1
|
Akhtar M, Lai L, Tian T, Zhang X, Cheng H, Lin L. A series of indole-derived γ-hydroxy propiolate esters as potent anti-inflammatory agents: Design, synthesis, in-vitro and in-vivo biological studies. Eur J Med Chem 2024; 270:116376. [PMID: 38569433 DOI: 10.1016/j.ejmech.2024.116376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
A variety of novel indole-derived γ-hydroxy propiolate esters were designed, synthesized, and evaluated for their anti-inflammatory activity in-vitro and in-vivo. According to the nitric oxide (NO) inhibitory analysis, all compounds showed potent NO inhibitory ability in a dose-dependent manner, with no apparent cytotoxicity. The model compound, L-37, also exhibited significant potency in PGE2 inhibition. In addition, compounds L-37 and L-39 can downregulate the expression of COX-2 enzyme at 5 μM via ELISA experiment. Compound L-37 (1 μM) also inhibited the PGF1 production as well as the expression of COX-1, but displayed weak inhibition activity towards the Leukotrienes (LT) and Thromboxane-B2 (TXB-2) production. However, the expression of 5-LOX was significantly inhibited by compound L-39 at 5 μM. Xylene-induced ear edema model was explored for in-vivo anti-inflammatory evaluation, compound L-37 showed similar inhibitory activity compared with celecoxib, approximately 80% at 50 mg/kg dosage. Every outcome showed that the newly synthesized compounds can effectively inhibit inflammation.
Collapse
Affiliation(s)
- Maryam Akhtar
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Luhao Lai
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, 272067, China
| | - Ting Tian
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xu Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Hao Cheng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Li Lin
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Flauzino JMR, Nalepa MA, Chronopoulos DD, Šedajová V, Panáček D, Jakubec P, Kührová P, Pykal M, Banáš P, Panáček A, Bakandritsos A, Otyepka M. Click and Detect: Versatile Ampicillin Aptasensor Enabled by Click Chemistry on a Graphene-Alkyne Derivative. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207216. [PMID: 36703534 DOI: 10.1002/smll.202207216] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/20/2022] [Indexed: 06/18/2023]
Abstract
Tackling the current problem of antimicrobial resistance (AMR) requires fast, inexpensive, and effective methods for controlling and detecting antibiotics in diverse samples at the point of interest. Cost-effective, disposable, point-of-care electrochemical biosensors are a particularly attractive option. However, there is a need for conductive and versatile carbon-based materials and inks that enable effective bioconjugation under mild conditions for the development of robust, sensitive, and selective devices. This work describes a simple and fast methodology to construct an aptasensor based on a novel graphene derivative equipped with alkyne groups prepared via fluorographene chemistry. Using click chemistry, an aptamer is immobilized and used as a successful platform for the selective determination of ampicillin in real samples in the presence of interfering molecules. The electrochemical aptasensor displayed a detection limit of 1.36 nM, high selectivity among other antibiotics, the storage stability of 4 weeks, and is effective in real samples. Additionally, structural and docking simulations of the aptamer shed light on the ampicillin binding mechanism. The versatility of this platform opens up wide possibilities for constructing a new class of aptasensor based on disposable screen-printed carbon electrodes usable in point-of-care devices.
Collapse
Affiliation(s)
- José M R Flauzino
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
| | - Martin-Alex Nalepa
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
| | - Demetrios D Chronopoulos
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
| | - Veronika Šedajová
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
| | - David Panáček
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
| | - Petr Jakubec
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
| | - Petra Kührová
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
| | - Martin Pykal
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
| | - Aleš Panáček
- Department of Physical Chemistry, Faculty of Science, Palacký University, Olomouc, 771 46, Czech Republic
| | - Aristides Bakandritsos
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
- Nanotechnology Centre, Centre of Energy and Environmental Technologies, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
- IT4Innovations, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic
| |
Collapse
|
3
|
Hrubý V, Zaoralová D, Medveď M, Bakandritsos A, Zbořil R, Otyepka M. Emerging graphene derivatives as active 2D coordination platforms for single-atom catalysts. NANOSCALE 2022; 14:13490-13499. [PMID: 36070404 PMCID: PMC9520671 DOI: 10.1039/d2nr03453k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Single-atom catalysts (SACs) based on graphene derivatives are an emerging and growing class of materials functioning as two-dimensional (2D) metal-coordination scaffolds with intriguing properties. Recently, owing to the rich chemistry of fluorographene, new avenues have opened toward graphene derivatives with selective, spacer-free, and dense functionalization, acting as in-plane or out-of-plane metal coordination ligands. The particular structural features give rise to intriguing phenomena occurring between the coordinated metals and the graphene backbone. These include redox processes, charge transfer, emergence, and stabilization of rare or otherwise unstable metal valence states, as well as metal-support and metal-metal synergism. The vast potential of such systems has been demonstrated as enzyme mimics for cooperative mixed-valence SACs, ethanol fuel cells, and CO2 fixation; however, it is anticipated that their impact will further expand toward diverse fields, e.g., advanced organic transformations, electrochemical energy storage, and energy harvesting.
Collapse
Affiliation(s)
- Vítězslav Hrubý
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
- Department of Physical Chemistry, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Dagmar Zaoralová
- IT4Innovations, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Miroslav Medveď
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| | - Aristeidis Bakandritsos
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
- Centre of Energy and Environmental Technologies, Nanotechnology Centre, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
- Centre of Energy and Environmental Technologies, Nanotechnology Centre, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
- IT4Innovations, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| |
Collapse
|
4
|
Chronopoulos DD, Stangel C, Scheibe M, Čépe K, Tagmatarchis N, Otyepka M. Electrocatalytic activity for proton reduction by a covalent non-metal graphene-fullerene hybrid. Chem Commun (Camb) 2022; 58:8396-8399. [PMID: 35792707 PMCID: PMC9319450 DOI: 10.1039/d2cc02272a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/01/2022] [Indexed: 12/25/2022]
Abstract
A non-metal covalent hybrid of fullerene and graphene was synthesized in one step via fluorographene chemistry. Its electrocatalytic performance for the hydrogen evolution reaction and durability was ascribed to intrahybrid charge-transfer phenomena, exploiting the electron-accepting properties of C60 and the high conductivity and large surface area of graphene.
Collapse
Affiliation(s)
- Demetrios D Chronopoulos
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc 779 00, Czech Republic.
| | - Christina Stangel
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece.
| | - Magdalena Scheibe
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc 779 00, Czech Republic.
| | - Klára Čépe
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc 779 00, Czech Republic.
| | - Nikos Tagmatarchis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece.
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc 779 00, Czech Republic.
- IT4Innovations, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| |
Collapse
|
5
|
Horbaczewskyj CS, Fairlamb IJS. Pd-Catalyzed Cross-Couplings: On the Importance of the Catalyst Quantity Descriptors, mol % and ppm. Org Process Res Dev 2022; 26:2240-2269. [PMID: 36032362 PMCID: PMC9396667 DOI: 10.1021/acs.oprd.2c00051] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 12/26/2022]
Abstract
![]()
This Review examines parts per million (ppm) palladium
concentrations
in catalytic cross-coupling reactions and their relationship with
mole percentage (mol %). Most studies in catalytic cross-coupling
chemistry have historically focused on the concentration ratio between
(pre)catalyst and the limiting reagent (substrate), expressed as mol
%. Several recent papers have outlined the use of “ppm level”
palladium as an alternative means of describing catalytic cross-coupling
reaction systems. This led us to delve deeper into the literature
to assess whether “ppm level” palladium is a practically
useful descriptor of catalyst quantities in palladium-catalyzed cross-coupling
reactions. Indeed, we conjectured that many reactions could, unknowingly,
have employed low “ppm levels” of palladium (pre)catalyst,
and generally, what would the spread of ppm palladium look like across
a selection of studies reported across the vast array of the cross-coupling
chemistry literature. In a few selected examples, we have examined
other metal catalyst systems for comparison with palladium.
Collapse
Affiliation(s)
| | - Ian J. S. Fairlamb
- University of York, Heslington, York, North Yorkshire, YO10 5DD, United Kingdom
| |
Collapse
|
6
|
Jeong JH, Kang S, Kim N, Joshi RK, Lee GH. Recent trends in covalent functionalization of 2D materials. Phys Chem Chem Phys 2022; 24:10684-10711. [DOI: 10.1039/d1cp04831g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covalent functionalization of the surface is more crucial in 2D materials than in conventional bulk materials because of their atomic thinness, large surface-to-volume ratio, and uniform surface chemical potential. Because...
Collapse
|
7
|
Chen X, Fan K, Liu Y, Li Y, Liu X, Feng W, Wang X. Recent Advances in Fluorinated Graphene from Synthesis to Applications: Critical Review on Functional Chemistry and Structure Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2101665. [PMID: 34658081 DOI: 10.1002/adma.202101665] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/27/2021] [Indexed: 05/11/2023]
Abstract
Fluorinated graphene (FG), as an emerging member of the graphene derivatives family, has attracted wide attention on account of its excellent performances and underlying applications. The introduction of a fluorine atom, with the strongest electronegativity (3.98), greatly changes the electron distribution of graphene, resulting in a series of unique variations in optical, electronic, magnetic, interfacial properties and so on. Herein, recent advances in the study of FG from synthesis to applications are introduced, and the relationship between its structure and properties is summarized in detail. Especially, the functional chemistry of FG has been thoroughly analyzed in recent years, which has opened a universal route for the functionalization and even multifunctionalization of FG toward various graphene derivatives, which further broadens its applications. Moreover, from a particular angle, the structure engineering of FG such as the distribution pattern of fluorine atoms and the regulation of interlayer structure when advanced nanotechnology gets involved is summarized. Notably, the elaborated structure engineering of FG is the key factor to optimize the corresponding properties for potential applications, and is also an up-to-date research hotspot and future development direction. Finally, perspectives and prospects for the problems and challenges in the study of FG are put forward.
Collapse
Affiliation(s)
- Xinyu Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Kun Fan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yu Li
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300354, P. R. China
| | - Xiangyang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300354, P. R. China
| | - Xu Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
8
|
Tang X, Fan T, Wang C, Zhang H. Halogen Functionalization in the 2D Material Flatland: Strategies, Properties, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005640. [PMID: 33783132 DOI: 10.1002/smll.202005640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/12/2020] [Indexed: 06/12/2023]
Abstract
Given the electronegativity and bonding environment of halogen elements, halogenation (i.e., fluorination, chlorination, bromination, and iodination) serves as a versatile strategy for chemical modifications of materials. The combination of halogens and 2D materials has triggered extensive interests since the first report on graphene fluorination in 2008. Subsequently, scholars consistently conduct pre-, in-process, or posthalogenation modifications of emerging 2D materials to achieve desired properties and broad device applications. They also continuously explore the role of halogens in 2D material functionalization. The multiple advantages introduced by halogen decoration make 2D materials outstanding from each subclass. In this review, an overall retrospect is provided on the research advances in the area of 2D material halogenation, including experimental halogenation strategies, halogen-triggered novel physics and properties, and advanced applications across the studied objects. Future research directions in this area are also proposed.
Collapse
Affiliation(s)
- Xian Tang
- School of Nuclear Science and Technology, University of South China, Hengyang, 421001, China
| | - Touwen Fan
- School of Nuclear Science and Technology, University of South China, Hengyang, 421001, China
| | - Cong Wang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Han Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
9
|
Huang F, Li Y, Liu X, Lai W, Fan K, Liu X, Wang X. Suzuki-Miyaura reaction of C-F bonds in fluorographene. Chem Commun (Camb) 2021; 57:351-354. [PMID: 33319890 DOI: 10.1039/d0cc07651a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report the first successful covalent modification of fluorographene (FG) based on Suzuki-Miyaura reaction of the C-F bond. The origin of the reaction efficiency of the C-F bond can be linked to the two-dimensional structure of FG and the synergistic effect of a phosphine ligand. This extends the application of the Suzuki reaction of the C-F bond into two-dimensional chemistry.
Collapse
Affiliation(s)
- Feng Huang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chendu 610065, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
10
|
Tale B, Nemade KR, Tekade PV. Graphene based nano-composites for efficient energy conversion and storage in Solar cells and Supercapacitors : A Review. POLYM-PLAST TECH MAT 2021. [DOI: 10.1080/25740881.2020.1851378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Bhagyashri Tale
- Department of Chemistry, J. B. College of Science, Wardha, Maharashtra, India
| | - K. R. Nemade
- Department of Physics, Indira Mahavidyalaya Kalamb, District: Yavatmal, Maharashtra, India
| | - P. V. Tekade
- Department of Chemistry, J. B. College of Science, Wardha, Maharashtra, India
| |
Collapse
|
11
|
Le TH, Oh Y, Kim H, Yoon H. Exfoliation of 2D Materials for Energy and Environmental Applications. Chemistry 2020; 26:6360-6401. [PMID: 32162404 DOI: 10.1002/chem.202000223] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Indexed: 12/20/2022]
Abstract
The fascinating properties of single-layer graphene isolated by mechanical exfoliation have inspired extensive research efforts toward two-dimensional (2D) materials. Layered compounds serve as precursors for atomically thin 2D materials (briefly, 2D nanomaterials) owing to their strong intraplane chemical bonding but weak interplane van der Waals interactions. There are newly emerging 2D materials beyond graphene, and it is becoming increasingly important to develop cost-effective, scalable methods for producing 2D nanomaterials with controlled microstructures and properties. The variety of developed synthetic techniques can be categorized into two classes: bottom-up and top-down approaches. Of top-down approaches, the exfoliation of bulk 2D materials into single or few layers is the most common. This review highlights chemical and physical exfoliation methods that allow for the production of 2D nanomaterials in large quantities. In addition, remarkable examples of utilizing exfoliated 2D nanomaterials in energy and environmental applications are introduced.
Collapse
Affiliation(s)
- Thanh-Hai Le
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Yuree Oh
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Hyungwoo Kim
- Alan G. MacDiarmid Energy Research &, School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea.,Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Hyeonseok Yoon
- Alan G. MacDiarmid Energy Research &, School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea.,Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| |
Collapse
|
12
|
Chronopoulos DD, Medveď M, Potsi G, Tomanec O, Scheibe M, Otyepka M. Tunable one-step double functionalization of graphene based on fluorographene chemistry. Chem Commun (Camb) 2020; 56:1936-1939. [PMID: 32002534 DOI: 10.1039/c9cc09514d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Double functionalized graphene derivatives were synthetized by a one-pot reaction of fluorographene with organometallic nucleophiles. Their nucleophilicity governed the preference for grafting and was utilized for tuning the functionalization. This approach paves the way toward the facile, up-scalable and controllable multifunctionalization of graphene.
Collapse
Affiliation(s)
- Demetrios D Chronopoulos
- Faculty of Science, Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Šlechtitelů 27, CZ-771 46 Olomouc, Czech Republic
| | | | | | | | | | | |
Collapse
|