1
|
Yang GW, Xie R, Zhang YY, Xu CK, Wu GP. Evolution of Copolymers of Epoxides and CO 2: Catalysts, Monomers, Architectures, and Applications. Chem Rev 2024. [PMID: 39454031 DOI: 10.1021/acs.chemrev.4c00517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
The copolymerization of CO2 and epoxides presents a transformative approach to converting greenhouse gases into aliphatic polycarbonates (CO2-PCs), thereby reducing the polymer industry's dependence on fossil resources. Over the past 50 years, a wide array of metallic catalysts, both heterogeneous and homogeneous, have been developed to achieve precise control over polymer selectivity, sequence, regio-, and stereoselectivity. This review details the evolution of metal-based catalysts, with a particular focus on the emergence of organoborane catalysts, and explores how these catalysts effectively address kinetic and thermodynamic challenges in CO2/epoxides copoly2merization. Advances in the synthesis of CO2-PCs with varied sequence and chain architectures through diverse polymerization protocols are examined, alongside the applications of functional CO2-PCs produced by incorporating different epoxides. The review also underscores the contributions of computational techniques to our understanding of copolymerization mechanisms and highlights recent advances in the closed-loop chemical recycling of CO2-sourced polycarbonates. Finally, the industrialization efforts of CO2-PCs are discussed, offering readers a comprehensive understanding of the evolution and future potential of epoxide copolymerization with CO2.
Collapse
Affiliation(s)
- Guan-Wen Yang
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Rui Xie
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yao-Yao Zhang
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Cheng-Kai Xu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Guang-Peng Wu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
2
|
Dadmehr P, Bikas R, Lis T. Chemical CO 2 fixation using a cyanido bridged heterometallic Zn(II)-Mn(II) 2D coordination polymer. Dalton Trans 2024; 53:15246-15257. [PMID: 39221996 DOI: 10.1039/d4dt01630k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A new cyanido bridged Zn(II)-Mn(II) mixed-metal coordination polymer, {[Zn(μ-L)(μ-CN)2Mn0.5]·(CH3OH)}n (1), has been synthesized by the reaction of Zn(CN)2, Mn(II) salts and a hydrazone ligand (HL = (E)-N'-(phenyl(pyridin-2-yl)methylene)isonicotinohydrazide) in methanol. Compound 1 was characterized using various analytical methods (including elemental analysis, photoluminescence, FT-IR, XRD, SEM, and EDX analyses, and TGA), and its structure was determined by X-ray analysis. These analyses confirmed the formation of a mixed metal Zn(II)-Mn(II) coordination polymer containing both cyanide and hydrazone bridging ligands. This mixed metal coordination polymer exhibits interesting emission spectra by having several emissions via excitation at 230, 270, 375 and 385 nm. The catalytic activity of compound 1 in chemical CO2 fixation was investigated in the presence of epoxides, and the effects of various parameters on its catalytic performance were evaluated. The results of catalytic studies show that compound 1 can efficiently catalyze the chemical CO2 fixation reaction under mild conditions. The amount of co-catalyst, temperature of the reaction, nature of the solvent and also the substituent connected to the epoxide ring are some of the important parameters that have considerable effects on the catalytic activity of 1.
Collapse
Affiliation(s)
- Parvaneh Dadmehr
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, 34148-96818, Qazvin, Iran.
| | - Rahman Bikas
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, 34148-96818, Qazvin, Iran.
| | - Tadeusz Lis
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, Wroclaw 50-383, Poland
| |
Collapse
|
3
|
Liang C, Jadidi Y, Chen Y, Gracida-Alvarez U, Torkelson JM, Hawkins TR, Dunn JB. Techno-economic Analysis and Life Cycle Assessment of Biomass-Derived Polyhydroxyurethane and Nonisocyanate Polythiourethane Production and Reprocessing. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:12161-12170. [PMID: 39148516 PMCID: PMC11323267 DOI: 10.1021/acssuschemeng.4c04046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024]
Abstract
Nonisocyanate polyurethanes (NIPUs) show promise as more sustainable alternatives to conventional isocyanate-based polyurethanes (PUs). In this study, polyhydroxyurethane (PHU) and nonisocyanate polythiourethane (NIPTU) production and reprocessing models inform the results of a techno-economic analysis and a life cycle assessment. The profitability of selling PHU and NIPTU is rationalized by identifying significant production costs, indicating that raw materials drive the costs of PHU and NIPTU production and reprocessing. After stepping along a path of process improvements, PHU and NIPTU can achieve minimum selling prices (MSPs) of 3.15 and 4.39 USD kg-1, respectively. Depolymerization yields need to be optimized, and polycondensation reactions need to be investigated for the reprocessing of NIPUs into secondary (2°) NIPUs. Of the NIPUs examined here, PHU has a low depolymerization yield and NIPTU has a high depolymerization yield. Fossil energy use, greenhouse gas (GHG) emissions, and water consumption are reported for the biobased production of PHU, NIPTU, 2° PHU, and 2° NIPTU and compared with baseline values for fossil-based PU production. There are options for reducing environmental impacts, which could make these pathways more sustainable. If barriers to implementation are overcome, 2° NIPUs can be manufactured at lower cost and environmental impacts than those of virgin NIPUs.
Collapse
Affiliation(s)
- Chao Liang
- Paula
M. Trienens Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| | - Yasheen Jadidi
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Northwestern-Argonne
Institute of Science and Engineering, Evanston, Illinois 60208, United States
| | - Yixuan Chen
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Northwestern-Argonne
Institute of Science and Engineering, Evanston, Illinois 60208, United States
| | - Ulises Gracida-Alvarez
- Systems
Assessment Center, Energy Systems and Infrastructure Analysis Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - John M. Torkelson
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Northwestern-Argonne
Institute of Science and Engineering, Evanston, Illinois 60208, United States
- Department
of Materials Science and Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Troy R. Hawkins
- Systems
Assessment Center, Energy Systems and Infrastructure Analysis Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jennifer B. Dunn
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Northwestern-Argonne
Institute of Science and Engineering, Evanston, Illinois 60208, United States
| |
Collapse
|
4
|
Lee GR, Lee EJ, Shin HS, Kim J, Kim I, Hong SC. Preparation of Non-Isocyanate Polyurethanes from Mixed Cyclic-Carbonated Compounds: Soybean Oil and CO 2-Based Poly(ether carbonate). Polymers (Basel) 2024; 16:1171. [PMID: 38675090 PMCID: PMC11053720 DOI: 10.3390/polym16081171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
This study presents the synthesis and characterization of non-isocyanate polyurethanes (NIPU) derived from the copolymerization of cyclic-carbonated soybean oil (CSBO) and cyclic carbonate (CC)-terminated poly(ether carbonate) (RCC). Using a double-metal cyanide catalyst, poly(ether carbonate) polyol was first synthesized through the copolymerization of carbon dioxide and propylene oxide. The terminal hydroxyl group was then subjected to a substitution reaction with a five-membered CC group using glycerol-1,2-carbonate and oxalyl chloride, yielding RCC. Attempts to prepare NIPU solely using RCC and diamine were unsuccessful, possibly due to the low CC functionality and the aminolysis of RCC's linear carbonate repeating units. However, when combined with CSBO, solid NIPUs were successfully obtained, exhibiting good thermal stability along with enhanced mechanical properties compared to conventional CSBO-based NIPU formulations. Overall, this study underscores the potential of leveraging renewable resources and carbon capture technologies to develop sustainable NIPUs with tailored properties, thereby expanding their range of applications.
Collapse
Affiliation(s)
- Ga Ram Lee
- HMC, Department of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Seoul 05006, Republic of Korea; (G.R.L.); (E.J.L.)
| | - Eun Jong Lee
- HMC, Department of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Seoul 05006, Republic of Korea; (G.R.L.); (E.J.L.)
| | - Hye Sun Shin
- Industrial Gas Research TF Team, Particulate Matter Research Center, Research Institute of Industrial Science & Technology (RIST), 187-12 Geumho-ro, Gwangyang-si 57801, Republic of Korea; (H.S.S.); (J.K.)
| | - Joonwoo Kim
- Industrial Gas Research TF Team, Particulate Matter Research Center, Research Institute of Industrial Science & Technology (RIST), 187-12 Geumho-ro, Gwangyang-si 57801, Republic of Korea; (H.S.S.); (J.K.)
| | - Il Kim
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea;
| | - Sung Chul Hong
- HMC, Department of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Seoul 05006, Republic of Korea; (G.R.L.); (E.J.L.)
| |
Collapse
|
5
|
Mangal M, H S, Bose S, Banerjee T. Innovations in applications and prospects of non-isocyanate polyurethane bioplastics. Biopolymers 2023; 114:e23568. [PMID: 37846654 DOI: 10.1002/bip.23568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/18/2023]
Abstract
Currently, conventional plastics are necessary for a variety of aspects of modern daily life, including applications in the fields of healthcare, technology, and construction. However, they could also contain potentially hazardous compounds like isocyanates, whose degradation has a negative impact on both the environment and human health. Therefore, researchers are exploring alternatives to plastic which is sustainable and environmentally friendly without compromising its mechanical and physical features. This review study highlights the production of highly eco-friendly bioplastic as an efficient alternative to non-biodegradable conventional plastic. Bioplastics are produced from various renewable biomass sources such as plant debris, fatty acids, and oils. Poly-addition of di-isocyanates and polyols is a technique employed over decades to produce polyurethanes (PUs) bioplastics from renewable biomass feedstock. The toxicity of isocyanates is a major concern with the above-mentioned approach. Novel green synthetic approaches for polyurethanes without using isocyanates have been attracting greater interest in recent years to overcome the toxicity of isocyanate-containing raw materials. The polyaddition of cyclic carbonates (CCs) and polyfunctional amines appears to be the most promising method to obtain non-isocyanate polyurethanes (NIPUs). This method results in the creation of polymeric materials with distinctive and adaptable features with the elimination of harmful compounds. Consequently, non-isocyanate polyurethanes represent a new class of green polymeric materials. In this review study, we have discussed the possibility of creating novel NIPUs from renewable feedstocks in the context of the growing demand for efficient and ecologically friendly plastic products.
Collapse
Affiliation(s)
- Mangal Mangal
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati, Assam, India
| | - Supriya H
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, India
| | - Suryasarathi Bose
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, India
| | - Tamal Banerjee
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati, Assam, India
| |
Collapse
|
6
|
Scheelje FCM, Meier MAR. Non-isocyanate polyurethanes synthesized from terpenes using thiourea organocatalysis and thiol-ene-chemistry. Commun Chem 2023; 6:239. [PMID: 37925584 PMCID: PMC10625552 DOI: 10.1038/s42004-023-01041-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023] Open
Abstract
The depletion of fossil resources as well as environmental concerns contribute to an increasing focus on finding more sustainable approaches for the synthesis of polymeric materials. In this work, a synthesis route towards non-isocyanate polyurethanes (NIPUs) using renewable starting materials is presented. Based on the terpenes limonene and carvone as renewable resources, five-membered cyclic carbonates are synthesized and ring-opened with allylamine, using thiourea compounds as benign and efficient organocatalysts. Thus, five renewable AA monomers are obtained, bearing one or two urethane units. Taking advantage of the terminal double bonds of these AA monomers, step-growth thiol-ene polymerization is performed using different dithiols, to yield NIPUs with molecular weights of above 10 kDa under mild conditions. Variation of the dithiol and amine leads to polymers with different properties, with Mn of up to 31 kDa and Tg's ranging from 1 to 29 °C.
Collapse
Affiliation(s)
- Frieda Clara M Scheelje
- Laboratory of Applied Chemistry, Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131, Karlsruhe, Germany
| | - Michael A R Meier
- Laboratory of Applied Chemistry, Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131, Karlsruhe, Germany.
- Laboratory of Applied Chemistry, Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
7
|
Grosjean M, Berne D, Caillol S, Ladmiral V, Nottelet B. Dynamic PEG-PLA/Hydroxyurethane Networks Based on Imine Bonds as Reprocessable Elastomeric Biomaterials. Biomacromolecules 2023; 24:3472-3483. [PMID: 37458381 DOI: 10.1021/acs.biomac.3c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The development of dynamic covalent chemistry opens the way to the design of materials able to be reprocessed by an internal exchange reaction under thermal stimulus. Imine exchange differs from other exchange reactions by its relatively low temperature of activation. In this study, amine-functionalized star-shaped PEG-PLA and an aldehyde-functionalized hydroxyurethane modifier were combined to produce PEG-PLA/hydroxyurethane networks incorporating imine bonds. The thermal and mechanical properties of these new materials were evaluated as a function of the initial ratio of amine/aldehyde used during synthesis. Rheological analyses highlighted the dynamic behavior of these vitrimers at moderate temperature (60-85 °C) and provided the flow activation energies. Additionally, the reprocessability of these PEG-PLA/hydroxyurethane vitrimers was assessed by comparing the material properties before reshaping and after three reprocessing cycles (1 ton, 1 h, 70 °C). Hence, these materials can easily be designed to satisfy a specific medical application without properties loss. This work opens the way to the development of a new generation of dynamic materials combining degradable PEG-PLA copolymers and hydroxyurethane modifiers, which could find applications in the shape of medical devices on-demand under mild conditions.
Collapse
Affiliation(s)
| | - Dimitri Berne
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier 34090, France
| | - Sylvain Caillol
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier 34090, France
| | | | | |
Collapse
|
8
|
Kessaratikoon T, Theerathanagorn T, Crespy D, D'Elia V. Organocatalytic Polymers from Affordable and Readily Available Building Blocks for the Cycloaddition of CO 2 to Epoxides. J Org Chem 2023; 88:4894-4924. [PMID: 36692489 DOI: 10.1021/acs.joc.2c02447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The catalytic cycloaddition of CO2 to epoxides to afford cyclic carbonates as useful monomers, intermediates, solvents, and additives is a continuously growing field of investigation as a way to carry out the atom-economic conversion of CO2 to value-added products. Metal-free organocatalytic compounds are attractive systems among various catalysts for such transformations because they are inexpensive, nontoxic, and readily available. Herein, we highlight and discuss key advances in the development of polymer-based organocatalytic materials that match these requirements of affordability and availability by considering their synthetic routes, the monomers, and the supports employed. The discussion is organized according to the number (monofunctional versus bifunctional materials) and type of catalytically active moieties, including both halide-based and halide-free systems. Two general synthetic approaches are identified based on the postsynthetic functionalization of polymeric supports or the copolymerization of monomers bearing catalytically active moieties. After a review of the material syntheses and catalytic activities, the chemical and structural features affecting catalytic performance are discussed. Based on such analysis, some strategies for the future design of affordable and readily available polymer-based organocatalysts with enhanced catalytic activity under mild conditions are considered.
Collapse
Affiliation(s)
- Tanika Kessaratikoon
- Department of Material Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, WangChan, Rayong 21210, Thailand
| | - Tharinee Theerathanagorn
- Department of Material Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, WangChan, Rayong 21210, Thailand
| | - Daniel Crespy
- Department of Material Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, WangChan, Rayong 21210, Thailand
| | - Valerio D'Elia
- Department of Material Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, WangChan, Rayong 21210, Thailand
| |
Collapse
|
9
|
Insight into the Varying Reactivity of Different Catalysts for CO 2 Cycloaddition into Styrene Oxide: An Experimental and DFT Study. Int J Mol Sci 2023; 24:ijms24032123. [PMID: 36768447 PMCID: PMC9916580 DOI: 10.3390/ijms24032123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/20/2022] [Indexed: 01/25/2023] Open
Abstract
The cycloaddition of CO2 into epoxides to form cyclic carbonates is a highly sought-after reaction for its potential to both reduce and use CO2, which is a greenhouse gas. In this paper, we present experimental and theoretical studies and a mechanistic approach for three catalytic systems. First, as Lewis base catalysts, imidazole and its derivatives, then as a Lewis acid catalyst, ZnI2 alone, and after that, the combined system of ZnI2 and imidazole. In the former, we aimed to discover the reasons for the varied reactivities of five Lewis base catalysts. Furthermore, we succeeded in reproducing the experimental results and trends using DFT. To add, we emphasized the importance of non-covalent interactions and their role in reactivity. In our case, the presence of a hydrogen bond was a key factor in decreasing the reactivity of some catalysts, thus leading to lower conversion rates. Finally, mechanistically understanding this 100% atom economy reaction can aid experimental chemists in designing better and more efficient catalytic systems.
Collapse
|
10
|
Miao P, Jiao Z, Liu J, He M, Song G, Wei Z, Leng X, Li Y. Mechanically Robust and Chemically Recyclable Polyhydroxyurethanes from CO 2-Derived Six-Membered Cyclic Carbonates. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2246-2255. [PMID: 36563296 DOI: 10.1021/acsami.2c19251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In the current context of sustainable chemistry development and new regulations, aminolysis of cyclic carbonate is one of the most promising routes to nonisocyanate polyurethanes, also called polyhydroxyurethanes (PHU). In this study, a new kind of shape memory PHU vitrimers with outstanding mechanical properties and chemical recyclability is prepared. The monomer employed for aminolysis to form the PHUs is bis(six-membered cyclic carbonate) of 4,4'-biphenol (BCC-BP), which is synthesized by bi(1,3-diol) precursors and CO2. The synthetic strategy, isocyanate-free and employing CO2 as a building block, is environmentally friendly and suits the concept of carbon neutrality. The thermal properties, mechanical properties, and dynamic behaviors of the PHUs are explored. The maximum breaking strength and elongation at break of the resultant PHUs reach 65 MPa and 452%, respectively, exceeding other reported PHU-based materials in combined performance. Such a PHU material can also lift up a load 4700 times heavier than its own weight by a shape recovery process. Finally, the bi(1,3-diol) can be regenerated through the alcoholysis of PHUs to realize chemical recycling. This work provides a feasibility study for a green synthetic approach and for designing a novel PHU material with outstanding properties.
Collapse
Affiliation(s)
- Pengcheng Miao
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian116024, China
| | - Ziyue Jiao
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian116024, China
| | - Jie Liu
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian116024, China
| | - Maomao He
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian116024, China
| | - Guanjun Song
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian116024, China
| | - Zhiyong Wei
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian116024, China
| | - Xuefei Leng
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian116024, China
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian116024, China
| |
Collapse
|
11
|
Triazole Appended Metal–Organic Framework for CO2 Fixation as Cyclic Carbonates Under Solvent-Free Ambient Conditions. Catal Letters 2022. [DOI: 10.1007/s10562-022-04213-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Quinsaat JEQ, Feghali E, van de Pas DJ, Vendamme R, Torr KM. Preparation of Biobased Nonisocyanate Polyurethane/Epoxy Thermoset Materials Using Depolymerized Native Lignin. Biomacromolecules 2022; 23:4562-4573. [PMID: 36224101 DOI: 10.1021/acs.biomac.2c00706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polyurethane polymers are found in a wide range of material applications. However, the toxic nature of isocyanates used in their formulation is a major concern; hence, more environmentally friendly alternatives are of high interest in the search for new sustainable polymer materials. In this work, we present the preparation of isocyanate-free polyurethane/epoxy hybrid thermosets with a high biobased content (85-90 wt %). The isocyanate-free polyurethanes were based on polyhydroxyurethanes (PHUs) prepared from depolymerized native lignin, which we refer to as lignin hydrogenolysis oil (LHO). The LHO was functionalized with epichlorohydrin to yield the epoxidized structure (LHO-GE), which was in turn reacted with CO2 to form the cyclocarbonated species (LHO-CC). Blends of the LHO-CC and glycerol diglycidyl ether (GDGE) were cured to produce hybrid PHU/epoxy (LHO-CC/GDGE) thermosets. Thermosetting materials with flexural moduli of 4.5 GPa and flexural strengths of 160 MPa were produced by optimizing the mass ratio of the two main components and the triamine hardener. These novel biobased hybrid materials outperformed the corresponding epoxy-only thermosets and comparable hybrid PHU/epoxy materials produced from petrochemicals.
Collapse
Affiliation(s)
| | - Elias Feghali
- Scion, 49 Sala Street, Private Bag 3020, Rotorua3046, New Zealand.,Chemical Engineering Program, Notre Dame University-Louaize, Zouk Mosbeh1211, Lebanon.,Sustainable Polymer Technologies (SPOT) Team, Flemish Institute for Technological Research (Vito N.V.), Boeretang 200, Mol2400, Belgium
| | | | - Richard Vendamme
- Sustainable Polymer Technologies (SPOT) Team, Flemish Institute for Technological Research (Vito N.V.), Boeretang 200, Mol2400, Belgium.,Department of Materials and Chemistry, Physical Chemistry and Polymer Science, Vrije Universiteit Brussel, Pleinlaan 2, BrusselsB-1050, Belgium
| | - Kirk M Torr
- Scion, 49 Sala Street, Private Bag 3020, Rotorua3046, New Zealand
| |
Collapse
|
13
|
Jaroonwatana W, D'Elia V, Crespy D. Hydrophobically-enhanced "on water" cycloaddition of CO 2 to long-chain terminal epoxides. Chem Commun (Camb) 2022; 58:11535-11538. [PMID: 36155600 DOI: 10.1039/d2cc04526e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Long-chain cyclic carbonates (LC-CC) are attractive building blocks and non-ionic surfactants. We demonstrate a convenient methodology to prepare LC-CC in miniemulsions of epoxide droplets in water. The pre-organization and confinement of the reagents from H-bond and hydrophobic interactions allow the target process to proceed at mild temperatures under atmospheric CO2.
Collapse
Affiliation(s)
- Wimalin Jaroonwatana
- Department of Material Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, WangChan, Rayong 21210, Thailand.
| | - Valerio D'Elia
- Department of Material Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, WangChan, Rayong 21210, Thailand.
| | - Daniel Crespy
- Department of Material Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, WangChan, Rayong 21210, Thailand.
| |
Collapse
|
14
|
Poolwong J, Aomchad V, Del Gobbo S, Kleij AW, D'Elia V. Simple Halogen-Free, Biobased Organic Salts Convert Glycidol to Glycerol Carbonate under Atmospheric CO 2 Pressure. CHEMSUSCHEM 2022; 15:e202200765. [PMID: 35726476 DOI: 10.1002/cssc.202200765] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Glycerol carbonate (GC) has emerged as an attractive synthetic target due to various promising technological applications. Among several viable strategies to produce GC from CO2 and glycerol and its derivatives, the cycloaddition of CO2 to glycidol represents an atom-economic an efficient strategy that can proceed via a halide-free manifold through a proton-shuttling mechanism. Here, it was shown that the synthesis of GC can be promoted by bio-based and readily available organic salts leading to quantitative GC formation under atmospheric CO2 pressure and moderate temperatures. Comparative and mechanistic experiments using sodium citrate as the most efficient catalyst highlighted the role of both hydrogen bond donor and weakly basic sites in the organic salt towards GC formation. The citrate salt was also used as a catalyst for the conversion of other epoxy alcohols. Importantly, the discovery that homogeneous organic salts catalyze the target reaction inspired us to use metal alginates as heterogeneous and recoverable bio-based catalysts for the same process.
Collapse
Affiliation(s)
- Jitpisut Poolwong
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, 21210, Payupnai, WangChan, Rayong, Thailand
| | - Vatcharaporn Aomchad
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, 21210, Payupnai, WangChan, Rayong, Thailand
| | - Silvano Del Gobbo
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, 21210, Payupnai, WangChan, Rayong, Thailand
| | - Arjan W Kleij
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science & Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Pg. Lluis Companys 23, 08010, Barcelona, Spain
| | - Valerio D'Elia
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, 21210, Payupnai, WangChan, Rayong, Thailand
| |
Collapse
|
15
|
Salvado V, Dolatkhani M, Grau É, Vidil T, Cramail H. Sequence-Controlled Polyhydroxyurethanes with Tunable Regioregularity Obtained from Sugar-Based Vicinal Bis-cyclic Carbonates. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Victor Salvado
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, 16 Avenue Pey-Berland, 33600 Pessac, France
- PolymerExpert, 1 Allée du Doyen Georges Brus, 33600 Pessac, France
| | - Marc Dolatkhani
- PolymerExpert, 1 Allée du Doyen Georges Brus, 33600 Pessac, France
| | - Étienne Grau
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, 16 Avenue Pey-Berland, 33600 Pessac, France
| | - Thomas Vidil
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, 16 Avenue Pey-Berland, 33600 Pessac, France
| | - Henri Cramail
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, 16 Avenue Pey-Berland, 33600 Pessac, France
| |
Collapse
|
16
|
Fayisa BA, Yang Y, Zhen Z, Wang MY, Lv J, Wang Y, Ma X. Engineered Chemical Utilization of CO 2 to Methanol via Direct and Indirect Hydrogenation Pathways: A Review. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Busha Assaba Fayisa
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Youwei Yang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Ziheng Zhen
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Mei-Yan Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Jing Lv
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, P. R. China
| | - Yue Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Xinbin Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| |
Collapse
|
17
|
Quienne B, Pinaud J, Caillol S. Synthesis of hydrophobically modified ethoxylated non-isocyanate urethanes (HENIURs) and their use as rheology additives. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Ngassam Tounzoua C, Grignard B, Detrembleur C. Exovinylene Cyclic Carbonates: Multifaceted CO 2 -Based Building Blocks for Modern Chemistry and Polymer Science. Angew Chem Int Ed Engl 2022; 61:e202116066. [PMID: 35266271 DOI: 10.1002/anie.202116066] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 12/11/2022]
Abstract
Carbon dioxide is a renewable, inexhaustible, and cheap alternative to fossil resources for the production of fine chemicals and plastics. It can notably be converted into exovinylene cyclic carbonates, unique synthons gaining momentum for the preparation of an impressive range of important organic molecules and functional polymers, in reactions proceeding with 100 % atom economy under mild operating conditions in most cases. This Review summarizes the recent advances in their synthesis with particular attention on describing the catalysts needed for their preparation and discussing the unique reactivity of these CO2 -based heterocycles for the construction of diverse organic building blocks and (functional) polymers. We also discuss the challenges and the future perspectives in the field.
Collapse
Affiliation(s)
- Charlène Ngassam Tounzoua
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liege, 13 allée du 6 août, buiding B6a, 4000, Liège, Belgium
| | - Bruno Grignard
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liege, 13 allée du 6 août, buiding B6a, 4000, Liège, Belgium
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liege, 13 allée du 6 août, buiding B6a, 4000, Liège, Belgium
| |
Collapse
|
19
|
Ahmad ZR, Mahanwar PA. Synthesis and properties of foams from a blend of vegetable oil based polyhydroxyurethane and epoxy resin. CELLULAR POLYMERS 2022. [DOI: 10.1177/02624893221101170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This article aims to highlight the synthesis of foams from a blend of hydroxyurethane of castor oil and epoxy resin. An epoxidized castor oil of 4% oxirane oxygen was first converted to cyclic carbonate of castor oil at 120°C, 1 atm CO2 pressure and then it was reacted with three different aliphatic diamines to yield amine terminated Polyhydroxyurethane (PHU). Foams were prepared in a metal mould from the blend of PHU, epoxy resin, epoxy hardener and polymethylhydrogensiloxane blowing agent which releases hydrogen gas upon reaction with amine. FTIR and 1H NMR of cyclic carbonate of castor oil and PHU of castor oil were done to confirm their chemical structures. Optical microscopy and scanning electron microscopy of foams was done to assess their cellular morphology along with DSC and TGA to evaluate their thermal properties. Both flexible and rigid type of foams were synthesised in this study. Resilience of flexible foams was inspected using a ball rebound test and compression-recovery test while thermal insulation property was checked by measuring thermal conductivity, thermal diffusivity and R-values of rigid foams from heat transfer study using a heat transfer apparatus.
Collapse
Affiliation(s)
- Zeeshan R Ahmad
- Department of Polymer and Surface Engineering, Institute of Chemical Technology, Mumbai, India
| | - Prakash A Mahanwar
- Department of Polymer and Surface Engineering, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
20
|
Yang X, Liu Z, Chen P, Liu F, Zhao T. Effective synthesis of cyclic carbonates from CO2 and epoxides catalyzed by acetylcholine bromide-based deep eutectic solvents. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Tounzoua CN, Grignard B, Detrembleur C. Exovinylene Cyclic Carbonates: Multifaceted CO2‐Based Building Blocks for Modern Chemistry and Polymer Science. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Bruno Grignard
- University of Liege: Universite de Liege Chemistry BELGIUM
| | | |
Collapse
|
22
|
Monie F, Grignard B, Detrembleur C. Divergent Aminolysis Approach for Constructing Recyclable Self-Blown Nonisocyanate Polyurethane Foams. ACS Macro Lett 2022; 11:236-242. [PMID: 35574775 DOI: 10.1021/acsmacrolett.1c00793] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report an approach to fabricate self-blown nonisocyanate polyurethane (NIPU) foams by capitalizing on the divergent chemistries of amines with cyclic carbonates─creating the polymer network─and thiolactone─delivering in situ a thiol that generates the blowing agent (CO2) by reaction with a cyclic carbonate. Multiple linkages (hydroxyurethanes, thioethers, and amides) are created within the polymer network by this domino process. This one-pot methodology furnishes flexible to rigid foams with open-cell morphology at moderate temperature. The foams are easily repurposed into films or structural composites by thermal treatment, showing the first example of recyclable NIPU foams. Remarkably, both the formation and the recycling of the thermoset foams do not necessarily require the use of a catalyst. This facile and robust process is opening new avenues for designing more sustainable PU foams and offers new end-of-life options by facile material repurposing.
Collapse
Affiliation(s)
- Florent Monie
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liège, Sart-Tilman, B6A, 4000 Liège, Belgium
| | - Bruno Grignard
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liège, Sart-Tilman, B6A, 4000 Liège, Belgium
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liège, Sart-Tilman, B6A, 4000 Liège, Belgium
| |
Collapse
|
23
|
You H, Wang E, Cao H, Zhuo C, Liu S, Wang X, Wang F. From Impossible to Possible: Atom‐Economic Polymerization of Low Strain Five‐Membered Carbonates. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Huai You
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry CAS Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Enhao Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry CAS Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Han Cao
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry CAS Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Chunwei Zhuo
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry CAS Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Shunjie Liu
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry CAS Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry CAS Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Fosong Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry CAS Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
24
|
Natongchai W, Posada-Pérez S, Phungpanya C, Luque-Urrutia JA, Solà M, D’Elia V, Poater A. Enhancing the Catalytic Performance of Group I, II Metal Halides in the Cycloaddition of CO2 to Epoxides under Atmospheric Conditions by Cooperation with Homogeneous and Heterogeneous Highly Nucleophilic Aminopyridines: Experimental and Theoretical Study. J Org Chem 2022; 87:2873-2886. [DOI: 10.1021/acs.joc.1c02770] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Wuttichai Natongchai
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, Payupnai, WangChan, Rayong 21210, Thailand
| | - Sergio Posada-Pérez
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/M. Aurèlia Capmany, 69, Girona 17003, Catalonia, Spain
| | - Chalida Phungpanya
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, Payupnai, WangChan, Rayong 21210, Thailand
| | - Jesús Antonio Luque-Urrutia
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/M. Aurèlia Capmany, 69, Girona 17003, Catalonia, Spain
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/M. Aurèlia Capmany, 69, Girona 17003, Catalonia, Spain
| | - Valerio D’Elia
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, Payupnai, WangChan, Rayong 21210, Thailand
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/M. Aurèlia Capmany, 69, Girona 17003, Catalonia, Spain
| |
Collapse
|
25
|
Eftaiha AF, Qaroush AK, Hasan AK, Helal W, Al-Qaisi FM. CO 2 fixation into cyclic carbonates catalyzed by single-site aprotic organocatalysts. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00157h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The catalytic activity of a series of onium salts for the synthesis of cyclic carbonates have been investigated experimentally and theoretically.
Collapse
Affiliation(s)
- Ala'a F. Eftaiha
- Department of Chemistry, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Abdussalam K. Qaroush
- Department of Chemistry, Faculty of Science, The University of Jordan, Amman 11942, Jordan
| | - Areej K. Hasan
- Department of Chemistry, Faculty of Science, The University of Jordan, Amman 11942, Jordan
| | - Wissam Helal
- Department of Chemistry, Faculty of Science, The University of Jordan, Amman 11942, Jordan
| | - Feda'a M. Al-Qaisi
- Department of Chemistry, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| |
Collapse
|
26
|
Hu X, Bobbink FD, van Muyden A, Talebi Amiri M, Bonnin A, Maréchal F, Nazeeruddin MK, Qi Z, Dyson PJ. Cycloaddition of Biogas-Contained CO 2 into Epoxides via Ionic Polymer Catalysis: An Experimental and Process Simulation Study. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xutao Hu
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Max Planck Partner Group at the State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Felix D. Bobbink
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Antoine van Muyden
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Masoud Talebi Amiri
- Industrial Process and Energy Systems Engineering (IPESE), École Polytechnique Fédérale de Lausanne (EPFL), CH-1951 Sion, Switzerland
| | - Alexy Bonnin
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - François Maréchal
- Industrial Process and Energy Systems Engineering (IPESE), École Polytechnique Fédérale de Lausanne (EPFL), CH-1951 Sion, Switzerland
| | - Mohammad K. Nazeeruddin
- Group for Molecular Engineering of Functional Materials (GMF), Institute of Chemical Science and Engineering, Faculty of Basic Science, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Zhiwen Qi
- Max Planck Partner Group at the State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Paul J. Dyson
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
27
|
You H, Wang E, Cao H, Zhuo C, Liu S, Wang X, Wang F. From Impossible to Possible: Atom-Economic Polymerization of Low Strain Five-Membered Carbonates. Angew Chem Int Ed Engl 2021; 61:e202113152. [PMID: 34905260 DOI: 10.1002/anie.202113152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Indexed: 01/18/2023]
Abstract
The direct ring-opening polymerization (ROP) of propylene carbonate (PC) only affords oligomers with substantial unidentified by-products, which hinders the efficient utilization of PC. Through detailed studies, for the first time, a careful mechanism involving the in situ release of propylene oxide (PO) from PC decarboxylation is proposed. Further, we report a novel strategy of copolymerization of PC/cyclic anhydrides via in situ capture of the formed intermediates. Results show that PC is successfully transformed into polyesters. Especially for the ring-opening alternating copolymerization (ROAC) of PC/phthalic anhydride (PA), a variety of advantages are manifold: i) slow-release of PO ensuring a perfectly alternating structure; ii) quantitative and fast transformation of PC; iii) visualization of polymerization process by a CO2 pressure gauge. Of importance, through tandem polymerizations, PC is fully transformed into polyesters and polycarbonates concurrently, thus achieving PC utilization with a high atom-economy.
Collapse
Affiliation(s)
- Huai You
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, CAS, Changchun, 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Enhao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, CAS, Changchun, 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Han Cao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, CAS, Changchun, 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Chunwei Zhuo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, CAS, Changchun, 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Shunjie Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, CAS, Changchun, 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, CAS, Changchun, 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Fosong Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, CAS, Changchun, 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
28
|
Younes GR, Marić M. Bio-based Thermoplastic Polyhydroxyurethanes Synthesized from the Terpolymerization of a Dicarbonate and Two Diamines: Design, Rheology, and Application in Melt Blending. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01640] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Georges R. Younes
- Department of Chemical Engineering, McGill University, Montreal, QC H3A 0C5, Canada
| | - Milan Marić
- Department of Chemical Engineering, McGill University, Montreal, QC H3A 0C5, Canada
| |
Collapse
|
29
|
Younes GR, Maric M. Increasing the Hydrophobicity of Hybrid Poly(propylene glycol)-Based Polyhydroxyurethanes by Capping with Hydrophobic Diamine. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01293] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Georges R. Younes
- Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
| | - Milan Maric
- Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
| |
Collapse
|
30
|
Ren FY, You F, Gao S, Xie WH, He LN, Li HR. Oligomeric ricinoleic acid synthesis with a recyclable catalyst and application to preparing non-isocyanate polyhydroxyurethane. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110501] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
31
|
Choong PS, Chong NX, Wai Tam EK, Seayad AM, Seayad J, Jana S. Biobased Nonisocyanate Polyurethanes as Recyclable and Intrinsic Self-Healing Coating with Triple Healing Sites. ACS Macro Lett 2021; 10:635-641. [PMID: 35570759 DOI: 10.1021/acsmacrolett.1c00163] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Polymer coatings having high amounts of renewable carbon and self-healing properties are highly sought after in a sustainability perspective. We report here the development of bio-/CO2-derived nonisocyanate polyurethane (NIPU) coatings which are recyclable and healable via three different types of healing mechanisms. These NIPUs contain furan rings in their main chain which after cross-linking with bismaleimides form organogels having a thermo-reversible sol-gel transition and solvent-borne coatings with improved properties. Judicial selection of the bismaleimide cross-linker structure enabled us to produce recyclable and intrinsic healable coatings mediated by heat (thermo-healing), moisture (moisture-healing), and, more interestingly, dry conditions at room temperature (self-healing). The intrinsic moisture-healing property of NIPU-based coatings is unprecedented and is mainly due to the presence of hydroxyl functionalities in the NIPU structure. The uniqueness of these cross-linked biobased NIPU as recyclable coatings having triple healing sites present in their structure gives these materials potential for sustainable and functional applications.
Collapse
Affiliation(s)
- Ping Sen Choong
- Functional Molecules and Polymers, Institute of Chemical and Engineering Sciences (ICES), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island 627833, Singapore
| | - Ning Xi Chong
- Functional Molecules and Polymers, Institute of Chemical and Engineering Sciences (ICES), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island 627833, Singapore
| | - Eric Kwok Wai Tam
- Functional Molecules and Polymers, Institute of Chemical and Engineering Sciences (ICES), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island 627833, Singapore
| | - Abdul Majeed Seayad
- Process and Catalysis Research, Institute of Chemical and Engineering Sciences (ICES), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island 627833, Singapore
| | - Jayasree Seayad
- Functional Molecules and Polymers, Institute of Chemical and Engineering Sciences (ICES), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island 627833, Singapore
| | - Satyasankar Jana
- Functional Molecules and Polymers, Institute of Chemical and Engineering Sciences (ICES), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island 627833, Singapore
| |
Collapse
|
32
|
Ousaka N, Endo T. One-Pot Nonisocyanate Synthesis of Sequence-Controlled Poly(hydroxy urethane)s from a Bis(six-membered cyclic carbonate) and Two Different Diamines. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Naoki Ousaka
- Molecular Engineering Institute, Kyushu Institute of Technology, Tobata-ku, Kitakyushu 804-8550, Japan
| | - Takeshi Endo
- Molecular Engineering Institute, Kyushu Institute of Technology, Tobata-ku, Kitakyushu 804-8550, Japan
| |
Collapse
|
33
|
Natongchai W, Luque-Urrutia JA, Phungpanya C, Solà M, D'Elia V, Poater A, Zipse H. Cycloaddition of CO2 to epoxides by highly nucleophilic 4-aminopyridines: establishing a relationship between carbon basicity and catalytic performance by experimental and DFT investigations. Org Chem Front 2021. [DOI: 10.1039/d0qo01327g] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
New highly nucleophilic homogeneous and heterogeneous catalysts based on the 3,4-diaminopyridine scaffold are reported for the halogen-free cycloaddition of CO2 to epoxides.
Collapse
Affiliation(s)
- Wuttichai Natongchai
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong
- Thailand
| | - Jesús Antonio Luque-Urrutia
- Institut de Química Computacional i Catàlisi and Departament de Química
- Universitat de Girona
- 17003 Girona
- Spain
| | - Chalida Phungpanya
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong
- Thailand
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi and Departament de Química
- Universitat de Girona
- 17003 Girona
- Spain
| | - Valerio D'Elia
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong
- Thailand
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química
- Universitat de Girona
- 17003 Girona
- Spain
| | - Hendrik Zipse
- Department Chemie
- Ludwig-Maximilians-Universität München
- 81377 München
- Germany
| |
Collapse
|
34
|
Palenzuela M, Sánchez-Roa D, Damián J, Sessini V, Mosquera ME. Polymerization of terpenes and terpenoids using metal catalysts. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2021. [DOI: 10.1016/bs.adomc.2021.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
35
|
Younes G, Price G, Dandurand Y, Maric M. Study of Moisture-Curable Hybrid NIPUs Based on Glycerol with Various Diamines: Emergent Advantages of PDMS Diamines. ACS OMEGA 2020; 5:30657-30670. [PMID: 33283114 PMCID: PMC7711944 DOI: 10.1021/acsomega.0c04689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
A sol/gel curing method is used in this work to synthesize hybrid partially bio-based polyhydroxyurethanes (PHUs) from dicarbonates derived from glycerol and various diamines. The method consists of end-capping the PHU prepolymers with moisture-sensitive groups, so sealants and adhesives can be produced from partially sustainable hybrid PHUs (HPHUs), similar to their preparation from end-capped conventional polyurethanes. Diglycerol dicarbonate (DGC) is synthesized and polymerized with different diamines of various chain lengths, and the resulting structural and thermal properties of the PHUs are qualitatively and quantitively characterized. This characterization led to two potential candidates: PHU 4, made of DGC and a poly(propylene glycol) diamine, and PHU 10, prepared from DGC and a poly(dimethylsiloxane) diamine. These polymers, with respective relative number-average molecular weights of 3200 and 7400 g/mol, are end-capped and left to cure under ambient lab conditions (22 °C and 40-50% humidity), and the curing processes are monitored rheologically. Notably, moisture curing does not require any catalyst. The chemical stability of the resulting hybrid PHUs (HPHUs) 4 and 10 in pure water is investigated to check the viability of applying them under outdoor conditions. Only HPHU 10 is found to be resistant to water and shows hydrophobicity with a contact angle of 109°. Tensile tests are conducted on HPHU 10 samples cured under lab conditions for a week and others cured for another week while being immersed in water. The mechanical properties, tensile strength and elongation at break, improve with the samples cured in water, indicating the high-water repellency of HPHU 10.
Collapse
Affiliation(s)
- Georges
R. Younes
- Department
of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
| | - Gareth Price
- Department
of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
| | | | - Milan Maric
- Department
of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
| |
Collapse
|
36
|
Cho SH, Dahnum D, Cheong SH, Lee HW, Lee U, Ha JM, Lee H. Facile one-pot synthesis of ZnBr2 immobilized ion exchange resin for the coupling reaction of CO2 with propylene oxide. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
37
|
Johnson C, Dabral S, Rudolf P, Licht U, Hashmi ASK, Schaub T. Liquid‐liquid‐phase Synthesis of
exo
‐Vinylene Carbonates from Primary Propargylic Alcohols: Catalyst Design and Recycling. ChemCatChem 2020. [DOI: 10.1002/cctc.202001551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Chloë Johnson
- Catalysis Research Laboratory (CaRLa) Im Neuenheimer Feld 584 69120 Heidelberg Germany
| | - Saumya Dabral
- Catalysis Research Laboratory (CaRLa) Im Neuenheimer Feld 584 69120 Heidelberg Germany
| | - Peter Rudolf
- BASF SE Carl-Bosch-Str.38 67056 Ludwigshafen Germany
| | - Ulrike Licht
- BASF SE Carl-Bosch-Str.38 67056 Ludwigshafen Germany
| | - A. Stephen K. Hashmi
- Catalysis Research Laboratory (CaRLa) Im Neuenheimer Feld 584 69120 Heidelberg Germany
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Thomas Schaub
- Catalysis Research Laboratory (CaRLa) Im Neuenheimer Feld 584 69120 Heidelberg Germany
- BASF SE Carl-Bosch-Str.38 67056 Ludwigshafen Germany
| |
Collapse
|
38
|
Song X, Wang J, Yang L, Pan H, Zheng B. The transformation strategies between homogeneous and heterogeneous catalysts for the coupling reactions of CO2 and epoxides/olefins. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Bresciani G, Antico E, Ciancaleoni G, Zacchini S, Pampaloni G, Marchetti F. Bypassing the Inertness of Aziridine/CO 2 Systems to Access 5-Aryl-2-Oxazolidinones: Catalyst-Free Synthesis Under Ambient Conditions. CHEMSUSCHEM 2020; 13:5586-5594. [PMID: 32902136 DOI: 10.1002/cssc.202001823] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/19/2020] [Indexed: 06/11/2023]
Abstract
The development of sustainable synthetic routes to access valuable oxazolidinones via CO2 fixation is an active research area, and the aziridine/carbon dioxide coupling has aroused a considerable interest. This reaction features a high activation barrier and thus requires a catalytic system, and may present some other critical issues. Here, the straightforward gram-scale synthesis of a series of 5-aryl-2-oxazolidinones was developed at ambient temperature and atmospheric CO2 pressure, in the absence of any catalyst/co-catalyst. The key to this innovative procedure consists in the direct transfer of the pre-formed amine/CO2 adduct (carbamate) to common aziridine precursors (dimethylsulfonium salts), replacing the classical sequential addition of amine (intermediate isolation of aziridine) and then CO2 . The reaction mechanism was investigated by NMR spectroscopy and DFT calculations applied to model cases.
Collapse
Affiliation(s)
- Giulio Bresciani
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
- CIRCC, via Celso Ulpiani 27, 70126, Bari, Italy
| | - Emanuele Antico
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Gianluca Ciancaleoni
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
- CIRCC, via Celso Ulpiani 27, 70126, Bari, Italy
| | - Stefano Zacchini
- CIRCC, via Celso Ulpiani 27, 70126, Bari, Italy
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Guido Pampaloni
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
- CIRCC, via Celso Ulpiani 27, 70126, Bari, Italy
| | - Fabio Marchetti
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
- CIRCC, via Celso Ulpiani 27, 70126, Bari, Italy
| |
Collapse
|
40
|
Zhang Y, Yang G, Xie R, Yang L, Li B, Wu G. Scalable, Durable, and Recyclable Metal‐Free Catalysts for Highly Efficient Conversion of CO
2
to Cyclic Carbonates. Angew Chem Int Ed Engl 2020; 59:23291-23298. [DOI: 10.1002/anie.202010651] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Yao‐Yao Zhang
- MOE Laboratory of Macromolecular Synthesis and Functionalization Adsorption and Separation Materials and Technologies of Zhejiang Province Department of Polymer Science and Engineering Zhejiang University Zhe Da Road 38 Hangzhou 310027 China
| | - Guan‐Wen Yang
- MOE Laboratory of Macromolecular Synthesis and Functionalization Adsorption and Separation Materials and Technologies of Zhejiang Province Department of Polymer Science and Engineering Zhejiang University Zhe Da Road 38 Hangzhou 310027 China
| | - Rui Xie
- MOE Laboratory of Macromolecular Synthesis and Functionalization Adsorption and Separation Materials and Technologies of Zhejiang Province Department of Polymer Science and Engineering Zhejiang University Zhe Da Road 38 Hangzhou 310027 China
| | - Li Yang
- MOE Laboratory of Macromolecular Synthesis and Functionalization Adsorption and Separation Materials and Technologies of Zhejiang Province Department of Polymer Science and Engineering Zhejiang University Zhe Da Road 38 Hangzhou 310027 China
| | - Bo Li
- College of Material Chemistry and Chemical Engineering Hangzhou Normal University Yuhangtang Road 2318 Hangzhou 311121 China
| | - Guang‐Peng Wu
- MOE Laboratory of Macromolecular Synthesis and Functionalization Adsorption and Separation Materials and Technologies of Zhejiang Province Department of Polymer Science and Engineering Zhejiang University Zhe Da Road 38 Hangzhou 310027 China
| |
Collapse
|
41
|
Zhang Y, Yang G, Xie R, Yang L, Li B, Wu G. Scalable, Durable, and Recyclable Metal‐Free Catalysts for Highly Efficient Conversion of CO
2
to Cyclic Carbonates. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010651] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yao‐Yao Zhang
- MOE Laboratory of Macromolecular Synthesis and Functionalization Adsorption and Separation Materials and Technologies of Zhejiang Province Department of Polymer Science and Engineering Zhejiang University Zhe Da Road 38 Hangzhou 310027 China
| | - Guan‐Wen Yang
- MOE Laboratory of Macromolecular Synthesis and Functionalization Adsorption and Separation Materials and Technologies of Zhejiang Province Department of Polymer Science and Engineering Zhejiang University Zhe Da Road 38 Hangzhou 310027 China
| | - Rui Xie
- MOE Laboratory of Macromolecular Synthesis and Functionalization Adsorption and Separation Materials and Technologies of Zhejiang Province Department of Polymer Science and Engineering Zhejiang University Zhe Da Road 38 Hangzhou 310027 China
| | - Li Yang
- MOE Laboratory of Macromolecular Synthesis and Functionalization Adsorption and Separation Materials and Technologies of Zhejiang Province Department of Polymer Science and Engineering Zhejiang University Zhe Da Road 38 Hangzhou 310027 China
| | - Bo Li
- College of Material Chemistry and Chemical Engineering Hangzhou Normal University Yuhangtang Road 2318 Hangzhou 311121 China
| | - Guang‐Peng Wu
- MOE Laboratory of Macromolecular Synthesis and Functionalization Adsorption and Separation Materials and Technologies of Zhejiang Province Department of Polymer Science and Engineering Zhejiang University Zhe Da Road 38 Hangzhou 310027 China
| |
Collapse
|
42
|
Bourguignon M, Thomassin JM, Grignard B, Vertruyen B, Detrembleur C. Water-Borne Isocyanate-Free Polyurethane Hydrogels with Adaptable Functionality and Behavior. Macromol Rapid Commun 2020; 42:e2000482. [PMID: 33047423 DOI: 10.1002/marc.202000482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/30/2020] [Indexed: 02/02/2023]
Abstract
Polyurethane hydrogels are attractive materials finding multiple applications in various sectors of prime importance; however, they are still prepared by the toxic isocyanate chemistry. Herein the facile and direct preparation in water at room temperature of a large palette of anionic, cationic, or neutral polyurethane hydrogels by a non-isocyanate route from readily available diamines and new hydrosoluble polymers bearing cyclic carbonates is reported. The latter are synthesized by free radical polymerization of glycerin carbonated methacrylate with water-soluble comonomers. The hydrogel formation is studied at different pH and its influence on the gel time and storage modulus is investigated. Reinforced hydrogels are also constructed by adding CaCl2 to the formulation that in-situ generates CaCO3 particles. Thermoresponsive hydrogels are also prepared from new thermoresponsive cyclic carbonate bearing polymers. This work demonstrates that a multitude of non-isocyanate polyurethane hydrogels are easily accessible under mild conditions without any catalyst, opening new perspectives in the field.
Collapse
Affiliation(s)
- Maxime Bourguignon
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liege, Chemistry Department, Sart-Tilman B6A, Liege, 4000, Belgium
| | - Jean-Michel Thomassin
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liege, Chemistry Department, Sart-Tilman B6A, Liege, 4000, Belgium
| | - Bruno Grignard
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liege, Chemistry Department, Sart-Tilman B6A, Liege, 4000, Belgium
| | - Bénédicte Vertruyen
- GREENMAT, CESAM Research Unit, University of Liege, Chemistry Department B6a, Liege, 4000, Belgium
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liege, Chemistry Department, Sart-Tilman B6A, Liege, 4000, Belgium
| |
Collapse
|
43
|
Monie F, Grignard B, Thomassin J, Mereau R, Tassaing T, Jerome C, Detrembleur C. Chemo‐ and Regioselective Additions of Nucleophiles to Cyclic Carbonates for the Preparation of Self‐Blowing Non‐Isocyanate Polyurethane Foams. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Florent Monie
- Center for Education and Research on Macromolecules (CERM) CESAM Research Unit University of Liège Department of Chemistry Sart-Tilman, B6A 4000 Liège Belgium
| | - Bruno Grignard
- Center for Education and Research on Macromolecules (CERM) CESAM Research Unit University of Liège Department of Chemistry Sart-Tilman, B6A 4000 Liège Belgium
| | - Jean‐Michel Thomassin
- Center for Education and Research on Macromolecules (CERM) CESAM Research Unit University of Liège Department of Chemistry Sart-Tilman, B6A 4000 Liège Belgium
| | - Raphael Mereau
- Institut des Sciences Moléculaires (ISM) UMR5255 CNRS Université de Bordeaux 351 Cours de la libération 33405 Talence Cedex France
| | - Thierry Tassaing
- Institut des Sciences Moléculaires (ISM) UMR5255 CNRS Université de Bordeaux 351 Cours de la libération 33405 Talence Cedex France
| | - Christine Jerome
- Center for Education and Research on Macromolecules (CERM) CESAM Research Unit University of Liège Department of Chemistry Sart-Tilman, B6A 4000 Liège Belgium
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM) CESAM Research Unit University of Liège Department of Chemistry Sart-Tilman, B6A 4000 Liège Belgium
| |
Collapse
|
44
|
Motokucho S, Morikawa H. Poly(hydroxyurethane): catalytic applicability for the cyclic carbonate synthesis from epoxides and CO 2. Chem Commun (Camb) 2020; 56:10678-10681. [PMID: 32785395 DOI: 10.1039/d0cc04463f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We have developed a synthetic methodology using poly(hydroxyurethane) as an organocatalyst for the chemical fixation of CO2 into epoxides, leading to the formation of five-membered cyclic carbonates with remarkably high selectivity and yields. The catalyzed reaction was applicable to various epoxides.
Collapse
Affiliation(s)
- Suguru Motokucho
- Chemistry and Material Engineering Program, Nagasaki University, 1-14, Bunkyo-Machi, Nagasaki-shi 852-8521, Japan.
| | | |
Collapse
|
45
|
|
46
|
Monie F, Grignard B, Thomassin JM, Mereau R, Tassaing T, Jerome C, Detrembleur C. Chemo- and Regioselective Additions of Nucleophiles to Cyclic Carbonates for the Preparation of Self-Blowing Non-Isocyanate Polyurethane Foams. Angew Chem Int Ed Engl 2020; 59:17033-17041. [PMID: 32521118 DOI: 10.1002/anie.202006267] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Indexed: 11/07/2022]
Abstract
Polyurethane (PU) foams are indisputably daily essential materials found in many applications, notably for comfort (for example, matrasses) or energy saving (for example, thermal insulation). Today, greener routes for their production are intensively searched for to avoid the use of toxic isocyanates. An easily scalable process for the simple construction of self-blown isocyanate-free PU foams by exploiting the organocatalyzed chemo- and regioselective additions of amines and thiols to easily accessible cyclic carbonates is described. These reactions are first validated on model compounds and rationalized by DFT calculations. Various foams are then prepared and characterized in terms of morphology and mechanical properties, and the scope of the process is illustrated by modulating the composition of the reactive formulation. With impressive diversity and accessibility of the main components of the formulations, this new robust and solvent-free process could open avenues for construction of more sustainable PU foams, and offers the first realistic alternative to the traditional isocyanate route.
Collapse
Affiliation(s)
- Florent Monie
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Department of Chemistry, Sart-Tilman, B6A, 4000, Liège, Belgium
| | - Bruno Grignard
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Department of Chemistry, Sart-Tilman, B6A, 4000, Liège, Belgium
| | - Jean-Michel Thomassin
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Department of Chemistry, Sart-Tilman, B6A, 4000, Liège, Belgium
| | - Raphael Mereau
- Institut des Sciences Moléculaires (ISM), UMR5255 CNRS, Université de Bordeaux, 351 Cours de la libération, 33405, Talence Cedex, France
| | - Thierry Tassaing
- Institut des Sciences Moléculaires (ISM), UMR5255 CNRS, Université de Bordeaux, 351 Cours de la libération, 33405, Talence Cedex, France
| | - Christine Jerome
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Department of Chemistry, Sart-Tilman, B6A, 4000, Liège, Belgium
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Department of Chemistry, Sart-Tilman, B6A, 4000, Liège, Belgium
| |
Collapse
|
47
|
Maltby KA, Hutchby M, Plucinski P, Davidson MG, Hintermair U. Selective Catalytic Synthesis of 1,2- and 8,9-Cyclic Limonene Carbonates as Versatile Building Blocks for Novel Hydroxyurethanes. Chemistry 2020; 26:7405-7415. [PMID: 32077537 PMCID: PMC7317810 DOI: 10.1002/chem.201905561] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Indexed: 12/19/2022]
Abstract
The selective catalytic synthesis of limonene-derived monofunctional cyclic carbonates and their subsequent functionalisation via thiol-ene addition and amine ring-opening is reported. A phosphotungstate polyoxometalate catalyst used for limonene epoxidation in the 1,2-position is shown to also be active in cyclic carbonate synthesis, allowing a two-step, one-pot synthesis without intermittent epoxide isolation. When used in conjunction with a classical halide catalyst, the polyoxometalate increased the rate of carbonation in a synergistic double-activation of both substrates. The cis isomer is shown to be responsible for incomplete conversion and by-product formation in commercial mixtures of 1,2-limomene oxide. Carbonation of 8,9-limonene epoxide furnished the 8,9-limonene carbonate for the first time. Both cyclic carbonates underwent thiol-ene addition reactions to yield linked di-monocarbonates, which can be used in linear non-isocyanate polyurethanes synthesis, as shown by their facile ring-opening with N-hexylamine. Thus, the selective catalytic route to monofunctional limonene carbonates gives straightforward access to monomers for novel bio-based polymers.
Collapse
Affiliation(s)
- Katarzyna A Maltby
- Centre for Sustainable and Circular Technologies, University of Bath, Claverton Down, BA2 7AY, Bath, UK
| | - Marc Hutchby
- Centre for Sustainable and Circular Technologies, University of Bath, Claverton Down, BA2 7AY, Bath, UK
| | - Pawel Plucinski
- Centre for Sustainable and Circular Technologies, University of Bath, Claverton Down, BA2 7AY, Bath, UK
| | - Matthew G Davidson
- Centre for Sustainable and Circular Technologies, University of Bath, Claverton Down, BA2 7AY, Bath, UK
| | - Ulrich Hintermair
- Centre for Sustainable and Circular Technologies, University of Bath, Claverton Down, BA2 7AY, Bath, UK
| |
Collapse
|
48
|
Brege A, Méreau R, McGehee K, Grignard B, Detrembleur C, Jerome C, Tassaing T. The coupling of CO2 with diols promoted by organic dual systems: Towards products divergence via benchmarking of the performance metrics. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
49
|
Lai S, Gao J, Zhang H, Cheng L, Xiong X. Luffa sponge supported dendritic imidazolium ILs with high-density active sites as highly efficient and environmentally friendly catalysts for CO2 chemical fixation. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Natongchai W, Pornpraprom S, D' Elia V. Synthesis of Bio‐Based Cyclic Carbonates Using a Bio‐Based Hydrogen Bond Donor: Application of Ascorbic Acid to the Cycloaddition of CO
2
to Oleochemicals. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000154] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wuttichai Natongchai
- Department of Materials Science and Engineering School of Molecular Science and EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC) 555 Moo 1, 21210 Payupnai, WangChan, Rayong Thailand
| | - Suriyaporn Pornpraprom
- Department of Materials Science and Engineering School of Molecular Science and EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC) 555 Moo 1, 21210 Payupnai, WangChan, Rayong Thailand
| | - Valerio D' Elia
- Department of Materials Science and Engineering School of Molecular Science and EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC) 555 Moo 1, 21210 Payupnai, WangChan, Rayong Thailand
| |
Collapse
|