1
|
Wang Z, Zhao M, Huang X, Wang Y, Li W, Qiao J, Yang X. Therapeutic types and advantages of functionalized nanoparticles in inducing ferroptosis in cancer therapy. Ann Med 2024; 56:2396568. [PMID: 39276361 PMCID: PMC11404394 DOI: 10.1080/07853890.2024.2396568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/24/2024] [Accepted: 07/10/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND The clinical efficacy of cancer treatment protocols remains unsatisfactory; however, the emergence of ferroptosis-driven therapy strategies has renewed hope for tumor treatment, owing to their remarkable tumor suppression effects. Biologically based small-molecule inducers are used in conventional method to induce ferroptosis. Nevertheless, some molecular drugs have limited solubility, poor ability to target cells, and fast metabolism, which hinder their ability to induce ferroptosis over a prolonged period. Fortunately, further investigations of ferroptosis and the development of nanotechnology have demonstrated that nanoparticles (NPs) are more efficient in inducing ferroptosis than drugs alone, which opens up new perspectives for cancer therapy. OBJECTIVE In order to organize a profile of recent advance in NPs for inducing ferroptosis in cancer therapy, and NPs were comprehensively classified in a new light.Materials and methods: We comprehensively searched the databases such as PubMed and Embase. The time limit for searching was from the establishment of the database to 2023.11. All literatures were related to "ferroptosis", "nanoparticles", "nanodelivery systems", "tumors", "cancer". RESULTS We summarized and classified the available NPs from a new perspective. The NPs were classified into six categories based on their properties: (1) iron oxide NPs (2) iron - based conversion NPs (3) core-shell structure (4) organic framework (5) silica NPs (6) lipoprotein NPs. According to the therapeutic types of NPs, they can be divided into categories: (1) NPs induced ferroptosis-related immunotherapy (2) NPs loaded with drugs (3) targeted therapy of NPs (4) multidrug resistance therapy (5) gene therapy with NPs (6) energy conversion therapy. CONCLUSIONS The insights gained from this review can provide ideas for the development of original NPs and nanodelivery systems, pave the way for related nanomaterials application in clinical cancer therapy, and advance the application and development of nanotechnology in the medical field.
Collapse
Affiliation(s)
- Ziying Wang
- School of Nursing, Shandong Second Medical University, Weifang, Shandong, China
| | - Miaomiao Zhao
- Department of Pathology, Shandong Second Medical University, Weifang, Shandong, China
| | - Xiaotong Huang
- School of Nursing, Shandong Second Medical University, Weifang, Shandong, China
| | - Yuxin Wang
- School of Pharmacy, Binzhou Medical College, Yantai, Shandong, China
| | - Wentong Li
- Department of Pathology, Shandong Second Medical University, Weifang, Shandong, China
| | - Jianhong Qiao
- Department of Outpatient, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Xiao Yang
- School of Nursing, Shandong Second Medical University, Weifang, Shandong, China
| |
Collapse
|
2
|
Vijayarangam V, Gopalakrishnan Deviparasakthi MK, Balasubramanian P, Palaniyandi T, Ravindran R, Suliman M, Saeed M, Natarajan S, Sivaji A, Baskar G. Ferroptosis as a hero against oral cancer. Pathol Res Pract 2024; 263:155637. [PMID: 39393267 DOI: 10.1016/j.prp.2024.155637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024]
Abstract
Cancer is an abnormal condition altering the cells to proliferate out of control simultaneously being susceptible to evolution. The lining which is made up of tissues in the lips, upper throat and mouth can undergo mutations, is recognised as mouth cancer or oral cancer. Substantial number of mouth lesions are identified at a point where it is typically not possible to get effective remedial care. Ferroptosis is a cutting-edge instance of cellular destruction which stands out in distinction to other sorts of cell death. It appears to have distinctive cellular, molecular and gene-level attributes and scavenges on deposits of reactive oxygen species triggered via iron-induced lipid peroxidation. It is said to be involved dichotomously in cancer development. Because the ferroptotic tumour cells put out numerous chemicals that alternatively signal for cancer attenuation or growth. There is increasing proof that researchers are now keenly investigating to stimulate ferroptosis through various inducers and pathways in the intent for oral cancer therapeutics, specifically to kill malignant tumours that refuse to respond well to conventional treatments. Also, it has the ability to reverse chemotherapy and radiotherapy resistance in victims maximising the success rate of the treatments. This review centres on the stimulation of ferroptosis as a stand-alone therapy for oral cancer, or in combination with other medicines, agents and pathways.
Collapse
Affiliation(s)
- Varshini Vijayarangam
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai 600095, India
| | | | - Priyanka Balasubramanian
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai 600095, India
| | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai 600095, India; ACS-Advanced Medical Research Institute, Dr. M.G.R Educational and Research Institute, Chennai 600077, India.
| | - Rekha Ravindran
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai 602105, India
| | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Sudhakar Natarajan
- Department of Tuberculosis, ICMR - National Institute for Research in Tuberculosis (NIRT), Chennai 600031, India
| | - Asha Sivaji
- Department of Biochemistry, DKM College for Women, Vellore 632001, India
| | - Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai 600095, India
| |
Collapse
|
3
|
Li J, Qiao Z, Li Y, Lu X, Shao T, Lv X. Bioinformatic analysis indicated that STARD4-AS1 might be a novel ferroptosis-related biomarker of oral squamous cell carcinoma. Heliyon 2024; 10:e33193. [PMID: 39015805 PMCID: PMC11250877 DOI: 10.1016/j.heliyon.2024.e33193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 07/18/2024] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) stands as the predominant form of oral cancer, marked by a poor prognosis. Ferroptosis, a type of programmed cell death, plays a critical role in the initiation and progression of various cancers. Long non-coding RNAs (lncRNAs) are prominent in modulating cancer development. Nevertheless, the prognostic significance of ferroptosis-related lncRNAs (FRLs) in OSCC remains inadequately explored. This study aims to develop a predictive signature based on FRLs to forecast the prognosis of OSCC patients. Methods We gathered expression profiles of FRLs along with clinical data from The Cancer Genome Atlas (TCGA) and FerrDb databases. A prognostic model based on 10 FRLs were constructed using Cox regression analyses with LASSO algorithms, and their predictive power was evaluated. Then, the model was used to investigate functional enrichment, immune landscape, m6A genes, somatic variations, and drug response in different risk cohorts of patients. Finally, the expression and function of STARD4-AS1 (steroidogenic acute regulator protein-related lipid transfer domain containing 4-antisense RNA 1), a potential prognostic marker for OSCC screening based on our bioinformatics analysis, were investigated in vitro. Results We developed a signature comprising 10 FRLs to stratify patients into two risk cohorts according to their calculated risk scores. Patients classified as high-risk exhibited significantly poorer prognoses compared to those in the low-risk cohort. Furthermore, survival analysis, patient risk heat plot, and risk curve verified the accuracy of the signature. The role of this signature in OSCC was well investigated using immune microenvironment, mutational, and gene set enrichment analysis (GSEA). Moreover, seven drugs, including cisplatin and docetaxel, were identified as potential treatments for patients with high-risk cancers. In addition, the knockdown of STARD4-AS1 in OSCC cell lines markedly inhibited cell proliferation and migration and induced ferroptosis. Conclusion Using this signature may improve overall survival predictions in OSCC, throwing new light on immunotherapies and targeted therapies. Moreover, STARD4-AS1 might regulate the process of ferroptosis and could be used as a novel biomarker of OSCC.
Collapse
Affiliation(s)
| | | | - Yuwei Li
- Department of Oral and Maxillofacial Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Xinyan Lu
- Department of Oral and Maxillofacial Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Tingru Shao
- Department of Oral and Maxillofacial Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Xiaozhi Lv
- Department of Oral and Maxillofacial Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| |
Collapse
|
4
|
Zhang H, Xing C, Yan B, Lei H, Guan Y, Zhang S, Kang Y, Pang J. Paclitaxel Overload Supramolecular Oxidative Stress Nanoamplifier with a CDK12 Inhibitor for Enhanced Cancer Therapy. Biomacromolecules 2024; 25:3685-3702. [PMID: 38779908 DOI: 10.1021/acs.biomac.4c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Combination therapy has emerged as a promising approach for treating tumors, although there is room for improvement. This study introduced a novel strategy that combined the enhancement of apoptosis, ferroptosis, and DNA damage to improve therapeutic outcomes for prostate cancer. Specifically, we have developed a supramolecular oxidative stress nanoamplifier, which was comprised of β-cyclodextrin, paclitaxel, and ferrocene-poly(ethylene glycol). Paclitaxel within the system disrupted microtubule dynamics, inducing G2/M phase arrest and apoptosis. Concurrently, ferrocene utilized hydrogen peroxide to generate toxic hydroxyl radicals in cells through the Fenton reaction, triggering a cascade of reactive oxygen species expansion, reduction of glutathione levels, lipid peroxidation, and ferroptosis. The increased number of hydroxyl radicals and the inhibitory effect of THZ531 on DNA repair mechanisms exacerbated DNA damage within tumor cells. As expected, the supramolecular nanoparticles demonstrated excellent drug delivery ability to tumor cells or tissues, exhibited favorable biological safety in vivo, and enhanced the killing effect on prostate cancer.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, P. R. China
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Chengyuan Xing
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Binyuan Yan
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Hanqi Lei
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Yupeng Guan
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, P. R. China
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Shiqiang Zhang
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Yang Kang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Jun Pang
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, P. R. China
| |
Collapse
|
5
|
Zhang L, Luo YL, Xiang Y, Bai XY, Qiang RR, Zhang X, Yang YL, Liu XL. Ferroptosis inhibitors: past, present and future. Front Pharmacol 2024; 15:1407335. [PMID: 38846099 PMCID: PMC11153831 DOI: 10.3389/fphar.2024.1407335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/06/2024] [Indexed: 06/09/2024] Open
Abstract
Ferroptosis is a non-apoptotic mode of programmed cell death characterized by iron dependence and lipid peroxidation. Since the ferroptosis was proposed, researchers have revealed the mechanisms of its formation and continue to explore effective inhibitors of ferroptosis in disease. Recent studies have shown a correlation between ferroptosis and the pathological mechanisms of neurodegenerative diseases, as well as diseases involving tissue or organ damage. Acting on ferroptosis-related targets may provide new strategies for the treatment of ferroptosis-mediated diseases. This article specifically describes the metabolic pathways of ferroptosis and summarizes the reported mechanisms of action of natural and synthetic small molecule inhibitors of ferroptosis and their efficacy in disease. The paper also describes ferroptosis treatments such as gene therapy, cell therapy, and nanotechnology, and summarises the challenges encountered in the clinical translation of ferroptosis inhibitors. Finally, the relationship between ferroptosis and other modes of cell death is discussed, hopefully paving the way for future drug design and discovery.
Collapse
Affiliation(s)
- Lei Zhang
- School of Medicine, Yan’an University, Yan’an, China
| | - Yi Lin Luo
- School of Medicine, Yan’an University, Yan’an, China
| | - Yang Xiang
- College of Physical Education, Yan’an University, Yan’an, China
| | - Xin Yue Bai
- School of Medicine, Yan’an University, Yan’an, China
| | | | - Xin Zhang
- School of Medicine, Yan’an University, Yan’an, China
| | - Yan Ling Yang
- School of Medicine, Yan’an University, Yan’an, China
| | - Xiao Long Liu
- School of Medicine, Yan’an University, Yan’an, China
| |
Collapse
|
6
|
Qiao S, Kang Y, Tan X, Zhou X, Zhang C, Lai S, Liu J, Shao L. Nanomaterials-induced programmed cell death: Focus on mitochondria. Toxicology 2024; 504:153803. [PMID: 38616010 DOI: 10.1016/j.tox.2024.153803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Nanomaterials are widely utilized in several domains, such as everyday life, societal manufacturing, and biomedical applications, which expand the potential for nanomaterials to penetrate biological barriers and interact with cells. Multiple studies have concentrated on the particular or improper utilization of nanomaterials, resulting in cellular death. The primary mode of cell death caused by nanotoxicity is programmable cell death, which includes apoptosis, ferroptosis, necroptosis, and pyroptosis. Based on our prior publications and latest research, mitochondria have a vital function in facilitating programmed cell death caused by nanomaterials, as well as initiating or transmitting death signal pathways associated with it. Therefore, this review takes mitochondria as the focal point to investigate the internal molecular mechanism of nanomaterial-induced programmed cell death, with the aim of identifying potential targets for prevention and treatment in related studies.
Collapse
Affiliation(s)
- Shijia Qiao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yiyuan Kang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xiner Tan
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xinru Zhou
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Can Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Shulin Lai
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
7
|
Zhang L, Bai XY, Sun KY, Li X, Zhang ZQ, Liu YD, Xiang Y, Liu XL. A New Perspective in the Treatment of Ischemic Stroke: Ferroptosis. Neurochem Res 2024; 49:815-833. [PMID: 38170383 DOI: 10.1007/s11064-023-04096-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/14/2023] [Accepted: 12/24/2023] [Indexed: 01/05/2024]
Abstract
Ischemic stroke is a common neurological disease. Currently, there are no Food and Drug Administration-approved drugs that can maximize the improvement in ischemic stroke-induced nerve damage. Hence, treating ischemic stroke remains a clinical challenge. Ferroptosis has been increasingly studied in recent years, and it is closely related to the pathophysiological process of ischemic stroke. Iron overload, reactive oxygen species accumulation, lipid peroxidation, and glutamate accumulation associated with ferroptosis are all present in ischemic stroke. This article focuses on describing the relationship between ferroptosis and ischemic stroke and summarizes the relevant substances that ameliorate ischemic stroke-induced neurological damage by inhibiting ferroptosis. Finally, the problems in the treatment of ischemic stroke targeting ferroptosis are discussed, hoping to provide a new direction for its treatment.
Collapse
Affiliation(s)
- Lei Zhang
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Xin Yue Bai
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Ke Yao Sun
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Xuan Li
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Zhao Qi Zhang
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Yi Ding Liu
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Yang Xiang
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Xiao Long Liu
- School of Medicine, Yan'an University, Yan'an, 716000, China.
| |
Collapse
|
8
|
Zhang X, Hu Y, Wang B, Yang S. Ferroptosis: Iron-mediated cell death linked to disease pathogenesis. J Biomed Res 2024; 38:1-23. [PMID: 38808552 PMCID: PMC11461536 DOI: 10.7555/jbr.37.20230224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 05/30/2024] Open
Abstract
Ferroptosis is an iron-mediated regulatory cell death pattern characterized by oxidative damage. The molecular regulating mechanisms are related to iron metabolism, lipid peroxidation, and glutathione metabolism. Additionally, some immunological signaling pathways, such as the cyclic GMP-AMP synthase-stimulator ofinterferon genes axis, Janus kinase-signal transducer and activator of transcription 1 axis, and transforming growth factor beta 1-Smad3 axis may also participate in the regulation of ferroptosis. Studies have shown that ferroptosis is closely related to many diseases such as cancer, neurodegenerative diseases, inflammatory diseases, and autoimmune diseases. Considering the pivotal role of ferroptosis-regulating signaling in the pathogenesis of diverse diseases, the development of ferroptosis inducers or inhibitors may have significant clinical potential for the treatment of the aforementioned conditions.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Gusu School, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yingchao Hu
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Gusu School, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Bingwei Wang
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Shuo Yang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Gusu School, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
9
|
Siquara da Rocha LDO, de Morais EF, de Oliveira LQR, Barbosa AV, Lambert DW, Gurgel Rocha CA, Coletta RD. Exploring beyond Common Cell Death Pathways in Oral Cancer: A Systematic Review. BIOLOGY 2024; 13:103. [PMID: 38392321 PMCID: PMC10886582 DOI: 10.3390/biology13020103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common and lethal type of head and neck cancer in the world. Variable response and acquisition of resistance to traditional therapies show that it is essential to develop novel strategies that can provide better outcomes for the patient. Understanding of cellular and molecular mechanisms of cell death control has increased rapidly in recent years. Activation of cell death pathways, such as the emerging forms of non-apoptotic programmed cell death, including ferroptosis, pyroptosis, necroptosis, NETosis, parthanatos, mitoptosis and paraptosis, may represent clinically relevant novel therapeutic opportunities. This systematic review summarizes the recently described forms of cell death in OSCC, highlighting their potential for informing diagnosis, prognosis and treatment. Original studies that explored any of the selected cell deaths in OSCC were included. Electronic search, study selection, data collection and risk of bias assessment tools were realized. The literature search was carried out in four databases, and the extracted data from 79 articles were categorized and grouped by type of cell death. Ferroptosis, pyroptosis, and necroptosis represented the main forms of cell death in the selected studies, with links to cancer immunity and inflammatory responses, progression and prognosis of OSCC. Harnessing the potential of these pathways may be useful in patient-specific prognosis and individualized therapy. We provide perspectives on how these different cell death types can be integrated to develop decision tools for diagnosis, prognosis, and treatment of OSCC.
Collapse
Affiliation(s)
- Leonardo de Oliveira Siquara da Rocha
- Department of Pathology and Forensic Medicine, School of Medicine, Federal University of Bahia, Salvador 40110-100, BA, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, BA, Brazil
| | - Everton Freitas de Morais
- Graduate Program in Oral Biology and Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba 13414-018, SP, Brazil
| | - Lilianny Querino Rocha de Oliveira
- Graduate Program in Oral Biology and Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba 13414-018, SP, Brazil
| | - Andressa Vollono Barbosa
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, BA, Brazil
| | - Daniel W Lambert
- School of Clinical Dentistry, The University of Sheffield, Sheffield S10 2TA, UK
| | - Clarissa A Gurgel Rocha
- Department of Pathology and Forensic Medicine, School of Medicine, Federal University of Bahia, Salvador 40110-100, BA, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, BA, Brazil
- Department of Propaedeutics, School of Dentistry, Federal University of Bahia, Salvador 40110-909, BA, Brazil
- D'Or Institute for Research and Education (IDOR), Salvador 41253-190, BA, Brazil
| | - Ricardo D Coletta
- Graduate Program in Oral Biology and Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba 13414-018, SP, Brazil
| |
Collapse
|
10
|
Yang J, Gu Z. Ferroptosis in head and neck squamous cell carcinoma: from pathogenesis to treatment. Front Pharmacol 2024; 15:1283465. [PMID: 38313306 PMCID: PMC10834699 DOI: 10.3389/fphar.2024.1283465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignant tumor worldwide, with high morbidity and mortality. Surgery and postoperative chemoradiotherapy have largely reduced the recurrence and fatality rates for most HNSCCs. Nonetheless, these therapeutic approaches result in poor prognoses owing to severe adverse reactions and the development of drug resistance. Ferroptosis is a kind of programmed cell death which is non-apoptotic. Ferroptosis of tumor cells can inhibit tumor development. Ferroptosis involves various biomolecules and signaling pathways, whose expressions can be adjusted to modulate the sensitivity of cells to ferroptosis. As a tool in the fight against cancer, the activation of ferroptosis is a treatment that has received much attention in recent years. Therefore, understanding the molecular mechanism of ferroptosis in HNSCC is an essential strategy with therapeutic potential. The most important thing to treat HNSCC is to choose the appropriate treatment method. In this review, we discuss the molecular and defense mechanisms of ferroptosis, analyze the role and mechanism of ferroptosis in the inhibition and immunity against HNSCC, and explore the therapeutic strategy for inducing ferroptosis in HNSCC including drug therapy, radiation therapy, immunotherapy, nanotherapy and comprehensive treatment. We find ferroptosis provides a new target for HNSCC treatment.
Collapse
Affiliation(s)
- Jing Yang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhaowei Gu
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
11
|
Farzipour S, Zefrei FJ, Bahadorikhalili S, Alvandi M, Salari A, Shaghaghi Z. Nanotechnology Utilizing Ferroptosis Inducers in Cancer Treatment. Anticancer Agents Med Chem 2024; 24:571-589. [PMID: 38275050 DOI: 10.2174/0118715206278427231215111526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/11/2023] [Accepted: 11/20/2023] [Indexed: 01/27/2024]
Abstract
Current cancer treatment options have presented numerous challenges in terms of reaching high efficacy. As a result, an immediate step must be taken to create novel therapies that can achieve more than satisfying outcomes in the fight against tumors. Ferroptosis, an emerging form of regulated cell death (RCD) that is reliant on iron and reactive oxygen species, has garnered significant attention in the field of cancer therapy. Ferroptosis has been reported to be induced by a variety of small molecule compounds known as ferroptosis inducers (FINs), as well as several licensed chemotherapy medicines. These compounds' low solubility, systemic toxicity, and limited capacity to target tumors are some of the significant limitations that have hindered their clinical effectiveness. A novel cancer therapy paradigm has been created by the hypothesis that ferroptosis induced by nanoparticles has superior preclinical properties to that induced by small drugs and can overcome apoptosis resistance. Knowing the different ideas behind the preparation of nanomaterials that target ferroptosis can be very helpful in generating new ideas. Simultaneously, more improvement in nanomaterial design is needed to make them appropriate for therapeutic treatment. This paper first discusses the fundamentals of nanomedicine-based ferroptosis to highlight the potential and characteristics of ferroptosis in the context of cancer treatment. The latest study on nanomedicine applications for ferroptosis-based anticancer therapy is then highlighted.
Collapse
Affiliation(s)
- Soghra Farzipour
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Jalali Zefrei
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Saeed Bahadorikhalili
- Department of Electronic Engineering, Universitat Rovira i Virgili, 43007, Tarragona, Spain
| | - Maryam Alvandi
- Cardiovascular Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Nuclear Medicine and Molecular Imaging, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Arsalan Salari
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Zahra Shaghaghi
- Cardiovascular Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
12
|
Hayat M, Bukhari SAR, Ashraf MI, Hayat S. Zero-valent Iron Nanoparticles: Biogenic Synthesis and their Medical Applications; Existing Challenges and Future Prospects. Curr Pharm Biotechnol 2024; 25:1362-1376. [PMID: 37303179 DOI: 10.2174/1389201024666230609102243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/29/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023]
Abstract
OBJECTIVES In the last decade, nanobiotechnology is emerging as a keen prudence area owing to its widespread applications in the medical field. In this context, zero-valent iron nanoparticles (nZVI) have garnered tremendous attention attributed to their cheap, non-toxic, excellent paramagnetic nature, extremely reactive surface, and dual oxidation state that makes them excellent antioxidants and free-radical scavengers. Facile biogenic synthesis, in which a biological source is used as a template for the synthesis of NPs, is presumably dominant among other physical and chemical synthetic procedures. The purpose of this review is to elucidate plant-mediated synthesis of nZVI, although they have been successfully fabricated by microbes and other biological entities (such as starch, chitosan, alginate, cashew nut shell, etc.) as well. METHODS The methodology of the study involved keyword searches of electronic databases, including ScienceDirect, NCBI, and Google Scholar (2008-2023). Search terms of the review included 'biogenic synthesis of nZVI', 'plant-mediated synthesis of nZVI', 'medical applications of nZVI', and 'Recent advancements and future prospects of nZVI'. RESULTS Various articles were identified and reviewed for biogenic fabrication of stable nZVI with the vast majority of studies reporting positive findings. The resultant nanomaterial found great interest for biomedical purposes such as their use as biocompatible anticancer, antimicrobial, antioxidant, and albumin binding agents that have not been adequately accessed in previous studies. CONCLUSION This review shows that there are potential cost savings applications to be made when using biogenic nZVI for medical purposes. However, the encountering challenges concluded later, along with the prospects for sustainable future development.
Collapse
Affiliation(s)
- Minahil Hayat
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | | | | | - Sumreen Hayat
- Institute of Microbiology, Government College University Faisalabad, Pakistan
| |
Collapse
|
13
|
Wang D, Zhao H, Deng C, Lei W, Ren J, Zhang S, Yang W, Lu C, Tian Y, Chen Y, Qiu Y, Meng L, Yang Y. Sulfide-modified nanoscale zero-valent iron as a novel therapeutic remedy for septic myocardial injury. J Adv Res 2024; 55:145-158. [PMID: 36801383 PMCID: PMC10770114 DOI: 10.1016/j.jare.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/30/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
INTRODUCTION Myocardial injury is a serious complication in sepsis with high mortality. Zero-valent iron nanoparticles (nanoFe) displayed novel roles in cecal ligation and puncture (CLP)-induced septic mouse model. Nonetheless, its high reactivity makes it difficult for long-term storage. OBJECTIVES To overcome the obstacle and improve therapeutic efficiency, a surface passivation of nanoFe was designed using sodium sulfide. METHODS We prepared iron sulfide nanoclusters and constructed CLP mouse models. Then the effect of sulfide-modified nanoscale zero-valent iron (S-nanoFe) on the survival rate, blood routine parameters, blood biochemical parameters, cardiac function, and pathological indicators of myocardium was observed. RNA-seq was used to further explore the comprehensive protective mechanisms of S-nanoFe. Finally, the stability of S-nanoFe-1d and S-nanoFe-30 d, together with the therapeutic efficacy of sepsis between S-nanoFe and nanoFe was compared. RESULTS The results revealed that S-nanoFe significantly inhibited the growth of bacteria and exerted a protective role against septic myocardial injury. S-nanoFe treatment activated AMPK signaling and ameliorated several CLP-induced pathological processes including myocardial inflammation, oxidative stress, mitochondrial dysfunction. RNA-seq analysis further clarified the comprehensive myocardial protective mechanisms of S-nanoFe against septic injury. Importantly, S-nanoFe had a good stability and a comparable protective efficacy to nanoFe. CONCLUSIONS The surface vulcanization strategy for nanoFe has a significant protective role against sepsis and septic myocardial injury. This study provides an alternative strategy for overcoming sepsis and septic myocardial injury and opens up possibilities for the development of nanoparticle in infectious diseases.
Collapse
Affiliation(s)
- Daquan Wang
- Deparment of Neurology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, 710049, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Huadong Zhao
- Department of General Surgery, Tangdu Hospital, The Airforce Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Chao Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wangrui Lei
- Deparment of Neurology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Shaofei Zhang
- Deparment of Neurology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Wenwen Yang
- Deparment of Neurology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Chenxi Lu
- Deparment of Neurology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Ye Tian
- Deparment of Neurology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Ying Chen
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yao Qiu
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, 710049, Xi'an, China
| | - Lingjie Meng
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, 710049, Xi'an, China.
| | - Yang Yang
- Deparment of Neurology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
14
|
Cao S, Wei Y, Yue Y, Liu P, Zeng H. Global research landscape on the crosstalk between ferroptosis and musculoskeletal diseases: A bibliometric and visualized analysis. Heliyon 2023; 9:e23113. [PMID: 38144285 PMCID: PMC10746478 DOI: 10.1016/j.heliyon.2023.e23113] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
Over the past 11 years, mounting evidence has suggested a significant association between ferroptosis and the development and progression of musculoskeletal (MSK) diseases, such as osteoporosis and osteoarthritis. However, a comprehensive bibliometric analysis summarizing the relationship between ferroptosis and MSK diseases is currently lacking. The present study collected articles and reviews on the topic of ferroptosis in MSK diseases. The data were collected from January 1st, 2012 to June 30th, 2023 by screening the Web of Science database. Various tools, including VOSviewer, CiteSpace, Pajek, the R package, and others, were used to conduct bibliometric and visualization analyses. Notably, China, the USA, and Italy emerged as primary contributors, jointly accounting for over 80 % of published documents, thereby shaping research in this domain. Among the diverse institutions, Shanghai Jiao Tong University, Soochow University, and Huazhong University of Science and Technology displayed the highest productivity levels. The most prolific authors include Sun Kai, Shang Peng, and Jing Xingzhi. Oxidative Medicine and Cellular Longevity stood out with the largest number of publications in this area. The five most significant disorders in this field are bone fractures, osteosarcoma, bone neoplasms, joint diseases, and osteoporotic fractures. This study represents an inaugural comprehensive bibliometric analysis, presenting a holistic view of the knowledge framework and developmental patterns in ferroptosis concerning MSK diseases over the previous eleven years. This information can aid researchers in acquiring a thorough grasp of this domain and offer invaluable insights for forthcoming explorations.
Collapse
Affiliation(s)
- Siyang Cao
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Yihao Wei
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Yaohang Yue
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Peng Liu
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Hui Zeng
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| |
Collapse
|
15
|
Yadav VK, Choudhary N, Gacem A, Verma RK, Abul Hasan M, Tarique Imam M, Almalki ZS, Yadav KK, Park HK, Ghosh T, Kumar P, Patel A, Kalasariya H, Jeon BH, Ali AlMubarak H. Deeper insight into ferroptosis: association with Alzheimer's, Parkinson's disease, and brain tumors and their possible treatment by nanomaterials induced ferroptosis. Redox Rep 2023; 28:2269331. [PMID: 38010378 PMCID: PMC11001282 DOI: 10.1080/13510002.2023.2269331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Ferroptosis is an emerging and novel type of iron-dependent programmed cell death which is mainly caused by the excessive deposition of free intracellular iron in the brain cells. This deposited free iron exerts a ferroptosis pathway, resulting in lipid peroxidation (LiPr). There are mainly three ferroptosis pathways viz. iron metabolism-mediated cysteine/glutamate, and LiPr-mediated. Iron is required by the brain as a redox metal for several physiological activities. Due to the iron homeostasis balance disruption, the brain gets adversely affected which further causes neurodegenerative diseases (NDDs) like Parkinson's and Alzheimer's disease, strokes, and brain tumors like glioblastoma (GBS), and glioma. Nanotechnology has played an important role in the prevention and treatment of these NDDs. A synergistic effect of nanomaterials and ferroptosis could prove to be an effective and efficient approach in the field of nanomedicine. In the current review, the authors have highlighted all the latest research in the field of ferroptosis, specifically emphasizing on the role of major molecular key players and various mechanisms involved in the ferroptosis pathway. Moreover, here the authors have also addressed the correlation of ferroptosis with the pathophysiology of NDDs and theragnostic effect of ferroptosis and nanomaterials for the prevention and treatment of NDDs.
Collapse
Affiliation(s)
- Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Nisha Choudhary
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, Skikda, Algeria
| | - Rakesh Kumar Verma
- Department of Biosciences, School of Liberal Arts & Sciences, Mody University of Science and Technology, Sikar, India
| | - Mohd Abul Hasan
- Civil Engineering Department, College of Engineering, King Khalid University, Abha, Kingdom of Saudi Arabia (KSA)
| | - Mohammad Tarique Imam
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Ziyad Saeed Almalki
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Bhopal, India
- Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Nasiriyah, Iraq
| | - Hyun-Kyung Park
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Tathagata Ghosh
- Department of Arts, School of Liberal Arts & Sciences, Mody University of Science and Technology, Sikar, India
| | - Pankaj Kumar
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, India
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Haresh Kalasariya
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hassan Ali AlMubarak
- Division of Radiology, Department of Medicine, College of Medicine and Surgery, King Khalid University (KKU), Abha, Kingdom of Saudi Arabia
| |
Collapse
|
16
|
Xie Z, Zhou Q, Qiu C, Zhu D, Li K, Huang H. Inaugurating a novel adjuvant therapy in urological cancers: Ferroptosis. CANCER PATHOGENESIS AND THERAPY 2023; 1:127-140. [PMID: 38328400 PMCID: PMC10846326 DOI: 10.1016/j.cpt.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/20/2022] [Accepted: 10/06/2022] [Indexed: 02/09/2024]
Abstract
Ferroptosis, a distinctive form of programmed cell death, is involved in numerous diseases with specific characteristics, including certain cell morphology, functions, biochemistry, and genetics, that differ from other forms of programmed cell death, such as apoptosis. Many studies have explored ferroptosis and its associated mechanisms, drugs, and clinical applications in diseases such as kidney injury, stroke, ischemia-reperfusion injury, and prostate cancer. In this review, we summarize the regulatory mechanisms of some ferroptosis inducers, such as enzalutamide and erastin. These are current research focuses and have already been studied extensively. In summary, this review focuses on the use of ferroptosis induction as a therapeutic strategy for treating tumors of the urinary system.
Collapse
Affiliation(s)
- Zhaoxiang Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Qianghua Zhou
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Cheng Qiu
- Department of Orthopedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Dingjun Zhu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Kaiwen Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, China
| |
Collapse
|
17
|
Lin Q, Peng Y, Wen Y, Li X, Du D, Dai W, Tian W, Meng Y. Recent progress in cancer cell membrane-based nanoparticles for biomedical applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:262-279. [PMID: 36895440 PMCID: PMC9989677 DOI: 10.3762/bjnano.14.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Immune clearance and insufficient targeting have limited the efficacy of existing therapeutic strategies for cancer. Toxic side effects and individual differences in response to treatment have further limited the benefits of clinical treatment for patients. Biomimetic cancer cell membrane-based nanotechnology has provided a new approach for biomedicine to overcome these obstacles. Biomimetic nanoparticles exhibit various effects (e.g., homotypic targeting, prolonging drug circulation, regulating the immune system, and penetrating biological barriers) after encapsulation by cancer cell membranes. The sensitivity and specificity of diagnostic methods will also be improved by utilizing the properties of cancer cell membranes. In this review, different properties and functions of cancer cell membranes are presented. Utilizing these advantages, nanoparticles can exhibit unique therapeutic capabilities in various types of diseases, such as solid tumors, hematological malignancies, immune system diseases, and cardiovascular diseases. Furthermore, cancer cell membrane-encapsulated nanoparticles show improved effectiveness and efficiency in combination with current diagnostic and therapeutic methods, which will contribute to the development of individualized treatments. This strategy has promising clinical translation prospects, and the associated challenges are discussed.
Collapse
Affiliation(s)
- Qixiong Lin
- The Ninth Clinical Medical School of Shanxi Medical University, Taiyuan, Shanxi 030009, China
| | - Yueyou Peng
- Department of MRI, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi 030009, China
| | - Yanyan Wen
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaoqiong Li
- Department of MRI, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi 030009, China
| | - Donglian Du
- Department of MRI, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi 030009, China
| | - Weibin Dai
- Department of MRI, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi 030009, China
| | - Wei Tian
- Department of General Surgery, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi 030024, China
| | - Yanfeng Meng
- Department of MRI, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi 030009, China
| |
Collapse
|
18
|
Yazdani Z, Biparva P, Rafiei A, Kardan M, Hadavi S. Combination effect of cold atmospheric plasma with green synthesized zero-valent iron nanoparticles in the treatment of melanoma cancer model. PLoS One 2022; 17:e0279120. [PMID: 36534669 PMCID: PMC9762585 DOI: 10.1371/journal.pone.0279120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Green synthesized zero-valent iron nanoparticles (nZVI) have high potential in cancer therapy. Cold atmospheric plasma (CAP) is also an emerging biomedical technique that has great potential to cure cancer. Therefore, the combined effect of CAP and nZVI might be promising in treatment of cancer. In this study, we evaluated the combined effect of CAP and nZVI on the metabolic activity of the surviving cells and induction of apoptosis in malignant melanoma in comparison with normal cells. Therefore, the effect of various time exposure of CAP radiation, different doses of nZVI, and the combined effect of CAP and nZVI were evaluated on the viability of malignant melanoma cells (B16-F10) and normal fibroblast cells (L929) at 24 h after treatment using MTT assay. Then, the effect of appropriate doses of each treatment on apoptosis was evaluated by fluorescence microscopy and flow cytometry with Annexin/PI staining. In addition, the expression of BAX, BCL2 and Caspase 3 (CASP3) was also assayed. The results showed although the combined effect of CAP and nZVI significantly showed cytotoxic effects and apoptotic activity on cancer cells, this treatment had no more effective compared to CAP or nZVI alone. In addition, evaluation of gene expression showed that combination therapy didn't improve expression of apoptotic genes in comparison with CAP or nZVI. In conclusion, combined treatment of CAP and nZVI does not seem to be able to improve the effect of monotherapy of CAP or nZVI. It may be due to the resistance of cancer cells to high ROS uptake or the accumulation of saturated ROS in cells, which prevents the intensification of apoptosis.
Collapse
Affiliation(s)
- Zahra Yazdani
- Department of Immunology, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Pourya Biparva
- Department of Basic Sciences, Faculty of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Alireza Rafiei
- Department of Immunology, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mostafa Kardan
- Department of Immunology, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyedehniaz Hadavi
- Department of Atomic and Molecular Physics, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
- Plasma Technology Research Center, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
19
|
Tong X, Tang R, Xiao M, Xu J, Wang W, Zhang B, Liu J, Yu X, Shi S. Targeting cell death pathways for cancer therapy: recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. J Hematol Oncol 2022; 15:174. [PMID: 36482419 PMCID: PMC9733270 DOI: 10.1186/s13045-022-01392-3] [Citation(s) in RCA: 310] [Impact Index Per Article: 103.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Many types of human cells self-destruct to maintain biological homeostasis and defend the body against pathogenic substances. This process, called regulated cell death (RCD), is important for various biological activities, including the clearance of aberrant cells. Thus, RCD pathways represented by apoptosis have increased in importance as a target for the development of cancer medications in recent years. However, because tumor cells show avoidance to apoptosis, which causes treatment resistance and recurrence, numerous studies have been devoted to alternative cancer cell mortality processes, namely necroptosis, pyroptosis, ferroptosis, and cuproptosis; these RCD modalities have been extensively studied and shown to be crucial to cancer therapy effectiveness. Furthermore, evidence suggests that tumor cells undergoing regulated death may alter the immunogenicity of the tumor microenvironment (TME) to some extent, rendering it more suitable for inhibiting cancer progression and metastasis. In addition, other types of cells and components in the TME undergo the abovementioned forms of death and induce immune attacks on tumor cells, resulting in enhanced antitumor responses. Hence, this review discusses the molecular processes and features of necroptosis, pyroptosis, ferroptosis, and cuproptosis and the effects of these novel RCD modalities on tumor cell proliferation and cancer metastasis. Importantly, it introduces the complex effects of novel forms of tumor cell death on the TME and the regulated death of other cells in the TME that affect tumor biology. It also summarizes the potential agents and nanoparticles that induce or inhibit novel RCD pathways and their therapeutic effects on cancer based on evidence from in vivo and in vitro studies and reports clinical trials in which RCD inducers have been evaluated as treatments for cancer patients. Lastly, we also summarized the impact of modulating the RCD processes on cancer drug resistance and the advantages of adding RCD modulators to cancer treatment over conventional treatments.
Collapse
Affiliation(s)
- Xuhui Tong
- grid.452404.30000 0004 1808 0942Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rong Tang
- grid.452404.30000 0004 1808 0942Shanghai Pancreatic Cancer Institute, No. 270 Dong’An Road, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Mingming Xiao
- grid.452404.30000 0004 1808 0942Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jin Xu
- grid.452404.30000 0004 1808 0942Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Wang
- grid.452404.30000 0004 1808 0942Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bo Zhang
- grid.452404.30000 0004 1808 0942Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiang Liu
- grid.452404.30000 0004 1808 0942Shanghai Pancreatic Cancer Institute, No. 270 Dong’An Road, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, Shanghai, 200032, China. .,Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
20
|
Protection of zero-valent iron nanoparticles against sepsis and septic heart failure. J Nanobiotechnology 2022; 20:405. [PMID: 36064371 PMCID: PMC9444118 DOI: 10.1186/s12951-022-01589-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Background Septic heart failure accounts for high mortality rates globally. With a strong reducing capacity, zero-valent iron nanoparticles (nanoFe) have been applied in many fields. However, the precise roles and mechanisms of nanoFe in septic cardiomyopathy remain unknown. Results NanoFe was prepared via the liquid-phase reduction method and functionalized with the biocompatible polymer sodium carboxymethylcellulose (CMC). We then successfully constructed a mouse model of septic myocardial injury by challenging with cecal ligation and puncture (CLP). Our findings demonstrated that nanoFe has a significant protective effect on CLP-induced septic myocardial injury. This may be achieved by attenuating inflammation and oxidative stress, improving mitochondrial function, regulating endoplasmic reticulum stress, and activating the AMPK pathway. The RNA-seq results supported the role of nanoFe treatment in regulating a transcriptional profile consistent with its role in response to sepsis. Conclusions The results provide a theoretical basis for the application strategy and combination of nanoFe in sepsis and septic myocardial injury. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01589-1.
Collapse
|
21
|
Li C, Wu X, Zheng C, Xu S, Liu Y, Qin J, Fan X, Ye Y, Fei W. Nanotechnology-integrated ferroptosis inducers: a sharp sword against tumor drug resistance. J Mater Chem B 2022; 10:7671-7693. [PMID: 36043505 DOI: 10.1039/d2tb01350a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Presently, the biggest hurdle to cancer therapy is the inevitable emergence of drug resistance. Since conventional therapeutic schedules fall short of the expectations in curbing drug resistance, the development of novel drug resistance management strategies is critical. Extensive research over the last decade has revealed that the process of ferroptosis is correlated with cancer resistance; moreover, it has been demonstrated that ferroptosis inducers reverse drug resistance. To elucidate the development and promote the clinical transformation of ferroptosis strategies in cancer therapy, we first analyzed the roles of key ferroptosis-regulating molecules in the progression of drug resistance in-depth and then reviewed the design of ferroptosis-inducing strategies based on nanotechnology for overcoming drug resistance, including glutathione depletion, reactive oxygen species generation, iron donation, lipid peroxidation aggregation, and multiple-drug resistance-associated tumor cell destruction. Finally, the prospects and challenges of regulating ferroptosis as a therapeutic strategy for reversing cancer therapy resistance were evaluated. This review aimed to provide a comprehensive understanding for researchers to develop ferroptosis-inducing nanoplatforms that can overcome drug resistance.
Collapse
Affiliation(s)
- Chaoqun Li
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Xiaodong Wu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Shanshan Xu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yunxi Liu
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Jiale Qin
- Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xiaoyu Fan
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
| | - Yiqing Ye
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Weidong Fei
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| |
Collapse
|
22
|
Abedi M, Rahgozar S. Puzzling Out Iron Complications in Cancer Drug Resistance. Crit Rev Oncol Hematol 2022; 178:103772. [PMID: 35914667 DOI: 10.1016/j.critrevonc.2022.103772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 12/09/2022] Open
Abstract
Iron metabolism are frequently disrupted in cancer. Patients with cancer are prone to anemia and receive transfusions frequently; the condition which results in iron overload, contributing to serious therapeutic complications. Iron is introduced as a carcinogen that may increase tumor growth. However, investigations regarding its impact on response to chemotherapy, particularly the induction of drug resistance are still limited. Here, iron contribution to cell signaling and various molecular mechanisms underlying iron-mediated drug resistance are described. A dual role of this vital element in cancer treatment is also addressed. On one hand, the need to administer iron chelators to surmount iron overload and improve the sensitivity of tumor cells to chemotherapy is discussed. On the other hand, the necessary application of iron as a therapeutic option by iron-oxide nanoparticles or ferroptosis inducers is explained. Authors hope that this paper can help unravel the clinical complications related to iron in cancer therapy.
Collapse
Affiliation(s)
- Marjan Abedi
- Department of Cell and Molecular biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Soheila Rahgozar
- Department of Cell and Molecular biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
23
|
Fernández-Acosta R, Iriarte-Mesa C, Alvarez-Alminaque D, Hassannia B, Wiernicki B, Díaz-García AM, Vandenabeele P, Vanden Berghe T, Pardo Andreu GL. Novel Iron Oxide Nanoparticles Induce Ferroptosis in a Panel of Cancer Cell Lines. Molecules 2022; 27:molecules27133970. [PMID: 35807217 PMCID: PMC9268471 DOI: 10.3390/molecules27133970] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 12/19/2022] Open
Abstract
The use of nanomaterials rationally engineered to treat cancer is a burgeoning field that has reported great medical achievements. Iron-based polymeric nano-formulations with precisely tuned physicochemical properties are an expanding and versatile therapeutic strategy for tumor treatment. Recently, a peculiar type of regulated necrosis named ferroptosis has gained increased attention as a target for cancer therapy. Here, we show for the first time that novel iron oxide nanoparticles coated with gallic acid and polyacrylic acid (IONP–GA/PAA) possess intrinsic cytotoxic activity on various cancer cell lines. Indeed, IONP–GA/PAA treatment efficiently induces ferroptosis in glioblastoma, neuroblastoma, and fibrosarcoma cells. IONP–GA/PAA-induced ferroptosis was blocked by the canonical ferroptosis inhibitors, including deferoxamine and ciclopirox olamine (iron chelators), and ferrostatin-1, the lipophilic radical trap. These ferroptosis inhibitors also prevented the lipid hydroperoxide generation promoted by the nanoparticles. Altogether, we report on novel ferroptosis-inducing iron encapsulated nanoparticles with potent anti-cancer properties, which has promising potential for further in vivo validation.
Collapse
Affiliation(s)
- Roberto Fernández-Acosta
- Department of Pharmacy, Institute of Pharmaceutical and Food Sciences, University of Havana, 222 Street # 2317, La Coronela, La Lisa, Havana 13600, Cuba;
| | - Claudia Iriarte-Mesa
- Laboratory of Bioinorganic (LBI), Department of Inorganic and General Chemistry, Faculty of Chemistry, University of Havana, Zapata y G, Vedado, Plaza de la Revolución, Havana 10400, Cuba; (C.I.-M.); (A.M.D.-G.)
- Institute of Inorganic Chemistry—Functional Materials, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Daniel Alvarez-Alminaque
- Center for Research and Biological Evaluations, Institute of Pharmaceutical and Food Sciences, University of Havana, 222 Street # 2317, La Coronela, La Lisa, Havana 13600, Cuba;
| | - Behrouz Hassannia
- VIB Center for Inflammation Research (IRC), 9052 Ghent, Belgium; (B.H.); (B.W.); (P.V.); (T.V.B.)
- Department of Biomedical Molecular Biology (DBMB), Ghent University, 9052 Ghent, Belgium
| | - Bartosz Wiernicki
- VIB Center for Inflammation Research (IRC), 9052 Ghent, Belgium; (B.H.); (B.W.); (P.V.); (T.V.B.)
- Department of Biomedical Molecular Biology (DBMB), Ghent University, 9052 Ghent, Belgium
| | - Alicia M. Díaz-García
- Laboratory of Bioinorganic (LBI), Department of Inorganic and General Chemistry, Faculty of Chemistry, University of Havana, Zapata y G, Vedado, Plaza de la Revolución, Havana 10400, Cuba; (C.I.-M.); (A.M.D.-G.)
| | - Peter Vandenabeele
- VIB Center for Inflammation Research (IRC), 9052 Ghent, Belgium; (B.H.); (B.W.); (P.V.); (T.V.B.)
- Department of Biomedical Molecular Biology (DBMB), Ghent University, 9052 Ghent, Belgium
- Methusalem Program, Ghent University, 9052 Ghent, Belgium
| | - Tom Vanden Berghe
- VIB Center for Inflammation Research (IRC), 9052 Ghent, Belgium; (B.H.); (B.W.); (P.V.); (T.V.B.)
- Department of Biomedical Molecular Biology (DBMB), Ghent University, 9052 Ghent, Belgium
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium
- Ferroptosis and Inflammation Research (FAIR), VIB Research Center, Ghent University, 9052 Ghent, Belgium
- Ferroptosis and Inflammation Research (FAIR), University of Antwerp, 2000 Antwerp, Belgium
| | - Gilberto L. Pardo Andreu
- Center for Research and Biological Evaluations, Institute of Pharmaceutical and Food Sciences, University of Havana, 222 Street # 2317, La Coronela, La Lisa, Havana 13600, Cuba;
- Correspondence:
| |
Collapse
|
24
|
Shi Z, Zheng J, Tang W, Bai Y, Zhang L, Xuan Z, Sun H, Shao C. Multifunctional Nanomaterials for Ferroptotic Cancer Therapy. Front Chem 2022; 10:868630. [PMID: 35402376 PMCID: PMC8987283 DOI: 10.3389/fchem.2022.868630] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/02/2022] [Indexed: 01/03/2023] Open
Abstract
Patient outcomes from the current clinical cancer therapy remain still far from satisfactory. However, in recent years, several biomedical discoveries and nanotechnological innovations have been made, so there is an impetus to combine these with conventional treatments to improve patient experience and disease prognosis. Ferroptosis, a term first coined in 2012, is an iron-dependent regulated cell death (RCD) based on the production of reactive oxygen species (ROS) and the consequent oxidization of polyunsaturated fatty acids (PUFAs). Many nanomaterials that can induce ferroptosis have been explored for applications in cancer therapy. In this review, we summarize the recent developments in ferroptosis-based nanomaterials for cancer therapy and discuss the future of ferroptosis, nanomedicine, and cancer therapy.
Collapse
Affiliation(s)
- Zhiyuan Shi
- Department of Urology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jianzhong Zheng
- Department of Urology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Wenbin Tang
- Department of Urology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yang Bai
- Department of Urology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Lei Zhang
- School of Public Health, Xiamen Univerisity, Xiamen, China
| | - Zuodong Xuan
- Department of Urology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Huimin Sun
- Central Laboratory, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- *Correspondence: Huimin Sun, ; Chen Shao,
| | - Chen Shao
- Department of Urology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- *Correspondence: Huimin Sun, ; Chen Shao,
| |
Collapse
|
25
|
Wu YN, Yang LX, Wang PW, Braet F, Shieh DB. From Microenvironment Remediation to Novel Anti-Cancer Strategy: The Emergence of Zero Valent Iron Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14010099. [PMID: 35056996 PMCID: PMC8781124 DOI: 10.3390/pharmaceutics14010099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 02/05/2023] Open
Abstract
Accumulated studies indicate that zero-valent iron (ZVI) nanoparticles demonstrate endogenous cancer-selective cytotoxicity, without any external electric field, lights, or energy, while sparing healthy non-cancerous cells in vitro and in vivo. The anti-cancer activity of ZVI-based nanoparticles was anti-proportional to the oxidative status of the materials, which indicates that the elemental iron is crucial for the observed cancer selectivity. In this thematic article, distinctive endogenous anti-cancer mechanisms of ZVI-related nanomaterials at the cellular and molecular levels are reviewed, including the related gene modulating profile in vitro and in vivo. From a material science perspective, the underlying mechanisms are also analyzed. In summary, ZVI-based nanomaterials demonstrated prominent potential in precision medicine to modulate both programmed cell death of cancer cells, as well as the tumor microenvironment. We believe that this will inspire advanced anti-cancer therapy in the future.
Collapse
Affiliation(s)
- Ya-Na Wu
- School of Dentistry & Institute of Oral Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 701401, Taiwan; (Y.-N.W.); (P.-W.W.)
- The i-MANI Center of the National Core Facility for Biopharmaceuticals, Ministry of Science and Technology, Taipei 10622, Taiwan
| | - Li-Xing Yang
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Pei-Wen Wang
- School of Dentistry & Institute of Oral Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 701401, Taiwan; (Y.-N.W.); (P.-W.W.)
| | - Filip Braet
- Australian Centre for Microscopy & Microanalysis, The University of Sydney, Sydney, NSW 2006, Australia;
- Faculty of Medicine and Health, School of Medical Sciences (Discipline of Anatomy and Histology), The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre (Cellular Imaging Facility), The University of Sydney, Sydney, NSW 2006, Australia
| | - Dar-Bin Shieh
- School of Dentistry & Institute of Oral Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 701401, Taiwan; (Y.-N.W.); (P.-W.W.)
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 701401, Taiwan
- Core Facility Center, National Cheng Kung University, Tainan 701401, Taiwan
- Department of Stomatology, National Cheng Kung University Hospital, Tainan 704302, Taiwan
- Correspondence: ; Tel.: +886-6-2353535 (ext. 5410)
| |
Collapse
|
26
|
Valashedi MR, Najafi-Ghalehlou N, Nikoo A, Bamshad C, Tomita K, Kuwahara Y, Sato T, Roushandeh AM, Roudkenar MH. Cashing in on ferroptosis against tumor cells: Usher in the next chapter. Life Sci 2021; 285:119958. [PMID: 34534562 DOI: 10.1016/j.lfs.2021.119958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/30/2021] [Accepted: 09/10/2021] [Indexed: 01/17/2023]
Abstract
Ferroptosis is a new type of non-apoptotic regulated cell death (RCD) driven by unrestricted lethal lipid peroxidation, which is totally distinct from other forms of RCD in genetic and biochemical characteristics. It is generally believed that iron dependency, malfunction of the redox system, and excessive lipid peroxidation are the main hallmarks of ferroptosis. Accumulating pieces of evidence over the past few years have shown that ferroptosis is tightly related to various types of diseases, especially cancers. Ferroptosis has recently attracted great attention in the field of cancer research. A plethora of evidence shows that employing ferroptosis as a powerful weapon can remarkably enhance the efficacy of tumor cell annihilation. Better knowledge of the ferroptosis mechanisms and their interplay with cancer biology would enable us to use this fashionable tool in the best way. Herein, we will briefly present the relevant mechanisms of ferroptosis, the multifaceted relation between ferroptosis and cancer, encompassing tumor immunity, overcoming chemoresistance, and epithelial to mesenchymal transition. In the end, we will also briefly discuss the potential approaches to ferroptosis-based cancer therapy, such as using drugs and small molecules, nanoparticles, mitochondrial targeting, and photodynamic therapy.
Collapse
Affiliation(s)
- Mehdi Rabiee Valashedi
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Nima Najafi-Ghalehlou
- Department of Medical Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirsadegh Nikoo
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Chia Bamshad
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Kazuo Tomita
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoshikazu Kuwahara
- Division of Radiation Biology and Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tomoaki Sato
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Amaneh Mohammadi Roushandeh
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Mehryar Habibi Roudkenar
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
27
|
Guan Q, Zhou LL, Dong YB. Ferroptosis in cancer therapeutics: a materials chemistry perspective. J Mater Chem B 2021; 9:8906-8936. [PMID: 34505861 DOI: 10.1039/d1tb01654g] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ferroptosis, distinct from apoptosis, is a regulated form of cell death caused by lipid peroxidation that has attracted extensive research interest since it was first defined in 2012. Over the past five years, an increasing number of studies have revealed the close relationship between ferroptosis and materials chemistry, in particular nanobiotechnology, and have concluded that nanotechnology-triggered ferroptosis is an efficient and promising antitumor strategy that provides an alternative therapeutic approach, especially for apoptosis-resistant tumors. In this review, we summarize recent advances in ferroptosis-induced tumor therapy at the intersection of materials chemistry, redox biology, and tumor biology. The biological features and molecular mechanisms of ferroptosis are first outlined, followed by a summary of the feasible strategies to induce ferroptosis using nanomaterials and the applications of ferroptosis in combined tumor therapy. Finally, the existing challenges and future development directions in this emerging field are discussed, with the aim of promoting the progress of ferroptosis-based oncotherapy in materials science and nanoscience and enriching the antitumor arsenal.
Collapse
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| | - Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|
28
|
Li B, Wei S, Yang L, Peng X, Ma Y, Wu B, Fan Q, Yang S, Li X, Jin H, Tang S, Huang M, Li H, Liu J. CISD2 Promotes Resistance to Sorafenib-Induced Ferroptosis by Regulating Autophagy in Hepatocellular Carcinoma. Front Oncol 2021; 11:657723. [PMID: 34485112 PMCID: PMC8415543 DOI: 10.3389/fonc.2021.657723] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 07/15/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose Sorafenib is a multi-kinase inhibitor that is used as a standard treatment for advanced hepatocellular carcinoma (HCC). However, the mechanism of sorafenib resistance in HCC is still unclear. It has been shown that CISD2 expression is related to the progression and poor prognosis of HCC. Here, we show a new role for CISD2 in sorafenib resistance in HCC. Methods Bioinformatic analysis was used to detect the expression of negative regulatory genes of ferroptosis in sorafenib-resistant samples. The concentration gradient method was used to establish sorafenib-resistant HCC cells. Western blot was used to detect the protein expression of CISD2, LC3, ERK, PI3K, AKT, mTOR, and Beclin1 in HCC samples. Quantitative real-time PCR (qPCR) was used to detect gene expression. CISD2 shRNA and Beclin1 shRNA were transfected to knock down the expression of the corresponding genes. Cell viability was detected by a CCK-8 assay. ROS were detected by DCFH-DA staining, and MDA and GSH were detected with a Lipid Peroxidation MDA Assay Kit and Micro Reduced Glutathione (GSH) Assay Kit, respectively. Flow cytometry was used to detect apoptosis and the levels of ROS and iron ions. Results CISD2 was highly expressed in HCC cells compared with normal cells and was associated with poor prognosis in patients. Knockdown of CISD2 promoted a decrease in the viability of drug-resistant HCC cells. CISD2 knockdown promoted sorafenib-induced ferroptosis in resistant HCC cells. The levels of ROS, MDA, and iron ions increased, but the change in GSH was not obvious. Knockdown of CISD2 promoted uncontrolled autophagy in resistant HCC cells. Inhibition of autophagy attenuated CISD2 knockdown-induced ferroptosis. The autophagy promoted by CISD2 knockdown was related to Beclin1. When CISD2 and Beclin1 were inhibited, the effect on ferroptosis was correspondingly weakened. Conclusion Inhibition of CISD2 promoted sorafenib-induced ferroptosis in resistant cells, and this process promoted excessive iron ion accumulation through autophagy, leading to ferroptosis. The combination of CISD2 inhibition and sorafenib treatment is an effective therapeutic strategy for resistant HCC.
Collapse
Affiliation(s)
- Bowen Li
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shibo Wei
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yingbo Ma
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Bo Wu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Qing Fan
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shuo Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xinyu Li
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Hongyuan Jin
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shilei Tang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Mingyao Huang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jingang Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
29
|
Peng Y, Yu H, Zhang Y, Qu F, Tang Z, Qu C, Tian J, Zong B, Wang Y, Ren H, Liu S. A ferroptosis-associated gene signature for the prediction of prognosis and therapeutic response in luminal-type breast carcinoma. Sci Rep 2021; 11:17610. [PMID: 34475496 PMCID: PMC8413464 DOI: 10.1038/s41598-021-97102-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
Ferroptosis is a new form of regulated cell death (RCD), and its emergence has provided a new approach to the progression and drug resistance of breast cancer (BRCA). However, there is still a great gap in the study of ferroptosis-related genes in BRCA, especially luminal-type BRCA patients. We downloaded the mRNA expression profiles and corresponding clinical data of BRCA patients from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) and The Cancer Genome Atlas (TCGA) databases. Then, we built a prognostic multigene signature with ferroptosis-related differentially expressed genes (DEGs) in the METABRIC cohort and validated it in the TCGA cohort. The predictive value of this signature was investigated in terms of the immune microenvironment and the probability of a response to immunotherapy and chemotherapy. The patients were divided into a high-risk group and a low-risk group according to the ferroptosis-associated gene signature, and the high-risk group had a worse overall survival (OS). The risk score based on the 10 ferroptosis-related gene-based signature was determined to be an independent prognostic predictor in both the METABRIC and TCGA cohorts (HR, 1.41, 95% CI, 1.14-1.76, P = 0.002; HR, 2.19, 95% CI, 1.13-4.26, P = 0.02). Gene set enrichment analysis indicated that the term "cytokine-cytokine receptor interaction" was enriched in the high-risk score subgroup. Moreover, the immune infiltration scores of most immune cells were significantly different between the two groups, the low-risk group was much more sensitive to immunotherapy, and six drugs might have potential therapeutic implications in the high-risk group. Finally, a nomogram incorporating a classifier based on the 10 ferroptosis-related genes, tumor stage, age and histologic grade was established. This nomogram showed favorable discriminative ability and could help guide clinical decision-making for luminal-type breast carcinoma.
Collapse
Affiliation(s)
- Yang Peng
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haochen Yu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Medical Faculty of Ludwig-Maximilians-University of Munich, University Hospital of LMU Munich, Munich, Germany
| | - Yingzi Zhang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fanli Qu
- Department of Breast Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhenrong Tang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chi Qu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiao Tian
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Beige Zong
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Wang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haoyu Ren
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shengchun Liu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
30
|
Xu M, Li Q, Xiang Y, Yuan S, Wu Y, Zhang J, Liu J, Zhu X, Zhang Y. H 2O 2 self-providing synergistic chemodynamic/photothermal therapy using graphene oxide supported zero valence iron nanoparticles. RSC Adv 2021; 11:28973-28987. [PMID: 35478576 PMCID: PMC9038183 DOI: 10.1039/d1ra04528h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
Chemodynamic therapy (CDT) represents an emerging modality that treats cancer and other malignant diseases by using Fenton or Fenton-like catalysts to decompose hydrogen peroxide (H2O2) into toxic hydroxyl radicals (·OH). Despite its great promise, chemodynamic therapy is still limited by low endogenous H2O2 levels and lack of highly efficient nanocatalysts. In this study, we have developed multi-functional therapeutic nanocomposites GO–ZVI–GOx (GO = graphene oxide, ZVI = zero valence iron nanoparticles and GOx = glucose oxidase), where the GOx can catalyze the intracellular glucose and self-produce H2O2 for enhanced CDT therapy, and the GO is used as a template to avoid the aggregation of ZVI nanoparticles and also as an excellent photo-thermal converter for photothermal therapy under near-infrared (NIR) light. Our results show that this H2O2 self-generating nanoplatform can produce substantial amounts of reactive radicals under 808 nm NIR light due to the combinational effect of dual chemodynamic and photothermal therapy, which eventually leads to a significant decrease in cancer cell viability. It is believed that the methodology developed in this study enables conventional chemodynamic therapy to be efficiently improved, and holds great potential for overcoming challenges in many other H2O2-dependent cancer therapies. A H2O2 self-providing therapeutic nanoplatform is reported to achieve enhanced chemodynamic/photothermal therapy.![]()
Collapse
Affiliation(s)
- Miao Xu
- School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
| | - Qin Li
- School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
| | - Yi Xiang
- School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
| | - Shanshan Yuan
- School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
| | - Yihan Wu
- School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
| | - Jing Zhang
- School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
| | - Jinliang Liu
- School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
| | - Xiaohui Zhu
- School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
| | - Yong Zhang
- School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China .,Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore 117583 Singapore
| |
Collapse
|
31
|
Low Doses of Silver Nanoparticles Selectively Induce Lipid Peroxidation and Proteotoxic Stress in Mesenchymal Subtypes of Triple-Negative Breast Cancer. Cancers (Basel) 2021; 13:cancers13164217. [PMID: 34439373 PMCID: PMC8393662 DOI: 10.3390/cancers13164217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/19/2022] Open
Abstract
Molecular profiling of tumors shows that triple-negative breast cancer (TNBC) can be stratified into mesenchymal (claudin-low breast cancer; CLBC) and epithelial subtypes (basal-like breast cancer; BLBC). Subtypes differ in underlying genetics and in response to therapeutics. Several reports indicate that therapeutic strategies that induce lipid peroxidation or proteotoxicity may be particularly effective for various cancers with a mesenchymal phenotype such as CLBC, for which no specific treatment regimens exist and outcomes are poor. We hypothesized that silver nanoparticles (AgNPs) can induce proteotoxic stress and cause lipid peroxidation to a greater extent in CLBC than in BLBC. We found that AgNPs were lethal to CLBCs at doses that had little effect on BLBCs and were non-toxic to normal breast epithelial cells. Analysis of mRNA profiles indicated that sensitivity to AgNPs correlated with expression of multiple CLBC-associated genes. There was no correlation between sensitivity to AgNPs and sensitivity to silver cations, uptake of AgNPs, or proliferation rate, indicating that there are other molecular factors driving sensitivity to AgNPs. Mechanistically, we found that the differences in sensitivity of CLBC and BLBC cells to AgNPs were driven by peroxidation of lipids, protein oxidation and aggregation, and subsequent proteotoxic stress and apoptotic signaling, which were induced in AgNP-treated CLBC cells, but not in BLBC cells. This study shows AgNPs are a specific treatment for CLBC and indicates that stratification of TNBC subtypes may lead to improved outcomes for other therapeutics with similar mechanisms of action.
Collapse
|
32
|
Canese R, Vurro F, Marzola P. Iron Oxide Nanoparticles as Theranostic Agents in Cancer Immunotherapy. NANOMATERIALS 2021; 11:nano11081950. [PMID: 34443781 PMCID: PMC8399455 DOI: 10.3390/nano11081950] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/13/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022]
Abstract
Starting from the mid-1990s, several iron oxide nanoparticles (NPs) were developed as MRI contrast agents. Since their sizes fall in the tenths of a nanometer range, after i.v. injection these NPs are preferentially captured by the reticuloendothelial system of the liver. They have therefore been proposed as liver-specific contrast agents. Even though their unfavorable cost/benefit ratio has led to their withdrawal from the market, innovative applications have recently prompted a renewal of interest in these NPs. One important and innovative application is as diagnostic agents in cancer immunotherapy, thanks to their ability to track tumor-associated macrophages (TAMs) in vivo. It is worth noting that iron oxide NPs may also have a therapeutic role, given their ability to alter macrophage polarization. This review is devoted to the most recent advances in applications of iron oxide NPs in tumor diagnosis and therapy. The intrinsic therapeutic effect of these NPs on tumor growth, their capability to alter macrophage polarization and their diagnostic potential are examined. Innovative strategies for NP-based drug delivery in tumors (e.g., magnetic resonance targeting) will also be described. Finally, the review looks at their role as tracers for innovative, and very promising, imaging techniques (magnetic particle imaging-MPI).
Collapse
Affiliation(s)
- Rossella Canese
- MRI Unit, Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy
- Correspondence: (R.C.); (P.M.)
| | - Federica Vurro
- Department of Computer Science, University of Verona, 37134 Verona, Italy;
| | - Pasquina Marzola
- Department of Computer Science, University of Verona, 37134 Verona, Italy;
- Correspondence: (R.C.); (P.M.)
| |
Collapse
|
33
|
Li H, Zhang X, Yi C, He Y, Chen X, Zhao W, Yu D. Ferroptosis-related gene signature predicts the prognosis in Oral squamous cell carcinoma patients. BMC Cancer 2021; 21:835. [PMID: 34284753 PMCID: PMC8290602 DOI: 10.1186/s12885-021-08478-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/10/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The prognosis of oral squamous cell carcinoma (OSCC) patients is difficult to predict or describe due to its high-level heterogeneity and complex aetiologic factors. Ferroptosis is a novel form of iron-dependent cell death that is closely related to tumour growth and progression. This study aims to clarify the predictive value of ferroptosis-related genes (FRGs) on the overall survival(OS) of OSCC patients. METHODS The mRNA expression profile of FRGs and clinical information of patients with OSCC were collected from the TCGA database. Candidate differentially expressed ferroptosis-related genes (DE-FRGs) were identified by analysing differences between OSCC and adjacent normal tissues. A gene signature of prognosis-related DE-FRGs was established by univariate Cox analysis and LASSO analysis in the training set. Patients were then divided into high- and low-risk groups according to the cut-off value of risk scores, A nomogram was constructed to quantify the contributions of gene signature and clinical parameters to OS. Then several bioinformatics analyses were used to verify the reliability and accuracy of the model in the validation set. Finally, single-sample gene set enrichment analysis (ssGSEA) was also performed to reveal the underlying differences in immune status between different risk groups. RESULTS A prognostic model was constructed based on 10 ferroptosis-related genes. Patients in high-risk group had a significantly worse OS (p < 0.001). The gene signature was verified as an independent predictor for the OS of OSCC patients (HR > 1, p < 0.001). The receiver operating characteristic curve displayed the favour predictive performance of the risk model. The prediction nomogram successfully quantified each indicator's contribution to survival and the concordance index and calibration plots showed its superior predictive capacity. Finally, ssGSEA preliminarily indicated that the poor prognosis in the high-risk group might result from the dysregulation of immune status. CONCLUSION This study established a 10-ferroptosis-releated gene signature and nomogram that can be used to predict the prognosis of OSCC patients, which provides new insight for future anticancer therapies based on potential FRG targets.
Collapse
Affiliation(s)
- Hongyu Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510030, Guangdong, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510030, Guangdong, China
| | - Xiliu Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510030, Guangdong, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510030, Guangdong, China
| | - Chen Yi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510030, Guangdong, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510030, Guangdong, China
| | - Yi He
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510030, Guangdong, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510030, Guangdong, China
| | - Xun Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510030, Guangdong, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510030, Guangdong, China
| | - Wei Zhao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510030, Guangdong, China. .,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510030, Guangdong, China. .,Department of Pediatric Dentistry, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510030, Guangdong, China.
| | - Dongsheng Yu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510030, Guangdong, China. .,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510030, Guangdong, China. .,Department of Oral Emergency, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510030, Guangdong, China.
| |
Collapse
|
34
|
Zafar H, Raza F, Ma S, Wei Y, Zhang J, Shen Q. Recent progress on nanomedicine-induced ferroptosis for cancer therapy. Biomater Sci 2021; 9:5092-5115. [PMID: 34160488 DOI: 10.1039/d1bm00721a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The current treatment strategies for cancer therapy have posed many problems in achieving high efficacy. Therefore, an urgent step is needed to develop innovative therapies that can win beyond satisfactory results against tumor. Ferroptosis that is a kind of non-apoptotic based programmed cell death has played a crucial role in eradicating tumors by reactive oxygen species and iron-dependent pathways. Research shows a remarkable potential of ferroptosis in eliminating aggressive malignancies resistant to traditional therapies. The combination of nanomedicine and ferroptosis has revealed a close relationship for the treatment of various cancer types with high efficacy. This review introduces the basics of nanomedicine-based ferroptosis first to emphasize the feasibility and properties of ferroptosis in cancer therapy. Then, the current research on the applications of nanomedicine for the ferroptosis-based anticancer therapy is highlighted. Finally, conclusions and future research directions in perspective of various challenges in developing nanomedicine-based ferroptosis into clinical therapeutics are discussed.
Collapse
Affiliation(s)
- Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Road, Shanghai, 200240, China.
| | | | | | | | | | | |
Collapse
|
35
|
Hsieh CH, Hsieh HC, Shih FH, Wang PW, Yang LX, Shieh DB, Wang YC. An innovative NRF2 nano-modulator induces lung cancer ferroptosis and elicits an immunostimulatory tumor microenvironment. Am J Cancer Res 2021; 11:7072-7091. [PMID: 34093872 PMCID: PMC8171079 DOI: 10.7150/thno.57803] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/05/2021] [Indexed: 12/27/2022] Open
Abstract
Simultaneous targeting of both the tumor microenvironment and cancer cells by a single nanomedicine has not been reported to date. Here, we report the dual properties of zero-valent-iron nanoparticle (ZVI-NP) to induce cancer-specific cytotoxicity and anti-cancer immunity. Methods: Cancer-specific cytotoxicity induced by ZVI-NP was determined by MTT assay. Mitochondria functional assay, immunofluorescence staining, Western blot, RT-qPCR, and ChIP-qPCR assays were used to dissect the mechanism underlying ZVI-NP-induced ferroptotic cancer cell death. The therapeutic potential of ZVI-NP was evaluated in immunocompetent mice and humanized mice. Immune cell profiles of allografts and ex vivo cultured immune cells were examined by flow cytometry analysis, RT-qPCR assay, and immunofluorescence. Results: ZVI-NP caused mitochondria dysfunction, intracellular oxidative stress, and lipid peroxidation, leading to ferroptotic death of lung cancer cells. Degradation of NRF2 by GSK3/β-TrCP through AMPK/mTOR activation was enhanced in such cancer-specific ferroptosis. In addition, ZVI-NP attenuated self-renewal ability of cancer and downregulated angiogenesis-related genes. Importantly, ZVI-NP augmented anti-tumor immunity by shifting pro-tumor M2 macrophages to anti-tumor M1, decreasing the population of regulatory T cells, downregulating PD-1 and CTLA4 in CD8+ T cells to potentiate their cytolytic activity against cancer cells, while attenuating PD-L1 expression in cancer cells in vitro and in tumor-bearing immunocompetent mice. In particular, ZVI-NPs preferentially accumulated in tumor and lung tissues, leading to prominent suppression of tumor growth and metastasis. Conclusions: This dual-functional nanomedicine established an effective strategy to synergistically induce ferroptotic cancer cell death and reprogram the immunosuppressive microenvironment, which highlights the potential of ZVI-NP as an advanced integrated anti-cancer strategy.
Collapse
|
36
|
Li S, Liu Y, Li J, Zhao X, Yu D. Mechanisms of Ferroptosis and Application to Head and Neck Squamous Cell Carcinoma Treatments. DNA Cell Biol 2021; 40:720-732. [PMID: 33979530 DOI: 10.1089/dna.2021.0023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Many kinds of cancer cells are intrinsically sensitive to ferroptosis, and research interest regarding ferroptosis has been sparked by its significant role in many detrimental diseases. Ferroptosis is a novel type of iron-dependent cell death mediated by accumulation of reactive oxygen species and lipid peroxidation. Furthermore, a large number of small agents can induce ferroptosis in numerous kinds of cancer cells, including prostate cancer, pancreatic cancer, breast cancer, lymphomas, and renal cancer. These insights may help discover novel approaches for cancer therapeutic strategies; however, there is considerable uncertainty regarding ferroptosis in head and neck cancer (HNC). So far, no review of the current studies on this topic has been published. Therefore, we here elaborate the mechanisms of ferroptosis and summarize the latest findings regarding its role in HNC according to current literature. The respective findings shed light on the role of ferroptosis in HNC treatment with a number of important implications for future practice in HNC management, as outlined in this review.
Collapse
Affiliation(s)
- Shuang Li
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Yan Liu
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Jinqiu Li
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Xue Zhao
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Dan Yu
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
37
|
Stockwell BR, Jiang X. The Chemistry and Biology of Ferroptosis. Cell Chem Biol 2021; 27:365-375. [PMID: 32294465 DOI: 10.1016/j.chembiol.2020.03.013] [Citation(s) in RCA: 229] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/07/2020] [Accepted: 03/17/2020] [Indexed: 01/09/2023]
Abstract
Ferroptosis is a recently described form of cell death driven by iron-dependent lipid peroxidation. This type of cell death was first observed in response to treatment of tumor cells with a small-molecule chemical probe named erastin. Most subsequent advances in understanding the mechanisms governing ferroptosis involved the use of genetic screens and small-molecule probes. We describe herein the utility and limitations of chemical probes that have been used to analyze and perturb ferroptosis, as well as mechanistic studies of ferroptosis that benefitted from the use of these probes and genetic screens. We also suggest probes for ferroptosis and highlight mechanistic questions surrounding this form of cell death that will be a high priority for exploration in the future.
Collapse
Affiliation(s)
- Brent R Stockwell
- Department of Chemistry and Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | - Xuejun Jiang
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
38
|
Xu C, Xu J, Zheng Y, Fang Q, Lv X, Wang X, Tang R. Active-targeting and acid-sensitive pluronic prodrug micelles for efficiently overcoming MDR in breast cancer. J Mater Chem B 2021; 8:2726-2737. [PMID: 32154530 DOI: 10.1039/c9tb02328c] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Multidrug resistance (MDR) seriously hinders therapeutic efficacy in clinical cancer treatment. Herein, we reported new polymeric prodrug micelles with tumor-targeting and acid-sensitivity properties based on two different pluronic copolymers (F127 and P123) for enhancing tumor MDR reversal and chemotherapy efficiency in breast cancer. Hybrid micelles were composed of phenylboric acid (PBA)-modified F127 (active-targeting group) and doxorubicin (DOX)-grafted P123 (prodrug groups), which were named as FBP-CAD. FBP-CAD exhibited good stability in a neutral environment and accelerated drug release under mildly acidic conditions by the cleavage of β-carboxylic amides bonds. In vitro studies demonstrated that FBP-CAD significantly increased cellular uptake and drug concentration in MCF-7/ADR cells through the homing ability of PBA and the anti-MDR effect of P123. In vivo testing further indicated that hybrid micelles facilitated drug accumulation at tumor sites as well as reduced side effects to normal organs. The synergistic effect of active-targeting and MDR-reversal leads to the highest tumor growth inhibition (TGI 78.2%). Thus, these multifunctional micelles provide a feasible approach in nanomedicine for resistant-cancer treatment.
Collapse
Affiliation(s)
- Cheng Xu
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui University, Hefei, 230601, P. R. China.
| | - Jiaxi Xu
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui University, Hefei, 230601, P. R. China.
| | - Yan Zheng
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui University, Hefei, 230601, P. R. China.
| | - Qin Fang
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui University, Hefei, 230601, P. R. China.
| | - Xiaodong Lv
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui University, Hefei, 230601, P. R. China.
| | - Xin Wang
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui University, Hefei, 230601, P. R. China.
| | - Rupei Tang
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui University, Hefei, 230601, P. R. China.
| |
Collapse
|
39
|
Affiliation(s)
- Qing Shen
- Temasek Life Sciences Laboratory; and Department of Biological Sciences, National University of Singapore, Singapore
- * E-mail: (QS); (NIN)
| | - Naweed I. Naqvi
- Temasek Life Sciences Laboratory; and Department of Biological Sciences, National University of Singapore, Singapore
- * E-mail: (QS); (NIN)
| |
Collapse
|
40
|
Andraos C, Gulumian M. Intracellular and extracellular targets as mechanisms of cancer therapy by nanomaterials in relation to their physicochemical properties. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1680. [PMID: 33111484 PMCID: PMC7988657 DOI: 10.1002/wnan.1680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/19/2022]
Abstract
Cancer nanomedicine has evolved in recent years and is only expected to increase due to the ease with which nanomaterials (NMs) may be manipulated to the advantage of the cancer patient. The success of nanomedicine is dependent on the cell death mechanism, which in turn is dependent on the organelle initially targeted. The success of cancer nanomedicine is also dependent on other cellular mechanisms such as the induction of autophagy dysfunction, manipulation of the tumor microenvironment (TME) and secretome or induction of host immune responses. Current cancer phototherapies for example, photothermal- or photodynamic therapies as well as radio enhancement also form a major part of cancer nanomedicine. In general, cancer nanomedicine may be grouped into those NMs exhibiting inherent anti-cancer properties that is, self-therapeutic NMs (Group 1), NMs leading to localization of phototherapies or radio-enhancement (Group 2), and NMs as nanocarriers in the absence or presence of external radiation (Group 3). The recent advances of these three groups, together with their advantages and disadvantages as well as their cellular mechanisms and ultimate outcomes are summarized in this review. By exploiting these different intracellular mechanisms involved in initiating cell death pathways, it is possible to synthesize NMs that may have the desirable characteristics to maximize their efficacy in cancer therapy. Therefore, a summary of these important physicochemical characteristics is also presented that need to be considered for optimal cancer cell targeting and initiation of mechanisms that will lead to cancerous cell death. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
- Charlene Andraos
- Toxicology DepartmentNational Institute for Occupational HealthJohannesburgSouth Africa
| | - Mary Gulumian
- Toxicology DepartmentNational Institute for Occupational HealthJohannesburgSouth Africa
- Haematology and Molecular Medicine DepartmentUniversity of the WitwatersrandJohannesburgSouth Africa
- Water Research Group, Unit for Environmental Sciences and ManagementNorth West UniversityPotchefstroomSouth Africa
| |
Collapse
|
41
|
Zheng H, Jiang J, Xu S, Liu W, Xie Q, Cai X, Zhang J, Liu S, Li R. Nanoparticle-induced ferroptosis: detection methods, mechanisms and applications. NANOSCALE 2021; 13:2266-2285. [PMID: 33480938 DOI: 10.1039/d0nr08478f] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although ferroptosis is an iron-dependent cell death mechanism involved in the development of some severe diseases (e.g., Parkinsonian syndrome, stroke and tumours), the combination of nanotechnology with ferroptosis for the treatment of these diseases has attracted substantial research interest. However, it is challenging to differentiate nanoparticle-induced ferroptosis from other types of cell deaths (e.g., apoptosis, pyroptosis, and necrosis), elucidate the detailed mechanisms and identify the key property of nanoparticles responsible for ferroptotic cell deaths. Therefore, a summary of these aspects from current research on nano-ferroptosis is important and timely. In this review, we endeavour to summarize some convincing techniques that can be employed to specifically examine ferroptotic cell deaths. Then, we discuss the molecular initiating events of nanosized ferroptosis inducers and the cascade signals in cells, and therefore elaborate the ferroptosis mechanisms. Besides, the key physicochemical properties of nano-inducers are also discussed to acquire a fundamental understanding of nano-structure-activity relationships (nano-SARs) involved in ferroptosis, which may facilitate the design of nanomaterials to deliberately tune ferroptosis. Finally, future perspectives on the fundamental understanding of nanoparticle-induced ferroptosis and its applications are provided.
Collapse
Affiliation(s)
- Huizhen Zheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Jun Jiang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Shujuan Xu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Wei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
| | - Qianqian Xie
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Xiaoming Cai
- School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Jie Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
42
|
Chen X, Yu C, Kang R, Tang D. Iron Metabolism in Ferroptosis. Front Cell Dev Biol 2020; 8:590226. [PMID: 33117818 PMCID: PMC7575751 DOI: 10.3389/fcell.2020.590226] [Citation(s) in RCA: 494] [Impact Index Per Article: 98.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/17/2020] [Indexed: 01/12/2023] Open
Abstract
Ferroptosis is a form of regulated cell death that is characterized by iron-dependent oxidative damage and subsequent plasma membrane ruptures and the release of damage-associated molecular patterns. Due to the role of iron in mediating the production of reactive oxygen species and enzyme activity in lipid peroxidation, ferroptosis is strictly controlled by regulators involved in many aspects of iron metabolism, such as iron uptake, storage, utilization, and efflux. Translational and transcriptional regulation of iron homeostasis provide an integrated network to determine the sensitivity of ferroptosis. Impaired ferroptosis is implicated in various iron-related pathological conditions or diseases, such as cancer, neurodegenerative diseases, and ischemia-reperfusion injury. Understanding the molecular mechanisms underlying the regulation of iron metabolism during ferroptosis may provide effective strategies for the treatment of ferroptosis-associated diseases. Indeed, iron chelators effectively prevent the occurrence of ferroptosis, which may provide new approaches for the treatment of iron-related disorders. In this review, we summarize recent advances in the theoretical modeling of iron-dependent ferroptosis, and highlight the therapeutic implications of iron chelators in diseases.
Collapse
Affiliation(s)
- Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, The Third Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| | - Chunhua Yu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| | - Daolin Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, The Third Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
43
|
Zhang J, Yang J, Zuo T, Ma S, Xokrat N, Hu Z, Wang Z, Xu R, Wei Y, Shen Q. Heparanase-driven sequential released nanoparticles for ferroptosis and tumor microenvironment modulations synergism in breast cancer therapy. Biomaterials 2020; 266:120429. [PMID: 33035717 DOI: 10.1016/j.biomaterials.2020.120429] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022]
Abstract
The normal chemotherapy only induces the intracellular apoptosis pathway to promote primary tumor cells death, while not inhibit tumor metastasis. Herein, we proposed a kind of heparanase (HPSE)-driven sequential released nanoparticles, which modified with β-cyclodextrin (β-CD) grafted heparin (NLC/H(D + F + S) NPs) co-loading with doxorubicin (DOX), ferrocene (Fc), and TGF-β receptor inhibitor (SB431542). NLC/H(D + F + S) NPs successfully inhibited breast cancer metastasis by intracellular and extracellular hybrid mechanism. DOX and Fc loaded in NLC/H(D + F + S) NPs effectively enhanced intracellular ROS level to activate ferroptosis pathway, the enhanced ROS also induced the apoptosis pathway and decreased MMP-9 expression to synergize with ferroptosis for tumor therapy. In extracellular site, SB431542 was sequentially released by HPSE-driven, which blocked tumor metastasis by modulating tumor microenvironment, decreasing TAFs activation, and reducing the secretion of TGF-β. In addition, anti-tumor immune response induced by ferroptosis further strengthened the effect of tumor therapy. Finally, under the help of intracellular and extracellular mechanisms launched by NLC/H(D + F + S) NPs, the satisfactory anti-tumor metastasis effect was obtained in the in vivo anti-tumor assays. Therefore, NLC/H(D + F + S) NPs was a novel dosage regimen for breast cancer therapy through intracellular and extracellular mechanisms, in which ferroptosis induced by ROS played an important role.
Collapse
Affiliation(s)
- Jun Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Road, Shanghai, 200240, China
| | - Jie Yang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Road, Shanghai, 200240, China
| | - Tiantian Zuo
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Road, Shanghai, 200240, China
| | - Siyu Ma
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Road, Shanghai, 200240, China
| | - Nadira Xokrat
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Road, Shanghai, 200240, China
| | - Zongwei Hu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Road, Shanghai, 200240, China
| | - Zhihua Wang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Road, Shanghai, 200240, China
| | - Rui Xu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Road, Shanghai, 200240, China
| | - Yawen Wei
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Road, Shanghai, 200240, China
| | - Qi Shen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Road, Shanghai, 200240, China.
| |
Collapse
|
44
|
|
45
|
Li B, Yang L, Peng X, Fan Q, Wei S, Yang S, Li X, Jin H, Wu B, Huang M, Tang S, Liu J, Li H. Emerging mechanisms and applications of ferroptosis in the treatment of resistant cancers. Biomed Pharmacother 2020; 130:110710. [PMID: 33568263 DOI: 10.1016/j.biopha.2020.110710] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 02/09/2023] Open
Abstract
The development of chemotherapy drugs has promoted anticancer treatment, but the effect on tumours is not clear because of treatment resistance; thus, it is necessary to further understand the mechanism of cell death to explore new therapeutic targets. As a new type of programmed cell death, ferroptosis is increasingly being targeted in the treatment of many cancers with clinical drugs and experimental compounds. Ferroptosis is stimulated in tumours with inherently high levels of ferrous ions by a reaction with abundant polyunsaturated fatty acids and the inhibition of antioxidant enzymes, which can overcome treatment resistance in cancers mainly through GPX4. In this review, we focus on the intrinsic cellular regulators against ferroptosis in cancer resistance, such as GPX4, NRF2 and the thioredoxin system. We summarize the application of novel compounds and drugs to circumvent treatment resistance. We also introduce the application of nanoparticles for the treatment of resistant cancers. In conclusion, targeting ferroptosis represents a considerable strategy for resistant cancer treatment.
Collapse
Affiliation(s)
- Bowen Li
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Liang Yang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Xueqiang Peng
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Qin Fan
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Shibo Wei
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Shuo Yang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Xinyu Li
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Hongyuan Jin
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Bo Wu
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Mingyao Huang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Shilei Tang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Jingang Liu
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Hangyu Li
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China.
| |
Collapse
|
46
|
Jiang M, Qiao M, Zhao C, Deng J, Li X, Zhou C. Targeting ferroptosis for cancer therapy: exploring novel strategies from its mechanisms and role in cancers. Transl Lung Cancer Res 2020; 9:1569-1584. [PMID: 32953528 PMCID: PMC7481593 DOI: 10.21037/tlcr-20-341] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ferroptosis is a novel form of non-apoptotic regulated cell death (RCD), with distinct characteristics and functions in physical conditions and multiple diseases such as cancers. Unlike apoptosis and autophagy, this new RCD is an iron-dependent cell death with features of lethal accumulation of reactive oxygen species (ROS) and over production of lipid peroxidation. Excessive iron from aberrant iron metabolisms or the maladjustment of the two main redox systems thiols and lipid peroxidation role as the major causes of ROS generation, and the redox-acrive ferrous (intracellular labile iron) is a crucial factor for the lipid peroxidation. Regulation of ferrroptosis also involves different pathways such as mevalonate pathway, P53 pathway and p62-Keap1-Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway. Ferroptosis roles as a double-edged sword either suppressing or promoting tumor progression with the release of multiple signaling molecules in the tumor microenvironment. Emerging evidence suggests ferroptosis as a potential target for cancer therapy and ferroptosis inducers including small molecules and nanomaterials have been developed. The application of ferroptosis inducers also relates to overcoming drug resistance and preventing tumor metastasis, and may become a promising strategy combined with other anti-cancer therapies. Here, we summarize the ferroptosis characters from its underlying basis and role in cancer, followed by its possible applications in cancer therapies and challenges maintained.
Collapse
Affiliation(s)
- Minlin Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Tongji University, Shanghai, China
| | - Meng Qiao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Tongji University, Shanghai, China
| | - Chuanliang Zhao
- Department of Otolaryngology, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Juan Deng
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Tongji University, Shanghai, China
| | - Xuefei Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
47
|
Xie G, Zhang L, Pan J, Zhang X, Sun SK. Green and Kilogram-Scale Synthesis of Fe Hydrogel for Photothermal Therapy of Tumors in Vivo. ACS Biomater Sci Eng 2020; 6:4276-4284. [PMID: 33463327 DOI: 10.1021/acsbiomaterials.9b01933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Photothermal agents with good biocompatibility, high tumor accumulation efficiency, large-scale production ability, and low cost are crucial for potential photothermal treatment in clinic. Herein, we proposed a green and highly efficient strategy to fabricate a kilogram-scale alginate-Ca2+-Fe powder hydrogel (ALG-Ca2+-Fe) by turning commercial Fe powder into hydrogel for enhanced photothermal therapy. The ALG-Ca2+-Fe was formed by simply dispersing commercial Fe powder into the preformed alginate-Ca2+ hydrogel in a green and energy-/time-saving way. The hydrogel exhibited the advantages of ultrahigh loading capacity of Fe powder (>100 mg mL-1), excellent large-scale production capacity (>1 kg in lab synthesis), low cost (<1.7 $/kg), and good injectability. More importantly, large size and hydrophobicity endowed Fe powder with excellent tumor retention effect and minimal diffusion to surrounding tissues, greatly benefiting improving treatment efficiency and reducing side effects. In vivo and in vitro studies both proved that the large-scale produced ALG-Ca2+-Fe can be used for highly efficient and biosafe tumor treatment in vivo by simple noninvasive injection. The developed ALG-Ca2+-Fe with multiple superiors opens up a novel green way to develop efficient and safe photothermal therapeutic agents with great clinic transformation potential.
Collapse
Affiliation(s)
- Guangchao Xie
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Liang Zhang
- Department of Ultrasound, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jinbin Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xuejun Zhang
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| |
Collapse
|
48
|
Huo D, Jiang X, Hu Y. Recent Advances in Nanostrategies Capable of Overcoming Biological Barriers for Tumor Management. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904337. [PMID: 31663198 DOI: 10.1002/adma.201904337] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/27/2019] [Indexed: 05/22/2023]
Abstract
Engineered nanomaterials have been extensively employed as therapeutics for tumor management. Meanwhile, the complex tumor niche along with multiple barriers at the cellular level collectively hinders the action of nanomedicines. Here, the advanced strategies that hold promise for overcoming the numerous biological barriers facing nanomedicines are summarized. Starting from tumor entry, methods that promote tissue penetration of nanomedicine and address the hypoxia issue are also highlighted. Then, emphasis is given to the significance of overcoming both physical barriers, such as membrane-associated efflux pumps, and biological features, such as resistance to apoptosis. The pros and cons for an individual approach are presented. In addition, the associated technical problems are discussed, along with the importance of balancing the therapeutic merits and the additional cost of sophisticated nanomedicine designs.
Collapse
Affiliation(s)
- Da Huo
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Xiqun Jiang
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Yong Hu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210093, China
| |
Collapse
|
49
|
Yang LX, Wu YN, Wang PW, Huang KJ, Su WC, Shieh DB. Silver-coated zero-valent iron nanoparticles enhance cancer therapy in mice through lysosome-dependent dual programed cell death pathways: triggering simultaneous apoptosis and autophagy only in cancerous cells. J Mater Chem B 2020; 8:4122-4131. [PMID: 32267258 DOI: 10.1039/c9tb01477b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this study, we demonstrated that zero-valent iron (ZVI), which is widely used to remediate environmental contamination through the production of high-energy reactive oxygen species (ROS), exhibited differential cytotoxicity in cancerous cells and nonmalignant cells. Nanoparticles (NPs) with different shells exhibited distinct potencies against cancerous cells, which depended on their iron-to-oxygen ratios. Silver-coated ZVI NPs (ZVI@Ag) had the highest potency among synthesized ZVI NPs, and they simultaneously exhibited adequate biocompatibility with nonmalignant keratinocytes. The assessment of the intracellular dynamics of iron species revealed that the uptake of ZVI@Ag was similar between cancerous cells and nonmalignant cells during the first 2 h; however, only cancerous cells rapidly converted NPs into iron ions and generated large amounts of intracellular ROS, which was followed by apoptosis and autophagy induction. The aforementioned processes were prevented in the presence of iron ion chelators or by preoxidizing NPs before administration. Neutralization of lysosomal pH effectively reduced ZVI@Ag NP-induced programmed cell death. In the xenograft mouse model, cancer growth was significantly inhibited by a single dose of systematically administered NPs without significant weight loss in animals.
Collapse
Affiliation(s)
- Li-Xing Yang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, 70101, Taiwan.
| | | | | | | | | | | |
Collapse
|
50
|
Nirmala JG, Lopus M. Cell death mechanisms in eukaryotes. Cell Biol Toxicol 2019; 36:145-164. [PMID: 31820165 DOI: 10.1007/s10565-019-09496-2] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023]
Abstract
Like the organism they constitute, the cells also die in different ways. The death can be predetermined, programmed, and cleanly executed, as in the case of apoptosis, or it can be traumatic, inflammatory, and sudden as many types of necrosis exemplify. Nevertheless, there are a number of cell deaths-some of them bearing a resemblance to apoptosis and/or necrosis, and many, distinct from each-that serve a multitude of roles in either supporting or disrupting the homoeostasis. Apoptosis is coordinated by death ligands, caspases, b-cell lymphoma-2 (Bcl-2) family proteins, and their downstream effectors. Events that can lead to apoptosis include mitotic catastrophe and anoikis. Necrosis, although it has been considered an abrupt and uncoordinated cell death, has many molecular events associated with it. There are cell death mechanisms that share some standard features with necrosis. These include methuosis, necroptosis, NETosis, pyronecrosis, and pyroptosis. Autophagy, generally a catabolic pathway that operates to ensure cell survival, can also kill the cell through mechanisms such as autosis. Other cell-death mechanisms include entosis, ferroptosis, lysosome-dependent cell death, and parthanatos.
Collapse
Affiliation(s)
- J Grace Nirmala
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Mumbai, 400098, India
| | - Manu Lopus
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Mumbai, 400098, India.
| |
Collapse
|