1
|
He J, Wang C, Lin G, Xia X, Chen H, Feng Z, Huang Z, Pan X, Zhang X, Wu C, Huang Y. Guard against internal and external: An antibacterial, anti-inflammation and healing-promoting spray gel based on lyotropic liquid crystals for the treatment of diabetic wound. Int J Pharm 2023; 646:123442. [PMID: 37774758 DOI: 10.1016/j.ijpharm.2023.123442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/05/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
The diabetic wound is a prevalent and serious complication of diabetes, which easily deteriorates due to susceptibility to infection and difficulty in healing, causing a high risk of amputation and economic burden to patients. Bacterial infection, persistent excessive inflammation, and cellular and angiogenesis disorders are the main reasons for the difficulty of diabetic wound healing. In this study, glycerol monooleate (GMO) was used to prepare lyotropic liquid crystal hydrogel (LLC) containing the natural antimicrobial peptide LL37 and carbenoxolone (CBX) to achieve antibacterial, anti-inflammation, and healing promotion for the treatment of diabetic wounds. The shear-thinning properties of the LLC precursor solution allowed it to be administered in the form of a spray, which perfectly fitted the shape of the wound and transformed into a gel after absorbing wound exudate to act as a wound protective barrier. The faster release of LL37 realized rapid sterilization of wounds, controlled the source of inflammation, and accelerated wound healing. The inflammatory signaling pathway was blocked by the subsequently released CBX, and the spread of the inflammatory response was inhibited and then further weakened. In addition, CBX down-regulated connexin (Cx43) to assist LL37 to promote cell migration and proliferation better. Combined with the pro-angiogenic effect of LL37, the healing of diabetic wounds was significantly accelerated. All these advantages made LL37-CBX-LLC a promising approach for the treatment of chronic diabetic wounds.
Collapse
Affiliation(s)
- Jingyu He
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, PR China
| | - Chen Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China
| | - Gan Lin
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, Guangdong, PR China
| | - Xiao Xia
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, PR China
| | - Hangping Chen
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, PR China
| | - Zhiyuan Feng
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, PR China
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, PR China.
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China
| | - Xuejuan Zhang
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, PR China.
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, PR China
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, PR China.
| |
Collapse
|
2
|
Luo P, Shu L, Huang Z, Huang Y, Wu C, Pan X, Hu P. Utilization of Lyotropic Liquid Crystalline Gels for Chronic Wound Management. Gels 2023; 9:738. [PMID: 37754419 PMCID: PMC10530416 DOI: 10.3390/gels9090738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023] Open
Abstract
Management of chronic wounds is becoming a serious health problem worldwide. To treat chronic wounds, a suitable healing environment and sustained delivery of growth factors must be guaranteed. Different therapies have been applied for the treatment of chronic wounds such as debridement and photodynamic therapy. Among them, growth factors are widely used therapeutic drugs. However, at present, growth factor delivery systems cannot meet the demand of clinical practice; therefore new methods should be developed to meet the emerging need. For this reason, researchers have tried to modify hydrogels through some methods such as chemical synthesis and molecule modifications to enhance their properties. However, there are still a large number of limitations in practical use like byproduct problems, difficulty to industrialize, and instability of growth factor. Moreover, applications of new materials like lyotropic liquid crystalline (LLC) on chronic wounds have emerged as a new trend. The structure of LLC is endowed with many excellent properties including low cost, ordered structure, and excellent loading efficiency. LLC can provide a moist local environment for the wound, and its lattice structure can embed the growth factors in the water channel. Growth factor is released from the high-concentration carrier to the low-concentration release medium, which can be precisely regulated. Therefore, it can provide sustained and stable delivery of growth factors as well as a suitable healing environment for wounds, which is a promising candidate for chronic wound healing and has a broad prospective application. In conclusion, more reliable and applicable drug delivery systems should be designed and tested to improve the therapy and management of chronic wounds.
Collapse
Affiliation(s)
- Peili Luo
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (P.L.); (L.S.); (C.W.); (P.H.)
| | - Lei Shu
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (P.L.); (L.S.); (C.W.); (P.H.)
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (P.L.); (L.S.); (C.W.); (P.H.)
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (P.L.); (L.S.); (C.W.); (P.H.)
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (P.L.); (L.S.); (C.W.); (P.H.)
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China;
| | - Ping Hu
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (P.L.); (L.S.); (C.W.); (P.H.)
| |
Collapse
|
3
|
Blanco-Fernández G, Blanco-Fernandez B, Fernández-Ferreiro A, Otero-Espinar FJ. Lipidic lyotropic liquid crystals: Insights on biomedical applications. Adv Colloid Interface Sci 2023; 313:102867. [PMID: 36889183 DOI: 10.1016/j.cis.2023.102867] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/26/2023] [Accepted: 02/26/2023] [Indexed: 03/04/2023]
Abstract
Liquid crystals (LCs) possess unique physicochemical properties, translatable into a wide range of applications. To date, lipidic lyotropic LCs (LLCs) have been extensively explored in drug delivery and imaging owing to the capability to encapsulate and release payloads with different characteristics. The current landscape of lipidic LLCs in biomedical applications is provided in this review. Initially, the main properties, types, methods of fabrication and applications of LCs are showcased. Then, a comprehensive discussion of the main biomedical applications of lipidic LLCs accordingly to the application (drug and biomacromolecule delivery, tissue engineering and molecular imaging) and route of administration is examined. Further discussion of the main limitations and perspectives of lipidic LLCs in biomedical applications are also provided. STATEMENT OF SIGNIFICANCE: Liquid crystals (LCs) are those systems between a solid and liquid state that possess unique morphological and physicochemical properties, translatable into a wide range of biomedical applications. A short description of the properties of LCs, their types and manufacturing procedures is given to serve as a background to the topic. Then, the latest and most innovative research in the field of biomedicine is examined, specifically the areas of drug and biomacromolecule delivery, tissue engineering and molecular imaging. Finally, prospects of LCs in biomedicine are discussed to show future trends and perspectives that might be utilized. This article is an ampliation, improvement and actualization of our previous short forum article "Bringing lipidic lyotropic liquid crystal technology into biomedicine" published in TIPS.
Collapse
Affiliation(s)
- Guillermo Blanco-Fernández
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela, Spain; Paraquasil Group, Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Institute of Materials (iMATUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Bárbara Blanco-Fernandez
- CIBER in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain.
| | - Anxo Fernández-Ferreiro
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain.
| | - Francisco J Otero-Espinar
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela, Spain; Paraquasil Group, Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Institute of Materials (iMATUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain.
| |
Collapse
|
4
|
Pessanha FS, de Oliveira BGRB, Oliveira BC, Deutsch G, Teixeira FL, Bokehi LC, Calomino MA, Rodrigues de Castilho S, Thiré RMDSM, Teixeira LA, de Paula GR. Effectiveness of Epidermal Growth Factor Loaded Carboxymethylcellulose (EGF-CMC) Hydrogel in Biofilm Formation in Wounds of Diabetic Patients: A Randomized Clinical Trial. Gels 2023; 9:gels9020117. [PMID: 36826286 PMCID: PMC9957415 DOI: 10.3390/gels9020117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Diabetic patients frequently develop wounds, which can be colonized by bacteria, mainly Staphylococcus aureus and Pseudomonas aeruginosa, with the ability to form biofilms. This study aimed to evaluate the colonization and biofilm formation of Staphylococcus aureus and Pseudomonas aeruginosa in chronic wounds of diabetic patients treated with a bioactive dressing (EGF-CMC), which consisted of a 2% carboxymethylcellulose (CMC) hydrogel loaded with epidermal growth factor (EGF). This randomized clinical trial was conducted with 25 participants: 14 treated with EGF-CMC hydrogel and 11 treated with CMC hydrogel for 12 weeks. Participants with type 2 diabetes mellitus were selected. All had diabetic foot ulcers or chronic venous ulcers. Swab collections were performed on weeks 1, 6, and 12. The laboratory analyses included the identification of strains, microbial quantification, virulence gene investigation, and the evaluation of biofilm formation. In total, 13 S. aureus strains and 15 P. aeruginosa strains were isolated. There were no statistically significant differences regarding bacterial loads and virulence genes. However, EGF-CMC-hydrogel-treated wounds were colonized by strains with lower biofilm formation abilities. The probability of isolating biofilm-producing strains from CMC-hydrogel-treated wounds was 83% greater than the probability of isolating biofilm-producing strains from EGF-CMC-treated wounds.
Collapse
Affiliation(s)
- Fernanda Soares Pessanha
- Nursing School, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20551-030, Brazil
- Correspondence: ; Tel.: +55-(21)-988-041-011
| | | | - Bianca Campos Oliveira
- Aurora de Afonso Costa College of Nursing, Universidade Federal Fluminense, Niterói 24020-091, Brazil
| | - Gabriela Deutsch
- College of Pharmacy, Universidade Federal Fluminense, Niterói 24241-000, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
5
|
rhEGF-Loaded Hydrogel in the Treatment of Chronic Wounds in Patients with Diabetes: Clinical Cases. Gels 2022; 8:gels8080523. [PMID: 36005124 PMCID: PMC9407051 DOI: 10.3390/gels8080523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/06/2022] [Accepted: 08/12/2022] [Indexed: 12/27/2022] Open
Abstract
The aim of the study was to evaluate the healing process of chronic wounds treated with carboxymethylcellulose loaded with recombinant human epidermal growth factor in patients with diabetes. The case series consisted of 10 patients treated at the university hospital for 12 weeks. Data were analyzed using SPSS version 22.0. according to the intention to treat the principle, without the loss or exclusion of the participants. The sample consisted of 70% (7/10) males with a mean age of 61.9 years (±9.4); all (100%) had diabetes mellitus and 70% (7/10) had systolic hypertension associated with diabetes mellitus. Sixty percent (6/10) presented lesions of diabetic etiology and 40% (4/10) presented lesions of venous etiology; 70% (7/10) had had lesions for less than 5 years. The mean glycated hemoglobin was 7.8% (±2.7%), while the mean ankle-arm index (AAI) was 0.94 (±0.21). The mean initial area of all wounds was 13.4 cm², and the mean final area was 7.8 cm2, with a reduction rate of 28.9% over the 12 weeks of treatment. The reduction rate of diabetic ulcers was higher (33.4%) than that of venous ulcers (22.1%). Regarding the type of tissue, there was an increase in granulation and epithelialization, and a decrease in slough and the amount of exudate that were statistically significant (p = 0.021). No participant had severe or local adverse events during the study period. Epidermal growth factor was effective in the treatment of chronic wounds, especially diabetic ulcers, resulting in the reduction of the wound area and the improvement of tissue and exudate quality.
Collapse
|
6
|
Girija AR, Balasubramanian S, Cowin AJ. Nanomaterials-based drug delivery approaches for wound healing. Curr Pharm Des 2022; 28:711-726. [DOI: 10.2174/1381612828666220328121211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/11/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Wound healing is a complex and dynamic process that requires intricate synchronization between multiple cell types within appropriate extracellular microenvironment. Wound healing process involves four overlapping phases in a precisely regulated manner, consisting of hemostasis, inflammation, proliferation, and maturation. For an effective wound healing all four phases must follow in a sequential pattern within a time frame. Several factors might interfere with one or more of these phases in healing process, thus causing improper or impaired wound healing resulting in non-healing chronic wounds. The complications associated with chronic non-healing wounds, along with the limitations of existing wound therapies, have led to the development and emergence of novel and innovative therapeutic interventions. Nanotechnology presents unique and alternative approaches to accelerate the healing of chronic wounds by the interaction of nanomaterials during different phases of wound healing. This review focuses on recent innovative nanotechnology-based strategies for wound healing and tissue regeneration based on nanomaterials, including nanoparticles, nanocomposites and scaffolds. The efficacy of the intrinsic therapeutic potential of nanomaterials (including silver, gold, zinc oxide, copper, cerium oxide, etc.) and the ability of nanomaterials as carriers (liposomes, hydrogels, polymeric nanomaterials, nanofibers) as therapeutic agents associated with wound-healing applications have also been addressed. The significance of these nanomaterial-based therapeutic interventions for wound healing needs to be highlighted to engage researchers and clinicians towards this new and exciting area of bio-nanoscience. We believe that these recent developments will offer researchers an updated source on the use of nanomaterials as an advanced approach to improve wound healing.
Collapse
|
7
|
Wang C, Chen J, Yue X, Xia X, Zhou Z, Wang G, Zhang X, Hu P, Huang Y, Pan X, Wu C. Improving Water-Absorption and Mechanical Strength: Lyotropic Liquid Crystalline-Based Spray Dressings as a Candidate Wound Management System. AAPS PharmSciTech 2022; 23:68. [PMID: 35106685 DOI: 10.1208/s12249-021-02205-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/15/2021] [Indexed: 01/04/2023] Open
Abstract
A spray dressing based on lyotropic liquid crystalline (LLC) with adjustable crystalline lattices was investigated in this study. It possesses water-triggering phase transition property and ease of spraying on wound, as well as stable drug encapsulation and controllable drug release. When it comes to wound with exudate, adequate water absorption and sustainable mechanical strength after water absorption was important for a good dressing, while most of the normal LLC dressings were still unable to meet such standards. Herein, a type of hyaluronic acid (HA)-incorporated LLC-based spray dressing (HLCSD) was developed to overcome the above limitations. After comparing HAs with different molecular weights (MWs) and concentrations, 3% HA with MW of 800~1000 kD was chosen as an ideal amount of excipients to add into the HLCSD. The water absorption of HLCSD precursor increased by 150% with the appearance of enlarged water channels. The complex modulus of HLCSD gel also increased from 1 to 100 kPa, which suggested lasting wound coverage and good patient compliance when used clinically. The spraying and phase transition properties of HLCSD was studied and showed acceptable changes. Moreover, good safety comparable with the commercial product Purilon® was also demonstrated in an in vivo acute skin irritation test. Thus, the improved HLCSD was a promising dressing for exudation wound treatment.
Collapse
|
8
|
Yue X, Zhang X, Wang C, Huang Y, Hu P, Wang G, Cui Y, Xia X, Zhou Z, Pan X, Wu C. A bacteria-resistant and self-healing spray dressing based on lyotropic liquid crystals to treat infected post-operative wounds. J Mater Chem B 2021; 9:8121-8137. [PMID: 34494632 DOI: 10.1039/d1tb01201k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The delayed healing of infected post-operative wounds has turned into a worldwide medical problem. In the clinical treatment, effective bacterial clearance and promoted wound healing were considered as two crucial aspects. However, the effect of current dressings with antibacterial activity was limited due to the declined efficacy against antibiotic-resistant bacteria, and poor mechanical property during skin extension and compression movement. In this project, a lyotropic liquid crystal (LLC)-based bacteria-resistant and self-healing spray dressing loaded with ε-polylysine (PLL) was designed. Owing to the unique antibacterial mechanism, PLL was expected to kill antibiotic-resistant bacteria efficiently, even the "superbug" methicillin-resistant Staphylococcus aureus (MRSA). The cubic cells of LLC were applied to encapsulate PLL to improve its stability and induce a sustained release, further realizing a long-term antibacterial effect. Meanwhile, the LLC precursor (LLCP) could extend to the irregular edges of the wound, and spontaneously transited to a cubic phase gel once exposed to physiological fluid. This 3D structure was also endowed with mechanically responsive viscoelasticity that formed a robust and flexible defense for wounds. An excellent antibacterial activity with more than 99% MRSA killed in 3 h was demonstrated by a killing kinetics study. The long-term effect was also proved by measuring the bacteriostatic circle test within 48 h. In addition, the unique sol-gel phase transition behavior and superior self-healing capacity of PLL-LLCP was verified with the rheological study and self-recoverable conformal deformation test in vivo. In the infected post-operative wound model, satisfactory bacterial clearance and prominent wound healing promotion were realized by PLL-LLCP, with the survival of the bacteria at lower than 0.1% and the wound closure at higher than 90%. Thus, PLL-LLCP was believed to be an excellent candidate for the therapy of infected post-operative wounds.
Collapse
Affiliation(s)
- Xiao Yue
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China. .,School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, P. R. China.
| | - Xuejuan Zhang
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China.
| | - Chen Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, P. R. China.
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China.
| | - Ping Hu
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China.
| | - Guanlin Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, P. R. China.
| | - Yingtong Cui
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, P. R. China.
| | - Xiao Xia
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China.
| | - Ziqiang Zhou
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China.
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, P. R. China.
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China.
| |
Collapse
|
9
|
Loo S, Kam A, Li BB, Feng N, Wang X, Tam JP. Discovery of Hyperstable Noncanonical Plant-Derived Epidermal Growth Factor Receptor Agonist and Analogs. J Med Chem 2021; 64:7746-7759. [PMID: 34015925 DOI: 10.1021/acs.jmedchem.1c00551] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Here, we report the discovery of the first plant-derived and noncanonical epidermal growth factor receptor (EGFR) agonist, the 36-residue bleogen pB1 from Pereskia bleo of the Cactaceae family. We show that bleogen pB1 is a low-affinity EGFR agonist using a suite of chemical, biochemical, cellular, and animal experiments which include incisor eruption and wound-healing mouse models. A focused positional scanning pB1 library of Ala- and d-amino acid scans yielded a high-affinity pB1 analog, [K29k]pB1, with a 60-fold-improved EGFR affinity and mitogenicity. We show that the potency of [K29k]pB1 and the epidermal growth factor (EGF) is comparable in a diabetic mouse wound-healing model. We also show that both bleogen pB1 and [K29k]pB1 are hyperstable, being >100-fold more stable than EGF against proteolytic degradation. Overall, our discovery of a noncanonical proteolytic-resistant EGFR agonist scaffold could open new avenues for developing wound healing and skin regeneration therapeutics and biomaterials.
Collapse
Affiliation(s)
- Shining Loo
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Antony Kam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Bin Bin Li
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Nan Feng
- Institute of Materia Medica, Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Xiaoliang Wang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.,Institute of Materia Medica, Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
10
|
Silvestrini AVP, Caron AL, Viegas J, Praça FG, Bentley MVLB. Advances in lyotropic liquid crystal systems for skin drug delivery. Expert Opin Drug Deliv 2020; 17:1781-1805. [DOI: 10.1080/17425247.2020.1819979] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Angelo Luis Caron
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Juliana Viegas
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Fabíola Garcia Praça
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | | |
Collapse
|
11
|
Nurkesh A, Jaguparov A, Jimi S, Saparov A. Recent Advances in the Controlled Release of Growth Factors and Cytokines for Improving Cutaneous Wound Healing. Front Cell Dev Biol 2020; 8:638. [PMID: 32760728 PMCID: PMC7371992 DOI: 10.3389/fcell.2020.00638] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/25/2020] [Indexed: 12/15/2022] Open
Abstract
Bioengineered materials are widely utilized due to their biocompatibility and degradability, as well as their moisturizing and antibacterial properties. One field of their application in medicine is to treat wounds by promoting tissue regeneration and improving wound healing. In addition to creating a physical and chemical barrier against primary infection, the mechanical stability of the porous structure of biomaterials provides an extracellular matrix (ECM)-like niche for cells. Growth factors (GFs) and cytokines, which are secreted by the cells, are essential parts of the complex process of tissue regeneration and wound healing. There are several clinically approved GFs for topical administration and direct injections. However, the limited time of bioactivity at the wound site often requires repeated drug administration that increases cost and may cause adverse side effects. The tissue regeneration promoting factors incorporated into the materials have significantly enhanced wound healing in comparison to bolus drug treatment. Biomaterials protect the cargos from protease degradation and provide sustainable drug delivery for an extended period of time. This prolonged drug bioactivity lowered the dosage, eliminated the need for repeated administration, and decreased the potential of undesirable side effects. In the following mini-review, recent advances in the field of single and combinatorial delivery of GFs and cytokines for treating cutaneous wound healing will be discussed.
Collapse
Affiliation(s)
- Ayan Nurkesh
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Alexandr Jaguparov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Shiro Jimi
- Central Laboratory for Pathology and Morphology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Arman Saparov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
12
|
Xu C, Akakuru OU, Ma X, Zheng J, Zheng J, Wu A. Nanoparticle-Based Wound Dressing: Recent Progress in the Detection and Therapy of Bacterial Infections. Bioconjug Chem 2020; 31:1708-1723. [PMID: 32538089 DOI: 10.1021/acs.bioconjchem.0c00297] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bacterial infections in wounds often delay the healing process, and may seriously threaten human life. It is urgent to develop wound dressings to effectively detect and treat bacterial infections. Nanoparticles have been extensively used in wound dressings because of their specific properties. This review highlights the recent progress on nanoparticle-based wound dressings for bacterial detection and therapy. Specifically, nanoparticles have been applied as intrinsic antibacterial agents or drug delivery vehicles to treat bacteria in wounds. Moreover, nanoparticles with photothermal or photodynamic property have also been explored to endow wound dressings with significant optical properties to further enhance their bactericidal effect. More interestingly, nanoparticle-based smart dressings have been recently explored for bacteria detection and treatment, which enables an accurate assessment of bacterial infection and a more precise control of on-demand therapy.
Collapse
Affiliation(s)
- Chen Xu
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, the People's Republic of China.,Cixi Institute of Biomedical Engineering, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, the People's Republic of China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, the People's Republic of China
| | - Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, the People's Republic of China
| | - Xuehua Ma
- Cixi Institute of Biomedical Engineering, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, the People's Republic of China
| | - Jianping Zheng
- Cixi Institute of Biomedical Engineering, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, the People's Republic of China
| | - Jianjun Zheng
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, the People's Republic of China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, the People's Republic of China
| |
Collapse
|
13
|
Wang B, Huang Y, Huang Z, Wang H, Chen J, Pan X, Wu C. Self-assembling in situ gel based on lyotropic liquid crystals containing VEGF for tissue regeneration. Acta Biomater 2019; 99:84-99. [PMID: 31521813 DOI: 10.1016/j.actbio.2019.09.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 09/02/2019] [Accepted: 09/10/2019] [Indexed: 12/15/2022]
Abstract
Current tissue-regenerative biomaterials confront two critical issues: the uncontrollable delivery capacity of vascular endothelial growth factor (VEGF) for adequate vascularization and the poor mechanical properties of the system for tissue regeneration. To overcome these two issues, a self-assembling in situ gel based on lyotropic liquid crystals (LLC) was developed. VEGF-LLC was administrated as a precursor solution that would self-assemble into an in situ gel with well-defined internal inverse bicontinuous cubic phases when exposed to physiological fluid at a defect site. The inverse cubic phase with a 3D bicontinuous water channel enabled a 7-day sustained release of VEGF. The release profile of VEGF-LLC was controlled using octyl glucoside (OG) as a hydration-modulating agent, which could enlarge the water channel, yielding a 2-fold increase in water channel size and a 7-fold increase in VEGF release. For the mechanical properties, the elastic modulus was found to decrease from ∼100 kPa to ∼1.2 kPa, which might be more favorable for angiogenesis. Furthermore, the self-recovery ability of the VEGF-LLC gel was confirmed by quick recovery of the inner network in step-strain measurements. In vitro, VEGF-LLC considerably promoted the proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs) as compared to free VEGF (p < 0.05). Furthermore, angiogenesis was successfully induced in rats after subcutaneous injection of VEGF-LLC. The self-assembling LLC gel showed satisfactory degradability and mild inflammatory response with little impact on the surrounding tissue. The controllable release profile and unique mechanical properties of VEGF-LLC offer a new approach for tissue regeneration. STATEMENT OF SIGNIFICANCE: The potential clinical use of currently available biomaterials in tissue regeneration is limited by their uncontrollable drug delivery capacity and poor mechanical properties. Herein, a self-assembling in situ gel based on lyotropic liquid crystals (LLC) for induced angiogenesis was developed. The results showed that the addition of octyl glucoside (OG) could change the water channel size of LLC, which enabled the LLC system to release VEGF in a sustained manner and to possess a suitable modulus to favor angiogenesis simultaneously. Moreover, the self-recovery capability allowed the gel to match the deformation of surrounding tissues during body motion to maintain its properties and reduce discomfort. In vivo, angiogenesis was induced by VEGF-LLC 14 days after administering subcutaneous injection. These results highlight the potential of LLC as a promising sustained protein drug delivery system for vascular formation and tissue regeneration.
Collapse
Affiliation(s)
- Bei Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China.
| | - Ying Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China; College of Pharmacy, Jinan University, Guangzhou 516032, Guangdong, PR China.
| | - Zhengwei Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China.
| | - Hui Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China.
| | - Jintian Chen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China.
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China.
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China; College of Pharmacy, Jinan University, Guangzhou 516032, Guangdong, PR China.
| |
Collapse
|