1
|
Mettakoonpitak J, Chanthabun A, Hatsakhun P, Sirasunthorn N, Siripinyanond A, Henry CS. Microfluidic paper-based analytical devices for simple and nondestructive durian fruit maturity assessment. Anal Chim Acta 2024; 1329:343252. [PMID: 39396311 DOI: 10.1016/j.aca.2024.343252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/07/2024] [Accepted: 09/15/2024] [Indexed: 10/15/2024]
Abstract
Accurately predicting durian maturity is a critically unresolved worldwide issue. Farmers currently determine durian ripeness based on their own observation and experience leading to inconsistencies in harvest timing. This reliance on human judgment often results in premature or overripe harvests, impacting fruit quality, yield, and market value. Existing technological solutions, such as sensors are often complex and require specialized expertise, hindering their adoption by farmers and consumers. Developing sensors that can accurately measure durian ripeness without damaging the fruit, are easy to use, and affordable remains a challenge. We introduce a microfluidic paper-based analytical device (μPAD) for on-site, safe matching to meet the demands of durian maturity evaluation. The μPAD automatically collected peduncle fluid without destroying the durian fruit for dual detection of total sugar and amino acid. For determining total sugar including sucrose, glucose, and fructose, several enzymatic steps were reduced to a single step of invertase for sucrose hydrolysis before total reducing sugar was measured using gold nanoparticle (AuNP) generation. Kinetics study of invertase on the μPAD showed Vmax and Km values of 1.42 mM min-1 and 2.17 mM, respectively, that agreed with the direct study of sucrose conversion. To increase device reliability, amino acid was also simultaneously measured with sugar using the simple ninhydrin test with the addition of SnCl2. The developed sensor provided LODs of 3.50, 3.10, 3.30 μM, and 0.02 mg mL-1 for glucose, fructose, sucrose, and amino acid respectively. The μPADs were able to nondestructively discriminate between the mature and immature durians, showing high linear correlation with the standard dry weight method. The development of this μPAD technology has the potential to revolutionize durian cultivation practices, reduce post-harvest losses, and enhance the overall sustainability and profitability of the durian value chain, and can be further developed for maturity tests of other fruits.
Collapse
Affiliation(s)
- Jaruwan Mettakoonpitak
- Department of Chemistry, Faculty of Science and Technology, Rambhai Barni Rajabhat University, Chantaburi, 22000, Thailand.
| | - Atcha Chanthabun
- Department of Chemistry, Faculty of Science and Technology, Rambhai Barni Rajabhat University, Chantaburi, 22000, Thailand
| | - Patcharaporn Hatsakhun
- Microbiology Program, Department of Biology, Faculty of Science and Technology, Rambhai Barni Rajabhat University, Chanthaburi, 22000, Thailand
| | - Nichanun Sirasunthorn
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Atitaya Siripinyanond
- Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
2
|
Facure MHM, Gahramanova G, Zhang D, Zhang T, Shuck CE, Mercante LA, Correa DS, Gogotsi Y. All-MXene electronic tongue for neurotransmitters detection. Biosens Bioelectron 2024; 262:116526. [PMID: 38954905 DOI: 10.1016/j.bios.2024.116526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/19/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
Neurotransmitters (NTs) are molecules produced by neurons that act as the body's chemical messengers. Their abnormal levels in the human system have been associated with many disorders and neurodegenerative diseases, which makes the monitoring of NTs fundamentally important. Specifically for clinical analysis and understanding of brain behavior, simultaneous detection of NTs at low levels quickly and reliably is imperative for disease prevention and early diagnosis. However, the methods currently employed are usually invasive or inappropriate for multiple NTs detection. Herein, we developed a MXene-based impedimetric electronic tongue (e-tongue) for sensitive NT monitoring, using Nb2C, Nb4C3, Mo2C, and Mo2Ti2C3 MXenes as sensing units of the e-tongue, and Principal Component Analysis (PCA) as the data treatment method. The high specific surface area, distinct electrical properties, and chemical stability of the MXenes gave rise to high sensitivity and good reproducibility of the sensor array toward NT detection. Specifically, the e-tongue detected and differentiated multiple NTs (acetylcholine, dopamine, glycine, glutamate, histamine, and tyrosine) at concentrations as low as 1 nmol L-1 and quantified NTs present in a mixture. Besides, analyses performed with interferents and actual samples confirmed the system's potential to be used in clinical diagnostics. The results demonstrate that the MXene-based e-tongue is a suitable, rapid, and simple method for NT monitoring with high accuracy and sensitivity.
Collapse
Affiliation(s)
- Murilo H M Facure
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970, Sao Carlos, SP, Brazil; PPGQ, Department of Chemistry, Center for Exact Sciences and Technology, Federal University of Sao Carlos (UFSCar), 13565-905, Sao Carlos, SP, Brazil; A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Gulnaz Gahramanova
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA; French-Azerbaijani University, 183 Nizami Str., AZ1000, Baku, Azerbaijan
| | - Danzhen Zhang
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Teng Zhang
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Christopher E Shuck
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Luiza A Mercante
- Institute of Chemistry, Federal University of Bahia (UFBA), 40170-280, Salvador, BA, Brazil
| | - Daniel S Correa
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970, Sao Carlos, SP, Brazil; PPGQ, Department of Chemistry, Center for Exact Sciences and Technology, Federal University of Sao Carlos (UFSCar), 13565-905, Sao Carlos, SP, Brazil.
| | - Yury Gogotsi
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Buzzin A, Asquini R, Caputo D, de Cesare G. Sensitive and Compact Evanescent-Waveguide Optical Detector for Sugar Sensing in Commercial Beverages. SENSORS (BASEL, SWITZERLAND) 2023; 23:8184. [PMID: 37837014 PMCID: PMC10574832 DOI: 10.3390/s23198184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
This work presents a compact and sensitive refractive index sensor able to evaluate the concentration of an analyte in a sample. Its working principle leverages on the changes in the optical absorption features introduced by the sample itself on the evanescent waves of a light beam. The device's high compactness is achieved by embedding the sample-light interaction site and the detector in a 1 cm2 glass substrate, thanks to microelectronics technologies. High sensitivity is obtained by employing a low-noise p-i-n hydrogenated amorphous silicon junction, whose manufacture process requires only four UV lithographic steps on a glass substrate, thus ensuring low production costs. The system's capabilities are investigated by sensing the sugar content in three commercial beverages. Sensitivities of 32, 53 and 80 pA/% and limits of detection of 47, 29 and 18 ppm are achieved. The above performance is comparable with state-of-the-art results available in the literature, where more complex optical setups, expensive instrumentation and bulky devices are used.
Collapse
Affiliation(s)
- Alessio Buzzin
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, via Eudossiana 18, 00184 Rome, Italy; (R.A.); (D.C.); (G.d.C.)
| | | | | | | |
Collapse
|
4
|
Osmólska E, Stoma M, Starek-Wójcicka A. Juice Quality Evaluation with Multisensor Systems-A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:4824. [PMID: 37430738 DOI: 10.3390/s23104824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 07/12/2023]
Abstract
E-nose and e-tongue are advanced technologies that allow for the fast and precise analysis of smells and flavours using special sensors. Both technologies are widely used, especially in the food industry, where they are implemented, e.g., for identifying ingredients and product quality, detecting contamination, and assessing their stability and shelf life. Therefore, the aim of this article is to provide a comprehensive review of the application of e-nose and e-tongue in various industries, focusing in particular on the use of these technologies in the fruit and vegetable juice industry. For this purpose, an analysis of research carried out worldwide over the last five years, concerning the possibility of using the considered multisensory systems to test the quality and taste and aroma profiles of juices is included. In addition, the review contains a brief characterization of these innovative devices through information such as their origin, mode of operation, types, advantages and disadvantages, challenges and perspectives, as well as the possibility of their applications in other industries besides the juice industry.
Collapse
Affiliation(s)
- Emilia Osmólska
- Department of Power Engineering and Transportation, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| | - Monika Stoma
- Department of Power Engineering and Transportation, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| | - Agnieszka Starek-Wójcicka
- Department of Biological Bases of Food and Feed Technologies, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| |
Collapse
|
5
|
Hassoun A, Alhaj Abdullah N, Aït-Kaddour A, Ghellam M, Beşir A, Zannou O, Önal B, Aadil RM, Lorenzo JM, Mousavi Khaneghah A, Regenstein JM. Food traceability 4.0 as part of the fourth industrial revolution: key enabling technologies. Crit Rev Food Sci Nutr 2022; 64:873-889. [PMID: 35950635 DOI: 10.1080/10408398.2022.2110033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Food Traceability 4.0 (FT 4.0) is about tracing foods in the era of the fourth industrial revolution (Industry 4.0) with techniques and technologies reflecting this new revolution. Interest in food traceability has gained momentum in response to, among others events, the outbreak of the COVID-19 pandemic, reinforcing the need for digital food traceability that prevents food fraud and provides reliable information about food. This review will briefly summarize the most common conventional methods available to determine food authenticity before highlighting examples of emerging techniques that can be used to combat food fraud and improve food traceability. A particular focus will be on the concept of FT 4.0 and the significant role of digital solutions and other relevant Industry 4.0 innovations in enhancing food traceability. Based on this review, a possible new research topic, namely FT 4.0, is encouraged to take advantage of the rapid digitalization and technological advances occurring in the era of Industry 4.0. The main FT 4.0 enablers are blockchain, the Internet of things, artificial intelligence, and big data. Digital technologies in the age of Industry 4.0 have significant potential to improve the way food is traced, decrease food waste and reduce vulnerability to fraud opening new opportunities to achieve smarter food traceability. Although most of these emerging technologies are still under development, it is anticipated that future research will overcome current limitations making large-scale applications possible.
Collapse
Affiliation(s)
- Abdo Hassoun
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France
- Syrian Academic Expertise (SAE), Gaziantep, Turkey
| | | | | | - Mohamed Ghellam
- Faculty of Engineering, Food Engineering Department, Ondokuz Mayis University, Samsun, Turkey
| | - Ayşegül Beşir
- Faculty of Engineering, Food Engineering Department, Ondokuz Mayis University, Samsun, Turkey
| | - Oscar Zannou
- Faculty of Engineering, Food Engineering Department, Ondokuz Mayis University, Samsun, Turkey
| | - Begüm Önal
- Gourmet International Ltd, Izmir, Turkey
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
6
|
E-Senses, Panel Tests and Wearable Sensors: A Teamwork for Food Quality Assessment and Prediction of Consumer’s Choices. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070244] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
At present, food quality is of utmost importance, not only to comply with commercial regulations, but also to meet the expectations of consumers; this aspect includes sensory features capable of triggering emotions through the citizen’s perception. To date, key parameters for food quality assessment have been sought through analytical methods alone or in combination with a panel test, but the evaluation of panelists’ reactions via psychophysiological markers is now becoming increasingly popular. As such, the present review investigates recent applications of traditional and novel methods to the specific field. These include electronic senses (e-nose, e-tongue, and e-eye), sensory analysis, and wearables for emotion recognition. Given the advantages and limitations highlighted throughout the review for each approach (both traditional and innovative ones), it was possible to conclude that a synergy between traditional and innovative approaches could be the best way to optimally manage the trade-off between the accuracy of the information and feasibility of the investigation. This evidence could help in better planning future investigations in the field of food sciences, providing more reliable, objective, and unbiased results, but it also has important implications in the field of neuromarketing related to edible compounds.
Collapse
|
7
|
Taghizadeh-Behbahani M, Shamsipur M, Hemmateenejad B. Detection and discrimination of antibiotics in food samples using a microfluidic paper-based optical tongue. Talanta 2022; 241:123242. [DOI: 10.1016/j.talanta.2022.123242] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 12/29/2022]
|
8
|
|
9
|
Khan A, Ahmed S, Sun BY, Chen YC, Chuang WT, Chan YH, Gupta D, Wu PW, Lin HC. Self-healable and anti-freezing ion conducting hydrogel-based artificial bioelectronic tongue sensing toward astringent and bitter tastes. Biosens Bioelectron 2022; 198:113811. [PMID: 34823963 DOI: 10.1016/j.bios.2021.113811] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/04/2021] [Accepted: 11/13/2021] [Indexed: 01/12/2023]
Abstract
Numerous efforts have been attempted to mimic human tongue since years. However, they still have limitations because of damages, temperature effects, detection ranges etc. Herein, a self-healable hydrogel-based artificial bioelectronic tongue (E-tongue) containing mucin as a secreted protein, sodium chloride as an ion transporting electrolyte, and chitosan/poly(acrylamide-co-acrylic acid) as the main 3D structure holding hydrogel network is synthesized. This E-tongue is introduced to mimic astringent and bitter mouth feel based on cyclic voltammetry (CV) measurements subjected to target substances, which permits astringent tannic acid (TA) and bitter quinine sulfate (QS) to be detected over wide corresponding ranges of 29.3 mM-0.59 μM and 63.8 mM-6.38 μM with remarkable respective sensitivities of 0.2 and 0.12 wt%-1. Besides, the taste selectivity of this E-tongue is performed in the presence of various mixed-taste chemicals to show its high selective behavior toward bitter and astringent chemicals. The electrical self-healability is shown via CV responses to illustrate electrical recovery within a short time span. In addition, cytotoxicity tests using HeLa cells are performed, where a clear viability of ≥95% verified its biocompatibility. The anti-freezing sensing of E-tongue tastes at -5 °C also makes this work to be useful at sub-zero environments. Real time degrees of tastes are detected using beverages and fruits to confirm future potential applications in food taste detections and humanoid robots.
Collapse
Affiliation(s)
- Amir Khan
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, 300, Taiwan; Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Shahzad Ahmed
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, 300, Taiwan; Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Bo-Yao Sun
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, 300, Taiwan; Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Yi-Chen Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | | | - Yang-Hsiang Chan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Dipti Gupta
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India
| | - Pu-Wei Wu
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, 300, Taiwan; Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Hong-Cheu Lin
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, 300, Taiwan; Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan; Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan.
| |
Collapse
|
10
|
Saki EF, Setiawan SA, Wicaksono DHB. Portable Tools for COVID-19 Point-of-Care Detection: A Review. IEEE SENSORS JOURNAL 2021; 21:23737-23750. [PMID: 35582343 PMCID: PMC8864949 DOI: 10.1109/jsen.2021.3110857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/22/2021] [Accepted: 08/26/2021] [Indexed: 06/12/2023]
Abstract
Recently, several methods for SARS-CoV-2 detection have been developed to obtain rapid, portable, cheap, and easy-to-use diagnostic tools. This review paper summarizes and discusses studies on the development of point-of-care devices for SARS-CoV-2 diagnosis with comparisons between them from several aspects. Various detection methods of the recently developed portable COVID-19 biosensor will be presented in this review. The discussion is divided into four major classifications based on the target biomarkers of SARS-CoV-2, such as antibodies, nucleic acids, antigens, and metabolic products. An overview of the potential development for future study is also provided. Moreover, basic knowledge of biosensors is also explained for tutoring the implementation of theory into the research of COVID-19 biosensors. This review paper is aimed to provide a tutorial by collecting the information on the development of a point-of-care device for SARS-CoV-2 detection to provide information for further research and propose the new COVID-19 portable diagnostic tool.
Collapse
Affiliation(s)
- Elga F. Saki
- Department of Biomedical EngineeringFaculty of Life Sciences and TechnologySwiss German University (SGU)Tangerang15143Indonesia
| | | | - Dedy H. B. Wicaksono
- Department of Biomedical EngineeringFaculty of Life Sciences and TechnologySwiss German University (SGU)Tangerang15143Indonesia
| |
Collapse
|
11
|
Fuentes S, Tongson E, Gonzalez Viejo C. Novel digital technologies implemented in sensory science and consumer perception. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Galvan D, Aquino A, Effting L, Mantovani ACG, Bona E, Conte-Junior CA. E-sensing and nanoscale-sensing devices associated with data processing algorithms applied to food quality control: a systematic review. Crit Rev Food Sci Nutr 2021; 62:6605-6645. [PMID: 33779434 DOI: 10.1080/10408398.2021.1903384] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Devices of human-based senses such as e-noses, e-tongues and e-eyes can be used to analyze different compounds in several food matrices. These sensors allow the detection of one or more compounds present in complex food samples, and the responses obtained can be used for several goals when different chemometric tools are applied. In this systematic review, we used Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines, to address issues such as e-sensing with chemometric methods for food quality control (FQC). A total of 109 eligible articles were selected from PubMed, Scopus and Web of Science. Thus, we predicted that the association between e-sensing and chemometric tools is essential for FQC. Most studies have applied preliminary approaches like exploratory analysis, while the classification/regression methods have been less investigated. It is worth mentioning that non-linear methods based on artificial intelligence/machine learning, in most cases, had classification/regression performances superior to non-liner, although their applications were seen less often. Another approach that has generated promising results is the data fusion between e-sensing devices or in conjunction with other analytical techniques. Furthermore, some future trends in the application of miniaturized devices and nanoscale sensors are also discussed.
Collapse
Affiliation(s)
- Diego Galvan
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ, Brazil
| | - Adriano Aquino
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ, Brazil
| | - Luciane Effting
- Chemistry Department, State University of Londrina (UEL), Londrina, PR, Brazil
| | | | - Evandro Bona
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology Paraná (UTFPR), Campo Mourão, PR, Brazil
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
13
|
Braunger ML, Fier I, Shimizu FM, de Barros A, Rodrigues V, Riul A. Influence of the Flow Rate in an Automated Microfluidic Electronic Tongue Tested for Sucralose Differentiation. SENSORS (BASEL, SWITZERLAND) 2020; 20:s20216194. [PMID: 33143197 PMCID: PMC7662545 DOI: 10.3390/s20216194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
Incorporating electronic tongues into microfluidic devices brings benefits as dealing with small amounts of sample/discharge. Nonetheless, such measurements may be time-consuming in some applications once they require several operational steps. Here, we designed four collinear electrodes on a single printed circuit board, further comprised inside a straight microchannel, culminating in a robust e-tongue device for faster data acquisition. An analog multiplexing circuit automated the signal's routing from each of the four sensing units to an impedance analyzer. Both instruments and a syringe pump are controlled by dedicated software. The automated e-tongue was tested with four Brazilian brands of liquid sucralose-based sweeteners under 20 different flow rates, aiming to systematically evaluate the influence of the flow rate in the discrimination among sweet tastes sold as the same food product. All four brands were successfully distinguished using principal component analysis of the raw data, and despite the nearly identical sucralose-based taste in all samples, all brands' significant distinction is attributed to small differences in the ingredients and manufacturing processes to deliver the final food product. The increasing flow rate improves the analyte's discrimination, as the silhouette coefficient reaches a plateau at ~3 mL/h. We used an equivalent circuit model to evaluate the raw data, finding a decrease in the double-layer capacitance proportional to improvements in the samples' discrimination. In other words, the flow rate increase mitigates the formation of the double-layer, resulting in faster stabilization and better repeatability in the sensor response.
Collapse
Affiliation(s)
- Maria L. Braunger
- Department of Applied Physics, “Gleb Wataghin” Institute of Physics (IFGW), University of Campinas (UNICAMP), Campinas SP 13083-859, Brazil; (M.L.B.); (F.M.S.); (V.R.)
| | - Igor Fier
- Quantum Design Latin America, Campinas SP 13080-655, Brazil;
| | - Flávio M. Shimizu
- Department of Applied Physics, “Gleb Wataghin” Institute of Physics (IFGW), University of Campinas (UNICAMP), Campinas SP 13083-859, Brazil; (M.L.B.); (F.M.S.); (V.R.)
| | - Anerise de Barros
- Laboratory of Functional Materials, Institute of Chemistry (IQ), University of Campinas (UNICAMP), Campinas SP 13083-970, Brazil;
| | - Varlei Rodrigues
- Department of Applied Physics, “Gleb Wataghin” Institute of Physics (IFGW), University of Campinas (UNICAMP), Campinas SP 13083-859, Brazil; (M.L.B.); (F.M.S.); (V.R.)
| | - Antonio Riul
- Department of Applied Physics, “Gleb Wataghin” Institute of Physics (IFGW), University of Campinas (UNICAMP), Campinas SP 13083-859, Brazil; (M.L.B.); (F.M.S.); (V.R.)
| |
Collapse
|
14
|
Sustainable materials for the design of forefront printed (bio)sensors applied in agrifood sector. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115909] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Xu L, Xu Z, Wang X, Wang B, Liao X. The application of pseudotargeted metabolomics method for fruit juices discrimination. Food Chem 2020; 316:126278. [DOI: 10.1016/j.foodchem.2020.126278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023]
|
16
|
|
17
|
Volatile Organic Compounds Profiles to Determine Authenticity of Sweet Orange Juice Using Head Space Gas Chromatography Coupled with Multivariate Analysis. Foods 2020; 9:foods9040505. [PMID: 32316240 PMCID: PMC7231238 DOI: 10.3390/foods9040505] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 11/17/2022] Open
Abstract
An efficient and practical method for identifying mandarin juice over-blended into not from concentrate (NFC) orange juice was established. Juices were extracted from different cultivars of sweet orange and mandarin fruits. After being pasteurized, the volatile organic compounds (VOCs) in the juice samples were extracted using headspace solid-phase microextraction, and qualitatively and quantitatively analyzed using gas chromatography–mass spectrometry detection. Thirty-two VOCs contained in both the sweet orange juice and mandarin juice were used as variables, and the identification model for discriminating between the two varieties of juice was established by principal component analysis. Validation was applied by using common mandarin juices from Ponkan, Satsuma and Nanfengmiju cultivars blended at series of proportions into orange juices from Long-leaf, Olinda, and Hamlin cultivars. The model can visually identify a blending of mandarin juice at the volume fraction of 10% or above.
Collapse
|
18
|
Abstract
Taste is of five basic types, namely, sourness, saltiness, sweetness, bitterness and umami. In this review, we focus on a potentiometric taste sensor that we developed and fabricated using lipid polymer membranes. The taste sensor can measure the taste perceived by humans and is called an electronic tongue with global selectivity, which is the property to discriminate taste qualities and quantify them without discriminating each chemical substance. This property is similar to the gustatory system; hence, the taste sensor is a type of biomimetic device. In this paper, we first explain the sensing mechanism of the taste sensor, its application to beer evaluation and the measurement mechanism. Second, results recently obtained are introduced; i.e., the application of the senor to high-potency sweeteners and the improvement of the bitterness sensor are explained. Last, quantification of the bitterness-masking effect of high-potency sweeteners is explained using a regression analysis based on both the outputs of bitterness and sweetness sensors. The taste sensor provides a biomimetic method different from conventional analytical methods.
Collapse
Affiliation(s)
- Xiao Wu
- Research and Development Center for Five-Sense Devices, Kyushu University
| | - Yusuke Tahara
- Research and Development Center for Five-Sense Devices, Kyushu University
| | - Rui Yatabe
- Graduate School and Faculty of Information Science and Electrical Engineering, Kyushu University
| | - Kiyoshi Toko
- Research and Development Center for Five-Sense Devices, Kyushu University.,Institute for Advanced Study, Kyushu University
| |
Collapse
|
19
|
3D-Printed Graphene Electrodes Applied in an Impedimetric Electronic Tongue for Soil Analysis. CHEMOSENSORS 2019. [DOI: 10.3390/chemosensors7040050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The increasing world population leads to the growing demand for food production without expanding cultivation areas. In this sense, precision agriculture optimizes the production and input usage by employing sensors to locally monitor plant nutrient within agricultural fields. Here, we have used an electronic tongue sensing device based on impedance spectroscopy to recognize distinct soil samples (sandy and clayey) enriched with macronutrients. The e-tongue setup consisted of an array of four sensing units formed by layer-by-layer (LbL) films deposited onto 3D-printed graphene-based interdigitated electrodes (IDEs). The IDEs were fabricated in 20 min using the fused deposition modeling process and commercial polylactic acid-based graphene filaments. The e-tongue comprised one bare and three IDEs functionalized with poly(diallyldimethylammonium chloride) solution/copper phthalocyanine-3,4′,4′′,4′′′-tetrasulfonic acid tetrasodium salt (PDDA/CuTsPc), PDDA/montmorillonite clay (MMt-K), and PDDA/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) LbL films. Control samples of sandy and clayey soils were enriched with different concentrations of nitrogen (N), phosphorus (P), and potassium (K) macronutrients. Sixteen soil samples were simply diluted in water and measured using electrical impedance spectroscopy, with data analyzed by principal component analysis. All soil samples were easily distinguished without pre-treatment, indicating the suitability of 3D-printed electrodes in e-tongue analysis to distinguish the chemical fertility of soil samples. Our results encourage further investigations into the development of new tools to support precision agriculture.
Collapse
|
20
|
Han Z, Li H, Xiao J, Song H, Li B, Cai S, Chen Y, Ma Y, Feng X. Ultralow-Cost, Highly Sensitive, and Flexible Pressure Sensors Based on Carbon Black and Airlaid Paper for Wearable Electronics. ACS APPLIED MATERIALS & INTERFACES 2019; 11:33370-33379. [PMID: 31408310 DOI: 10.1021/acsami.9b12929] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Flexible pressure sensors have attracted considerable attention because of their potential applications in healthcare monitoring and human-machine interactions. However, the complicated fabrication process and the cos of sensing materials limit their widespread applications in practice. Herein, a flexible pressure sensor with outstanding performances is presented through an extremely simple and cost-efficient fabrication process. The sensing materials of the sensor are based on low-cost carbon black (CB)@airlaid paper (AP) composites, which are just prepared by drop-casting CB solutions onto APs. Through simply stacking multiple CB@APs with an irregular surface and a fiber-network structure, the obtained pressure sensor demonstrates an ultrahigh sensitivity of 51.23 kPa-1 and an ultralow detection limit of 1 Pa. Additionally, the sensor exhibits fast response time, wide working range, good stability, as well as excellent flexibility and biocompatibility. All the comprehensive and superior performances endow the sensor with abilities to precisely detect weak air flow, wrist pulse, phonation, and wrist bending in real time. In addition, an array electronic skin integrated with multiple CB@AP sensors has been designed to identify spatial pressure distribution and pressure magnitude. Through a biomimetic structure inspired by blooming flowers, a sensor with the open-petal structure has been designed to recognize the wind direction. Therefore, our study, which demonstrates a flexible pressure sensor with low cost, simple preparation, and superior performances, will open up for the exploration of cost-efficient pressure sensors in wearable devices.
Collapse
Affiliation(s)
| | | | - Jianliang Xiao
- Institute of Flexible Electronics Technology of THU , Jiaxing 314000 , Zhejiang , China
| | | | - Bo Li
- Institute of Flexible Electronics Technology of THU , Jiaxing 314000 , Zhejiang , China
| | | | - Ying Chen
- Institute of Flexible Electronics Technology of THU , Jiaxing 314000 , Zhejiang , China
| | | | | |
Collapse
|