1
|
Abate C, Neri G, Scala A, Mineo PG, Fazio E, Mazzaglia A, Fragoso A, Giuffrè O, Foti C, Piperno A. Screen-Printed Carbon Electrodes with Cationic Cyclodextrin Carbon Nanotubes and Ferrocenyl-Carnosine for Electrochemical Sensing of Hg(II). ACS APPLIED NANO MATERIALS 2023; 6:17187-17195. [PMID: 37767207 PMCID: PMC10520977 DOI: 10.1021/acsanm.3c03480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
The study reports the use of nanoassembly based on cationic cyclodextrin carbon nanotubes (CNT-CDs) and ferrocenylcarnosine (FcCAR) for electrochemical sensing of Hg(II) in aqueous solution. β-cyclodextrins (CDs) were grafted onto CNTs by a click chemistry reaction between heptakis-(6-azido-6-deoxy)-β-cyclodextrin and alkyne-terminated CNTs. The cationic amine groups on the CD units were produced by the subsequent reduction of the residual nitrogen groups. The chemical composition and morphology of CNT-CDs were analyzed by X-ray photoelectron spectroscopy, scanning electron microscopy, and thermogravimetric analysis. A N,N-dimethylformamide dispersion of CNT-CDs was cast on the surface of screen-printed carbon electrodes (SPCEs), and the electrochemical response was evaluated by cyclic voltammetry (CV) using [Fe(CN)6]3- as the redox probe. The ability of SPCE/CNT-CD to significantly enhance the electroactive properties of the redox probe was combined with a suitable recognition element (FcCAR) for Hg(II). The electrochemical response of the CNT-CD/FcCAR nanoassembly was evaluated by CV and electrochemical impedance spectroscopy. The analytical performance of the Hg(II) sensor was evaluated by differential pulsed voltammetry and chronoamperometry. The oxidative peak current showed a linear concentration dependence in the range of 1-100 nM, with a sensitivity of 0.12 μA/nM, a limit of detection of 0.50 nM, and a limit of quantification of 1 nM.
Collapse
Affiliation(s)
- Chiara Abate
- Department
of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, Messina 98166, Italy
| | - Giulia Neri
- Department
of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, Messina 98166, Italy
| | - Angela Scala
- Department
of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, Messina 98166, Italy
| | - Placido Giuseppe Mineo
- Department
of Chemical Sciences, University of Catania, Viale A. Doria 6, Catania 95125, Italy
| | - Enza Fazio
- Department
of Mathematical and Computational Sciences, Physical Sciences and
Earth Sciences, University of Messina, Viale F. Stagno d’Alcontres
31, Messina 98166, Italy
| | - Antonino Mazzaglia
- National
Council of Research, Institute for the Study of Nanostructured Materials
(CNR-ISMN), URT of Messina c/o Department of Chemical, Biological,
Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, Messina 98166, Italy
| | - Alex Fragoso
- Inferfibio
Research Group, Departament d’Enginyeria Qúmica, Universitat Rovira i Virgili, Avinguda Päsos Catalans 26, Tarragona 43007, Spain
| | - Ottavia Giuffrè
- Department
of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, Messina 98166, Italy
| | - Claudia Foti
- Department
of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, Messina 98166, Italy
| | - Anna Piperno
- Department
of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, Messina 98166, Italy
| |
Collapse
|
2
|
Tong F, Zhou Y, Xu Y, Chen Y, Yudintceva N, Shevtsov M, Gao H. Supramolecular nanomedicines based on host-guest interactions of cyclodextrins. EXPLORATION (BEIJING, CHINA) 2023; 3:20210111. [PMID: 37933241 PMCID: PMC10624390 DOI: 10.1002/exp.20210111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 02/09/2023] [Indexed: 11/08/2023]
Abstract
In the biomedical and pharmaceutical fields, cyclodextrin (CD) is undoubtedly one of the most frequently used macrocyclic compounds as the host molecule because it has good biocompatibility and can increase the solubility, bioavailability, and stability of hydrophobic drug guests. In this review, we generalized the unique properties of CDs, CD-related supramolecular nanocarriers, supramolecular controlled release systems, and targeting systems based on CDs, and introduced the paradigms of these nanomedicines. In addition, we also discussed the prospects and challenges of CD-based supramolecular nanomedicines to facilitate the development and clinical translation of these nanomedicines.
Collapse
Affiliation(s)
- Fan Tong
- Key Laboratory of Drug Targeting and Drug Delivery SystemsWest China School of PharmacySichuan UniversityChengduChina
| | - Yang Zhou
- Key Laboratory of Drug Targeting and Drug Delivery SystemsWest China School of PharmacySichuan UniversityChengduChina
| | - Yanyan Xu
- Key Laboratory of Drug Targeting and Drug Delivery SystemsWest China School of PharmacySichuan UniversityChengduChina
| | - Yuxiu Chen
- Key Laboratory of Drug Targeting and Drug Delivery SystemsWest China School of PharmacySichuan UniversityChengduChina
| | - Natalia Yudintceva
- Institute of Cytology of the Russian Academy of Sciences (RAS)St. PetersburgRussia
| | - Maxim Shevtsov
- Institute of Cytology of the Russian Academy of Sciences (RAS)St. PetersburgRussia
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery SystemsWest China School of PharmacySichuan UniversityChengduChina
| |
Collapse
|
3
|
Ramos-Soriano J, Ghirardello M, Galan MC. Carbon-based glyco-nanoplatforms: towards the next generation of glycan-based multivalent probes. Chem Soc Rev 2022; 51:9960-9985. [PMID: 36416290 PMCID: PMC9743786 DOI: 10.1039/d2cs00741j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Indexed: 11/24/2022]
Abstract
Cell surface carbohydrates mediate a wide range of carbohydrate-protein interactions key to healthy and disease mechanisms. Many of such interactions are multivalent in nature and in order to study these processes at a molecular level, many glycan-presenting platforms have been developed over the years. Among those, carbon nanoforms such as graphene and their derivatives, carbon nanotubes, carbon dots and fullerenes, have become very attractive as biocompatible platforms that can mimic the multivalent presentation of biologically relevant glycosides. The most recent examples of carbon-based nanoplatforms and their applications developed over the last few years to study carbohydrate-mediate interactions in the context of cancer, bacterial and viral infections, among others, are highlighted in this review.
Collapse
Affiliation(s)
- Javier Ramos-Soriano
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC and Universidad de Sevilla, Américo Vespucio, 49, 41092 Sevilla, Spain.
| | - Mattia Ghirardello
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
- Departamento de Química, Universidad de La Rioja, Calle Madre de Dios 53, 26006 Logroño, Spain.
| | - M Carmen Galan
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| |
Collapse
|
4
|
Hui Y, Yan Z, Yang H, Xu X, Yuan WE, Qian Y. Graphene Family Nanomaterials for Stem Cell Neurogenic Differentiation and Peripheral Nerve Regeneration. ACS APPLIED BIO MATERIALS 2022; 5:4741-4759. [PMID: 36102324 DOI: 10.1021/acsabm.2c00663] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Stem cells play a critical role in peripheral nerve regeneration. Nerve scaffolds fabricated by specific materials can help induce the neurogenic differentiation of stem cells. Therefore, it is a potential strategy to enhance therapeutic efficiency. Graphene family nanomaterials are widely applied in repairing peripheral nerves. However, the mechanism underlying the pro-regeneration effects remains elusive. In this review, we first discuss the properties of graphene family nanomaterials, including monolayer and multilayer graphene, few-layer graphene, graphene oxide, reduced graphene oxide, and graphene quantum dots. We also introduce their applications in regulating stem cell differentiation. Then, we review the potential mechanisms of the neurogenic differentiation of stem cells facilitated by the materials. Finally, we discuss the existing challenges in this field to advance the development of nerve biomaterials.
Collapse
Affiliation(s)
- Yuxuan Hui
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 201306, China
| | - Zhiwen Yan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 201306, China
| | - Hao Yang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 201306, China
| | - Xingxing Xu
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 201306, China
| | - Wei-En Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yun Qian
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 201306, China
| |
Collapse
|
5
|
Duan Z, Bian H, Zhu L, Xia D. Efficient removal of thiophenic sulfides from fuel by micro-mesoporous 2-hydroxypropyl-β-cyclodextrin polymers through synergistic effect. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
6
|
Pennisi R, Musarra-Pizzo M, Velletri T, Mazzaglia A, Neri G, Scala A, Piperno A, Sciortino MT. Cancer-Related Intracellular Signalling Pathways Activated by DOXorubicin/Cyclodextrin-Graphene-Based Nanomaterials. Biomolecules 2022; 12:63. [PMID: 35053211 PMCID: PMC8773469 DOI: 10.3390/biom12010063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
In the last decade, nanotechnological progress has generated new opportunities to improve the safety and efficacy of conventional anticancer therapies. Compared with other carriers, graphene nanoplatforms possess numerous tunable functionalities for the loading of multiple bioactive compounds, although their biocompatibility is still a debated concern. Recently, we have investigated the modulation of genes involved in cancer-associated canonical pathways induced by graphene engineered with cyclodextrins (GCD). Here, we investigated the GCD impact on cells safety, the HEp-2 responsiveness to Doxorubicin (DOX) and the cancer-related intracellular signalling pathways modulated by over time exposure to DOX loaded on GCD (GCD@DOX). Our studies evidenced that both DOX and GCD@DOX induced p53 and p21 signalling resulting in G0/G1 cell cycle arrest. A genotoxic behaviour of DOX was reported via detection of CDK (T14/Y15) activation and reduction of Wee-1 expression. Similarly, we found a cleavage of PARP by DOX within 72 h of exposure. Conversely, GCD@DOX induced a late cleavage of PARP, which could be indicative of less toxic effect due to controlled release of the drug from the GCD nanocarrier. Finally, the induction of the autophagy process supports the potential recycling of DOX with the consequent limitation of its toxic effects. Together, these findings demonstrate that GCD@DOX is a biocompatible drug delivery system able to evade chemoresistance and doxorubicin toxicity.
Collapse
Affiliation(s)
- Rosamaria Pennisi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.M.-P.); (G.N.); (A.S.); (A.P.)
| | - Maria Musarra-Pizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.M.-P.); (G.N.); (A.S.); (A.P.)
| | - Tania Velletri
- IFOM-Cogentech Società Benefit srl; via Adamello 16, 20139 Milan, Italy;
| | - Antonino Mazzaglia
- Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche (ISMN-CNR), V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy;
| | - Giulia Neri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.M.-P.); (G.N.); (A.S.); (A.P.)
| | - Angela Scala
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.M.-P.); (G.N.); (A.S.); (A.P.)
| | - Anna Piperno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.M.-P.); (G.N.); (A.S.); (A.P.)
| | - Maria Teresa Sciortino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.M.-P.); (G.N.); (A.S.); (A.P.)
| |
Collapse
|
7
|
Furlan de Oliveira R, Montes-García V, Ciesielski A, Samorì P. Harnessing selectivity in chemical sensing via supramolecular interactions: from functionalization of nanomaterials to device applications. MATERIALS HORIZONS 2021; 8:2685-2708. [PMID: 34605845 DOI: 10.1039/d1mh01117k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chemical sensing is a strategic field of science and technology ultimately aiming at improving the quality of our lives and the sustainability of our Planet. Sensors bear a direct societal impact on well-being, which includes the quality and composition of the air we breathe, the water we drink, and the food we eat. Pristine low-dimensional materials are widely exploited as highly sensitive elements in chemical sensors, although they suffer from lack of intrinsic selectivity towards specific analytes. Here, we showcase the most recent strategies on the use of (supra)molecular interactions to harness the selectivity of suitably functionalized 0D, 1D, and 2D low-dimensional materials for chemical sensing. We discuss how the design and selection of receptors via machine learning and artificial intelligence hold a disruptive potential in chemical sensing, where selectivity is achieved by the design and high-throughput screening of large libraries of molecules exhibiting a set of affinity parameters that dictates the analyte specificity. We also discuss the importance of achieving selectivity along with other relevant characteristics in chemical sensing, such as high sensitivity, response speed, and reversibility, as milestones for true practical applications. Finally, for each distinct class of low-dimensional material, we present the most suitable functionalization strategies for their incorporation into efficient transducers for chemical sensing.
Collapse
Affiliation(s)
| | - Verónica Montes-García
- Université de Strasbourg and CNRS, ISIS, 8 allée Gaspard Monge, 67000 Strasbourg, France.
| | - Artur Ciesielski
- Université de Strasbourg and CNRS, ISIS, 8 allée Gaspard Monge, 67000 Strasbourg, France.
| | - Paolo Samorì
- Université de Strasbourg and CNRS, ISIS, 8 allée Gaspard Monge, 67000 Strasbourg, France.
| |
Collapse
|
8
|
Sakamoto Y, Ikuta T, Maehashi K. Electrical Detection of Molecular Transformations Associated with Chemical Reactions Using Graphene Devices. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45001-45007. [PMID: 34494425 DOI: 10.1021/acsami.1c09985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This study proposes a method to electrically detect chemical reactions that involve bond changes through reactions on graphene surfaces. To achieve a highly sensitive detection, we focused on the thiol-ene reaction that combines the maleimide and thiol groups. Graphene field-effect transistors (FETs) were used to detect the binding changes of the modified molecules. Graphene has high carrier mobility and is sensitive to changes in the electronic state of its surface. Graphene has been used as a sensor to detect low-concentration targets with high sensitivity. N-(9-Acridinyl)maleimide (NAM) was chosen as the modified molecule to immobilize maleimide on graphene through π-interaction, and methanethiol (MeSH) was set as the target thiol. The modification of NAM to graphene was first confirmed by attenuated total reflection Fourier transform infrared spectroscopy, and the modification density was 0.5 ± 0.1/nm2 through cyclic voltammetry. Owing to a bond exchange, the transfer characteristics of the graphene FET shifted by 2 V to the negative direction after being exposed to MeSH at 10 parts per billion (ppb), equivalent to 0.2 ng, under ultraviolet irradiation. With 5000 ppb of acetic acid, it only shifted 0.7 V. With 1000 ppb of ethanol and 10,000 ppb of methanol, it shifted to the positive direction by 0.4 and 0.6 V, respectively. Because the nontarget molecule showed only a slight response, a thiol-ene chemical reaction was detected. The proposed method can detect the bond-change reaction using an ultralow concentration of MeSH, which indicates that at least 10 ppb (or 0.2 ng) of MeSH was detected by the graphene FET.
Collapse
Affiliation(s)
- Yuri Sakamoto
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Takashi Ikuta
- Division of Advanced Applied Physics, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Kenzo Maehashi
- Division of Advanced Applied Physics, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
9
|
Neri G, Cordaro A, Scala A, Cordaro M, Mazzaglia A, Piperno A. PEGylated bis-adamantane carboxamide as guest bridge for graphene poly-cyclodextrin gold nanoassemblies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Ramos-Soriano J, Ghirardello M, Galan MC. Recent advances in multivalent carbon nanoform-based glycoconjugates. Curr Med Chem 2021; 29:1232-1257. [PMID: 34269658 DOI: 10.2174/0929867328666210714160954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/27/2021] [Accepted: 05/01/2021] [Indexed: 11/22/2022]
Abstract
Multivalent carbohydrate-mediated interactions are fundamental to many biological processes, including disease mechanisms. To study these significant glycan-mediated interactions at a molecular level, carbon nanoforms such as fullerenes, carbon nanotubes, or graphene and their derivatives have been identified as promising biocompatible scaffolds that can mimic the multivalent presentation of biologically relevant glycans. In this minireview, we will summarize the most relevant examples of the last few years in the context of their applications.
Collapse
Affiliation(s)
- Javier Ramos-Soriano
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Mattia Ghirardello
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - M Carmen Galan
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
11
|
Ramos-Soriano J, Rojo J. Glycodendritic structures as DC-SIGN binders to inhibit viral infections. Chem Commun (Camb) 2021; 57:5111-5126. [PMID: 33977972 DOI: 10.1039/d1cc01281a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
DC-SIGN, a lectin discovered two decades ago, plays a relevant role in innate immunity. Since its discovery, it has turned out to be a target for developing antiviral drugs based on carbohydrates due to its participation in the infection process of several pathogens. A plethora of carbohydrate multivalent systems using different scaffolds have been described to achieve this goal. Our group has made significant contributions to this field, which are revised herein.
Collapse
Affiliation(s)
- Javier Ramos-Soriano
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de La Cartuja, CSIC and Universidad de Sevilla, Américo Vespucio, 49, 41092 Sevilla, Spain.
| | - Javier Rojo
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de La Cartuja, CSIC and Universidad de Sevilla, Américo Vespucio, 49, 41092 Sevilla, Spain.
| |
Collapse
|
12
|
Li F, Wang M, Zhou J, Yang M, Wang T. Cyclodextrin-derivatized hybrid nanocomposites as novel magnetic solid-phase extraction adsorbent for preconcentration of trace fluoroquinolones from water samples coupled with HPLC-MS/MS determination. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
13
|
Li D, Chai K, Yao X, Zhou L, Wu K, Huang Z, Yan J, Qin X, Wei W, Ji H. β-Cyclodextrin functionalized SBA-15 via amide linkage as a super adsorbent for rapid removal of methyl blue. J Colloid Interface Sci 2021; 583:100-112. [DOI: 10.1016/j.jcis.2020.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/08/2020] [Accepted: 09/02/2020] [Indexed: 10/23/2022]
|
14
|
Inclusion as an efficient purification method for specific removal of tricyclic organic sulfur/nitrogen pollutants in fuel and effluent with cyclodextrin polymers. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Caccamo D, Currò M, Ientile R, Verderio EAM, Scala A, Mazzaglia A, Pennisi R, Musarra-Pizzo M, Zagami R, Neri G, Rosmini C, Potara M, Focsan M, Astilean S, Piperno A, Sciortino MT. Intracellular Fate and Impact on Gene Expression of Doxorubicin/Cyclodextrin-Graphene Nanomaterials at Sub-Toxic Concentration. Int J Mol Sci 2020; 21:ijms21144891. [PMID: 32664456 PMCID: PMC7402311 DOI: 10.3390/ijms21144891] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
The graphene road in nanomedicine still seems very long and winding because the current knowledge about graphene/cell interactions and the safety issues are not yet sufficiently clarified. Specifically, the impact of graphene exposure on gene expression is a largely unexplored concern. Herein, we investigated the intracellular fate of graphene (G) decorated with cyclodextrins (CD) and loaded with doxorubicin (DOX) and the modulation of genes involved in cancer-associated canonical pathways. Intracellular fate of GCD@DOX, tracked by FLIM, Raman mapping and fluorescence microscopy, evidenced the efficient cellular uptake of GCD@DOX and the presence of DOX in the nucleus, without graphene carrier. The NanoString nCounter™ platform provided evidence for 34 (out of 700) differentially expressed cancer-related genes in HEp-2 cells treated with GCD@DOX (25 µg/mL) compared with untreated cells. Cells treated with GCD alone (25 µg/mL) showed modification for 16 genes. Overall, 14 common genes were differentially expressed in both GCD and GCD@DOX treated cells and 4 of these genes with an opposite trend. The modification of cancer related genes also at sub-cytotoxic G concentration should be taken in consideration for the rational design of safe and effective G-based drug/gene delivery systems. The reliable advantages provided by NanoString® technology, such as sensibility and the direct RNA measurements, could be the cornerstone in this field.
Collapse
Affiliation(s)
- Daniela Caccamo
- Department of Biomedical Sciences, Dental Sciences and Morpho-Functional Imaging, Polyclinic Hospital University, 98125 Messina, Italy; (D.C.); (M.C.); (R.I.)
| | - Monica Currò
- Department of Biomedical Sciences, Dental Sciences and Morpho-Functional Imaging, Polyclinic Hospital University, 98125 Messina, Italy; (D.C.); (M.C.); (R.I.)
| | - Riccardo Ientile
- Department of Biomedical Sciences, Dental Sciences and Morpho-Functional Imaging, Polyclinic Hospital University, 98125 Messina, Italy; (D.C.); (M.C.); (R.I.)
| | - Elisabetta AM Verderio
- School of Science and Technology, Centre for Health, Ageing and Understanding of Disease, Nottingham Trent University, Nottingham NG11 8NS, UK;
| | - Angela Scala
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (R.P.); (M.M.P.); (G.N.); (C.R.)
| | - Antonino Mazzaglia
- CNR-Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.M.); (R.Z.)
| | - Rosamaria Pennisi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (R.P.); (M.M.P.); (G.N.); (C.R.)
- Department of Innate Immunology, Shenzhen International Institute for Biomedical Research, 140 Jinye Ave, Building A10, Life Science Park, Dapeng New District, Shenzhen 518119, China
| | - Maria Musarra-Pizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (R.P.); (M.M.P.); (G.N.); (C.R.)
| | - Roberto Zagami
- CNR-Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.M.); (R.Z.)
| | - Giulia Neri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (R.P.); (M.M.P.); (G.N.); (C.R.)
| | - Consolato Rosmini
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (R.P.); (M.M.P.); (G.N.); (C.R.)
| | - Monica Potara
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian Str. 42, 400271 Cluj-Napoca, Romania; (M.P.); (M.F.); (S.A.)
| | - Monica Focsan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian Str. 42, 400271 Cluj-Napoca, Romania; (M.P.); (M.F.); (S.A.)
| | - Simion Astilean
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian Str. 42, 400271 Cluj-Napoca, Romania; (M.P.); (M.F.); (S.A.)
- Department of Biomolecular Physics, Faculty of Physics, Babes-Bolyai University, M Kogalniceanu Str. 1, 400084 Cluj-Napoca, Romania
| | - Anna Piperno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (R.P.); (M.M.P.); (G.N.); (C.R.)
- Correspondence: (A.P.); (M.T.S.); Tel.: +39-090-6765173 (A.P.); +39-090-6765217 (M.T.S.)
| | - Maria Teresa Sciortino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (R.P.); (M.M.P.); (G.N.); (C.R.)
- Correspondence: (A.P.); (M.T.S.); Tel.: +39-090-6765173 (A.P.); +39-090-6765217 (M.T.S.)
| |
Collapse
|
16
|
Kasprzak A, Dabrowski B, Zuchowska A. A biocompatible poly(amidoamine) (PAMAM) dendrimer octa-substituted with α-cyclodextrin towards the controlled release of doxorubicin hydrochloride from its ferrocenyl prodrug. RSC Adv 2020; 10:23440-23445. [PMID: 35520312 PMCID: PMC9054735 DOI: 10.1039/d0ra03694c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/27/2020] [Indexed: 01/17/2023] Open
Abstract
Facile and efficient methods for the synthesis of the first poly(aminodamine) PAMAM G1.0 dendrimer octa-substituted with α-cyclodextrin and a novel ferrocenyl prodrug of doxorubicin hydrochloride are developed. This vector is non-toxic and can bind the designed ferrocenyl prodrug. It also shows a controlled drug release profile and high cytotoxicity against breast cancer cells (MCF-7), as elucidated by the in vitro biological studies performed with an innovative cell-on-a-chip microfluidic system.
Collapse
Affiliation(s)
- Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego Str. 3 00-664 Warsaw Poland
| | - Bartłomiej Dabrowski
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego Str. 3 00-664 Warsaw Poland
| | - Agnieszka Zuchowska
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego Str. 3 00-664 Warsaw Poland
| |
Collapse
|
17
|
Duan Q, Wang L, Wang F, Zhang H, Lu K. Calix[n]arene/Pillar[n]arene-Functionalized Graphene Nanocomposites and Their Applications. Front Chem 2020; 8:504. [PMID: 32596211 PMCID: PMC7304259 DOI: 10.3389/fchem.2020.00504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 05/15/2020] [Indexed: 12/15/2022] Open
Abstract
Calix[n]arenes and pillar[n]arenes, which contain repeating units of phenol and methane, are class of synthetic cyclic supramolecules. Their rigid structure, tunable cavity size, flexible functionalization, and rich host-guest properties make them ideal surface modifiers to construct functional hybrid materials. Introduction of the calix[n]arene/pillar[n]arene species to the graphene may bring new interesting or enhanced physicochemical/biological properties by combining their individual characteristics. Reported methods for the surface modification of graphene with calix[n]arene/pillar[n]arene utilize either covalent or non-covalent approaches. This mini-review presents the recent advancements in the functionalization of graphene nanomaterials with calix[n]arene/pillar[n]arene and their applications. At the end, the future outlook and challenges for the continued research of calix[n]arene/pillar[n]arene-functionalized graphene nanohybrids in the development of applied nanoscience are thoroughly discussed.
Collapse
Affiliation(s)
- Qunpeng Duan
- School of Materials and Chemical Engineering, Henan University of Engineering, Zhengzhou, China
| | - Lijie Wang
- School of Materials and Chemical Engineering, Henan University of Engineering, Zhengzhou, China
| | - Fei Wang
- School of Materials and Chemical Engineering, Henan University of Engineering, Zhengzhou, China
| | - Hongsong Zhang
- School of Materials and Chemical Engineering, Henan University of Engineering, Zhengzhou, China
| | - Kui Lu
- School of Materials and Chemical Engineering, Henan University of Engineering, Zhengzhou, China
- School of Chemical Engineering and Food Science, Zhengzhou Institute of Technology, Zhengzhou, China
| |
Collapse
|
18
|
Liang C, Song J, Zhang Y, Guo Y, Deng M, Gao W, Zhang J. Facile Approach to Prepare rGO@Fe 3O 4 Microspheres for the Magnetically Targeted and NIR-responsive Chemo-photothermal Combination Therapy. NANOSCALE RESEARCH LETTERS 2020; 15:86. [PMID: 32303922 PMCID: PMC7165235 DOI: 10.1186/s11671-020-03320-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/05/2020] [Indexed: 05/03/2023]
Abstract
Near-infrared (NIR)-light responsive graphene have been shown exciting effect on cancer photothermal ablation therapy. Herein, we report on the preparation of Fe3O4-decorated hollow graphene microspheres (rGO@Fe3O4) by a facile spray drying and coprecipitation method for the magnetically targeted and NIR-responsive chemo-photothermal combination therapy. The microspheres displayed very high specific surface area (~ 120.7 m2 g-1) and large pore volume (~ 1.012 cm3 g-1), demonstrating distinct advantages for a high loading capacity of DOX (~ 18.43%). NIR triggered photothermal effect of the rGO@Fe3O4 microspheres responded in an on-off manner and induced a high photothermal conversion efficiency. Moreover, The Fe3O4 on the microspheres exhibited an excellent tumor cells targeting ability. The chemo-photothermal treatment based on rGO@Fe3O4/DOX showed superior cytotoxicity towards Hela cells in vitro. Our studies indicated that rGO@Fe3O4/DOX microcapsules have great potential in combined chemo-photothermal cancer treatment.
Collapse
Affiliation(s)
- Chunyong Liang
- Research Institute for Energy Equipment Materials, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science & Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Jiying Song
- Research Institute for Energy Equipment Materials, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science & Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Yongguang Zhang
- Research Institute for Energy Equipment Materials, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science & Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Yaping Guo
- Research Institute for Energy Equipment Materials, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science & Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Meigui Deng
- Hebei Key Laboratory of Functional Polymers, National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Wei Gao
- Key Laboratory of Cancer Prevention and Therapy, Department of Interventional Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Jimin Zhang
- Hebei Key Laboratory of Functional Polymers, National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China.
| |
Collapse
|
19
|
Kumar S, Rahman MM, Yoon S, Mamun Kabir SM, Koh J. Synthesis and characterization of mono-6-deoxy-6-aminopropylamino-β-cyclodextrin polymer functionalized with graphene oxide. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2019.1711124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Santosh Kumar
- Division of Chemical Engineering, Konkuk University, Seoul, South Korea
- Department of Organic and Nano System Engineering, Konkuk University, Seoul, South Korea
| | - Md Morshedur Rahman
- Department of Organic and Nano System Engineering, Konkuk University, Seoul, South Korea
| | - Sanghyun Yoon
- Department of Organic and Nano System Engineering, Konkuk University, Seoul, South Korea
| | - Shekh Md Mamun Kabir
- Department of Wet Processing Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh
| | - Joonseok Koh
- Division of Chemical Engineering, Konkuk University, Seoul, South Korea
- Department of Organic and Nano System Engineering, Konkuk University, Seoul, South Korea
| |
Collapse
|
20
|
On the conformational search of a βCD dendritic derivative: NMR and theoretical calculations working together reveal a donut-like amphiphilic structure. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Yu C, Shen W, Yan J, Zhong M, Zhang J, Li L, Hao Q, Gao F, Tian Y, Huang Y. Growing large-area multilayer graphene sheets on molten cerium via anthracite as carbon source. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2019.107729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
Duan Z, Zhang M, Bian H, Wang Y, Zhu L, Xiang Y, Xia D. Copper(II)-β-cyclodextrin and CuO functionalized graphene oxide composite for fast removal of thiophenic sulfides with high efficiency. Carbohydr Polym 2020; 228:115385. [DOI: 10.1016/j.carbpol.2019.115385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/16/2019] [Accepted: 09/25/2019] [Indexed: 12/16/2022]
|
23
|
Lan Q, Shen H, Li J, Ren C, Hu X, Yang Z. Facile synthesis of novel reduced graphene oxide@polystyrene nanospheres for sensitive label-free electrochemical immunoassay. Chem Commun (Camb) 2020; 56:699-702. [DOI: 10.1039/c9cc07934c] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nanosized reduced graphene oxide@polystyrene nanospheres were first synthesized and further exploited for highly sensitive label-free electrochemical immunoassay applications.
Collapse
Affiliation(s)
- Qingchun Lan
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou University
- Yangzhou 225002
- P. R. China
| | - Huifang Shen
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou University
- Yangzhou 225002
- P. R. China
| | - Juan Li
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou University
- Yangzhou 225002
- P. R. China
| | - Chuanli Ren
- Department of Laboratory Medicine and Clinical Medical College of Yangzhou University
- Subei Peoples’ Hospital of Jiangsu Province
- Yangzhou
- P. R. China
| | - Xiaoya Hu
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou University
- Yangzhou 225002
- P. R. China
| | - Zhanjun Yang
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou University
- Yangzhou 225002
- P. R. China
| |
Collapse
|
24
|
Kasprzak A, Koszytkowska-Stawińska M, Nowicka AM, Buchowicz W, Poplawska M. Supramolecular Interactions between β-Cyclodextrin and the Nucleobase Derivatives of Ferrocene. J Org Chem 2019; 84:15900-15914. [PMID: 31769672 DOI: 10.1021/acs.joc.9b02353] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Novel conjugates of ferrocene with uracil, 5-fluorouracil, tegafur, or acyclovir are reported. Their synthesis involved (i) the azide-alkyne 1,3-dipolar cycloaddition or (ii) the formation of the ester linkage. For the first time, we present an in-depth insight into the supramolecular interactions between β-cyclodextrin and ferrocene-nucleobase derivatives. Spectroscopic and voltammetric analyses performed within this work suggested that the ferrocene or adamantane unit of the conjugates interacted with the β-cyclodextrin's inner cavity. The methods applied for the supramolecular studies included 1H-1H ROESY NMR, 1H NMR titration, Fourier-transform infrared spectroscopy, cyclic voltammetry, fluorescence spectra titration, and 1H DOSY NMR. 1H DOSY NMR was also employed to evaluate the apparent binding constants for all the complexes. The ferrocene-acyclovir conjugate Fc-5 featured the highest apparent binding constant value among all the complexes tested.
Collapse
Affiliation(s)
- Artur Kasprzak
- Faculty of Chemistry , Warsaw University of Technology , Noakowskiego Str. 3 , 00-664 Warsaw , Poland
| | | | - Anna M Nowicka
- Faculty of Chemistry , University of Warsaw , Pasteura Str. 1 , 02-093 Warsaw , Poland
| | - Włodzimierz Buchowicz
- Faculty of Chemistry , Warsaw University of Technology , Noakowskiego Str. 3 , 00-664 Warsaw , Poland
| | - Magdalena Poplawska
- Faculty of Chemistry , Warsaw University of Technology , Noakowskiego Str. 3 , 00-664 Warsaw , Poland
| |
Collapse
|
25
|
Gajare S, Jagadale M, Naikwade A, Bansode P, Patil P, Rashinkar G. An expeditious synthesis of 2,3‐dihydroquinozoline‐4(1
H
)‐ones using graphene‐supported sulfonic acid. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
| | - Megha Jagadale
- Department of ChemistryShivaji University Kolhapur India
| | | | | | - Pradnya Patil
- Department of ChemistryShivaji University Kolhapur India
| | | |
Collapse
|
26
|
Liu Y, Zhang M, Wu Y, Zhang R, Cao Y, Xu X, Chen X, Cai L, Xu Q. Multicolor tunable highly luminescent carbon dots for remote force measurement and white light emitting diodes. Chem Commun (Camb) 2019; 55:12164-12167. [PMID: 31544187 DOI: 10.1039/c9cc05581a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multicolor tunable carbon dots (CDs) are obtained by only altering the reaction solvents in solvothermal treatment. The red CDs (R-CDs) have a quantum yield of 50.8%, the highest reported for nitrogen and sulfur co-doped R-CDs so far. These CDs are developed into fluorescent hydrogels for precise remote force measurement and WLEDs with the CIE color coordinate of (0.31, 0.32).
Collapse
Affiliation(s)
- Ya Liu
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China.
| | - Miaoran Zhang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China.
| | - Yanfen Wu
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China.
| | - Rui Zhang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China. and Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Xiaqing Xu
- Department of Chemistry and Biochemistry, Bates College, Lewiston, Maine, 04240, USA
| | - Xi Chen
- National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing, 100072, China
| | - Lulu Cai
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Quan Xu
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China.
| |
Collapse
|
27
|
Wang Y, Liu T, Jiang J, Chen Y, Cen M, Lu D, Cao L, Sun S, Yao Y. Syntheses of water-soluble acyclic naphthalene oligomers and their applications in water. Dalton Trans 2019; 48:6333-6336. [PMID: 30973550 DOI: 10.1039/c9dt00709a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Water-soluble -CH2- bridged acyclic naphthalene oligomers (WN2 and WN3) were designed and prepared successfully. Interestingly, WN3 can be used in reversible dispersion of carbon nanotubes in water by changing the pH efficiently.
Collapse
Affiliation(s)
- Yang Wang
- College of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P.R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bamburowicz-Klimkowska M, Poplawska M, Grudzinski IP. Nanocomposites as biomolecules delivery agents in nanomedicine. J Nanobiotechnology 2019; 17:48. [PMID: 30943985 PMCID: PMC6448271 DOI: 10.1186/s12951-019-0479-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/18/2019] [Indexed: 02/08/2023] Open
Abstract
Nanoparticles (NPs) are atomic clusters of crystalline or amorphous structure that possess unique physical and chemical properties associated with a size range of between 1 and 100 nm. Their nano-sized dimensions, which are in the same range as those of vital biomolecules, such as antibodies, membrane receptors, nucleic acids, and proteins, allow them to interact with different structures within living organisms. Because of these features, numerous nanoparticles are used in medicine as delivery agents for biomolecules. However, off-target drug delivery can cause serious side effects to normal tissues and organs. Considering this issue, it is essential to develop bioengineering strategies to significantly reduce systemic toxicity and improve therapeutic effect. In contrast to passive delivery, nanosystems enable to obtain enhanced therapeutic efficacy, decrease the possibility of drug resistance, and reduce side effects of "conventional" therapy in cancers. The present review provides an overview of the most recent (mostly last 3 years) achievements related to different biomolecules used to enable targeting capabilities of highly diverse nanoparticles. These include monoclonal antibodies, receptor-specific peptides or proteins, deoxyribonucleic acids, ribonucleic acids, [DNA/RNA] aptamers, and small molecules such as folates, and even vitamins or carbohydrates.
Collapse
Affiliation(s)
| | - Magdalena Poplawska
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3 Str, 00-664, Warsaw, Poland
| | - Ireneusz P Grudzinski
- Department of Applied Toxicology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str, 02-097, Warsaw, Poland.
| |
Collapse
|
29
|
Hajdu I, Angyal J, Szikra D, Kertész I, Malanga M, Fenyvesi É, Szente L, Vecsernyés M, Bácskay I, Váradi J, Fehér P, Ujhelyi Z, Vasvári G, Rusznyák Á, Trencsényi G, Fenyvesi F. Radiochemical synthesis and preclinical evaluation of 68Ga-labeled NODAGA-hydroxypropyl-beta-cyclodextrin (68Ga-NODAGA-HPBCD). Eur J Pharm Sci 2019; 128:202-208. [DOI: 10.1016/j.ejps.2018.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/29/2018] [Accepted: 12/01/2018] [Indexed: 11/29/2022]
|
30
|
Matysiak-Brynda E, Sęk JP, Kasprzak A, Królikowska A, Donten M, Patrzalek M, Poplawska M, Nowicka AM. Reduced graphene oxide doping with nanometer-sized ferrocene moieties - New active material for glucose redox sensors. Biosens Bioelectron 2018; 128:23-31. [PMID: 30616214 DOI: 10.1016/j.bios.2018.12.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 02/08/2023]
Abstract
Herein, we present that the reduced graphene oxide (rGO) doped with nanometer-sized ferrocene moieties is a new, excellent active material for redox sensors. Two distinct approaches were utilized for the modification of rGO. The first method was based on the covalent decoration of rGO via the addition of azomethine ylide generated from the ferrocenecarboxaldehyde oxime. The second approach utilized the adsorption of 1,1'-ferrocenedicarboxylic acid on the graphene sheet via the π-π stacking. The morphology of the synthesized graphene materials was studied by application of microscopic techniques, whereas the Raman data allowed the characteristics of the tested materials in terms of their structural properties. The tested graphene materials doped with ferrocene moieties were used as a bioactive platform for glucose oxidase (GOx) immobilization. The enzyme was immobilized onto the rGO materials in two ways: (i) using a crosslinking agent - glutaraldehyde (GA) and (ii) by formation of the amide bonds between carboxylic groups of rGO-Fc(COOH)2 and amine groups from enzyme. Ferrocene moieties present at the graphene surface play the role of mediator in the electron transfer between the redox center of GOx and the electrode surface. The functionality of the constructed biosensors has been tested on real samples. The results of the recovery rates showed a satisfying degree of accuracy toward determination of glucose concentration. Examination of the potential interfering species has demonstrated favorable sensitivity and selectivity of the designed biosensor for the detection of glucose.
Collapse
Affiliation(s)
- Edyta Matysiak-Brynda
- Faculty of Chemistry, University of Warsaw, Pasteura 1 Str., PL-02-093 Warsaw, Poland.
| | - Jakub P Sęk
- Faculty of Chemistry, University of Warsaw, Pasteura 1 Str., PL-02-093 Warsaw, Poland
| | - Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3 Str., PL-00-664 Warsaw, Poland
| | - Agata Królikowska
- Faculty of Chemistry, University of Warsaw, Pasteura 1 Str., PL-02-093 Warsaw, Poland
| | - Mikolaj Donten
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101 Str., 02-089 Warsaw, Poland
| | - Michał Patrzalek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101 Str., 02-089 Warsaw, Poland
| | - Magdalena Poplawska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3 Str., PL-00-664 Warsaw, Poland
| | - Anna M Nowicka
- Faculty of Chemistry, University of Warsaw, Pasteura 1 Str., PL-02-093 Warsaw, Poland
| |
Collapse
|
31
|
Bu Y, Hu Q, Ke R, Sui Y, Xie X, Wang S. Cell membrane camouflaged magnetic nanoparticles as a biomimetic drug discovery platform. Chem Commun (Camb) 2018; 54:13427-13430. [DOI: 10.1039/c8cc08530g] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A novel biomimetic drug discovery platform was constructed using cell membrane camouflaged magnetic nanoparticles.
Collapse
Affiliation(s)
- Yusi Bu
- School of Pharmacy
- Health Science Center
- Xi’an Jiaotong University
- Xi’an 710061
- China
| | - Qi Hu
- School of Pharmacy
- Health Science Center
- Xi’an Jiaotong University
- Xi’an 710061
- China
| | - Ruifang Ke
- School of Pharmacy
- Health Science Center
- Xi’an Jiaotong University
- Xi’an 710061
- China
| | - Yue Sui
- School of Pharmacy
- Health Science Center
- Xi’an Jiaotong University
- Xi’an 710061
- China
| | - Xiaoyu Xie
- School of Pharmacy
- Health Science Center
- Xi’an Jiaotong University
- Xi’an 710061
- China
| | - Sicen Wang
- School of Pharmacy
- Health Science Center
- Xi’an Jiaotong University
- Xi’an 710061
- China
| |
Collapse
|
32
|
Huang Q, Li M, Wang L, Yuan H, Wang M, Wu Y, Li T. Synthesis of novel cyclodextrin-modified reduced graphene oxide composites by a simple hydrothermal method. RSC Adv 2018; 8:37623-37630. [PMID: 35558627 PMCID: PMC9089399 DOI: 10.1039/c8ra07807f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/19/2018] [Indexed: 11/21/2022] Open
Abstract
Cyclodextrin (β-CD)-functionalized reduced graphene oxide was successfully synthesized by a simple hydrothermal method, followed by conjugating with polyethylene glycol (PEG) and folic acid (FA). Microscopic and spectroscopic techniques were used to characterize the nanocomposites. Photothermal experiments showed that β-CD-functionalized reduced graphene oxide exhibited higher photothermal conversion efficiency in the near infrared region than reduced graphene oxide functionalized with other molecules under the same conditions. Cytotoxicity experiments indicated that rGO@CD@PEG@FA possessed good biocompatibility even at high concentration. When doxorubicin (DOX) was loaded on the rGO@CD@PEG@FA nanocomposite, it showed the stimulative effect of heat, pH response, and sustained drug release. Cytotoxicity experiments also confirmed the targeted effect and high efficiency of the combined therapy. The findings of the present study provide an ideal drug delivery system for malignant cancer therapy due to the advanced synergistic chemo-photothermal targeted therapy and good drug release properties. The rGO@CD@PEG@FA nanocomposite showed the stimulative effect of heat, pH response, and sustained drug release for cancer therapy![]()
Collapse
Affiliation(s)
- Qingli Huang
- Department of Pathology
- Laboratory of Clinical and Experimental Pathology
- Xuzhou Medical University
- Xuzhou
- China
| | - MingYan Li
- Department of Pathology
- Laboratory of Clinical and Experimental Pathology
- Xuzhou Medical University
- Xuzhou
- China
| | - LiLi Wang
- Research Facility Center for Morphology of Xuzhou Medical University
- Xuzhou
- China
| | - Honghua Yuan
- Research Facility Center for Morphology of Xuzhou Medical University
- Xuzhou
- China
| | - Meng Wang
- Research Facility Center for Morphology of Xuzhou Medical University
- Xuzhou
- China
| | - Yongping Wu
- Department of Pathology
- Laboratory of Clinical and Experimental Pathology
- Xuzhou Medical University
- Xuzhou
- China
| | - Ting Li
- Research Facility Center for Morphology of Xuzhou Medical University
- Xuzhou
- China
| |
Collapse
|