1
|
Tsekrekou M, Giannakou M, Papanikolopoulou K, Skretas G. Protein aggregation and therapeutic strategies in SOD1- and TDP-43- linked ALS. Front Mol Biosci 2024; 11:1383453. [PMID: 38855322 PMCID: PMC11157337 DOI: 10.3389/fmolb.2024.1383453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/02/2024] [Indexed: 06/11/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with severe socio-economic impact. A hallmark of ALS pathology is the presence of aberrant cytoplasmic inclusions composed of misfolded and aggregated proteins, including both wild-type and mutant forms. This review highlights the critical role of misfolded protein species in ALS pathogenesis, particularly focusing on Cu/Zn superoxide dismutase (SOD1) and TAR DNA-binding protein 43 (TDP-43), and emphasizes the urgent need for innovative therapeutic strategies targeting these misfolded proteins directly. Despite significant advancements in understanding ALS mechanisms, the disease remains incurable, with current treatments offering limited clinical benefits. Through a comprehensive analysis, the review focuses on the direct modulation of the misfolded proteins and presents recent discoveries in small molecules and peptides that inhibit SOD1 and TDP-43 aggregation, underscoring their potential as effective treatments to modify disease progression and improve clinical outcomes.
Collapse
Affiliation(s)
- Maria Tsekrekou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Maria Giannakou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Papanikolopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
- ResQ Biotech, Patras Science Park, Rio, Greece
| | - Georgios Skretas
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- ResQ Biotech, Patras Science Park, Rio, Greece
- Institute for Bio-innovation, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
| |
Collapse
|
2
|
Li T, Hu D, Huang Y, Zhou Y, Zhang JQ, Zhang C, Zhang Y, Hou Y, Ren H. Light-Driven Access to Selenium-Substituted Thiazole-2-imine Derivatives. J Org Chem 2024; 89:5328-5336. [PMID: 38595055 DOI: 10.1021/acs.joc.3c02698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The thiazole-2-imine derivatives with interesting pharmacological activities have attracted significant attention. However, previously reported synthesis strategies usually suffered from some drawbacks, such as the use of metals/additive and harsh reaction conditions. Herein, we developed a metal- and photoinitiator-free photocatalytic strategy for the synthesis of various selenium-substituted thiazole-2-imine derivatives for the first time. The reaction displayed mild reaction conditions, simple operation, a broad substrate scope (37 examples), and good to excellent yields.
Collapse
Affiliation(s)
- Tangle Li
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Dandan Hu
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Yiwen Huang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Yu Zhou
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Jun-Qi Zhang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Chun Zhang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Yili Zhang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Yanan Hou
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Hongjun Ren
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, China
| |
Collapse
|
3
|
Hou W, Zhang Y, Huang F, Chen W, Gu Y, Wang Y, Pang J, Dong H, Pan K, Zhang S, Ma P, Xu H. Bioinspired Selenium-Nitrogen Exchange (SeNEx) Click Chemistry Suitable for Nanomole-Scale Medicinal Chemistry and Bioconjugation. Angew Chem Int Ed Engl 2024; 63:e202318534. [PMID: 38343199 DOI: 10.1002/anie.202318534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Click chemistry is a powerful molecular assembly strategy for rapid functional discovery. The development of click reactions with new connecting linkage is of great importance for expanding the click chemistry toolbox. We report the first selenium-nitrogen exchange (SeNEx) click reaction between benzoselenazolones and terminal alkynes (Se-N to Se-C), which is inspired by the biochemical SeNEx between Ebselen and cysteine (Cys) residue (Se-N to Se-S). The formed selenoalkyne connection is readily elaborated, thus endowing this chemistry with multidimensional molecular diversity. Besides, this reaction is modular, predictable, and high-yielding, features fast kinetics (k2≥14.43 M-1 s-1), excellent functional group compatibility, and works well at miniaturization (nanomole-scale), opening up many interesting opportunities for organo-Se synthesis and bioconjugation, as exemplified by sequential click chemistry (coupled with ruthenium-catalyzed azide-alkyne cycloaddition (RuAAC) and sulfur-fluoride exchange (SuFEx)), selenomacrocycle synthesis, nanomole-scale synthesis of Se-containing natural product library and DNA-encoded library (DEL), late-stage peptide modification and ligation, and multiple functionalization of proteins. These results indicated that SeNEx is a useful strategy for new click chemistry developments, and the established SeNEx chemistry will serve as a transformative platform in multidisciplinary fields such as synthetic chemistry, material science, chemical biology, medical chemistry, and drug discovery.
Collapse
Affiliation(s)
- Wei Hou
- College of Pharmaceutical Science and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yiyuan Zhang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Fuchao Huang
- College of Pharmaceutical Science and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wanting Chen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Yuang Gu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Yan Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Jiacheng Pang
- College of Pharmaceutical Science and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hewei Dong
- College of Pharmaceutical Science and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Kangyin Pan
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Shuning Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, 201210, Shanghai, China
| | - Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, 201210, Shanghai, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| |
Collapse
|
4
|
Jiang Z, Tang Y, Lu J, Xu C, Niu Y, Zhang G, Yang Y, Cheng X, Tong L, Chen Z, Tang B. Identification of sulfhydryl-containing proteins and further evaluation of the selenium-tagged redox homeostasis-regulating proteins. Redox Biol 2024; 69:102969. [PMID: 38064764 PMCID: PMC10755098 DOI: 10.1016/j.redox.2023.102969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 01/01/2024] Open
Abstract
Chemoproteomic profiling of sulfhydryl-containing proteins has consistently been an attractive research hotspot. However, there remains a dearth of probes that are specifically designed for sulfhydryl-containing proteins, possessing sufficient reactivity, specificity, distinctive isotopic signature, as well as efficient labeling and evaluation capabilities for proteins implicated in the regulation of redox homeostasis. Here, the specific selenium-containing probes (Se-probes) in this work displayed high specificity and reactivity toward cysteine thiols on small molecules, peptides and purified proteins and showed very good competitive effect of proteins labeling in gel-ABPP. We identified more than 6000 candidate proteins. In TOP-ABPP, we investigated the peptide labeled by Se-probes, which revealed a distinct isotopic envelope pattern of selenium in both the primary and secondary mass spectra. This unique pattern can provide compelling evidence for identifying redox regulatory proteins and other target peptides. Furthermore, our examiation of post-translational modification (PTMs) of the cysteine site residues showed that oxidation PTMs was predominantly observed. We anticipate that Se-probes will enable broader and deeper proteome-wide profiling of sulfhydryl-containing proteins, provide an ideal tool for focusing on proteins that regulate redox homeostasis and advance the development of innovative selenium-based pharmaceuticals.
Collapse
Affiliation(s)
- Zhongyao Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Minis-try of Education, Institute of Molecular and Nano Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan, 250014, PR China
| | - Yue Tang
- Department of Emergency Medicine, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, PR China.
| | - Jun Lu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Minis-try of Education, Institute of Molecular and Nano Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan, 250014, PR China
| | - Chang Xu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Minis-try of Education, Institute of Molecular and Nano Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan, 250014, PR China
| | - Yaxin Niu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Minis-try of Education, Institute of Molecular and Nano Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan, 250014, PR China
| | - Guanglu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Minis-try of Education, Institute of Molecular and Nano Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan, 250014, PR China
| | - Yanmei Yang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Minis-try of Education, Institute of Molecular and Nano Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan, 250014, PR China
| | - Xiufen Cheng
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Minis-try of Education, Institute of Molecular and Nano Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan, 250014, PR China
| | - Lili Tong
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Minis-try of Education, Institute of Molecular and Nano Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan, 250014, PR China
| | - Zhenzhen Chen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Minis-try of Education, Institute of Molecular and Nano Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan, 250014, PR China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Minis-try of Education, Institute of Molecular and Nano Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan, 250014, PR China; Laoshan Laboratory, Qingdao, 266200, PR China.
| |
Collapse
|
5
|
Geri A, Massai L, Novinec M, Turel I, Messori L. Reactions of Medicinal Gold Compounds with Cathepsin B Explored through Electrospray Mass Spectrometry Measurements. Chempluschem 2024; 89:e202300321. [PMID: 37930642 DOI: 10.1002/cplu.202300321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Medicinal gold compounds, a novel class of potential anticancer drugs, are believed to produce their pharmacological effects mainly through direct gold binding to protein targets at the level of solvent exposed cysteine (or selenocysteine) residues. We have explored therein the reactions of a panel of seven representative gold compounds with the cysteine protease cathepsin B according to an established ESI MS approach. Detailed information on the mode of protein binding of these gold compounds is gained; notably, quite distinct patterns of cathepsin B metalation have emerged from these studies. It is shown that panel gold compounds interact preferentially, often exclusively, with the free cysteine located in the active site of the enzyme.
Collapse
Affiliation(s)
- Andrea Geri
- Department of Chemistry "Ugo Schiff", Università di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Lara Massai
- Department of Chemistry "Ugo Schiff", Università di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Marko Novinec
- Faculty of Chemistry and Chemical Technology, Department of Chemistry and Biochemistry, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, Department of Chemistry and Biochemistry, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Luigi Messori
- Department of Chemistry "Ugo Schiff", Università di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
6
|
Tabana Y, Lin CH, Babu D, Siva‐Piragasam R, Ponich AA, Moon TC, Siraki AG, Elahi S, Fahlman R, West FG, Barakat K. Proof of concept: Pull down assay using bovine serum albumin and an immunomodulator small molecule. Heliyon 2023; 9:e21408. [PMID: 38027705 PMCID: PMC10651465 DOI: 10.1016/j.heliyon.2023.e21408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
In the past decade, there has been increasing interest in use of small molecules for immunomodulation. The affinity-based pull-down purification is an essential tool for target identification of small molecules and drug discovery. This study presents our recent efforts to investigate the cellular target(s) of Compound A, a small molecule with demonstrated immunomodulatory properties in human peripheral blood mononuclear cells (PBMCs). While we have previously observed the immunomodulatory activity of Compound A in PBMCs, the specific molecular targets underlying its effects remains elusive. To address this challenge, we synthesized a trifluoromethyl phenyl diazirine (TPD)-bearing trifunctional Probe 1 based on the chemical structure of Compound A, which could be used in a pull-down assay to efficiently bind to putative cellular targets via photoaffinity labelling. In this report, we utilized bovine serum albumin (BSA) as a model protein to establish a proof-of-concept in order to assess the suitability of Probe 1 for binding to an endogenous target. By the successful synthesis of Probe 1 and demonstrating the efficient binding of Probe 1 to BSA, we propose that this method can be used as a tool for further identification of potential protein targets of small molecules in living cells. Our findings provide a valuable starting point for further investigations into the molecular mechanisms underlying the immunomodulatory effects of Compound A.
Collapse
Affiliation(s)
- Yasser Tabana
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2H1, Canada
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Chih-Hsuan Lin
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Dinesh Babu
- Li Ka Shing Applied Virology Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | | | - Ashley A. Ponich
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Tae Chul Moon
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2H1, Canada
| | - Arno G. Siraki
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2H1, Canada
| | - Shokrollah Elahi
- School of Dentistry, University of Alberta, Edmonton, AB, T6G 1C9, Canada
- Department of Oncology, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Richard Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Frederick G. West
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
- Department of Oncology, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2H1, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| |
Collapse
|
7
|
Liu W, Wang J, Wang S, Yue K, Hu Y, Liu X, Wang L, Wan S, Xu X. Discovery of new non-covalent and covalent inhibitors targeting SARS-CoV-2 papain-like protease and main protease. Bioorg Chem 2023; 140:106830. [PMID: 37683544 DOI: 10.1016/j.bioorg.2023.106830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/04/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Global coronavirus disease 2019 (COVID-19) pandemic still threatens human health and public safety, and the development of effective antiviral agent is urgently needed. The SARS-CoV-2 main protease (Mpro) and papain-like protease (PLpro) are vital proteins in viral replication and promising therapeutic targets. Additionally, PLpro also modulates host immune response by cleaving ubiquitin and interferon-stimulated gene product 15 (ISG15) from ISGylated host proteins. In this report, we identified [1,2]selenazolo[5,4-c]pyridin-3(2H)-one and benzo[d]isothiazol-3(2H)-one as attractive scaffolds of PLpro and Mpro inhibitors. The representative compounds 6c and 7e exhibited excellent PLpro inhibition with percent inhibition of 42.9% and 44.9% at 50 nM, respectively. The preliminary enzyme kinetics experiment and fluorescent labelling experiment results determined that 6c was identified as a covalent PLpro inhibitor, while 7e was a non-covalent inhibitor. Molecular docking and dynamics simulations revealed that 6c and 7e bound to Zn-finger domain of PLpro. Compounds 6c and 7e were also identified to potent Mpro inhibitors, and they exhibited potent antiviral activities in SARS-CoV-2 infected Vero E6 cells, with EC50 value of 3.9 μM and 7.4 μM, respectively. In addition, the rat liver homogenate half-life of 6c and 7e exceeded 24 h. These findings suggest that 6c and 7e are promising led compounds for further development of PLpro/Mpro dual-target antiviral drugs.
Collapse
Affiliation(s)
- Wandong Liu
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao, China
| | - Juan Wang
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao, China
| | - Suyun Wang
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China
| | - Kairui Yue
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao, China
| | - Yu Hu
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao, China
| | - Xiaochun Liu
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao, China
| | - Lihao Wang
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao, China
| | - Shengbiao Wan
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao, China.
| | - Ximing Xu
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao, China.
| |
Collapse
|
8
|
Wallin S, Singh S, Borgstahl GEO, Natarajan A. Design, synthesis, and evaluation of a mitoxantrone probe (MXP) for biological studies. Bioorg Med Chem Lett 2023; 94:129465. [PMID: 37669721 PMCID: PMC10528225 DOI: 10.1016/j.bmcl.2023.129465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023]
Abstract
Mitoxantrone (MX) is a robust chemotherapeutic with well-characterized applications in treating certain leukemias and advanced breast and prostate cancers. The canonical mechanism of action associated with MX is its ability to intercalate DNA and inhibit topoisomerase II, giving it the designation of a topoisomerase II poison. Years after FDA approval, investigations have unveiled novel protein-binding partners, such as methyl-CpG-binding domain protein (MBD2), PIM1 serine/threonine kinase, RAD52, and others that may contribute to the therapeutic profile of MX. Moreover, recent proteomic studies have revealed MX's ability to modulate protein expression, illuminating the complex cellular interactions of MX. Although mechanistically relevant, the differential expression across the proteome does not address the direct interaction with potential binding partners. Identification and characterization of these MX-binding cellular partners will provide the molecular basis for the alternate mechanisms that influence MX's cytotoxicity. Here, we describe the design and synthesis of a MX-biotin probe (MXP) and negative control (MXP-NC) that can be used to define MX's cellular targets and expand our understanding of the proteome-wide profile for MX. In proof of concept studies, we used MXP to successfully isolate a recently identified protein-binding partner of MX, RAD52, in a cell lysate pulldown with streptavidin beads and western blotting.
Collapse
Affiliation(s)
- Savanna Wallin
- The Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Sarbjit Singh
- The Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Gloria E O Borgstahl
- The Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, United States.
| | - Amarnath Natarajan
- The Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, United States.
| |
Collapse
|
9
|
Porta EO, Steel PG. Activity-based protein profiling: A graphical review. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2023; 5:100164. [PMID: 37692766 PMCID: PMC10484978 DOI: 10.1016/j.crphar.2023.100164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/06/2023] [Accepted: 08/23/2023] [Indexed: 09/12/2023] Open
Abstract
Activity-based protein profiling (ABPP) is a chemoproteomic technology that employs small chemical probes to directly interrogate protein function within complex proteomes. Since its initial application almost 25 years ago, ABPP has proven to be a powerful and versatile tool for addressing numerous challenges in drug discovery, including the development of highly selective small-molecule inhibitors, the discovery of new therapeutic targets, and the illumination of target proteins in tissues and organisms. This graphical review provides an overview of the rapid evolution of ABPP strategies, highlighting the versatility of the approach with selected examples of its successful application.
Collapse
Affiliation(s)
| | - Patrick G. Steel
- Department of Chemistry, Durham University, Durham, DH1 3LE, United Kingdom
| |
Collapse
|
10
|
Ghazaiean M, Aliasgharian A, Karami H, Darvishi-Khezri H. Ebselen: A promising therapy protecting cardiomyocytes from excess iron in iron-overloaded thalassemia patients. Open Med (Wars) 2023; 18:20230733. [PMID: 37465348 PMCID: PMC10350894 DOI: 10.1515/med-2023-0733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/04/2023] [Accepted: 05/14/2023] [Indexed: 07/20/2023] Open
Abstract
Iron-overload-associated cardiomyopathy has been one of the primary causes of mortality in thalassemia patients with iron burden. There is growing evidence citing the beneficial effects of ebselen as an antioxidant selectively blocking the divalent metal transporter 1 (DMT-1) to deter iron ingress into cardiomyocytes, raising internets in viewing this component in this population in order to treat and even prevent cardiomyopathy occurring from iron surplus. In this article, we reviewed the potential advantageous effects of ebselen in thalassemia patients who suffer from iron excess, susceptible to cardiomyopathy induced by iron overload. A systematic search in several databases, including PubMed, Scopus, and Web of Science, was conducted to explore the role of ebselen in controlling iron-overload-related cardiomyopathy in thalassemia patients by the keywords of Ebselen AND iron. The inclusion criteria were English-written preclinical and clinical studies investigating the efficacy and side effects of ebselen in an iron-overload context. After searching the databases, 44 articles were found. Next, of 19 published articles, 3 were included in this article. After reviewing the references of the included studies, no articles were added. In conclusion ebselen can be a promising adjuvant therapy in patients with thalassemia alongside the standard treatment with iron chelators, particularly in severe cases with cardiomyopathy, due to falling iron inflow by inhibiting DMT-1 and increasing ferroportin-1 expression and antioxidant properties. However, clinical studies need to be carried out to reach a definite conclusion.
Collapse
Affiliation(s)
- Mobin Ghazaiean
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Aily Aliasgharian
- Thalassemia Research Center (TRC), Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Karami
- Department of Pediatric, School of Medicine, Thalassemia Research Center (TRC), Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hadi Darvishi-Khezri
- Thalassemia Research Center (TRC), Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
11
|
Niu Y, Chen Z, Jiang Z, Yang Y, Liu G, Cheng X, Jiang Z, Zhang G, Tong L, Tang B. Detection of Cysteine Sulfenic Acid on E. coli Proteins with a Biotin-Benzoboroxole Probe. ACS Chem Biol 2023; 18:1351-1359. [PMID: 37260364 DOI: 10.1021/acschembio.3c00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
S-sulfenylation of cysteine residues on proteins can effectively change protein structures and accordingly regulate their functions in vivo. Investigation of S-sulfenylation in different biological environments is thus vital for a systematic understanding of cellular redox regulation. In this work, a functional probe, biotin-benzoboroxole (Bio-ben), was designed for the detection of cysteine sulfenic acid (Cys-SOH). The performance of Bio-ben was characterized by small-molecule sulfenic acid, protein models, and proteome tests via mass spectra and western blotting. The results showed that Bio-ben was validated for cysteine sulfenic acid on proteins with good capture efficiency even at low concentrations. Compared with commonly used probes such as dimedone, the current probe has significantly shortened labeling time and exhibited comparable sensitivity. The proposed method provides a new approach for exploring S-sulfenylation in the oxidative modification of proteins and is helpful for related biological and clinical applications.
Collapse
Affiliation(s)
- Yaxin Niu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Zhenzhen Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Zhongyao Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Yanmei Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Guangzhao Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Xiufen Cheng
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Zhenhao Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Guanglu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Lili Tong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| |
Collapse
|
12
|
Yang SQ, Zhang LX, Ge YJ, Zhang JW, Hu JX, Shen CY, Lu AP, Hou TJ, Cao DS. In-silico target prediction by ensemble chemogenomic model based on multi-scale information of chemical structures and protein sequences. J Cheminform 2023; 15:48. [PMID: 37088813 PMCID: PMC10123967 DOI: 10.1186/s13321-023-00720-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 04/08/2023] [Indexed: 04/25/2023] Open
Abstract
Identification and validation of bioactive small-molecule targets is a significant challenge in drug discovery. In recent years, various in-silico approaches have been proposed to expedite time- and resource-consuming experiments for target detection. Herein, we developed several chemogenomic models for target prediction based on multi-scale information of chemical structures and protein sequences. By combining the information of a compound with multiple protein targets together and putting these compound-target pairs into a well-established model, the scores to indicate whether there are interactions between compounds and targets can be derived, and thus a target prediction task can be completed by sorting the outputted scores. To improve the prediction performance, we constructed several chemogenomic models using multi-scale information of chemical structures and protein sequences, and the ensemble model with the best performance was used as our final model. The model was validated by various strategies and external datasets and the promising target prediction capability of the model, i.e., the fraction of known targets identified in the top-k (1 to 10) list of the potential target candidates suggested by the model, was confirmed. Compared with multiple state-of-art target prediction methods, our model showed equivalent or better predictive ability in terms of the top-k predictions. It is expected that our method can be utilized as a powerful computational tool to narrow down the potential targets for experimental testing.
Collapse
Affiliation(s)
- Su-Qing Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, People's Republic of China
- Department of Pharmacy, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Liu-Xia Zhang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, People's Republic of China
| | - You-Jin Ge
- Department of Pharmacy, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Jin-Wei Zhang
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Jian-Xin Hu
- Department of Pharmacy, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Cheng-Ying Shen
- Department of Pharmacy, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Ai-Ping Lu
- Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, People's Republic of China
| | - Ting-Jun Hou
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China.
| | - Dong-Sheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, People's Republic of China.
- Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, People's Republic of China.
| |
Collapse
|
13
|
Wallin S, Singh S, Borgstahl GEO, Natarajan A. Design, synthesis, and evaluation of a mitoxantrone probe (MXP) for biological studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536471. [PMID: 37090570 PMCID: PMC10120692 DOI: 10.1101/2023.04.11.536471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Mitoxantrone (MX) is a robust chemotherapeutic with well-characterized applications in treating certain leukemias and advanced breast and prostate cancers. The canonical mechanism of action associated with MX is its ability to intercalate DNA and inhibit topoisomerase II, giving it the designation of a topoisomerase II poison. Years after FDA approval, investigations have unveiled novel protein-binding partners, such as methyl-CpG-binding domain protein (MBD2), PIM1 serine/threonine kinase, RAD52, and others that may contribute to the therapeutic profile of MX. Moreover, recent proteomic studies have revealed MX's ability to modulate protein expression, illuminating the complex cellular interactions of MX. Although mechanistically relevant, the differential expression across the proteome does not address the direct interaction with potential binding partners. Identification and characterization of these MX-binding cellular partners will provide the molecular basis for the alternate mechanisms that influence MX's cytotoxicity. Here, we describe the design and synthesis of a MX-biotin probe (MXP) and negative control (MXP-NC) that can be used to define MX's cellular targets and expand our understanding of the proteome-wide profile for MX. In proof of concept studies, we used MXP to successfully isolate a recently identified protein-binding partner of MX, RAD52, in a cell lysate pulldown with streptavidin beads and western blotting. Graphical abstract Draft Highlights An 8-step synthesis was used to generate a biotinylated-mitoxantrone probe (MXP).A pulldown of MXP demonstrated selectivity for RAD52, but not Replication Protein A.Western blot confirmed the identity of the isolated protein, RAD52.
Collapse
|
14
|
Cheng XF, Wang N, Jiang Z, Chen Z, Niu Y, Tong L, Yu T, Tang B. Quantitative Chemoproteomic Profiling of Targets of Au(I) Complexes by Competitive Activity-Based Protein Profiling. Bioconjug Chem 2022; 33:1131-1137. [PMID: 35576584 DOI: 10.1021/acs.bioconjchem.2c00080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Owing to the encouraging pharmacological action and acceptable toxicity profile, Au(I) complexes have attracted growing interest in the application of disease treatment. In order to investigate their potential target proteins and related bioinformation, herein, we screened four Au(I) complexes and explored the binding proteins utilizing a competitive activity-based protein profiling (ABPP) strategy, including identification experiments and reactivity classification experiments, which offers a simple and robust method to identify the target proteins of Au(I) complexes. We quantified the target proteins of the four Au(I) complexes and found that most of proteins were associated with cancer. In addition, the newly Au(I)-binding proteins and biological gold-protein interaction pathways were exhibited. Furthermore, we estimated the correlation between target proteins of Au(I) complexes and various cancers, which will promote the development of the gold anticancer drugs.
Collapse
Affiliation(s)
- Xiu-Fen Cheng
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Nan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Zhongyao Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Zhenzhen Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Yaxin Niu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Lili Tong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Ting Yu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| |
Collapse
|
15
|
Hou W, Dong H, Zhang X, Wang Y, Su L, Xu H. Selenium as an emerging versatile player in heterocycles and natural products modification. Drug Discov Today 2022; 27:2268-2277. [PMID: 35390546 DOI: 10.1016/j.drudis.2022.03.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/23/2022] [Accepted: 03/30/2022] [Indexed: 12/20/2022]
Abstract
The diverse pharmacological activities of organoselenium compounds are closely correlated to their ability to scavenge and induce reactive oxygen species (ROS), their intrinsic oxidative properties, and their Se(0) release property. The incorporation of selenium into small molecules, and particularly into heterocycles and natural products, has shown great potential in altering the potency and selectivity of these molecules. Therefore, selenium will play an important role in drug discovery in the near future. We summarize how different organoselenium species affect cellular oxidative stress levels, and try to correlate the structural properties of selenium-containing heterocycles and natural product derivatives to their biological activities and therapeutic applications. We also provide some information to guide the rational design of selenium-containing drugs.
Collapse
Affiliation(s)
- Wei Hou
- College of Pharmaceutical Science and Institute of Drug Development and Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Hewei Dong
- College of Pharmaceutical Science and Institute of Drug Development and Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiang Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China.
| | - Yan Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Lin Su
- Hangzhou Minsheng Institutes for Pharma Research, Hangzhou 311121, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
16
|
Hou W, Xu H. Incorporating Selenium into Heterocycles and Natural Products─From Chemical Properties to Pharmacological Activities. J Med Chem 2022; 65:4436-4456. [PMID: 35244394 DOI: 10.1021/acs.jmedchem.1c01859] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Selenium (Se)-containing compounds have emerged as potential therapeutic agents for the treatment of a range of diseases. Through tremendous effort, considerable knowledge has been acquired to understand the complex chemical properties and biological activities of selenium, especially after its incorporation into bioactive molecules. From this perspective, we compiled extensive literature evidence to summarize and critically discuss the relationship between the pharmacological activities and chemical properties of selenium compounds and the strategic incorporation of selenium into organic molecules, especially bioactive heterocycles and natural products. We also provide perspectives regarding the challenges in selenium-based medicinal chemistry and future research directions.
Collapse
Affiliation(s)
- Wei Hou
- College of Pharmaceutical Science and Institute of Drug Development and Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
17
|
Rando HM, Wellhausen N, Ghosh S, Lee AJ, Dattoli AA, Hu F, Byrd JB, Rafizadeh DN, Lordan R, Qi Y, Sun Y, Brueffer C, Field JM, Ben Guebila M, Jadavji NM, Skelly AN, Ramsundar B, Wang J, Goel RR, Park Y, Boca SM, Gitter A, Greene CS. Identification and Development of Therapeutics for COVID-19. mSystems 2021; 6:e0023321. [PMID: 34726496 PMCID: PMC8562484 DOI: 10.1128/msystems.00233-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
After emerging in China in late 2019, the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread worldwide, and as of mid-2021, it remains a significant threat globally. Only a few coronaviruses are known to infect humans, and only two cause infections similar in severity to SARS-CoV-2: Severe acute respiratory syndrome-related coronavirus, a species closely related to SARS-CoV-2 that emerged in 2002, and Middle East respiratory syndrome-related coronavirus, which emerged in 2012. Unlike the current pandemic, previous epidemics were controlled rapidly through public health measures, but the body of research investigating severe acute respiratory syndrome and Middle East respiratory syndrome has proven valuable for identifying approaches to treating and preventing novel coronavirus disease 2019 (COVID-19). Building on this research, the medical and scientific communities have responded rapidly to the COVID-19 crisis and identified many candidate therapeutics. The approaches used to identify candidates fall into four main categories: adaptation of clinical approaches to diseases with related pathologies, adaptation based on virological properties, adaptation based on host response, and data-driven identification (ID) of candidates based on physical properties or on pharmacological compendia. To date, a small number of therapeutics have already been authorized by regulatory agencies such as the Food and Drug Administration (FDA), while most remain under investigation. The scale of the COVID-19 crisis offers a rare opportunity to collect data on the effects of candidate therapeutics. This information provides insight not only into the management of coronavirus diseases but also into the relative success of different approaches to identifying candidate therapeutics against an emerging disease. IMPORTANCE The COVID-19 pandemic is a rapidly evolving crisis. With the worldwide scientific community shifting focus onto the SARS-CoV-2 virus and COVID-19, a large number of possible pharmaceutical approaches for treatment and prevention have been proposed. What was known about each of these potential interventions evolved rapidly throughout 2020 and 2021. This fast-paced area of research provides important insight into how the ongoing pandemic can be managed and also demonstrates the power of interdisciplinary collaboration to rapidly understand a virus and match its characteristics with existing or novel pharmaceuticals. As illustrated by the continued threat of viral epidemics during the current millennium, a rapid and strategic response to emerging viral threats can save lives. In this review, we explore how different modes of identifying candidate therapeutics have borne out during COVID-19.
Collapse
Affiliation(s)
- Halie M. Rando
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
- Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Nils Wellhausen
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Soumita Ghosh
- Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alexandra J. Lee
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anna Ada Dattoli
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fengling Hu
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James Brian Byrd
- University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Diane N. Rafizadeh
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ronan Lordan
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yanjun Qi
- Department of Computer Science, University of Virginia, Charlottesville, Virginia, USA
| | - Yuchen Sun
- Department of Computer Science, University of Virginia, Charlottesville, Virginia, USA
| | | | - Jeffrey M. Field
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marouen Ben Guebila
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Nafisa M. Jadavji
- Biomedical Science, Midwestern University, Glendale, Arizona, USA
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Ashwin N. Skelly
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Jinhui Wang
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rishi Raj Goel
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - YoSon Park
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - COVID-19 Review Consortium
BansalVikasBartonJohn P.BocaSimina M.BoerckelJoel D.BruefferChristianByrdJames BrianCaponeStephenDasShiktaDattoliAnna AdaDziakJohn J.FieldJeffrey M.GhoshSoumitaGitterAnthonyGoelRishi RajGreeneCasey S.GuebilaMarouen BenHimmelsteinDaniel S.HuFenglingJadavjiNafisa M.KamilJeremy P.KnyazevSergeyKollaLikhithaLeeAlexandra J.LordanRonanLubianaTiagoLukanTemitayoMacLeanAdam L.MaiDavidMangulSergheiManheimDavidMcGowanLucy D’AgostinoNaikAmrutaParkYoSonPerrinDimitriQiYanjunRafizadehDiane N.RamsundarBharathRandoHalie M.RaySandipanRobsonMichael P.RubinettiVincentSellElizabethShinholsterLamonicaSkellyAshwin N.SunYuchenSunYushaSzetoGregory L.VelazquezRyanWangJinhuiWellhausenNils
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
- Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado, USA
- Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- University of Michigan School of Medicine, Ann Arbor, Michigan, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Computer Science, University of Virginia, Charlottesville, Virginia, USA
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA
- Biomedical Science, Midwestern University, Glendale, Arizona, USA
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- The DeepChem Project
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, DC, USA
- Early Biometrics & Statistical Innovation, Data Science & Artificial Intelligence, R & D, AstraZeneca, Gaithersburg, Maryland, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Philadelphia, Pennsylvania, USA
| | - Simina M. Boca
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, DC, USA
- Early Biometrics & Statistical Innovation, Data Science & Artificial Intelligence, R & D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Anthony Gitter
- Department of Biostatistics and Medical Informatics, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Casey S. Greene
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
- Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Philadelphia, Pennsylvania, USA
| |
Collapse
|
18
|
Yang Z, Zheng Y, Tursumamat N, Zhu M. Synthesis of 3'-O-Alkyl Homologues and a Biotin Probe of Isorhamnetin and Evaluation of Cytotoxic Efficacy on Cancer Cells. Chem Biodivers 2021; 18:e2100301. [PMID: 34561940 DOI: 10.1002/cbdv.202100301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/21/2021] [Indexed: 11/09/2022]
Abstract
Isorhamnetin is a natural flavonoid which shows a variety of biological activities such as antioxidant, anti-inflammatory and antitumor. In order to identify the cellular binding protein of isorhamnetin as potential anti-cancer target, we first synthesized 3'-O-substituted quercetin as isorhamnetin homologues and evaluated the growth inhibitory activity of these derivatives on breast, colon and prostate cancer cell lines. The preliminary results showed that the 3'-O modification did not affect the cytotoxic activity of the scaffold. Analysis of the co-crystal structure and the docking pose of isorhamnetin with reported binding protein of isorhamnetin or quercetin indicated the 3'-O-substitution groups located outside of the binding pocket, which is in accordance with activity of 3'-O derivatives. Then a biotin conjugate of isorhamnetin with a tetraethylene glycol (PEG)4 linker at the 3' position was synthesized and the resulting probe retained the anti-proliferative activity on cancer cell lines, while the cellular fluorescence analysis showed the distribution of probe inside the cells which indicated the probe had limited cell permeability. Finally, pull down assay both in situ inside cells and in the cell lysates indicated the isorhamnetin biotin probe was capable of protein labeling in cell lysates. These findings provide the isorhamnetin 3'-O-biotin probe as a tool to reveal the target proteins of isorhamnetin.
Collapse
Affiliation(s)
- Zhuojin Yang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Yi Zheng
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Nafisa Tursumamat
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Mingyan Zhu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| |
Collapse
|
19
|
Bian Y, Hou W, Chen X, Fang J, Xu N, Ruan BH. Glutamate Dehydrogenase as a Promising Target for Hyperinsulinism Hyperammonemia Syndrome Therapy. Curr Med Chem 2021; 29:2652-2672. [PMID: 34525914 DOI: 10.2174/0929867328666210825105342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 11/22/2022]
Abstract
Hyperinsulinism-hyperammonemia syndrome (HHS) is a rare disease characterized by recurrent hypoglycemia and persistent elevation of plasma ammonia, and it can lead to severe epilepsy and permanent brain damage. It has been demonstrated that functional mutations of glutamate dehydrogenase (GDH), an enzyme in the mitochondrial matrix, are responsible for the HHS. Thus, GDH has become a promising target for the small molecule therapeutic intervention of HHS. Several medicinal chemistry studies are currently aimed at GDH, however, to date, none of the compounds reported has been entered clinical trials. This perspective summarizes the progress in the discovery and development of GDH inhibitors, including the pathogenesis of HHS, potential binding sites, screening methods, and research models. Future therapeutic perspectives are offered to provide a reference for discovering potent GDH modulators and encourage additional research that will provide more comprehensive guidance for drug development.
Collapse
Affiliation(s)
- Yunfei Bian
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hantgzhou 310014. China
| | - Wei Hou
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hantgzhou 310014. China
| | - Xinrou Chen
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hantgzhou 310014. China
| | - Jinzhang Fang
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hantgzhou 310014. China
| | - Ning Xu
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hantgzhou 310014. China
| | - Benfang Helen Ruan
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hantgzhou 310014. China
| |
Collapse
|
20
|
Santi C, Scimmi C, Sancineto L. Ebselen and Analogues: Pharmacological Properties and Synthetic Strategies for Their Preparation. Molecules 2021; 26:4230. [PMID: 34299505 PMCID: PMC8306772 DOI: 10.3390/molecules26144230] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
Ebselen is the leader of selenorganic compounds, and starting from its identification as mimetic of the key antioxidant enzyme glutathione peroxidase, several papers have appeared in literature claiming its biological activities. It was the subject of several clinical trials and it is currently in clinical evaluation for the treatment of COVID-19 patients. Given our interest in the synthesis and pharmacological evaluation of selenorganic derivatives with this review, we aimed to collect all the papers focused on the biological evaluation of ebselen and its close analogues, covering the timeline between 2016 and most of 2021. Our analysis evidences that, even if it lacks specificity when tested in vitro, being able to bind to every reactive cysteine, it proved to be always well tolerated in vivo, exerting no sign of toxicity whatever the administered doses. Besides, looking at the literature, we realized that no review article dealing with the synthetic approaches for the construction of the benzo[d][1,2]-selenazol-3(2H)-one scaffold is available; thus, a section of the present review article is completely devoted to this specific topic.
Collapse
Affiliation(s)
| | | | - Luca Sancineto
- Group of Catalysis and Green Organic Chemistry, Department of Pharmaceutical Sciences, University of Perugia Via del Liceo 1, 06122 Perugia, Italy; (C.S.); (C.S.)
| |
Collapse
|
21
|
Molecular and pharmacological chaperones for SOD1. Biochem Soc Trans 2021; 48:1795-1806. [PMID: 32794552 PMCID: PMC7458393 DOI: 10.1042/bst20200318] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/25/2022]
Abstract
The efficacy of superoxide dismutase-1 (SOD1) folding impacts neuronal loss in motor system neurodegenerative diseases. Mutations can prevent SOD1 post-translational processing leading to misfolding and cytoplasmic aggregation in familial amyotrophic lateral sclerosis (ALS). Evidence of immature, wild-type SOD1 misfolding has also been observed in sporadic ALS, non-SOD1 familial ALS and Parkinson's disease. The copper chaperone for SOD1 (hCCS) is a dedicated and specific chaperone that assists SOD1 folding and maturation to produce the active enzyme. Misfolded or misfolding prone SOD1 also interacts with heat shock proteins and macrophage migration inhibitory factor to aid folding, refolding or degradation. Recognition of specific SOD1 structures by the molecular chaperone network and timely dissociation of SOD1-chaperone complexes are, therefore, important steps in SOD1 processing. Harnessing these interactions for therapeutic benefit is actively pursued as is the modulation of SOD1 behaviour with pharmacological and peptide chaperones. This review highlights the structural and mechanistic aspects of a selection of SOD1-chaperone interactions together with their impact on disease models.
Collapse
|
22
|
Zhang J, Yang L, Wang Y, Cao T, Sun Z, Xu J, Liu Y, Chen G. Ebselen-Agents for Sensing, Imaging and Labeling: Facile and Full-Featured Application in Biochemical Analysis. ACS APPLIED BIO MATERIALS 2021; 4:2217-2230. [PMID: 35014346 DOI: 10.1021/acsabm.0c01561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Phenyl-1,2-benzoselenazol-3(2H)-one (ebselen) is a classical mimic of glutathione peroxidase (GPx). Thioredoxin interaction endows ebselen attractive biological functions, such as antioxidation and anti-infection, as well as versatile therapeutic usage. Accordingly, application of ebselen analogues in biosensing, chemical labeling, imaging analysis, disease pathology, drug development, clinical treatment, etc. have been widely developed, in which mercaptans, reactive oxygen species, reactive sulfur species, peptides, and proteins were involved. Herein, focusing on the application of ebselen-agents in biochemistry, we have made a systematic summary and comprehensive review. First, we summarized both the classical and the innovative methods for preparing ebselen-agents to present the synthetic strategies. Then we discussed the full functional applicability of ebselen analogues in three fields of biochemical analysis including the fluorescence sensing and bioimaging, derivatization for high throughput fluorescence analysis, and the labeling gents for proteomics. Finally, we discussed the current challenges and perspectives for ebselen-agents as analytical tools in biological research. By presenting the multifunctional applicability of ebselen, we hope this review could appeal researchers to design the ebselen-related biomaterials for biochemical analysis.
Collapse
Affiliation(s)
- Jiawei Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu 273165, China
| | - Lei Yang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu 273165, China
| | - Yuxin Wang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu 273165, China
| | - Tianyi Cao
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu 273165, China
| | - Zhiwei Sun
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu 273165, China
| | - Jie Xu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yuxia Liu
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Guang Chen
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu 273165, China.,Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
23
|
Rando HM, Wellhausen N, Ghosh S, Lee AJ, Dattoli AA, Hu F, Byrd JB, Rafizadeh DN, Lordan R, Qi Y, Sun Y, Brueffer C, Field JM, Guebila MB, Jadavji NM, Skelly AN, Ramsundar B, Wang J, Goel RR, Park Y, Boca SM, Gitter A, Greene CS. Identification and Development of Therapeutics for COVID-19. ARXIV 2021:arXiv:2103.02723v3. [PMID: 33688554 PMCID: PMC7941644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 09/10/2021] [Indexed: 11/23/2022]
Abstract
After emerging in China in late 2019, the novel coronavirus SARS-CoV-2 spread worldwide and as of mid-2021 remains a significant threat globally. Only a few coronaviruses are known to infect humans, and only two cause infections similar in severity to SARS-CoV-2: Severe acute respiratory syndrome-related coronavirus, a closely related species of SARS-CoV-2 that emerged in 2002, and Middle East respiratory syndrome-related coronavirus, which emerged in 2012. Unlike the current pandemic, previous epidemics were controlled rapidly through public health measures, but the body of research investigating severe acute respiratory syndrome and Middle East respiratory syndrome has proven valuable for identifying approaches to treating and preventing novel coronavirus disease 2019 (COVID-19). Building on this research, the medical and scientific communities have responded rapidly to the COVID-19 crisis to identify many candidate therapeutics. The approaches used to identify candidates fall into four main categories: adaptation of clinical approaches to diseases with related pathologies, adaptation based on virological properties, adaptation based on host response, and data-driven identification of candidates based on physical properties or on pharmacological compendia. To date, a small number of therapeutics have already been authorized by regulatory agencies such as the Food and Drug Administration (FDA), while most remain under investigation. The scale of the COVID-19 crisis offers a rare opportunity to collect data on the effects of candidate therapeutics. This information provides insight not only into the management of coronavirus diseases, but also into the relative success of different approaches to identifying candidate therapeutics against an emerging disease.
Collapse
Affiliation(s)
- Halie M Rando
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America; Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado, United States of America · Funded by the Gordon and Betty Moore Foundation (GBMF 4552)
| | - Nils Wellhausen
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Soumita Ghosh
- Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Alexandra J Lee
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America · Funded by the Gordon and Betty Moore Foundation (GBMF 4552)
| | - Anna Ada Dattoli
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fengling Hu
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - James Brian Byrd
- University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America · Funded by NIH K23HL128909; FastGrants
| | - Diane N Rafizadeh
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America; Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of AmericaFunded by NIH Medical Scientist Training Program T32 GM07170
| | - Ronan Lordan
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5158, USA
| | - Yanjun Qi
- Department of Computer Science, University of Virginia, Charlottesville, VA, United States of America
| | - Yuchen Sun
- Department of Computer Science, University of Virginia, Charlottesville, VA, United States of America
| | | | - Jeffrey M Field
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marouen Ben Guebila
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Nafisa M Jadavji
- Biomedical Science, Midwestern University, Glendale, AZ, United States of America; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada · Funded by the American Heart Association (20AIREA35050015)
| | - Ashwin N Skelly
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America; Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America · Funded by NIH Medical Scientist Training Program T32 GM07170
| | | | - Jinhui Wang
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rishi Raj Goel
- Institute for Immunology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - YoSon Park
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America · Funded by NHGRI R01 HG10067
| | - Simina M Boca
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, District of Columbia, United States of America; Early Biometrics & Statistical Innovation, Data Science & Artificial Intelligence, R & D, AstraZeneca, Gaithersburg, Maryland, United States of America
| | - Anthony Gitter
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; Morgridge Institute for Research, Madison, Wisconsin, United States of America · Funded by John W. and Jeanne M. Rowe Center for Research in Virology
| | - Casey S Greene
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America; Childhood Cancer Data Lab, Alex's Lemonade Stand Foundation, Philadelphia, Pennsylvania, United States of America; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America; Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado, United States of America · Funded by the Gordon and Betty Moore Foundation (GBMF 4552); the National Human Genome Research Institute (R01 HG010067)
| |
Collapse
|
24
|
Chen Z, Shi Q, Wang W, Jiang Z, Zhang GL, Tong L, Mu X, Tang B. Fabrication of a "Selenium Signature" Chemical Probe-Modified Paper Substrate for Simultaneous and Efficient Determination of Biothiols by Paper Spray Mass Spectrometry. Anal Chem 2021; 93:1749-1756. [PMID: 33351590 DOI: 10.1021/acs.analchem.0c04457] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significant efforts have been made to develop robust and reliable methods for simultaneous biothiols determination in different matrices, but there still exist the problems such as easy oxidation, tedious derivatization, and difficulty in discrimination, which brings unsatisfactory results in their accuracy and fast quantification in biological samples. To overcome these problems, a simultaneous biothiols detection method combining a "selenium signature" chemical probe and paper spray mass spectrometry (PS-MS) was proposed. In the strategy, the modified-paper substrate is used to enhance the analytical performance. Chemical probe Ebselen-NH2 that has a specific response to biothiols was designed and covalently fixed on the surface of an oxidized paper substrate. By the identification of derivatized product with distinctive selenium isotope distribution and employment of the optimized PS-MS method, qualitative and quantitative analysis of five biothiols including glutathione (GSH), cysteine (Cys), cysteinylglycine (CysGly), N-acetylcysteine (Nac), and homocysteine (Hcy) were realized. Biothiols in plasma and cell lysates were measured with satisfactory results. The established method not only provides a novel protocol for simultaneous determination of biothiols, but also is helpful for understanding the biological and clinical roles played by these bioactive small molecules.
Collapse
Affiliation(s)
- Zhenzhen Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Qian Shi
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Weiqing Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Zhongyao Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Guang-Lu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Lili Tong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Xiaoyan Mu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| |
Collapse
|
25
|
Modulation of Insulin Sensitivity by Insulin-Degrading Enzyme. Biomedicines 2021; 9:biomedicines9010086. [PMID: 33477364 PMCID: PMC7830943 DOI: 10.3390/biomedicines9010086] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
Insulin-degrading enzyme (IDE) is a highly conserved and ubiquitously expressed metalloprotease that degrades insulin and several other intermediate-size peptides. For many decades, IDE had been assumed to be involved primarily in hepatic insulin clearance, a key process that regulates availability of circulating insulin levels for peripheral tissues. Emerging evidence, however, suggests that IDE has several other important physiological functions relevant to glucose and insulin homeostasis, including the regulation of insulin secretion from pancreatic β-cells. Investigation of mice with tissue-specific genetic deletion of Ide in the liver and pancreatic β-cells (L-IDE-KO and B-IDE-KO mice, respectively) has revealed additional roles for IDE in the regulation of hepatic insulin action and sensitivity. In this review, we discuss current knowledge about IDE’s function as a regulator of insulin secretion and hepatic insulin sensitivity, both evaluating the classical view of IDE as an insulin protease and also exploring evidence for several non-proteolytic functions. Insulin proteostasis and insulin sensitivity have both been highlighted as targets controlling blood sugar levels in type 2 diabetes, so a clearer understanding the physiological functions of IDE in pancreas and liver could led to the development of novel therapeutics for the treatment of this disease.
Collapse
|
26
|
Ha J, Park H, Park J, Park SB. Recent advances in identifying protein targets in drug discovery. Cell Chem Biol 2020; 28:394-423. [PMID: 33357463 DOI: 10.1016/j.chembiol.2020.12.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/11/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
Phenotype-based screening has emerged as an alternative route for discovering new chemical entities toward first-in-class therapeutics. However, clarifying their mode of action has been a significant bottleneck for drug discovery. For target protein identification, conventionally bioactive small molecules are conjugated onto solid supports and then applied to isolate target proteins from whole proteome. This approach requires a high binding affinity between bioactive small molecules and their target proteins. Besides, the binding affinity can be significantly hampered after structural modifications of bioactive molecules with linkers. To overcome these limitations, two major strategies have recently been pursued: (1) the covalent conjugation between small molecules and target proteins using photoactivatable moieties or electrophiles, and (2) label-free target identification through monitoring target engagement by tracking the thermal, proteolytic, or chemical stability of target proteins. This review focuses on recent advancements in target identification from covalent capturing to label-free strategies.
Collapse
Affiliation(s)
- Jaeyoung Ha
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul 08826, Korea
| | - Hankum Park
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jongmin Park
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Korea.
| | - Seung Bum Park
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul 08826, Korea; CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
27
|
Wei H, Guan YD, Zhang LX, Liu S, Lu AP, Cheng Y, Cao DS. A combinatorial target screening strategy for deorphaning macromolecular targets of natural product. Eur J Med Chem 2020; 204:112644. [PMID: 32738412 DOI: 10.1016/j.ejmech.2020.112644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/02/2020] [Accepted: 07/02/2020] [Indexed: 11/24/2022]
Abstract
Natural products, as an ideal starting point for molecular design, play a pivotal role in drug discovery; however, ambiguous targets and mechanisms have limited their in-depth research and applications in a global dimension. In-silico target prediction methods have become an alternative to target identification experiments due to the high accuracy and speed, but most studies only use a single prediction method, which may reduce the accuracy and reliability of the prediction. Here, we firstly presented a combinatorial target screening strategy to facilitate multi-target screening of natural products considering the characteristics of diverse in-silico target prediction methods, which consists of ligand-based online approaches, consensus SAR modelling and target-specific re-scoring function modelling. To validate the practicability of the strategy, natural product neferine, a bisbenzylisoquinoline alkaloid isolated from the lotus seed, was taken as an example to illustrate the screening process and a series of corresponding experiments were implemented to explore the pharmacological mechanisms of neferine. The proposed computational method could be used for a complementary hypothesis generation and rapid analysis of potential targets of natural products.
Collapse
Affiliation(s)
- Hui Wei
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, PR China
| | - Yi-Di Guan
- Xiangya Hospital, Central South University, Changsha, 410013, Hunan, PR China
| | - Liu-Xia Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, PR China
| | - Shao Liu
- Xiangya Hospital, Central South University, Changsha, 410013, Hunan, PR China
| | - Ai-Ping Lu
- Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, PR China
| | - Yan Cheng
- The Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, PR China.
| | - Dong-Sheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, PR China; Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, PR China.
| |
Collapse
|
28
|
Xu H, Gu Y, Zhang S, Xiong H, Ma F, Lu F, Ji Q, Liu L, Ma P, Hou W, Yang G, Lerner RA. A Chemistry for Incorporation of Selenium into DNA‐Encoded Libraries. Angew Chem Int Ed Engl 2020; 59:13273-13280. [DOI: 10.1002/anie.202003595] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Yuang Gu
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
- School of Life Science and Technology ShanghaiTech University 201210 Shanghai China
- Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences Shanghai 200031 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Shuning Zhang
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
- School of Life Science and Technology ShanghaiTech University 201210 Shanghai China
- Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences Shanghai 200031 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Huan Xiong
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Fei Ma
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Fengping Lu
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Qun Ji
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Lili Liu
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Peixiang Ma
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Wei Hou
- College of Pharmaceutical Science Institute of Drug Development & Chemical Biology Zhejiang University of Technology Hangzhou 310014 China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Richard A. Lerner
- Department of Chemistry Scripps Research Institute La Jolla CA 92037 USA
| |
Collapse
|
29
|
Xu H, Gu Y, Zhang S, Xiong H, Ma F, Lu F, Ji Q, Liu L, Ma P, Hou W, Yang G, Lerner RA. A Chemistry for Incorporation of Selenium into DNA‐Encoded Libraries. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003595] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Yuang Gu
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
- School of Life Science and Technology ShanghaiTech University 201210 Shanghai China
- Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences Shanghai 200031 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Shuning Zhang
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
- School of Life Science and Technology ShanghaiTech University 201210 Shanghai China
- Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences Shanghai 200031 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Huan Xiong
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Fei Ma
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Fengping Lu
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Qun Ji
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Lili Liu
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Peixiang Ma
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Wei Hou
- College of Pharmaceutical Science Institute of Drug Development & Chemical Biology Zhejiang University of Technology Hangzhou 310014 China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Richard A. Lerner
- Department of Chemistry Scripps Research Institute La Jolla CA 92037 USA
| |
Collapse
|
30
|
Zoppi C, Messori L, Pratesi A. ESI MS studies highlight the selective interaction of Auranofin with protein free thiols. Dalton Trans 2020; 49:5906-5913. [PMID: 32314767 DOI: 10.1039/d0dt00283f] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The clinically established gold drug Auranofin was reacted individually with a group of representative proteins, namely ubiquitin, ribonuclease A, carbonic anhydrase, haemoglobin and superoxide dismutase, and adduct formation was monitored in the various cases by ESI-MS analysis. We found that the reaction is highly selective for solvent exposed free cysteines that are modified through coordination of the AuPEt3+ fragment. Indeed, ESI-Q-TOF MS spectra carried out on protein samples incubated with a three fold molar excess of Auranofin allowed direct detection of the native proteins bearing bound AuPEt3+ fragments in the cases of carbonic anhydrase and haemoglobin. At variance, the two proteins that do not possess any free cysteine residue, i.e. ubiquitin and ribonuclease A, were unable to bind the gold fragment. In the case of superoxide dismutase, adduct formation is hindered by the scarce solvent accessibility of the free cysteine residue. These findings were further confirmed by a series of competition binding experiments with ebselen, a potent and selective cysteine-modifying reagent; we observed that pre-treatment with ebselen prevents the binding of the AuPEt3+ fragment to both carbonic anhydrase and haemoglobin.
Collapse
Affiliation(s)
- Carlotta Zoppi
- Laboratory of Metals in Medicine (MetMed), Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy.
| | | | | |
Collapse
|
31
|
Ruberte AC, Sanmartin C, Aydillo C, Sharma AK, Plano D. Development and Therapeutic Potential of Selenazo Compounds. J Med Chem 2019; 63:1473-1489. [PMID: 31638805 DOI: 10.1021/acs.jmedchem.9b01152] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Incorporation of selenium (Se) atom into small molecules can substantially enhance their antioxidant, anti-inflammatory, antimutagenic, antitumoral or chemopreventive, antiviral, antibacterial, antifungal, antiparasitic, and neuroprotective effects. Specifically, selenazo compounds have received great attention owing to their chemical properties, pharmaceutical applications, and low toxicity. In this Perspective, we compile extensive literature evidence with the description and discussion of the most recent advances in different selenazo and selenadiazo motifs as potential pharmacological candidates. We also provide some perspectives on the challenges and future directions in the advancement of these selenazo compounds, each of which could generate drug candidates for various diseases.
Collapse
Affiliation(s)
- Ana Carolina Ruberte
- Departamento de Tecnología y Química Farmacéuticas, Facultad de Farmacia y Nutrición , Universidad de Navarra , Irunlarrea 1 , E-31008 Pamplona , Spain
| | - Carmen Sanmartin
- Departamento de Tecnología y Química Farmacéuticas, Facultad de Farmacia y Nutrición , Universidad de Navarra , Irunlarrea 1 , E-31008 Pamplona , Spain
| | - Carlos Aydillo
- Departamento de Tecnología y Química Farmacéuticas, Facultad de Farmacia y Nutrición , Universidad de Navarra , Irunlarrea 1 , E-31008 Pamplona , Spain
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, CH72 , Penn State College of Medicine , 500 University Drive , Hershey , Pennsylvania 17033 , United States
| | - Daniel Plano
- Departamento de Tecnología y Química Farmacéuticas, Facultad de Farmacia y Nutrición , Universidad de Navarra , Irunlarrea 1 , E-31008 Pamplona , Spain.,Department of Pharmacology, Penn State Cancer Institute, CH72 , Penn State College of Medicine , 500 University Drive , Hershey , Pennsylvania 17033 , United States
| |
Collapse
|
32
|
Lim D, Gründemann D, Seebeck FP. Total Synthesis and Functional Characterization of Selenoneine. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- David Lim
- Department for Chemistry University of Basel Mattenstrasse 24a 4002 Basel Switzerland
| | - Dirk Gründemann
- Department of Pharmacology University of Cologne, Faculty of Medicine and University Hospital Cologne Gleueler Straße 24 50931 Cologne Germany
| | - Florian P. Seebeck
- Department for Chemistry University of Basel Mattenstrasse 24a 4002 Basel Switzerland
| |
Collapse
|
33
|
Lim D, Gründemann D, Seebeck FP. Total Synthesis and Functional Characterization of Selenoneine. Angew Chem Int Ed Engl 2019; 58:15026-15030. [DOI: 10.1002/anie.201908967] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Indexed: 12/19/2022]
Affiliation(s)
- David Lim
- Department for Chemistry University of Basel Mattenstrasse 24a 4002 Basel Switzerland
| | - Dirk Gründemann
- Department of Pharmacology University of Cologne, Faculty of Medicine and University Hospital Cologne Gleueler Straße 24 50931 Cologne Germany
| | - Florian P. Seebeck
- Department for Chemistry University of Basel Mattenstrasse 24a 4002 Basel Switzerland
| |
Collapse
|
34
|
Ghiselli G. Heparin Binding Proteins as Therapeutic Target: An Historical Account and Current Trends. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E80. [PMID: 31362364 PMCID: PMC6789896 DOI: 10.3390/medicines6030080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 12/16/2022]
Abstract
The polyanionic nature and the ability to interact with proteins with different affinities are properties of sulfated glycosaminoglycans (GAGs) that determine their biological function. In designing drugs affecting the interaction of proteins with GAGs the challenge has been to generate agents with high binding specificity. The example to emulated has been a heparin-derived pentasaccharide that binds to antithrombin-III with high affinity. However, the portability of this model to other biological situations is questioned on several accounts. Because of their structural flexibility, oligosaccharides with different sulfation and uronic acid conformation can display the same binding proficiency to different proteins and produce comparable biological effects. This circumstance represents a formidable obstacle to the design of drugs based on the heparin scaffold. The conceptual framework discussed in this article is that through a direct intervention on the heparin-binding functionality of proteins is possible to achieve a high degree of action specificity. This objective is currently pursued through two strategies. The first makes use of small molecules for which in the text we provide examples from past and present literature concerning angiogenic factors and enzymes. The second approach entails the mutagenesis of the GAG-binding site of proteins as a means to generate a new class of biologics of therapeutic interest.
Collapse
Affiliation(s)
- Giancarlo Ghiselli
- Independent Researcher, 1326 Spruce Street Suite 706, Philadephia, PA 19107, USA.
| |
Collapse
|
35
|
Hou W, Fang J, Su L, Ye H, Ruan BH. Design and synthesis of biotinylated Hexylselen as a probe to identify KGA allosteric inhibitors by a convenient biomolecular interaction assay. Bioorg Med Chem Lett 2019; 29:2498-2502. [PMID: 31324513 DOI: 10.1016/j.bmcl.2019.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 04/29/2019] [Accepted: 07/08/2019] [Indexed: 11/30/2022]
Abstract
Hexylselen is a novel submicromolar dual KGA/GDH inhibitor, which demonstrates potent inhibition of cancer cells with minimal toxicity. To further investigation its mechanism of action, we designed and synthesized its biotinylated derivative 2 as a novel probe. From commercially available starting material, 2 was obtained in 6 steps with 13.4% overall yield. It is notable that this practical synthetic route give a template for the preparation of unsymmetrical di-benzo[d][1,2]selenazol-3(2H)-ones. Based on probe 2, we developed a novel biomolecular interaction assay for convenient and reliable test of KGA allosteric inhibitors and confirmed that hexylselen as an allosteric inhibitor of KGA sharing the same binding pocket with BPTES but not with Ebselen via competitive experiments.
Collapse
Affiliation(s)
- Wei Hou
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology (IDD & CB), Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jinzhang Fang
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology (IDD & CB), Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Lin Su
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology (IDD & CB), Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Hengyu Ye
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology (IDD & CB), Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Benfang Helen Ruan
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology (IDD & CB), Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
36
|
Leroux F, Bosc D, Beghyn T, Hermant P, Warenghem S, Landry V, Pottiez V, Guillaume V, Charton J, Herledan A, Urata S, Liang W, Sheng L, Tang WJ, Deprez B, Deprez-Poulain R. Identification of ebselen as a potent inhibitor of insulin degrading enzyme by a drug repurposing screening. Eur J Med Chem 2019; 179:557-566. [PMID: 31276900 DOI: 10.1016/j.ejmech.2019.06.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/15/2022]
Abstract
Insulin-degrading enzyme, IDE, is a metalloprotease implicated in the metabolism of key peptides such as insulin, glucagon, β-amyloid peptide. Recent studies have pointed out its broader role in the cell physiology. In order to identify new drug-like inhibitors of IDE with optimal pharmacokinetic properties to probe its multiple roles, we ran a high-throughput drug repurposing screening. Ebselen, cefmetazole and rabeprazole were identified as reversible inhibitors of IDE. Ebselen is the most potent inhibitor (IC50(insulin) = 14 nM). The molecular mode of action of ebselen was investigated by biophysical methods. We show that ebselen induces the disorder of the IDE catalytic cleft, which significantly differs from the previously reported IDE inhibitors. IDE inhibition by ebselen can explain some of its reported activities in metabolism as well as in neuroprotection.
Collapse
Affiliation(s)
- Florence Leroux
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177, Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Damien Bosc
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177, Drugs and Molecules for Living Systems, F-59000, Lille, France
| | | | - Paul Hermant
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177, Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Sandrine Warenghem
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177, Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Valérie Landry
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177, Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Virginie Pottiez
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177, Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Valentin Guillaume
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177, Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Julie Charton
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177, Drugs and Molecules for Living Systems, F-59000, Lille, France; European Genomic Institute for Diabetes, EGID, University of Lille, F-59000, France
| | - Adrien Herledan
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177, Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Sarah Urata
- Department of Medicine, University of California at San Diego, CA 92093, La Jolla, United States
| | - Wenguang Liang
- Ben-May Institute for Cancer Research, The University of Chicago, IL 60637, Chicago, United States
| | - Li Sheng
- Department of Medicine, University of California at San Diego, CA 92093, La Jolla, United States
| | - Wei-Jen Tang
- Ben-May Institute for Cancer Research, The University of Chicago, IL 60637, Chicago, United States
| | - Benoit Deprez
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177, Drugs and Molecules for Living Systems, F-59000, Lille, France; APTEEUS, F-59000, Lille, France; European Genomic Institute for Diabetes, EGID, University of Lille, F-59000, France
| | - Rebecca Deprez-Poulain
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177, Drugs and Molecules for Living Systems, F-59000, Lille, France; European Genomic Institute for Diabetes, EGID, University of Lille, F-59000, France; Institut Universitaire de France, F- 75231, Paris, France.
| |
Collapse
|
37
|
Zhang S, Song Q, Wang X, Wei Z, Yu R, Wang X, Jiang T. Virtual Screening Guided Design, Synthesis and Bioactivity Study of Benzisoselenazolones (BISAs) on Inhibition of c-Met and Its Downstream Signalling Pathways. Int J Mol Sci 2019; 20:E2489. [PMID: 31137515 PMCID: PMC6566228 DOI: 10.3390/ijms20102489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/12/2022] Open
Abstract
c-Met is a transmembrane receptor tyrosine kinase and an important therapeutic target for anticancer drugs. In this study, we designed a small library containing 300 BISAs molecules that consisted of carbohydrates, amino acids, isothiourea, tetramethylthiourea, guanidine and heterocyclic groups and screened c-Met targeting compounds using docking and MM/GBSA. Guided by virtual screening, we synthesised a series of novel compounds and their activity on inhibition of the autophosphorylation of c-Met and its downstream signalling pathway proteins were evaluated. We found a panel of benzisoselenazolones (BISAs) obtained by introducing isothiourea, tetramethylthiourea and heterocyclic groups into the C-ring of Ebselen, including 7a, 7b, 8a, 8b and 12c (with IC50 values of less than 20 μM in MET gene amplified lung cancer cell line EBC-1), exhibited more potent antitumour activity than Ebselen by cell growth assay combined with in vitro biochemical assays. In addition, we also tested the antitumour activity of three cancer cell lines without MET gene amplification/activation, including DLD1, MDA-MB-231 and A549. The neuroblastoma SK-N-SH cells with HGF overexpression which activates MET signalling are sensitive to MET inhibitors. The results reveal that our compounds may be nonspecific multitarget kinase inhibitors, just like type-II small molecule inhibitors. Western blot analysis showed that these inhibitors inhibited autophosphorylation of c-MET, and its downstream signalling pathways, such as PI3K/AKT and MARK/ERK. Results suggest that bensoisoselenones can be used as a scaffold for the design of c-Met inhibiting drug leads, and this study opens up new possibilities for future antitumour drug design.
Collapse
Affiliation(s)
- Siqi Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Qiaoling Song
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
- Center for Innovative Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China.
| | - Xueting Wang
- Center for High Performance Computing & System simulation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China.
| | - Zhiqiang Wei
- Center for High Performance Computing & System simulation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China.
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
- Center for Innovative Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.
| | - Xin Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
- Center for Innovative Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China.
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
- Center for Innovative Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.
| |
Collapse
|
38
|
Ruan JJ, Yu Y, Hou W, Chen Z, Fang J, Zhang J, Ni M, Li D, Lu S, Rui J, Wu R, Zhang W, Ruan BH. Kidney-Type Glutaminase Inhibitor Hexylselen Selectively Kills Cancer Cells via a Three-Pronged Mechanism. ACS Pharmacol Transl Sci 2019; 2:18-30. [PMID: 32219214 DOI: 10.1021/acsptsci.8b00047] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Indexed: 12/26/2022]
Abstract
Tumor metabolism has been deeply investigated for cancer therapeutics. Here, we demonstrate that glutamine deficiency alone could not completely inhibit cancer cell growth and that many potent kidney-type glutaminase (KGA) inhibitors did not show satisfying in vivo efficacy. The potent KGA allosteric inhibitor, CB-839, resulted in up to 80% growth inhibition of all tested cell lines, whereas Hexylselen (CPD-3B), a KGA/glutamate dehydrogenase (GDH) inhibitor, showed essentially no toxicity to normal cells up to a 10 μM concentration and could completely inhibit the growth of many aggressive cell lines. Further analyses showed that CPD-3B targets not only KGA and GDH but also thioredoxin reductase (TrxR) and amidotransferase (GatCAB), which results in corresponding regulation of Akt/Erk/caspase-9 signaling pathways. In an aggressive liver cancer xenograft model, CPD-3B significantly reduced tumor size, caused massive tumor tissue damage, and prolonged survival rate. These provide important information for furthering the drug design of an effective anticancer KGA allosteric inhibitor.
Collapse
Affiliation(s)
- Jennifer Jin Ruan
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, IDD & CB, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yan Yu
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, IDD & CB, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wei Hou
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, IDD & CB, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhao Chen
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, IDD & CB, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jinzhang Fang
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, IDD & CB, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jingjing Zhang
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, IDD & CB, Zhejiang University of Technology, Hangzhou 310014, China
| | - Muowei Ni
- Center for Cancer Research, Zhejiang Cancer Hospital, Hangzhou 310022, PR China
| | - Di Li
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, IDD & CB, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shiying Lu
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, IDD & CB, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jingjing Rui
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, IDD & CB, Zhejiang University of Technology, Hangzhou 310014, China
| | - Rui Wu
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, IDD & CB, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wei Zhang
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| | - Benfang Helen Ruan
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, IDD & CB, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|