - Rayya A Al-Balushi
- Department of Chemistry , Sultan Qaboos University , P.O. Box 36, Al-Khod 123 , Sultanate of Oman
| | - Idris Juma Al-Busaidi
- Department of Chemistry , Sultan Qaboos University , P.O. Box 36, Al-Khod 123 , Sultanate of Oman
| | - Muhammad S Khan
- Department of Chemistry , Sultan Qaboos University , P.O. Box 36, Al-Khod 123 , Sultanate of Oman
| | - Paul R Raithby
- Department of Chemistry , University of Bath , Claverton Down , Bath BA2 7AY , U.K
| |
Collapse
|
43
|
Sun X, Chen M, Zhang Y, Yin Y, Zhang L, Li H, Hao J. Photoluminescent and pH-responsive supramolecular structures from co-assembly of carbon quantum dots and zwitterionic surfactant micelles. J Mater Chem B 2018; 6:7021-7032. [DOI: 10.1039/c8tb00630j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mixing negatively charged carbon quantum dots with a zwitterionic surfactant in water produces a variety of supramolecular structures, which are photoluminescent and show a reversible response to pH.
Collapse
Affiliation(s)
- Xiaofeng Sun
- State Key Laboratory of Solid Lubrication & Laboratory of Clean Energy Chemistry and Materials
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
- China
| | - Mengjun Chen
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials
- Shandong University
- Ministry of education
- Jinan
- China
| | - Yiqiang Zhang
- State Key Laboratory of Solid Lubrication & Laboratory of Clean Energy Chemistry and Materials
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
- China
| | - Yanji Yin
- State Key Laboratory of Solid Lubrication & Laboratory of Clean Energy Chemistry and Materials
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
- China
| | - Linwen Zhang
- State Key Laboratory of Solid Lubrication & Laboratory of Clean Energy Chemistry and Materials
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
- China
| | - Hongguang Li
- State Key Laboratory of Solid Lubrication & Laboratory of Clean Energy Chemistry and Materials
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
- China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials
- Shandong University
- Ministry of education
- Jinan
- China
| |
Collapse
|
44
|
Choi CA, Mazrad ZAI, Ryu JH, In I, Lee KD, Park SY. Membrane and nucleus targeting for highly sensitive cancer cell detection using pyrophosphate and alkaline phosphatase activity-mediated fluorescence switching of functionalized carbon dots. J Mater Chem B 2018; 6:5992-6001. [DOI: 10.1039/c8tb01364k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fluorescence-switching of Cu2+–CD for specific membrane and nucleus targeting based on PPi and ALP activity in tumor cells.
Collapse
Affiliation(s)
- Cheong A Choi
- Department of Chemical & Biological Engineering
- Korea National University of Transportation
- Chungju 380-702
- Republic of Korea
| | - Zihnil Adha Islamy Mazrad
- Department of IT Convergence
- Korea National University of Transportation
- Chungju 380-702
- Republic of Korea
| | - Ji Hyun Ryu
- Department of Carbon Fusion Engineering
- Wonkwang University
- Iksan
- South Korea
| | - Insik In
- Department of IT Convergence
- Korea National University of Transportation
- Chungju 380-702
- Republic of Korea
- Department of Polymer Science and Engineering
| | - Kang Dae Lee
- Department of Otolaryngology–Head and Neck Surgery
- Kosin University College of Medicine
- Busan 49267
- Republic of Korea
| | - Sung Young Park
- Department of Chemical & Biological Engineering
- Korea National University of Transportation
- Chungju 380-702
- Republic of Korea
- Department of IT Convergence
| |
Collapse
|
45
|
Zou M, Li D, Yuan R, Xiang Y. A target-responsive autonomous aptamer machine biosensor for enzyme-free and sensitive detection of protein biomarkers. J Mater Chem B 2018; 6:4146-4150. [DOI: 10.1039/c8tb00610e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Target-triggered operation of an aptamer machine leads to amplified and highly sensitive detection of protein biomarkers.
Collapse
Affiliation(s)
- Mengqi Zou
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering, Southwest University
- Chongqing 400715
- P. R. China
| | - Daxiu Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering, Southwest University
- Chongqing 400715
- P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering, Southwest University
- Chongqing 400715
- P. R. China
| | - Yun Xiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering, Southwest University
- Chongqing 400715
- P. R. China
| |
Collapse
|