1
|
Cheng K, Wan S, Chen SY, Yang JW, Wang HL, Xu CH, Qiao SH, Yang L. Nuclear matrix protein 22 in bladder cancer. Clin Chim Acta 2024; 560:119718. [PMID: 38718852 DOI: 10.1016/j.cca.2024.119718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/19/2024]
Abstract
Bladder cancer (BC) is ranked as the ninth most common malignancy worldwide, with approximately 570,000 new cases reported annually and over 200,000 deaths. Cystoscopy remains the gold standard for the diagnosis of BC, however, its invasiveness, cost, and discomfort have driven the demand for the development of non-invasive, cost-effective alternatives. Nuclear matrix protein 22 (NMP22) is a promising non-invasive diagnostic tool, having received FDA approval. Traditional methods for detecting NMP22 require a laboratory environment equipped with specialized equipment and trained personnel, thus, the development of NMP22 detection devices holds substantial potential for application. In this review, we evaluate the NMP22 sensors developed over the past decade, including electrochemical, colorimetric, and fluorescence biosensors. These sensors have enhanced detection sensitivity and overcome the limitations of existing diagnostic methods. However, many emerging devices exhibit deficiencies that limit their potential clinical use, therefore, we propose how sensor design can be optimized to enhance the likelihood of clinical translation and discuss the future applications of NMP22 as a legacy biomarker, providing insights for the design of new sensors.
Collapse
Affiliation(s)
- Kun Cheng
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730000, PR China; Gansu Province Clinical Research Center for Urology, Lanzhou 730000, PR China
| | - Shun Wan
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730000, PR China; Gansu Province Clinical Research Center for Urology, Lanzhou 730000, PR China
| | - Si-Yu Chen
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730000, PR China; Gansu Province Clinical Research Center for Urology, Lanzhou 730000, PR China
| | - Jian-Wei Yang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730000, PR China; Gansu Province Clinical Research Center for Urology, Lanzhou 730000, PR China
| | - Hai-Long Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730000, PR China; Gansu Province Clinical Research Center for Urology, Lanzhou 730000, PR China
| | - Chang-Hong Xu
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730000, PR China; Gansu Province Clinical Research Center for Urology, Lanzhou 730000, PR China
| | - Si-Hang Qiao
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730000, PR China; Gansu Province Clinical Research Center for Urology, Lanzhou 730000, PR China
| | - Li Yang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730000, PR China; Gansu Province Clinical Research Center for Urology, Lanzhou 730000, PR China.
| |
Collapse
|
2
|
Li HY, Kong XJ, Han SD, Pang J, He T, Wang GM, Bu XH. Metalation of metal-organic frameworks: fundamentals and applications. Chem Soc Rev 2024; 53:5626-5676. [PMID: 38655667 DOI: 10.1039/d3cs00873h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Metalation of metal-organic frameworks (MOFs) has been developed as a prominent strategy for materials functionalization for pore chemistry modulation and property optimization. By introducing exotic metal ions/complexes/nanoparticles onto/into the parent framework, many metallized MOFs have exhibited significantly improved performance in a wide range of applications. In this review, we focus on the research progress in the metalation of metal-organic frameworks during the last five years, spanning the design principles, synthetic strategies, and potential applications. Based on the crystal engineering principles, a minor change in the MOF composition through metalation would lead to leveraged variation of properties. This review starts from the general strategies established for the incorporation of metal species within MOFs, followed by the design principles to graft the desired functionality while maintaining the porosity of frameworks. Facile metalation has contributed a great number of bespoke materials with excellent performance, and we summarize their applications in gas adsorption and separation, heterogeneous catalysis, detection and sensing, and energy storage and conversion. The underlying mechanisms are also investigated by state-of-the-art techniques and analyzed for gaining insight into the structure-property relationships, which would in turn facilitate the further development of design principles. Finally, the current challenges and opportunities in MOF metalation have been discussed, and the promising future directions for customizing the next-generation advanced materials have been outlined as well.
Collapse
Affiliation(s)
- Hai-Yu Li
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| | - Xiang-Jing Kong
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Song-De Han
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
| | - Jiandong Pang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| | - Tao He
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
| | - Xian-He Bu
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| |
Collapse
|
3
|
Rao Bommi J, Kummari S, Lakavath K, Sukumaran RA, Panicker LR, Marty JL, Yugender Goud K. Recent Trends in Biosensing and Diagnostic Methods for Novel Cancer Biomarkers. BIOSENSORS 2023; 13:398. [PMID: 36979610 PMCID: PMC10046866 DOI: 10.3390/bios13030398] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Cancer is one of the major public health issues in the world. It has become the second leading cause of death, with approximately 75% of cancer deaths transpiring in low- or middle-income countries. It causes a heavy global economic cost estimated at more than a trillion dollars per year. The most common cancers are breast, colon, rectum, prostate, and lung cancers. Many of these cancers can be treated effectively and cured if detected at the primary stage. Nowadays, around 50% of cancers are detected at late stages, leading to serious health complications and death. Early diagnosis of cancer diseases substantially increases the efficient treatment and high chances of survival. Biosensors are one of the potential screening methodologies useful in the early screening of cancer biomarkers. This review summarizes the recent findings about novel cancer biomarkers and their advantages over traditional biomarkers, and novel biosensing and diagnostic methods for them; thus, this review may be helpful in the early recognition and monitoring of treatment response of various human cancers.
Collapse
Affiliation(s)
| | - Shekher Kummari
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India
| | - Kavitha Lakavath
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India
| | - Reshmi A. Sukumaran
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India
| | - Lakshmi R. Panicker
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India
| | - Jean Louis Marty
- Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan, France
| | - Kotagiri Yugender Goud
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India
| |
Collapse
|
4
|
Koyappayil A, Yagati AK, Lee MH. Recent Trends in Metal Nanoparticles Decorated 2D Materials for Electrochemical Biomarker Detection. BIOSENSORS 2023; 13:91. [PMID: 36671926 PMCID: PMC9855691 DOI: 10.3390/bios13010091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/27/2022] [Accepted: 01/01/2023] [Indexed: 05/29/2023]
Abstract
Technological advancements in the healthcare sector have pushed for improved sensors and devices for disease diagnosis and treatment. Recently, with the discovery of numerous biomarkers for various specific physiological conditions, early disease screening has become a possibility. Biomarkers are the body's early warning systems, which are indicators of a biological state that provides a standardized and precise way of evaluating the progression of disease or infection. Owing to the extremely low concentrations of various biomarkers in bodily fluids, signal amplification strategies have become crucial for the detection of biomarkers. Metal nanoparticles are commonly applied on 2D platforms to anchor antibodies and enhance the signals for electrochemical biomarker detection. In this context, this review will discuss the recent trends and advances in metal nanoparticle decorated 2D materials for electrochemical biomarker detection. The prospects, advantages, and limitations of this strategy also will be discussed in the concluding section of this review.
Collapse
Affiliation(s)
| | | | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, Republic of Korea
| |
Collapse
|
5
|
Fu X, Ding B, D'Alessandro D. Fabrication strategies for metal-organic framework electrochemical biosensors and their applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Cheng D, Li P, Xu Z, Liu X, Zhang Y, Liu M, Yao S. Signal On-Off Electrochemical Sensor for Glutathione Based on a AuCu-Decorated Zr-Containing Metal-Organic Framework via Solid-State Electrochemistry of Cuprous Chloride. ACS Sens 2022; 7:2465-2474. [PMID: 35973222 DOI: 10.1021/acssensors.2c01221] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel signal on-off glutathione (GSH) electrochemical sensor was developed based on a AuCu bimetal-decorated Zr-containing metal-organic framework (Zr-MOF), in which a signal amplification strategy promoted by solid-state electrochemistry of cuprous chloride (CuCl) was used. The Zr-MOF with a large surface area can be effectively used as the substrate for the in situ growth of AuCu bimetals to obtain the Zr-MOF@AuCu nanocomposite. The interaction between Cu in Zr-MOF@AuCu and Cl- in the solution accompanied with the formation of CuCl displays an enlarged stable oxidation current, which greatly declines with the addition of GSH owing to the specific Cu-GSH interaction. The conversion of CuCl into Cu-GSH triggered the "crowding-out effect" and resulted in a sharp drop in the peak current of CuCl, which can realize the ultrasensitive and selective detection of GSH. The detection mechanism was investigated, and the detection range was 10 pM-1 mM with the detection limit as low as 2.67 pM. The special response mechanism for the detection of GSH allows the highly selective detection of GSH in various real samples with reliable results, endowing the proposed electroanalysis sensor with broad application prospects in biological and food analysis.
Collapse
Affiliation(s)
- Dan Cheng
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Peipei Li
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Zhenjuan Xu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Xiang Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Meiling Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Shouzhuo Yao
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| |
Collapse
|
7
|
Hybrid Nanobioengineered Nanomaterial-Based Electrochemical Biosensors. Molecules 2022; 27:molecules27123841. [PMID: 35744967 PMCID: PMC9229873 DOI: 10.3390/molecules27123841] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/03/2022] [Accepted: 06/11/2022] [Indexed: 02/05/2023] Open
Abstract
Nanoengineering biosensors have become more precise and sophisticated, raising the demand for highly sensitive architectures to monitor target analytes at extremely low concentrations often required, for example, for biomedical applications. We review recent advances in functional nanomaterials, mainly based on novel organic-inorganic hybrids with enhanced electro-physicochemical properties toward fulfilling this need. In this context, this review classifies some recently engineered organic-inorganic metallic-, silicon-, carbonaceous-, and polymeric-nanomaterials and describes their structural properties and features when incorporated into biosensing systems. It further shows the latest advances in ultrasensitive electrochemical biosensors engineered from such innovative nanomaterials highlighting their advantages concerning the concomitant constituents acting alone, fulfilling the gap from other reviews in the literature. Finally, it mentioned the limitations and opportunities of hybrid nanomaterials from the point of view of current nanotechnology and future considerations for advancing their use in enhanced electrochemical platforms.
Collapse
|
8
|
Xu J, Ma J, Peng Y, Cao S, Zhang S, Pang H. Applications of metal nanoparticles/metal-organic frameworks composites in sensing field. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Metal-organic frameworks based hybrid nanocomposites as state-of-the-art analytical tools for electrochemical sensing applications. Biosens Bioelectron 2021; 199:113867. [PMID: 34890884 DOI: 10.1016/j.bios.2021.113867] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/22/2021] [Accepted: 12/05/2021] [Indexed: 12/18/2022]
Abstract
Metal-organic frameworks (MOFs) are remarkably porous materials that have sparked a lot of interest in recent years because of their fascinating architectures and variety of potential applications. This paper systematically summarizes recent breakthroughs in MOFs and their derivatives with different materials such as, carbon nanotubes, graphene oxides, carbon fibers, enzymes, antibodies and aptamers etc. for enhanced electrochemical sensing applications. Furthermore, an overview part is highlighted, which provides some insights into the future prospects and directions of MOFs and their derivatives in electrochemical sensing, with the goal of overcoming present limitations by pursuing more inventive ways. This overview can perhaps provide some creative ideas for future research on MOF-based materials in this rapidly expanding field.
Collapse
|
10
|
Feng J, Yao T, Chu C, Ma Z, Han H. Proton-responsive annunciator based on i-motif DNA structure modified metal organic frameworks for ameliorative construction of electrochemical immunosensing interface. J Colloid Interface Sci 2021; 608:2050-2057. [PMID: 34749152 DOI: 10.1016/j.jcis.2021.10.139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/20/2021] [Accepted: 10/24/2021] [Indexed: 01/25/2023]
Abstract
Reformative exploitation for metal organic frameworks (MOFs) has been a topic subject in electrochemical sensing, in which the loading of electroactive species is always introduced to enable them to generate electrochemical signal. However, insulation shielding of MOFs and flimsy combination method interfere with the signal readout of electroactive dyes when they are co-immobilized on electrode surface, indicating that an amelioration is imperatively proposed to solve these issues. Herein, a proton-activated annunciator for responsive release of methylene blue (MB) based on i-motif DNA structure modified UIO-66-NH2 was presented to design electrochemical immunosensor (Squamous cell carcinoma antigen was used as the model analyte). With the catalysis of a ZIF-8 immunoprobe contained glucose oxidase (GOx) to glucose in test tube, protons are produced in ambient solution and then they can be used as the key to unlock the i-motif functionalized UIO-66-NH2, releasing the loaded MB molecules to be readout on an improved electrode. This stimuli-responsive mode not merely eliminates the insulation effect of MOFs but also provides a firm loading method for electroactive dyes. Under the optimal conditions, the proposed immunoassay for SCCA had displayed excellent performance with a wide linear range from 1 µg mL-1 to 1 pg mL-1 and an ultralow detection limit of 1.504 fg mL-1 (S/N = 3) under the optimal conditions.
Collapse
Affiliation(s)
- Jiejie Feng
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Tao Yao
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Changshun Chu
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zhanfang Ma
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Hongliang Han
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
11
|
Wang X, Wang Y, Ying Y. Recent advances in sensing applications of metal nanoparticle/metal–organic framework composites. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116395] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
12
|
Zheng Y, Zhang X, Su Z. Design of metal-organic framework composites in anti-cancer therapies. NANOSCALE 2021; 13:12102-12118. [PMID: 34236380 DOI: 10.1039/d1nr02581c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metal-organic frameworks are a class of new and promising anti-cancer materials. MOFs with adjustable pore size, large specific surface area, diverse structure, and excellent chemical and physical properties make them a class of effective protection carriers for anti-cancer substances. This review is centered on the core point of "anti-cancer" and discusses MOFs' research progress in anti-cancer therapies. Firstly, we provided readers with the different types of MOFs, their preparation strategies and the resulting structures. Then, different MOF composites and their biological applications were systematically presented. The specificity of biomolecules endows MOFs with broader anti-cancer applications, while MOFs can protect the drugs and biomolecules to make the best of a challenging situation. Finally, we elucidated a comprehensive overview of the biological applications of MOFs, including research hotspots as drug delivery and biomolecule carriers. Besides, we looked forward to the future developments of MOFs in the field of anti-cancer therapies. As a class of novel materials, the anti-cancer applications of MOFs are extended through the combination of different materials and different methods to improve their efficacy.
Collapse
Affiliation(s)
- Yadan Zheng
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | | | | |
Collapse
|
13
|
Metal–organic frameworks (MOFs) based electrochemical biosensors for early cancer diagnosis in vitro. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213948] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Cheng D, Li P, Zhu X, Liu M, Zhang Y, Liu Y. Enzyme‐free Electrochemical Detection of Hydrogen Peroxide Based on the
Three‐Dimensional
Flower‐like Cu‐based Metal Organic Frameworks and
MXene
Nanosheets
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100158] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Dan Cheng
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha Hunan 410081 China
| | - Peipei Li
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha Hunan 410081 China
| | - Xiaohua Zhu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha Hunan 410081 China
| | - Meiling Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha Hunan 410081 China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha Hunan 410081 China
| | - Yang Liu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Department of Chemistry, Tsinghua University Beijing 100084 China
| |
Collapse
|
15
|
Yue S, Sun K, Li S, Liu Y, Zhu Q, Chen Y, Yuan D, Wen T, Ge M, Yu Q. The establishment of an immunosensor for the detection of SPOP. Sci Rep 2021; 11:12571. [PMID: 34131189 PMCID: PMC8206368 DOI: 10.1038/s41598-021-91944-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/25/2021] [Indexed: 11/09/2022] Open
Abstract
In this paper, we first synthesis three-dimensional jasmine-like Cu@L-aspartic acid(L-ASP) inorganic–organic hybrid nanoflowers to load palladium-platinum nanoparticles (Pd–Pt NPs) as the signal enhancer in order to quantify intracellular speckle-type POZ domain protein. Scanning electron microscope, fourier transform infrared, energy dispersive spectrometer, X-ray photoelectron spectroscopy analysis was used to characterize the newly synthesized materials. The newly formed Cu@L-Asp/Pd-PtNPs can catalyze the decomposition of hydrogen peroxide and exhibit excellent catalytic performance. When different concentration of speckle-type POZ domain protein is captured by speckle-type POZ domain protein antibody linked to the surface of Cu@L-Asp/Pd–Pt NPs, the current signal decreases with the increase concentration of speckle-type POZ domain protein. After optimization, the speckle-type POZ domain protein immunosensor exhibited a good linear response over a concentration range from 0.1–1 ng mL−1 with a low detection limit of 19 fg mL−1. The proposed sensor demonstrates good stability within 28 days, acceptable reproducibility (RSD = 0.52%) and selectivity to the speckle-type POZ domain protein in the presence of possible interfering substances and has potential application for detecting other intracellular macromolecular substances.
Collapse
Affiliation(s)
- Song Yue
- Institute of Life Science, Chongqing Medical University, 1 Yi Xue Yuan Road, Chongqing, 400016, People's Republic of China
| | - Kexin Sun
- Department of Ophthalmology, Chongqing Key Laboratory of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, Chongqing, 400016, People's Republic of China
| | - Siyuan Li
- Institute of Life Science, Chongqing Medical University, 1 Yi Xue Yuan Road, Chongqing, 400016, People's Republic of China
| | - Yi Liu
- Institute of Life Science, Chongqing Medical University, 1 Yi Xue Yuan Road, Chongqing, 400016, People's Republic of China
| | - Qihao Zhu
- Institute of Life Science, Chongqing Medical University, 1 Yi Xue Yuan Road, Chongqing, 400016, People's Republic of China
| | - Yiyu Chen
- Institute of Life Science, Chongqing Medical University, 1 Yi Xue Yuan Road, Chongqing, 400016, People's Republic of China
| | - Dong Yuan
- Institute of Life Science, Chongqing Medical University, 1 Yi Xue Yuan Road, Chongqing, 400016, People's Republic of China
| | - Tao Wen
- Institute of Life Science, Chongqing Medical University, 1 Yi Xue Yuan Road, Chongqing, 400016, People's Republic of China
| | - Mingjian Ge
- Department of Thoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Qiubo Yu
- Institute of Life Science, Chongqing Medical University, 1 Yi Xue Yuan Road, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
16
|
Lv M, Zhou W, Tavakoli H, Bautista C, Xia J, Wang Z, Li X. Aptamer-functionalized metal-organic frameworks (MOFs) for biosensing. Biosens Bioelectron 2021; 176:112947. [PMID: 33412430 PMCID: PMC7855766 DOI: 10.1016/j.bios.2020.112947] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 12/22/2020] [Accepted: 12/26/2020] [Indexed: 02/07/2023]
Abstract
As a class of crystalline porous materials, metal-organic frameworks (MOFs) have attracted increasing attention. Due to the nanoscale framework structure, adjustable pore size, large specific surface area, and good chemical stability, MOFs have been applied widely in many fields such as biosensors, biomedicine, electrocatalysis, energy storage and conversions. Especially when they are combined with aptamer functionalization, MOFs can be utilized to construct high-performance biosensors for numerous applications ranging from medical diagnostics and food safety inspection, to environmental surveillance. Herein, this article reviews recent innovations of aptamer-functionalized MOFs-based biosensors and their bio-applications. We first briefly introduce different functionalization methods of MOFs with aptamers, which provide a foundation for the construction of MOFs-based aptasensors. Then, we comprehensively summarize different types of MOFs-based aptasensors and their applications, in which MOFs serve as either signal probes or signal probe carriers for optical, electrochemical, and photoelectrochemical detection, with an emphasis on the former. Given recent substantial research interests in stimuli-responsive materials and the microfluidic lab-on-a-chip technology, we also present the stimuli-responsive aptamer-functionalized MOFs for sensing, followed by a brief overview on the integration of MOFs on microfluidic devices. Current limitations and prospective trends of MOFs-based biosensors are discussed at the end.
Collapse
Affiliation(s)
- Mengzhen Lv
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao, 266071, PR China; Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, 79968, USA
| | - Wan Zhou
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, 79968, USA
| | - Hamed Tavakoli
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, 79968, USA
| | - Cynthia Bautista
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, 79968, USA
| | - Jianfei Xia
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao, 266071, PR China; Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, 79968, USA.
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao, 266071, PR China
| | - XiuJun Li
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, 79968, USA; Biomedical Engineering, Border Biomedical Research Center, University of Texas at El Paso, El Paso, 79968, USA; Environmental Science and Engineering, University of Texas at El Paso, El Paso, 79968, USA.
| |
Collapse
|
17
|
Metal-organic framework-based materials as an emerging platform for advanced electrochemical sensing. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213222] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Biomimetic synthesis of all-inclusive organic-inorganic nanospheres for enhanced electrochemical immunoassay. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Hsu YP, Yang HW, Li NS, Chen YT, Pang HH, Pang ST. Instrument-Free Detection of FXYD3 Using Vial-Based Immunosensor for Earlier and Faster Urothelial Carcinoma Diagnosis. ACS Sens 2020; 5:928-935. [PMID: 32162907 DOI: 10.1021/acssensors.9b02013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The incidence and 5 year recurrence rate of urothelial carcinomas (UCs), including UC of the bladder (UCB) and upper urinary tract UC (UTUC), have increased annually. There is a great need for a simple and fast point-of-care (POC) test for early diagnosis and amelioration in the survival rate. We present a POC test comprising a new vial-immunosensor, nanoenzyme, and iPhone 7 plus, which detects and quantifies the new biomarker FXYD domain-containing ion transport regulator 3 (FXYD3) in human urine for specific UC screening, tumor-grade classification, and postoperative monitoring by the grayscale value of the photograph taken. The performance of the proposed POC test was then verified using urine from 4 healthy people, 40 UCB patients (10 patients were low-grade and 30 patients were high-grade), and 13 UTUC patients (2 patients were low-grade and 11 patients were high-grade), confirming the accuracy and specificity by comparing the results with those obtained by enzyme-linked immunosorbent assay (ELISA). Moreover, we also designed a correction method that can make the grayscale values calculated by different smartphones close to the values calculated by iPhone 7 plus, resulting in the POC test enabling simple, fast, universal, and portable testing, data storage, and sharing for personal UCs screening and postoperative monitoring.
Collapse
Affiliation(s)
- Ying-Pei Hsu
- Institute of Medical Science and Technology, National Sun Yat-sen University, 70 Lienhai Road, Kaohsiung 80424, Taiwan
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, 70 Lienhai Road, Kaohsiung 80424, Taiwan
| | - Hung-Wei Yang
- Institute of Medical Science and Technology, National Sun Yat-sen University, 70 Lienhai Road, Kaohsiung 80424, Taiwan
| | - Nan-Si Li
- Institute of Medical Science and Technology, National Sun Yat-sen University, 70 Lienhai Road, Kaohsiung 80424, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, 70 Lienhai Road, Kaohsiung 80424, Taiwan
| | - Ying-Tzu Chen
- Institute of Medical Science and Technology, National Sun Yat-sen University, 70 Lienhai Road, Kaohsiung 80424, Taiwan
| | - Hao-Han Pang
- Institute of Medical Science and Technology, National Sun Yat-sen University, 70 Lienhai Road, Kaohsiung 80424, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, 70 Lienhai Road, Kaohsiung 80424, Taiwan
| | - See-Tong Pang
- Division of Urology, Department of Surgery, Linkou Chang Gung Memorial Hospital, 5 Fuxing Street, Guishan District, Taoyuan 33305, Taiwan
- School of Medicine, Chang Gung University, 259 Wenhua First Road, Guishan District, Taoyuan 33302, Taiwan
| |
Collapse
|
20
|
Deng L, Lai G, Fu L, Lin CT, Yu A. Enzymatic deposition of gold nanoparticles at vertically aligned carbon nanotubes for electrochemical stripping analysis and ultrasensitive immunosensing of carcinoembryonic antigen. Analyst 2020; 145:3073-3080. [PMID: 32142088 DOI: 10.1039/c9an02633a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Herein we combine the sandwich immunoreaction at a vertically aligned single-walled carbon nanotube (SWCNT)-based immunosensor and the enzymatically catalytic deposition of gold nanoparticles (Au NPs) by a gold nanoprobe to develop a novel electrochemical immunosensing method. The vertically arranged nanostructure was prepared through the covalent linking of terminally carboxylated SWCNTs at an aryldiazonium-modified electrode. It not only provides an excellent platform for the high density immobilization of antibodies to obtain the immunosensor but also serves as useful molecular wires to accelerate electron transfer during the electrochemical immunosensing process. Meanwhile, the enzymatic reaction of the nanoprobe prepared by surface functionalization of the nanocarrier of Au NPs by high-content glucoamylases can catalyze the deposition of a large number of Au NPs at the immunosensor. The electrochemical stripping analysis of these nanoparticles enabled the convenient signal transduction of the method. Due to the sensitive gold stripping analysis at the vertically aligned SWCNTs and the multi-enzyme signal amplification of the nanoprobe, the electrochemical signal response was greatly enhanced. Thus, the method can be used for the ultrasensitive detection of the tumor biomarker of carcinoembryonic antigen in a wide linear range of 5 orders of magnitude with a low detection limit of 0.48 pg mL-1. Considering its obvious performance superiorities, this immunosensing method exhibits an extensive prospect for practical applications.
Collapse
Affiliation(s)
- Liling Deng
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry, Hubei Normal University, Huangshi 435002, China.
| | | | | | | | | |
Collapse
|
21
|
Filik H, Avan AA. Nanostructures for nonlabeled and labeled electrochemical immunosensors: Simultaneous electrochemical detection of cancer markers: A review. Talanta 2019; 205:120153. [PMID: 31450406 DOI: 10.1016/j.talanta.2019.120153] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 12/14/2022]
Abstract
The simultaneous electrochemical determination of multiple tumor antigens has attracted a great deal of attention, which can effectively enhance the capability and accuracy of the analysis. Nanostructured materials mostly played a key major role in the electrochemical immunosensors fabrication and operation improvement. This review focused mainly on the protocols for using nanostructures to fabricate electrochemical (nonlabeled@label-free and labeled@sandwich-type) immunosensors. Furthermore, this review has also described the diverse classes of electroactive nanospecies which are a complementary part of any immunosensor that assists to reach the selectivity for the target antigen. Finally, the important analytical characteristics of the published immunosensors were discussed (electrochemical detection technique, linear range, and detection limit). Studies published between the years 2009-2018 have been included in this review.
Collapse
Affiliation(s)
- Hayati Filik
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemistry, 34320 Avcılar, Istanbul, Turkey.
| | - A Aslıhan Avan
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemistry, 34320 Avcılar, Istanbul, Turkey
| |
Collapse
|