1
|
Wang C, Kilgore HR, Latham AP, Zhang B. Nonspecific Yet Selective Interactions Contribute to Small Molecule Condensate Binding. J Chem Theory Comput 2024; 20:10247-10258. [PMID: 39534915 DOI: 10.1021/acs.jctc.4c01024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Biomolecular condensates are essential in various cellular processes, and their misregulation has been demonstrated to underlie disease. Small molecules that modulate condensate stability and material properties offer promising therapeutic approaches, but mechanistic insights into their interactions with condensates remain largely lacking. We employ a multiscale approach to enable long-time, equilibrated all-atom simulations of various condensate-ligand systems. Systematic characterization of the ligand binding poses reveals that condensates can form diverse and heterogeneous chemical environments with one or multiple chains to bind small molecules. Unlike traditional protein-ligand interactions, these chemical environments are dominated by nonspecific hydrophobic interactions. Nevertheless, the chemical environments feature unique amino acid compositions and physicochemical properties that favor certain small molecules over others, resulting in varied ligand partitioning coefficients within condensates. Notably, different condensates share similar sets of chemical environments but at different populations. This population shift drives ligand selectivity toward specific condensates. Our approach can enhance the interpretation of experimental screening data and may assist in the rational design of small molecules targeting specific condensates.
Collapse
Affiliation(s)
- Cong Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Henry R Kilgore
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, United States
| | - Andrew P Latham
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, Quantitative Biosciences Institute, University of California San Francisco, San Francisco, California 94143, United States
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Zhang G, Chu X. Balancing thermodynamic stability, dynamics, and kinetics in phase separation of intrinsically disordered proteins. J Chem Phys 2024; 161:095102. [PMID: 39225535 DOI: 10.1063/5.0220861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Intrinsically disordered proteins (IDPs) are prevalent participants in liquid-liquid phase separation due to their inherent potential for promoting multivalent binding. Understanding the underlying mechanisms of phase separation is challenging, as phase separation is a complex process, involving numerous molecules and various types of interactions. Here, we used a simplified coarse-grained model of IDPs to investigate the thermodynamic stability of the dense phase, conformational properties of IDPs, chain dynamics, and kinetic rates of forming condensates. We focused on the IDP system, in which the oppositely charged IDPs are maximally segregated, inherently possessing a high propensity for phase separation. By varying interaction strengths, salt concentrations, and temperatures, we observed that IDPs in the dense phase exhibited highly conserved conformational characteristics, which are more extended than those in the dilute phase. Although the chain motions and global conformational dynamics of IDPs in the condensates are slow due to the high viscosity, local chain flexibility at the short timescales is largely preserved with respect to that at the free state. Strikingly, we observed a non-monotonic relationship between interaction strengths and kinetic rates for forming condensates. As strong interactions of IDPs result in high stable condensates, our results suggest that the thermodynamics and kinetics of phase separation are decoupled and optimized by the speed-stability balance through underlying molecular interactions. Our findings contribute to the molecular-level understanding of phase separation and offer valuable insights into the developments of engineering strategies for precise regulation of biomolecular condensates.
Collapse
Affiliation(s)
- Guoqing Zhang
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong 511400, China
| | - Xiakun Chu
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong 511400, China
- Guangzhou Municipal Key Laboratory of Materials Informatics, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong 511400, China
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR 999077, China
| |
Collapse
|
3
|
Pal T, Wessén J, Das S, Chan HS. Differential Effects of Sequence-Local versus Nonlocal Charge Patterns on Phase Separation and Conformational Dimensions of Polyampholytes as Model Intrinsically Disordered Proteins. J Phys Chem Lett 2024; 15:8248-8256. [PMID: 39105804 DOI: 10.1021/acs.jpclett.4c01973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Conformational properties of intrinsically disordered proteins (IDPs) are governed by a sequence-ensemble relationship. To differentiate the impact of sequence-local versus sequence-nonlocal features of an IDP's charge pattern on its conformational dimensions and its phase-separation propensity, the charge "blockiness" κ and the nonlocality-weighted sequence charge decoration (SCD) parameters are compared for their correlations with isolated-chain radii of gyration (Rgs) and upper critical solution temperatures (UCSTs) of polyampholytes modeled by random phase approximation, field-theoretic simulation, and coarse-grained molecular dynamics. SCD is superior to κ in predicting Rg because SCD accounts for effects of contact order, i.e., nonlocality, on dimensions of isolated chains. In contrast, κ and SCD are comparably good, though nonideal, predictors of UCST because frequencies of interchain contacts in the multiple-chain condensed phase are less sensitive to sequence positions than frequencies of intrachain contacts of an isolated chain, as reflected by κ correlating better with condensed-phase interaction energy than SCD.
Collapse
Affiliation(s)
- Tanmoy Pal
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jonas Wessén
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Suman Das
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Chemistry, Gandhi Institute of Technology and Management, Visakhapatnam, Andhra Pradesh 530045, India
| | - Hue Sun Chan
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
4
|
An Y, Gao T, Wang T, Zhang D, Bharti B. Effects of charge asymmetry on the liquid-liquid phase separation of polyampholytes and their condensate properties. SOFT MATTER 2024; 20:6150-6159. [PMID: 39044475 DOI: 10.1039/d4sm00532e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Liquid-liquid phase separation (LLPS) is the mechanism underlying the formation of bio-molecular condensates which are important compartments regulating intra- and extra-cellular functions. Electrostatic interactions are some of the important driving forces of the LLPS behaviors of biomolecules. However, the understanding of the electrostatic interactions is still limited, especially in the mixtures of biomolecules with different charge patterns. Here, we focus on the electrostatic interactions in mixtures of charge-asymmetric and charge-symmetric polyampholytes and their roles in the phase separation behaviors. We build charge-asymmetric and charge-symmetric model proteins consisting of both glutamic acid (E, negatively charged) and lysine (K, positively charged), i.e. polyampholytes of E35K15 (charge asymmetric) and E25K25 (charge symmetric). Pure E25K25 can undergo LLPS. To investigate the effects of charge-asymmetric polyampholytes on the mixtures of E25K25/E35K15, we perform coarse-grained simulations to determine their phase separation. The charge-asymmetric polyampholyte E35K15 is resistant to the LLPS of the mixtures of E25K25/E35K15. The condensate density decreases with the molar fraction of E35K15 increasing to 0.4, and no LLPS occurs at the molar fraction of 0.5 and above. This can be attributed to the electrostatic repulsion between the negatively charged E35K15 polymers. We further investigate the effects of charge asymmetry on the conformations and properties of the condensates. The E35K15 polymers in the condensates exhibit a more collapsed state as the molar fraction of E35K15 increases. However, the conformation of E25K25 polymers changes slightly across different condensates. The surface tensions of condensates decline with the increase of the molar fraction of E35K15 polymers, while the diffusivity of polymers in the condensed phases is enhanced. This work elucidates the role of charge-asymmetric polyampholytes in determining the LLPS behaviours of binary mixtures of charge-symmetric and charge-asymmetric proteins as well as the properties of condensed phases.
Collapse
Affiliation(s)
- Yaxin An
- Department of Chemical Engineering, Louisiana State University, USA.
| | - Tong Gao
- Department of Chemical Engineering, Louisiana State University, USA.
| | - Tianyi Wang
- Department of Chemical Engineering, Louisiana State University, USA.
| | - Donghui Zhang
- Department of Chemistry, Louisiana State University, USA
| | - Bhuvnesh Bharti
- Department of Chemical Engineering, Louisiana State University, USA.
| |
Collapse
|
5
|
Zhou HX, Kota D, Qin S, Prasad R. Fundamental Aspects of Phase-Separated Biomolecular Condensates. Chem Rev 2024; 124:8550-8595. [PMID: 38885177 PMCID: PMC11260227 DOI: 10.1021/acs.chemrev.4c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Biomolecular condensates, formed through phase separation, are upending our understanding in much of molecular, cell, and developmental biology. There is an urgent need to elucidate the physicochemical foundations of the behaviors and properties of biomolecular condensates. Here we aim to fill this need by writing a comprehensive, critical, and accessible review on the fundamental aspects of phase-separated biomolecular condensates. We introduce the relevant theoretical background, present the theoretical basis for the computation and experimental measurement of condensate properties, and give mechanistic interpretations of condensate behaviors and properties in terms of interactions at the molecular and residue levels.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
- Department of Physics, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Divya Kota
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Sanbo Qin
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Ramesh Prasad
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
6
|
Yang X, Wang Y, Yang G. Molecular dynamics simulation on regulation of liquid-liquid phase separation of repetitive peptides. Sci Rep 2024; 14:13382. [PMID: 38862770 PMCID: PMC11167010 DOI: 10.1038/s41598-024-64327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024] Open
Abstract
Understanding the intricate interactions governing protein and peptide behavior in liquid-liquid phase separation (LLPS) is crucial for unraveling biological functions and dysfunctions. This study employs a residue-leveled coarse-grained molecular dynamics approach to simulate the phase separation of repetitive polyproline and polyarginine peptides (poly PR) with varying lengths and sequences in solution, considering different concentrations and temperatures. Our findings highlight the crucial role of sequence order in promoting LLPS in peptides with identical lengths of repetitive sequences. Interestingly, repetitive peptides containing fewer than 10 polyarginine repeats exhibit no LLPS, even at salt concentrations up to 3 M. Notably, our simulations align with experimental observations, pinpointing a salt concentration of 2.7 M for PR25-induced LLPS. Utilizing the same methodology, we predict the required salt concentrations for LLPS induction as 1.2 M, 1.5 M, and 2.7 M for PR12, PR15, and PR35, respectively. These predictions demonstrate good agreement with experimental results. Extending our investigation to include the peptide glutamine and arginine (GR15) in DNA solution, our simulations mirror experimental observations of phase separation. To unveil the molecular forces steering peptide phase separation, we introduce a dielectric constant modifier and hydrophobicity disruptor into poly PR systems. Our coarse-grained analysis includes an examination of temperature effects, leading to the inference that both hydrophobic and electrostatic interactions drive phase separation in peptide systems.
Collapse
Affiliation(s)
- Xiaojun Yang
- Department of Physics, Wenzhou University, Wenzhou, 325035, China
| | - Yanwei Wang
- Department of Physics, Wenzhou University, Wenzhou, 325035, China.
| | - Guangcan Yang
- Department of Physics, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
7
|
Koyama T, Iso N, Norizoe Y, Sakaue T, Yoshimura SH. Charge block-driven liquid-liquid phase separation - mechanism and biological roles. J Cell Sci 2024; 137:jcs261394. [PMID: 38855848 DOI: 10.1242/jcs.261394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
Liquid-liquid phase separation (LLPS) has increasingly been found to play pivotal roles in a number of intracellular events and reactions, and has introduced a new paradigm in cell biology to explain protein-protein and enzyme-ligand interactions beyond conventional molecular and biochemical theories. LLPS is driven by the cumulative effects of weak and promiscuous interactions, including electrostatic, hydrophobic and cation-π interactions, among polypeptides containing intrinsically disordered regions (IDRs) and describes the macroscopic behaviours of IDR-containing proteins in an intracellular milieu. Recent studies have revealed that interactions between 'charge blocks' - clusters of like charges along the polypeptide chain - strongly induce LLPS and play fundamental roles in its spatiotemporal regulation. Introducing a new parameter, termed 'charge blockiness', into physicochemical models of disordered polypeptides has yielded a better understanding of how the intrinsic amino acid sequence of a polypeptide determines the spatiotemporal occurrence of LLPS within a cell. Charge blockiness might also explain why some post-translational modifications segregate within IDRs and how they regulate LLPS. In this Review, we summarise recent progress towards understanding the mechanism and biological roles of charge block-driven LLPS and discuss how this new characteristic parameter of polypeptides offers new possibilities in the fields of structural biology and cell biology.
Collapse
Affiliation(s)
- Tetsu Koyama
- Department of Physical Sciences, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Naoki Iso
- Department of Physical Sciences, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Yuki Norizoe
- Department of Physical Sciences, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Takahiro Sakaue
- Department of Physical Sciences, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Shige H Yoshimura
- Graduate School of Biostudies , Kyoto University, Yoshida-konoe, Sakyo-ku, Kyoto, 606-8501, Japan
- Center for Living Systems Information Science (CeLiSIS) , Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
8
|
Sundaravadivelu Devarajan D, Wang J, Szała-Mendyk B, Rekhi S, Nikoubashman A, Kim YC, Mittal J. Sequence-dependent material properties of biomolecular condensates and their relation to dilute phase conformations. Nat Commun 2024; 15:1912. [PMID: 38429263 PMCID: PMC10907393 DOI: 10.1038/s41467-024-46223-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 02/19/2024] [Indexed: 03/03/2024] Open
Abstract
Material properties of phase-separated biomolecular condensates, enriched with disordered proteins, dictate many cellular functions. Contrary to the progress made in understanding the sequence-dependent phase separation of proteins, little is known about the sequence determinants of condensate material properties. Using the hydropathy scale and Martini models, we computationally decipher these relationships for charge-rich disordered protein condensates. Our computations yield dynamical, rheological, and interfacial properties of condensates that are quantitatively comparable with experimentally characterized condensates. Interestingly, we find that the material properties of model and natural proteins respond similarly to charge segregation, despite different sequence compositions. Molecular interactions within the condensates closely resemble those within the single-chain ensembles. Consequently, the material properties strongly correlate with molecular contact dynamics and single-chain structural properties. We demonstrate the potential to harness the sequence characteristics of disordered proteins for predicting and engineering the material properties of functional condensates, with insights from the dilute phase properties.
Collapse
Affiliation(s)
| | - Jiahui Wang
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Beata Szała-Mendyk
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Shiv Rekhi
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Arash Nikoubashman
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
- Institut für Theoretische Physik, Technische Universität Dresden, 01069, Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, 01062, Dresden, Germany
| | - Young C Kim
- Center for Materials Physics and Technology, Naval Research Laboratory, Washington, DC, 20375, USA
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843, USA.
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA.
- Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
9
|
An Y, Webb MA, Jacobs WM. Active learning of the thermodynamics-dynamics trade-off in protein condensates. SCIENCE ADVANCES 2024; 10:eadj2448. [PMID: 38181073 PMCID: PMC10775998 DOI: 10.1126/sciadv.adj2448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/04/2023] [Indexed: 01/07/2024]
Abstract
Phase-separated biomolecular condensates exhibit a wide range of dynamic properties, which depend on the sequences of the constituent proteins and RNAs. However, it is unclear to what extent condensate dynamics can be tuned without also changing the thermodynamic properties that govern phase separation. Using coarse-grained simulations of intrinsically disordered proteins, we show that the dynamics and thermodynamics of homopolymer condensates are strongly correlated, with increased condensate stability being coincident with low mobilities and high viscosities. We then apply an "active learning" strategy to identify heteropolymer sequences that break this correlation. This data-driven approach and accompanying analysis reveal how heterogeneous amino acid compositions and nonuniform sequence patterning map to a range of independently tunable dynamic and thermodynamic properties of biomolecular condensates. Our results highlight key molecular determinants governing the physical properties of biomolecular condensates and establish design rules for the development of stimuli-responsive biomaterials.
Collapse
Affiliation(s)
- Yaxin An
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Michael A. Webb
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - William M. Jacobs
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
10
|
Bianchi G, Mangiagalli M, Ami D, Ahmed J, Lombardi S, Longhi S, Natalello A, Tompa P, Brocca S. Condensation of the N-terminal domain of human topoisomerase 1 is driven by electrostatic interactions and tuned by its charge distribution. Int J Biol Macromol 2024; 254:127754. [PMID: 38287572 DOI: 10.1016/j.ijbiomac.2023.127754] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 10/10/2023] [Accepted: 10/27/2023] [Indexed: 01/31/2024]
Abstract
Liquid-liquid phase separation (LLPS) is pivotal in forming biomolecular condensates, which are crucial in several biological processes. Intrinsically disordered regions (IDRs) are typically responsible for driving LLPS due to their multivalency and high content of charged residues that enable the establishment of electrostatic interactions. In our study, we examined the role of charge distribution in the condensation of the disordered N-terminal domain of human topoisomerase I (hNTD). hNTD is densely charged with oppositely charged residues evenly distributed along the sequence. Its LLPS behavior was compared with that of charge permutants exhibiting varying degrees of charge segregation. At low salt concentrations, hNTD undergoes LLPS. However, LLPS is inhibited by high concentrations of salt and RNA, disrupting electrostatic interactions. Our findings show that, in hNTD, moderate charge segregation promotes the formation of liquid condensates that are sensitive to salt and RNA, whereas marked charge segregation results in the formation of aberrant condensates. Although our study is based on a limited set of protein variants, it supports the applicability of the "stickers-and-spacers" model to biomolecular condensates involving highly charged IDRs. These results may help generate reliable models of the overall LLPS behavior of supercharged polypeptides.
Collapse
Affiliation(s)
- Greta Bianchi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Marco Mangiagalli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Junaid Ahmed
- VIB-VUB Center for Structural Biology, VUB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Silvia Lombardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Sonia Longhi
- Lab. Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix-Marseille University, CNRS, 13288 Marseille, France
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Peter Tompa
- VIB-VUB Center for Structural Biology, VUB, Pleinlaan 2, 1050 Brussels, Belgium.
| | - Stefania Brocca
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy.
| |
Collapse
|
11
|
Kang WB, Bao L, Zhang K, Guo J, Zhu BC, Tang QY, Ren WT, Zhu G. Multi-scale molecular simulation of random peptide phase separation and its extended-to-compact structure transition driven by hydrophobic interactions. SOFT MATTER 2023; 19:7944-7954. [PMID: 37815389 DOI: 10.1039/d3sm00633f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Intrinsically disordered proteins (IDPs) often undergo liquid-liquid phase separation (LLPS) and form membraneless organelles or protein condensates. One of the core problems is how do electrostatic repulsion and hydrophobic interactions in peptides regulate the phase separation process? To answer this question, this study uses random peptides composed of positively charged arginine (Arg, R) and hydrophobic isoleucine (Ile, I) as the model systems, and conduct large-scale simulations using all atom and coarse-grained model multi-scale simulation methods. In this article, we investigate the phase separation of different sequences using a coarse-grained model. It is found that the stronger the electrostatic repulsion in the system, the more extended the single-chain structure, and the more likely the system forms a low-density homogeneous phase. In contrast, the stronger the hydrophobic effect of the system, the more compact the single-chain structure, the easier phase separation, and the higher the critical temperature of phase separation. Overall, by taking the random polypeptides composed of two types of amino acid residues as model systems, this study discusses the relationship between the protein sequence and phase behaviour, and provides theoretical insights into the interactions within or between proteins. It is expected to provide essential physical information for the sequence design of functional IDPs, as well as data to support the diagnosis and treatment of the LLPS-associated diseases.
Collapse
Affiliation(s)
- Wen Bin Kang
- School of Public Health, Hubei University of Medicine, Shiyan 442000, China.
| | - Lei Bao
- School of Public Health, Hubei University of Medicine, Shiyan 442000, China.
| | - Kai Zhang
- School of Physics, Nanjing University, Nanjing 210093, China
| | - Jia Guo
- School of Public Health, Hubei University of Medicine, Shiyan 442000, China.
| | - Ben Chao Zhu
- School of Public Health, Hubei University of Medicine, Shiyan 442000, China.
| | - Qian-Yuan Tang
- Department of Physics, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Wei Tong Ren
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Gen Zhu
- School of Public Health, Hubei University of Medicine, Shiyan 442000, China.
| |
Collapse
|
12
|
Hazra MK, Gilron Y, Levy Y. Not Only Expansion: Proline Content and Density Also Induce Disordered Protein Conformation Compaction. J Mol Biol 2023; 435:168196. [PMID: 37442414 DOI: 10.1016/j.jmb.2023.168196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
Intrinsically disordered proteins (IDPs) adopt a wide array of different conformations that can be constrained by the presence of proline residues, which are frequently found in IDPs. To assess the effects of proline, we designed a series of peptides that differ with respect to the number of prolines in the sequence and their organization. Using high-resolution atomistic molecular dynamics simulations, we found that accounting for whether the proline residues are clustered or isolated contributed significantly to explaining deviations in the experimentally-determined gyration radii of IDPs from the values expected based on the Flory scaling-law. By contrast, total proline content makes smaller contribution to explaining the effect of prolines on IDP conformation. Proline residues exhibit opposing effects depending on their organizational pattern in the IDP sequence. Clustered prolines (i.e., prolines with ≤2 intervening non-proline residues) result in expanded peptide conformations whereas isolated prolines (i.e., prolines with >2 intervening non-proline residues) impose compacted conformations. Clustered prolines were estimated to induce an expansion of ∼20% in IDP dimension (via formation of PPII structural elements) whereas isolated prolines were estimated to induce a compaction of ∼10% in IDP dimension (via the formation of backbone turns). This dual role of prolines provides a mechanism for conformational switching that does not rely on the kinetically much slower isomerization of cis proline to the trans form. Bioinformatic analysis demonstrates high populations of both isolated and clustered prolines and implementing them in coarse-grained molecular dynamics models illustrates that they improve the characterization of the conformational ensembles of IDPs.
Collapse
Affiliation(s)
- Milan Kumar Hazra
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yishai Gilron
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yaakov Levy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
13
|
Saar KL, Qian D, Good LL, Morgunov AS, Collepardo-Guevara R, Best RB, Knowles TPJ. Theoretical and Data-Driven Approaches for Biomolecular Condensates. Chem Rev 2023; 123:8988-9009. [PMID: 37171907 PMCID: PMC10375482 DOI: 10.1021/acs.chemrev.2c00586] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 05/14/2023]
Abstract
Biomolecular condensation processes are increasingly recognized as a fundamental mechanism that living cells use to organize biomolecules in time and space. These processes can lead to the formation of membraneless organelles that enable cells to perform distinct biochemical processes in controlled local environments, thereby supplying them with an additional degree of spatial control relative to that achieved by membrane-bound organelles. This fundamental importance of biomolecular condensation has motivated a quest to discover and understand the molecular mechanisms and determinants that drive and control this process. Within this molecular viewpoint, computational methods can provide a unique angle to studying biomolecular condensation processes by contributing the resolution and scale that are challenging to reach with experimental techniques alone. In this Review, we focus on three types of dry-lab approaches: theoretical methods, physics-driven simulations and data-driven machine learning methods. We review recent progress in using these tools for probing biomolecular condensation across all three fields and outline the key advantages and limitations of each of the approaches. We further discuss some of the key outstanding challenges that we foresee the community addressing next in order to develop a more complete picture of the molecular driving forces behind biomolecular condensation processes and their biological roles in health and disease.
Collapse
Affiliation(s)
- Kadi L. Saar
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, United Kingdom
- Transition
Bio Ltd., Cambridge, United Kingdom
| | - Daoyuan Qian
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Lydia L. Good
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, United Kingdom
- Laboratory
of Chemical Physics, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United States
| | - Alexey S. Morgunov
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Rosana Collepardo-Guevara
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, United Kingdom
- Department
of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Robert B. Best
- Laboratory
of Chemical Physics, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United States
| | - Tuomas P. J. Knowles
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, United Kingdom
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
14
|
Wu Z, Wu JW, Michaudel Q, Jayaraman A. Investigating the Hydrogen Bond-Induced Self-Assembly of Polysulfamides Using Molecular Simulations and Experiments. Macromolecules 2023; 56:5033-5049. [PMID: 38362140 PMCID: PMC10865372 DOI: 10.1021/acs.macromol.3c01093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/08/2023] [Indexed: 02/17/2024]
Abstract
In this paper, we present a synergistic, experimental, and computational study of the self-assembly of N,N'-disubstituted polysulfamides driven by hydrogen bonds (H-bonds) between the H-bonding donor and acceptor groups present in repeating sulfamides as a function of the structural design of the polysulfamide backbone. We developed a coarse-grained (CG) polysulfamide model that captures the directionality of H-bonds between the sulfamide groups and used this model in molecular dynamics (MD) simulations to study the self-assembly of these polymers in implicit solvent. The CGMD approach was validated by reproducing experimentally observed trends in the extent of crystallinity for three polysulfamides synthesized with aliphatic and/or aromatic repeating units. After validation of our CGMD approach, we computationally predicted the effect of repeat unit bulkiness, length, and uniformity of segment lengths in the polymers on the extent of orientational and positional order among the self-assembled polysulfamide chains, providing key design principles for tuning the extent of crystallinity in polysulfamides in experiments. Those computational predictions were then experimentally tested through the synthesis and characterization of polysulfamide architectures.
Collapse
Affiliation(s)
- Zijie Wu
- Department
of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, Delaware 19716, United States
| | - Jiun Wei Wu
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Quentin Michaudel
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Arthi Jayaraman
- Department
of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, Delaware 19716, United States
- Department
of Materials Science and Engineering, University
of Delaware, 201 DuPont Hall, Newark, Delaware 19716, United States
| |
Collapse
|
15
|
Hutin S, Kumita JR, Strotmann VI, Dolata A, Ling WL, Louafi N, Popov A, Milhiet PE, Blackledge M, Nanao MH, Wigge PA, Stahl Y, Costa L, Tully MD, Zubieta C. Phase separation and molecular ordering of the prion-like domain of the Arabidopsis thermosensory protein EARLY FLOWERING 3. Proc Natl Acad Sci U S A 2023; 120:e2304714120. [PMID: 37399408 PMCID: PMC10334799 DOI: 10.1073/pnas.2304714120] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/06/2023] [Indexed: 07/05/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) is an important mechanism enabling the dynamic compartmentalization of macromolecules, including complex polymers such as proteins and nucleic acids, and occurs as a function of the physicochemical environment. In the model plant, Arabidopsis thaliana, LLPS by the protein EARLY FLOWERING3 (ELF3) occurs in a temperature-sensitive manner and controls thermoresponsive growth. ELF3 contains a largely unstructured prion-like domain (PrLD) that acts as a driver of LLPS in vivo and in vitro. The PrLD contains a poly-glutamine (polyQ) tract, whose length varies across natural Arabidopsis accessions. Here, we use a combination of biochemical, biophysical, and structural techniques to investigate the dilute and condensed phases of the ELF3 PrLD with varying polyQ lengths. We demonstrate that the dilute phase of the ELF3 PrLD forms a monodisperse higher-order oligomer that does not depend on the presence of the polyQ sequence. This species undergoes LLPS in a pH- and temperature-sensitive manner and the polyQ region of the protein tunes the initial stages of phase separation. The liquid phase rapidly undergoes aging and forms a hydrogel as shown by fluorescence and atomic force microscopies. Furthermore, we demonstrate that the hydrogel assumes a semiordered structure as determined by small-angle X-ray scattering, electron microscopy, and X-ray diffraction. These experiments demonstrate a rich structural landscape for a PrLD protein and provide a framework to describe the structural and biophysical properties of biomolecular condensates.
Collapse
Affiliation(s)
- Stephanie Hutin
- Laboratoire de Physiologie Cellulaire et Végétale, University Grenoble Alpes, Centre national de la recherche scientifique, Commissariat à l'énergie atomique et aux énergies alternatives, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, Institut de recherche interdisciplinaire de Grenoble, Grenoble38054, France
| | - Janet R. Kumita
- Department of Pharmacology, University of Cambridge, CambridgeCB2 1PD, United Kingdom
| | - Vivien I. Strotmann
- Institute for Developmental Genetics, Heinrich-Heine University, DüsseldorfD-40225, Germany
| | - Anika Dolata
- Institute for Developmental Genetics, Heinrich-Heine University, DüsseldorfD-40225, Germany
| | - Wai Li Ling
- University Grenoble Alpes, Commissariat à l'énergie atomique et aux énergies alternatives, Centre national de la recherche scientifique, Institut de Biologie Structurale, Institut de recherche interdisciplinaire de Grenoble, Grenoble38000, France
| | - Nessim Louafi
- Centre de Biologie Structurale, University Montpellier, Centre national de la recherche scientifique, Institut national de la santé et de la recherche médicale, Montpellier34090, France
| | - Anton Popov
- European Synchrotron Radiation Facility, Structural Biology Group, Grenoble38000, France
| | - Pierre-Emmanuel Milhiet
- Centre de Biologie Structurale, University Montpellier, Centre national de la recherche scientifique, Institut national de la santé et de la recherche médicale, Montpellier34090, France
| | - Martin Blackledge
- University Grenoble Alpes, Commissariat à l'énergie atomique et aux énergies alternatives, Centre national de la recherche scientifique, Institut de Biologie Structurale, Institut de recherche interdisciplinaire de Grenoble, Grenoble38000, France
| | - Max H. Nanao
- European Synchrotron Radiation Facility, Structural Biology Group, Grenoble38000, France
| | - Philip A. Wigge
- Leibniz-Institut für Gemüse- und Zierpflanzenbau, 14979Grossbeeren, Germany
- Institute of Biochemistry and Biology, University of Potsdam, 14476Potsdam, Germany
| | - Yvonne Stahl
- Institute for Developmental Genetics, Heinrich-Heine University, DüsseldorfD-40225, Germany
- Cluster of Excellence on Plant Sciences, Heinrich-Heine University, DüsseldorfD-40225, Germany
| | - Luca Costa
- Centre de Biologie Structurale, University Montpellier, Centre national de la recherche scientifique, Institut national de la santé et de la recherche médicale, Montpellier34090, France
| | - Mark D. Tully
- European Synchrotron Radiation Facility, Structural Biology Group, Grenoble38000, France
| | - Chloe Zubieta
- Laboratoire de Physiologie Cellulaire et Végétale, University Grenoble Alpes, Centre national de la recherche scientifique, Commissariat à l'énergie atomique et aux énergies alternatives, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, Institut de recherche interdisciplinaire de Grenoble, Grenoble38054, France
| |
Collapse
|
16
|
Farag M, Holehouse AS, Zeng X, Pappu RV. FIREBALL: A tool to fit protein phase diagrams based on mean-field theories for polymer solutions. Biophys J 2023; 122:2396-2403. [PMID: 37161095 PMCID: PMC10323018 DOI: 10.1016/j.bpj.2023.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/11/2023] Open
Abstract
Biomolecular condensates form via phase transitions of condensate-specific biomacromolecules. Intrinsically disordered regions featuring the appropriate sequence grammars can contribute via homotypic and heterotypic interactions to the driving forces for phase separation of multivalent proteins. Experiments and computations have matured to the point where the concentrations of coexisting dense and dilute phases can be measured or computed for individual intrinsically disordered regions in complex milieus. For a macromolecule such as a disordered protein in a solvent, the locus of points that connects concentrations of the two coexisting phases defines a phase boundary, or binodal. Often, only a few points along the binodal are accessible via measurements. In such cases, and for quantitative and comparative analysis of parameters that describe the driving forces for phase separation, it is useful to fit measured or computed binodals to mean-field free energies for polymer solutions. The nonlinearity of the underlying free energy functions makes it challenging to put mean-field theories into practice. Here, we present FIREBALL, a suite of computational tools designed to enable efficient construction, analysis, and fitting to experimental or computed data of binodals. We show that depending on the theory being used, one can also extract information regarding coil-to-globule transitions of individual macromolecules.
Collapse
Affiliation(s)
- Mina Farag
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri; Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, Missouri
| | - Alex S Holehouse
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, Missouri; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
| | - Xiangze Zeng
- Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Rohit V Pappu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri; Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, Missouri.
| |
Collapse
|
17
|
Chew PY, Joseph JA, Collepardo-Guevara R, Reinhardt A. Thermodynamic origins of two-component multiphase condensates of proteins. Chem Sci 2023; 14:1820-1836. [PMID: 36819870 PMCID: PMC9931050 DOI: 10.1039/d2sc05873a] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Intracellular condensates are highly multi-component systems in which complex phase behaviour can ensue, including the formation of architectures comprising multiple immiscible condensed phases. Relying solely on physical intuition to manipulate such condensates is difficult because of the complexity of their composition, and systematically learning the underlying rules experimentally would be extremely costly. We address this challenge by developing a computational approach to design pairs of protein sequences that result in well-separated multilayered condensates and elucidate the molecular origins of these compartments. Our method couples a genetic algorithm to a residue-resolution coarse-grained protein model. We demonstrate that we can design protein partners to form multiphase condensates containing naturally occurring proteins, such as the low-complexity domain of hnRNPA1 and its mutants, and show how homo- and heterotypic interactions must differ between proteins to result in multiphasicity. We also show that in some cases the specific pattern of amino-acid residues plays an important role. Our findings have wide-ranging implications for understanding and controlling the organisation, functions and material properties of biomolecular condensates.
Collapse
Affiliation(s)
- Pin Yu Chew
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Jerelle A Joseph
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
- Department of Physics, University of Cambridge Cambridge CB3 0HE UK
- Department of Genetics, University of Cambridge Cambridge CB2 3EH UK
| | - Rosana Collepardo-Guevara
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
- Department of Physics, University of Cambridge Cambridge CB3 0HE UK
- Department of Genetics, University of Cambridge Cambridge CB2 3EH UK
| | - Aleks Reinhardt
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| |
Collapse
|
18
|
Zhang M, Xue B, Li Q, Shi R, Cao Y, Wang W, Li J. Sequence Tendency for the Interaction between Low-Complexity Intrinsically Disordered Proteins. JACS AU 2023; 3:93-104. [PMID: 36711093 PMCID: PMC9875249 DOI: 10.1021/jacsau.2c00414] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 06/18/2023]
Abstract
Reversible interaction between intrinsically disordered proteins (IDPs) is considered as the driving force for liquid-liquid phase separation (LLPS), while the detailed description of such a transient interaction process still remains a challenge. And the mechanisms underlying the behavior of IDP interaction, for example, the possible relationship with its inherent conformational fluctuations and sequence features, remain elusive. Here, we use atomistic molecular dynamics (MD) simulation to investigate the reversible association of the LAF-1 RGG domain, the IDP with ultra-low LLPS concentration (0.06 mM). We find that the duration of the association between two RGG domains is highly heterogeneous, and the sustained associations essentially dominate the IDP interaction. More interestingly, such sustained associations are mediated by a finite region, that is, the C-terminal region 138-168 (denoted as a contact-prone region). We noticed that such sequence tendency is attributed to the extended conformation of the RGG domain during its inherent conformational fluctuations. Hence, our results suggest that there is a certain region in this low-complexity IDP which can essentially dominate their interaction and should be also important to the LLPS. And the inherent conformational fluctuations are actually essential for the emergence of such a hot region of IDP interaction. The importance of this hot region to LLPS is verified by experiment.
Collapse
Affiliation(s)
- Moxin Zhang
- Zhejiang
Province Key Laboratory of Quantum Technology and Device, School of
Physics, Zhejiang University, Hangzhou310058, China
| | - Bin Xue
- Collaborative
Innovation Center of Advanced Microstructures, National Laboratory
of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing210093, China
| | - Qingtai Li
- Collaborative
Innovation Center of Advanced Microstructures, National Laboratory
of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing210093, China
| | - Rui Shi
- Zhejiang
Province Key Laboratory of Quantum Technology and Device, School of
Physics, Zhejiang University, Hangzhou310058, China
| | - Yi Cao
- Collaborative
Innovation Center of Advanced Microstructures, National Laboratory
of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing210093, China
| | - Wei Wang
- Collaborative
Innovation Center of Advanced Microstructures, National Laboratory
of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing210093, China
| | - Jingyuan Li
- Zhejiang
Province Key Laboratory of Quantum Technology and Device, School of
Physics, Zhejiang University, Hangzhou310058, China
| |
Collapse
|
19
|
Lyons H, Veettil RT, Pradhan P, Fornero C, De La Cruz N, Ito K, Eppert M, Roeder RG, Sabari BR. Functional partitioning of transcriptional regulators by patterned charge blocks. Cell 2023; 186:327-345.e28. [PMID: 36603581 PMCID: PMC9910284 DOI: 10.1016/j.cell.2022.12.013] [Citation(s) in RCA: 110] [Impact Index Per Article: 110.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/15/2022] [Accepted: 12/07/2022] [Indexed: 01/05/2023]
Abstract
Components of transcriptional machinery are selectively partitioned into specific condensates, often mediated by protein disorder, yet we know little about how this specificity is achieved. Here, we show that condensates composed of the intrinsically disordered region (IDR) of MED1 selectively partition RNA polymerase II together with its positive allosteric regulators while excluding negative regulators. This selective compartmentalization is sufficient to activate transcription and is required for gene activation during a cell-state transition. The IDRs of partitioned proteins are necessary and sufficient for selective compartmentalization and require alternating blocks of charged amino acids. Disrupting this charge pattern prevents partitioning, whereas adding the pattern to proteins promotes partitioning with functional consequences for gene activation. IDRs with similar patterned charge blocks show similar partitioning and function. These findings demonstrate that disorder-mediated interactions can selectively compartmentalize specific functionally related proteins from a complex mixture of biomolecules, leading to regulation of a biochemical pathway.
Collapse
Affiliation(s)
- Heankel Lyons
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Reshma T Veettil
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Prashant Pradhan
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Christy Fornero
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nancy De La Cruz
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Keiichi Ito
- Laboratory of Biochemistry and Molecular Biology, the Rockefeller University, New York, NY 10065, USA
| | - Mikayla Eppert
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, the Rockefeller University, New York, NY 10065, USA
| | - Benjamin R Sabari
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
20
|
Tesei G, Lindorff-Larsen K. Improved predictions of phase behaviour of intrinsically disordered proteins by tuning the interaction range. OPEN RESEARCH EUROPE 2023; 2:94. [PMID: 37645312 PMCID: PMC10450847 DOI: 10.12688/openreseurope.14967.2] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 08/31/2023]
Abstract
The formation and viscoelastic properties of condensates of intrinsically disordered proteins (IDPs) is dictated by amino acid sequence and solution conditions. Because of the involvement of biomolecular condensates in cell physiology and disease, advancing our understanding of the relationship between protein sequence and phase separation (PS) may have important implications in the formulation of new therapeutic hypotheses. Here, we present CALVADOS 2, a coarse-grained model of IDPs that accurately predicts conformational properties and propensities to undergo PS for diverse sequences and solution conditions. In particular, we systematically study the effect of varying the range of the nonionic interactions and use our findings to improve the temperature scale of the model. We further optimize the residue-specific model parameters against experimental data on the conformational properties of 55 proteins, while also leveraging 70 hydrophobicity scales from the literature to avoid overfitting the training data. Extensive testing shows that the model accurately predicts chain compaction and PS propensity for sequences of diverse length and charge patterning, as well as at different temperatures and salt concentrations.
Collapse
Affiliation(s)
- Giulio Tesei
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Tesei G, Lindorff-Larsen K. Improved predictions of phase behaviour of intrinsically disordered proteins by tuning the interaction range. OPEN RESEARCH EUROPE 2023; 2:94. [PMID: 37645312 PMCID: PMC10450847 DOI: 10.12688/openreseurope.14967.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 02/13/2024]
Abstract
The formation and viscoelastic properties of condensates of intrinsically disordered proteins (IDPs) is dictated by amino acid sequence and solution conditions. Because of the involvement of biomolecular condensates in cell physiology and disease, advancing our understanding of the relationship between protein sequence and phase separation (PS) may have important implications in the formulation of new therapeutic hypotheses. Here, we present CALVADOS 2, a coarse-grained model of IDPs that accurately predicts conformational properties and propensities to undergo PS for diverse sequences and solution conditions. In particular, we systematically study the effect of varying the range of the nonionic interactions and use our findings to improve the temperature scale of the model. We further optimize the residue-specific model parameters against experimental data on the conformational properties of 55 proteins, while also leveraging 70 hydrophobicity scales from the literature to avoid overfitting the training data. Extensive testing shows that the model accurately predicts chain compaction and PS propensity for sequences of diverse length and charge patterning, as well as at different temperatures and salt concentrations.
Collapse
Affiliation(s)
- Giulio Tesei
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Lin YH, Wessén J, Pal T, Das S, Chan HS. Numerical Techniques for Applications of Analytical Theories to Sequence-Dependent Phase Separations of Intrinsically Disordered Proteins. Methods Mol Biol 2023; 2563:51-94. [PMID: 36227468 DOI: 10.1007/978-1-0716-2663-4_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Biomolecular condensates, physically underpinned to a significant extent by liquid-liquid phase separation (LLPS), are now widely recognized by numerous experimental studies to be of fundamental biological, biomedical, and biophysical importance. In the face of experimental discoveries, analytical formulations emerged as a powerful yet tractable tool in recent theoretical investigations of the role of LLPS in the assembly and dissociation of these condensates. The pertinent LLPS often involves, though not exclusively, intrinsically disordered proteins engaging in multivalent interactions that are governed by their amino acid sequences. For researchers interested in applying these theoretical methods, here we provide a practical guide to a set of computational techniques devised for extracting sequence-dependent LLPS properties from analytical formulations. The numerical procedures covered include those for the determination of spinodal and binodal phase boundaries from a general free energy function with examples based on the random phase approximation in polymer theory, construction of tie lines for multiple-component LLPS, and field-theoretic simulation of multiple-chain heteropolymeric systems using complex Langevin dynamics. Since a more accurate physical picture often requires comparing analytical theory against explicit-chain model predictions, a commonly utilized methodology for coarse-grained molecular dynamics simulations of sequence-specific LLPS is also briefly outlined.
Collapse
Affiliation(s)
- Yi-Hsuan Lin
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Molecular Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Jonas Wessén
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Tanmoy Pal
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Suman Das
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Hue Sun Chan
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
23
|
Laghmach R, Malhotra I, Potoyan DA. Multiscale Modeling of Protein-RNA Condensation in and Out of Equilibrium. Methods Mol Biol 2023; 2563:117-133. [PMID: 36227470 PMCID: PMC11186142 DOI: 10.1007/978-1-0716-2663-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A vast number of intracellular membraneless bodies also known as biomolecular condensates form through a liquid-liquid phase separation (LLPS) of biomolecules. To date, phase separation has been identified as the main driving force for a membraneless organelles such as nucleoli, Cajal bodies, stress granules, and chromatin compartments. Recently, the protein-RNA condensation is receiving increased attention, because it is closely related to the biological function of cells such as transcription, translation, and RNA metabolism. Despite the multidisciplinary efforts put forth to study the biophysical properties of protein-RNA condensates, there are many fundamental unanswered questions regarding the mechanism of formation and regulation of protein-RNA condensates in eukaryotic cells. Major challenges in studying protein-RNA condensation stem from (i) the molecular heterogeneity and conformational flexibility of RNA and protein chains and (ii) the nonequilibrium nature of transcription and cellular environment. Computer simulations, bioinformatics, and mathematical models are uniquely positioned for shedding light on the microscopic nature of protein-RNA phase separation. To this end, there is an urgent need for innovative models with the right spatiotemporal resolution for confronting the experimental observables in a comprehensive and physics-based manner. In this chapter, we will summarize the currently emerging research efforts, which employ atomistic and coarse-grained molecular models and field theoretical models to understand equilibrium and nonequilibrium aspects of protein-RNA condensation.
Collapse
Affiliation(s)
- Rabia Laghmach
- Department of Chemistry, Iowa State University, Ames, IA, USA
| | - Isha Malhotra
- Department of Chemistry, Iowa State University, Ames, IA, USA
| | - Davit A Potoyan
- Department of Chemistry, Iowa State University, Ames, IA, USA.
| |
Collapse
|
24
|
Her C, Phan TM, Jovic N, Kapoor U, Ackermann BE, Rizuan A, Kim Y, Mittal J, Debelouchina G. Molecular interactions underlying the phase separation of HP1α: role of phosphorylation, ligand and nucleic acid binding. Nucleic Acids Res 2022; 50:12702-12722. [PMID: 36537242 PMCID: PMC9825191 DOI: 10.1093/nar/gkac1194] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/04/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Heterochromatin protein 1α (HP1α) is a crucial element of chromatin organization. It has been proposed that HP1α functions through liquid-liquid phase separation (LLPS), which allows it to compact chromatin into transcriptionally repressed heterochromatin regions. In vitro, HP1α can undergo phase separation upon phosphorylation of its N-terminus extension (NTE) and/or through interactions with DNA and chromatin. Here, we combine computational and experimental approaches to elucidate the molecular interactions that drive these processes. In phosphorylation-driven LLPS, HP1α can exchange intradimer hinge-NTE interactions with interdimer contacts, which also leads to a structural change from a compacted to an extended HP1α dimer conformation. This process can be enhanced by the presence of positively charged HP1α peptide ligands and disrupted by the addition of negatively charged or neutral peptides. In DNA-driven LLPS, both positively and negatively charged peptide ligands can perturb phase separation. Our findings demonstrate the importance of electrostatic interactions in HP1α LLPS where binding partners can modulate the overall charge of the droplets and screen or enhance hinge region interactions through specific and non-specific effects. Our study illuminates the complex molecular framework that can fine-tune the properties of HP1α and that can contribute to heterochromatin regulation and function.
Collapse
Affiliation(s)
| | | | - Nina Jovic
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Utkarsh Kapoor
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Bryce E Ackermann
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Azamat Rizuan
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Young C Kim
- Center for Materials Physics and Technology, Naval Research Laboratory, WA, DC, USA
| | | | | |
Collapse
|
25
|
Workman RJ, Gorle S, Pettitt BM. Effects of Conformational Constraint on Peptide Solubility Limits. J Phys Chem B 2022; 126:10510-10518. [PMID: 36450134 DOI: 10.1021/acs.jpcb.2c06458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Liquid-liquid phase separation of proteins preferentially involves intrinsically disordered proteins or disordered regions. Understanding the solution chemistry of these phase separations is key to learning how to quantify and manipulate systems that involve such processes. Here, we investigate the effect of cyclization on the liquid-liquid phase separation of short polyglycine peptides. We simulated separate aqueous systems of supersaturated cyclic and linear GGGGG and observed spontaneous liquid-liquid phase separation in each of the solutions. The cyclic GGGGG phase separates less robustly than linear GGGGG and has a higher aqueous solubility, even though linear GGGGG has a more favorable single molecule solvation free energy. The versatile and abundant interpeptide contacts formed by the linear GGGGG stabilize the condensed droplet phase, driving the phase separation in this system. In particular, we find that van der Waals close contact interactions are enriched in the droplet phase as opposed to electrostatic interactions. An analysis of the change in backbone conformational entropy that accompanies the phase transition revealed that cyclic peptides lose significantly less entropy in this process as expected. However, we find that the enhanced interaction enthalpy of linear GGGGG in the droplet phase is enough to compensate for a larger decrease in conformational entropy.
Collapse
Affiliation(s)
- Riley J Workman
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-0304, United States
| | - Suresh Gorle
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-0304, United States
| | - B Montgomery Pettitt
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-0304, United States
| |
Collapse
|
26
|
Wessén J, Das S, Pal T, Chan HS. Analytical Formulation and Field-Theoretic Simulation of Sequence-Specific Phase Separation of Protein-Like Heteropolymers with Short- and Long-Spatial-Range Interactions. J Phys Chem B 2022; 126:9222-9245. [PMID: 36343363 DOI: 10.1021/acs.jpcb.2c06181] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A theory for sequence-dependent liquid-liquid phase separation (LLPS) of intrinsically disordered proteins (IDPs) in the study of biomolecular condensates is formulated by extending the random phase approximation (RPA) and field-theoretic simulation (FTS) of heteropolymers with spatially long-range Coulomb interactions to include the fundamental effects of short-range, hydrophobic-like interactions between amino acid residues. To this end, short-range effects are modeled by Yukawa interactions between multiple nonelectrostatic charges derived from an eigenvalue decomposition of pairwise residue-residue contact energies. Chain excluded volume is afforded by incompressibility constraints. A mean-field approximation leads to an effective Flory-Huggins χ parameter, which, in conjunction with RPA, accounts for the contact-interaction effects of amino acid composition and the sequence-pattern effects of long-range electrostatics in IDP LLPS, whereas FTS based on the formulation provides full sequence dependence for both short- and long-range interactions. This general approach is illustrated here by applications to variants of a natural IDP in the context of several different amino-acid interaction schemes as well as a set of different model hydrophobic-polar sequences sharing the same composition. Effectiveness of the methodology is verified by coarse-grained explicit-chain molecular dynamics simulations.
Collapse
Affiliation(s)
- Jonas Wessén
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Suman Das
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Tanmoy Pal
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Hue Sun Chan
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
27
|
Murata Y, Niina T, Takada S. The stoichiometric interaction model for mesoscopic MD simulations of liquid-liquid phase separation. Biophys J 2022; 121:4382-4393. [PMID: 36199253 PMCID: PMC9703007 DOI: 10.1016/j.bpj.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/28/2022] [Accepted: 09/30/2022] [Indexed: 12/14/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) has received considerable attention in recent years for explaining the formation of cellular biomolecular condensates. The fluidity and the complexity of their components make molecular simulation approaches indispensable for gaining structural insights. Domain-resolution mesoscopic model simulations have been explored for cases in which condensates are formed by multivalent proteins with tandem domains. One problem with this approach is that interdomain pairwise interactions cannot regulate the valency of the binding domains. To overcome this problem, we propose a new potential, the stoichiometric interaction (SI) potential. First, we verified that the SI potential maintained the valency of the interacting domains for the test systems. We then examined a well-studied LLPS model system containing tandem repeats of SH3 domains and proline-rich motifs. We found that the SI potential alone cannot reproduce the phase diagram of LLPS quantitatively. We had to combine the SI and a pairwise interaction; the former and the latter represent the specific and nonspecific interactions, respectively. Biomolecular condensates with the mixed SI and pairwise interaction exhibited fluidity, whereas those with the pairwise interaction alone showed no detectable diffusion. We also compared the phase diagrams of the systems containing different numbers of tandem domains with those obtained from the experiments and found quantitative agreement in all but one case.
Collapse
Affiliation(s)
- Yutaka Murata
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Toru Niina
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.
| |
Collapse
|
28
|
Mazarakos K, Prasad R, Zhou HX. SpiDec: Computing binodals and interfacial tension of biomolecular condensates from simulations of spinodal decomposition. Front Mol Biosci 2022; 9:1021939. [PMID: 36353733 PMCID: PMC9637972 DOI: 10.3389/fmolb.2022.1021939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/12/2022] [Indexed: 08/31/2023] Open
Abstract
Phase separation of intrinsically disordered proteins (IDPs) is a phenomenon associated with many essential cellular processes, but a robust method to compute the binodal from molecular dynamics simulations of IDPs modeled at the all-atom level in explicit solvent is still elusive, due to the difficulty in preparing a suitable initial dense configuration and in achieving phase equilibration. Here we present SpiDec as such a method, based on spontaneous phase separation via spinodal decomposition that produces a dense slab when the system is initiated at a homogeneous, low density. After illustrating the method on four model systems, we apply SpiDec to a tetrapeptide modeled at the all-atom level and solvated in TIP3P water. The concentrations in the dense and dilute phases agree qualitatively with experimental results and point to binodals as a sensitive property for force-field parameterization. SpiDec may prove useful for the accurate determination of the phase equilibrium of IDPs.
Collapse
Affiliation(s)
| | - Ramesh Prasad
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Huan-Xiang Zhou
- Department of Physics, University of Illinois at Chicago, Chicago, IL, United States
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
29
|
A simple thermodynamic description of phase separation of Nup98 FG domains. Nat Commun 2022; 13:6172. [PMID: 36257947 PMCID: PMC9579204 DOI: 10.1038/s41467-022-33697-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/28/2022] [Indexed: 12/24/2022] Open
Abstract
The permeability barrier of nuclear pore complexes (NPCs) controls nucleocytoplasmic transport. It retains inert macromolecules but allows facilitated passage of nuclear transport receptors that shuttle cargoes into or out of nuclei. The barrier can be described as a condensed phase assembled from cohesive FG repeat domains, including foremost the charge-depleted FG domain of Nup98. We found that Nup98 FG domains show an LCST-type phase separation, and we provide comprehensive and orthogonal experimental datasets for a quantitative description of this behaviour. A derived thermodynamic model correlates saturation concentration with repeat number, temperature, and ionic strength. It allows estimating the enthalpy, entropy, and ΔG (0.2 kJ/mol, 0.1 kB·T) contributions per repeat to phase separation and inter-repeat cohesion. While changing the cohesion strength strongly impacts the strictness of barrier, these numbers provide boundary conditions for in-depth modelling not only of barrier assembly but also of NPC passage.
Collapse
|
30
|
Affinity of disordered protein complexes is modulated by entropy-energy reinforcement. Proc Natl Acad Sci U S A 2022; 119:e2120456119. [PMID: 35727975 PMCID: PMC9245678 DOI: 10.1073/pnas.2120456119] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Intrinsically disordered proteins (IDPs), which are very common and essential to many biological activities, sometimes function via interaction with another IDP and form a fuzzy complex, which can be highly stable. It is unclear what the biophysical forces are that govern their thermodynamics and specificity, which are essential for de novo fuzzy complex design. Here, we explored the fuzzy complex formed between ProTα and H1, which are oppositely charged IDPs, by swapping the charges between them, generating variants that have either greater polyampholytic or polyelectrolytic nature as well as different charge patterns. Charge swapping and shuffling dramatically change the affinity of the fuzzy complex, which is contributed to by both enthalpy and entropy, where the latter is dominated by counterion release. The association between two intrinsically disordered proteins (IDPs) may produce a fuzzy complex characterized by a high binding affinity, similar to that found in the ultrastable complexes formed between two well-structured proteins. Here, using coarse-grained simulations, we quantified the biophysical forces driving the formation of such fuzzy complexes. We found that the high-affinity complex formed between the highly and oppositely charged H1 and ProTα proteins is sensitive to electrostatic interactions. We investigated 52 variants of the complex by swapping charges between the two oppositely charged proteins to produce sequences whose negatively or positively charged residue content was more homogeneous or heterogenous (i.e., polyelectrolytic or polyampholytic, having higher or lower absolute net charges, respectively) than the wild type. We also changed the distributions of oppositely charged residues within each participating sequence to produce variants in which the charges were segregated or well mixed. Both types of changes significantly affect binding affinity in fuzzy complexes, which is governed by both enthalpy and entropy. The formation of H1–ProTa is supported by an increase in configurational entropy and by entropy due to counterion release. The latter can be twice as large as the former, illustrating the dominance of counterion entropy in modulating the binding thermodynamics. Complexes formed between proteins with greater absolute net charges are more stable, both enthalpically and entropically, indicating that enthalpy and entropy have a mutually reinforcing effect. The sensitivity of the thermodynamics of the complex to net charge and the charge pattern within each of the binding constituents may provide a means to achieve binding specificity between IDPs.
Collapse
|
31
|
Bigman LS, Iwahara J, Levy Y. Negatively Charged Disordered Regions are Prevalent and Functionally Important Across Proteomes. J Mol Biol 2022; 434:167660. [PMID: 35659505 DOI: 10.1016/j.jmb.2022.167660] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 01/12/2023]
Abstract
Intrinsically disordered regions (IDRs) of proteins are often characterized by a high fraction of charged residues, but differ in their overall net charge and in the organization of the charged residues. The function-encoding information stored via IDR charge composition and organization remains elusive. Here, we aim to decipher the sequence-function relationship in IDRs by presenting a comprehensive bioinformatic analysis of the charge properties of IDRs in the human, mouse, and yeast proteomes. About 50% of the proteins comprise at least a single IDR, which is either positively or negatively charged. Highly negatively charged IDRs are longer and possess greater net charge per residue compared with highly positively charged IDRs. A striking difference between positively and negatively charged IDRs is the characteristics of the repeated units, specifically, of consecutive Lys or Arg residues (K/R repeats) and Asp or Glu (D/E repeats) residues. D/E repeats are found to be about five times longer than K/R repeats, with the longest found containing 49 residues. Long stretches of consecutive D and E are found to be more prevalent in nucleic acid-related proteins. They are less common in prokaryotes, and in eukaryotes their abundance increases with genome size. The functional role of D/E repeats and the profound differences between them and K/R repeats are discussed.
Collapse
Affiliation(s)
- Lavi S Bigman
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel. https://twitter.com/LaviBigman
| | - Junji Iwahara
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Yaakov Levy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
32
|
Yun JN, Koh J. Initial heat analysis in dissociation isothermal titration calorimetry: An analytical tool for thermodynamic dissection of biomolecular condensates. Biochem Biophys Res Commun 2022; 605:127-133. [PMID: 35325654 DOI: 10.1016/j.bbrc.2022.03.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/13/2022] [Indexed: 11/18/2022]
Abstract
Multi-domain proteins or intrinsically disordered proteins (IDPs) often undergo liquid-liquid phase separation (LLPS) and form membraneless organelles or protein condensates. Such compartmentalization is considered critical in many cellular processes dynamically modulated by various external signals. However, molecular mechanisms underlying potential regulatory functions of the protein condensates remain obscure due to a limited understanding of the driving forces for their assembly. Here we propose isothermal titration calorimetry (ITC) as an efficient analytical tool to dissociate condensates and measure the corresponding dissociation heat. Subsequent analysis of the initial dissociation heat as a function of total protein concentration allows simple and accurate determination of the thermodynamic parameters for cooperative condensate formations including the dissociation (or condensation) enthalpy and the critical protein concentration. By performing systematic simulations, we further demonstrate that the initial heat analysis is sufficiently robust to quantitatively dissect protein condensates with a broad range of thermodynamic properties. Therefore, our proposed method analyzing the initial heat measured in dissociation ITC provides opportunities to further scrutinize the thermodynamic quantities as functions of solution variables to explore the molecular driving forces of LLPS.
Collapse
Affiliation(s)
- Jean Nyoung Yun
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Junseock Koh
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
33
|
Chen S, Zhang P, Wang ZG. Complexation between Oppositely Charged Polyelectrolytes in Dilute Solution: Effects of Charge Asymmetry. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shensheng Chen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, California 91125, United States
| | - Pengfei Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Materials and Engineering, Donghua University, Shanghai 201620, China
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, California 91125, United States
| |
Collapse
|
34
|
Ghosh K, Huihui J, Phillips M, Haider A. Rules of Physical Mathematics Govern Intrinsically Disordered Proteins. Annu Rev Biophys 2022; 51:355-376. [PMID: 35119946 PMCID: PMC9190209 DOI: 10.1146/annurev-biophys-120221-095357] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In stark contrast to foldable proteins with a unique folded state, intrinsically disordered proteins and regions (IDPs) persist in perpetually disordered ensembles. Yet an IDP ensemble has conformational features-even when averaged-that are specific to its sequence. In fact, subtle changes in an IDP sequence can modulate its conformational features and its function. Recent advances in theoretical physics reveal a set of elegant mathematical expressions that describe the intricate relationships among IDP sequences, their ensemble conformations, and the regulation of their biological functions. These equations also describe the molecular properties of IDP sequences that predict similarities and dissimilarities in their functions and facilitate classification of sequences by function, an unmet challenge to traditional bioinformatics. These physical sequence-patterning metrics offer a promising new avenue for advancing synthetic biology at a time when multiple novel functional modes mediated by IDPs are emerging.
Collapse
Affiliation(s)
- Kingshuk Ghosh
- Department of Physics and Astronomy, University of Denver, Denver, Colorado, USA,Molecular and Cellular Biophysics Program, University of Denver, Denver, Colorado, USA
| | - Jonathan Huihui
- Department of Physics and Astronomy, University of Denver, Denver, Colorado, USA
| | - Michael Phillips
- Department of Physics and Astronomy, University of Denver, Denver, Colorado, USA
| | - Austin Haider
- Molecular and Cellular Biophysics Program, University of Denver, Denver, Colorado, USA
| |
Collapse
|
35
|
Wessén J, Pal T, Chan HS. Field theory description of ion association in re-entrant phase separation of polyampholytes. J Chem Phys 2022; 156:194903. [DOI: 10.1063/5.0088326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Phase separation of several different overall neutral polyampholyte species (with zero net charge) is studied in solution with two oppositely charged ion species that can form ion-pairs through an association reaction. A field theory description of the system, that treats polyampholyte charge sequence dependent electrostatic interactions as well as excluded volume effects, is hereby given. Interestingly, analysis of the model using random phase approximation and field theoretic simulation consistently show evidence of a re-entrant polyampholyte phase separation at high ion concentrations when there is an overall decrease of volume upon ion-association. As an illustration of the ramifications of our theoretical framework, several polyampholyte concentration vs ion concentration phase diagrams under constant temperature conditions are presented to elucidate the dependence of phase separation behavior on polyampholyte sequence charge pattern as well as ion-pair dissociation constant, volumetric effects on ion association, solvent quality, and temperature.
Collapse
Affiliation(s)
- Jonas Wessén
- Department of Biochemsitry, University of Toronto, Canada
| | | | | |
Collapse
|
36
|
Lebold KM, Best RB. Tuning Formation of Protein-DNA Coacervates by Sequence and Environment. J Phys Chem B 2022; 126:2407-2419. [PMID: 35317553 DOI: 10.1021/acs.jpcb.2c00424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The high concentration of nucleic acids and positively charged proteins in the cell nucleus provides many possibilities for complex coacervation. We consider a prototypical mixture of nucleic acids together with the polycationic C-terminus of histone H1 (CH1). Using a minimal coarse-grained model that captures the shape, flexibility, and charge distributions of the molecules, we find that coacervates are readily formed at physiological ionic strengths, in agreement with experiment, with a progressive increase in local ordering at low ionic strength. Variation of the positions of charged residues in the protein tunes phase separation: for well-mixed or only moderately blocky distributions of charge, there is a modest increase of local ordering with increasing blockiness that is also associated with an increased propensity to phase separate. This ordering is also associated with a slowdown of rotational and translational diffusion in the dense phase. However, for more extreme blockiness (and consequently higher local charge density), we see a qualitative change in the condensed phase to become a segregated structure with a dramatically increased ordering of the DNA. Naturally occurring proteins with these sequence properties, such as protamines in sperm cells, are found to be associated with very dense packing of nucleic acids.
Collapse
Affiliation(s)
- Kathryn M Lebold
- Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Robert B Best
- Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
37
|
Conformational ensembles of intrinsically disordered proteins and flexible multidomain proteins. Biochem Soc Trans 2022; 50:541-554. [PMID: 35129612 DOI: 10.1042/bst20210499] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/29/2022]
Abstract
Intrinsically disordered proteins (IDPs) and multidomain proteins with flexible linkers show a high level of structural heterogeneity and are best described by ensembles consisting of multiple conformations with associated thermodynamic weights. Determining conformational ensembles usually involves the integration of biophysical experiments and computational models. In this review, we discuss current approaches to determine conformational ensembles of IDPs and multidomain proteins, including the choice of biophysical experiments, computational models used to sample protein conformations, models to calculate experimental observables from protein structure, and methods to refine ensembles against experimental data. We also provide examples of recent applications of integrative conformational ensemble determination to study IDPs and multidomain proteins and suggest future directions for research in the field.
Collapse
|
38
|
Nilsson D, Bozorg B, Mohanty S, Söderberg B, Irbäck A. Limitations of field-theory simulation for exploring phase separation: The role of repulsion in a lattice protein model. J Chem Phys 2022; 156:015101. [PMID: 34998327 DOI: 10.1063/5.0070412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Field-theory simulation by the complex Langevin method offers an alternative to conventional sampling techniques for exploring the forces driving biomolecular liquid-liquid phase separation. Such simulations have recently been used to study several polyampholyte systems. Here, we formulate a field theory corresponding to the hydrophobic/polar (HP) lattice protein model, with finite same-site repulsion and nearest-neighbor attraction between HH bead pairs. By direct comparison with particle-based Monte Carlo simulations, we show that complex Langevin sampling of the field theory reproduces the thermodynamic properties of the HP model only if the same-site repulsion is not too strong. Unfortunately, the repulsion has to be taken weaker than what is needed to prevent condensed droplets from assuming an artificially compact shape. Analysis of a minimal and analytically solvable toy model hints that the sampling problems caused by repulsive interaction may stem from loss of ergodicity.
Collapse
Affiliation(s)
- Daniel Nilsson
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, SE-22362 Lund, Sweden
| | - Behruz Bozorg
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, SE-22362 Lund, Sweden
| | - Sandipan Mohanty
- Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Bo Söderberg
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, SE-22362 Lund, Sweden
| | - Anders Irbäck
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, SE-22362 Lund, Sweden
| |
Collapse
|
39
|
Lin YH, Wu H, Jia B, Zhang M, Chan HS. Assembly of model postsynaptic densities involves interactions auxiliary to stoichiometric binding. Biophys J 2022; 121:157-171. [PMID: 34637756 PMCID: PMC8758407 DOI: 10.1016/j.bpj.2021.10.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 01/07/2023] Open
Abstract
The assembly of functional biomolecular condensates often involves liquid-liquid phase separation (LLPS) of proteins with multiple modular domains, which can be folded or conformationally disordered to various degrees. To understand the LLPS-driving domain-domain interactions, a fundamental question is how readily the interactions in the condensed phase can be inferred from interdomain interactions in dilute solutions. In particular, are the interactions leading to LLPS exclusively those underlying the formation of discrete interdomain complexes in homogeneous solutions? We address this question by developing a mean-field LLPS theory of two stoichiometrically constrained solute species. The theory is applied to the neuronal proteins SynGAP and PSD-95, whose complex coacervate serves as a rudimentary model for neuronal postsynaptic densities (PSDs). The predicted phase behaviors are compared with experiments. Previously, a three SynGAP/two PSD-95 ratio was determined for SynGAP/PSD-95 complexes in dilute solutions. However, when this 3:2 stoichiometry is uniformly imposed in our theory encompassing both dilute and condensed phases, the tie-line pattern of the predicted SynGAP/PSD-95 phase diagram differs drastically from that obtained experimentally. In contrast, theories embodying alternate scenarios postulating auxiliary SynGAP-PSD-95 as well as SynGAP-SynGAP and PSD-95-PSD-95 interactions, in addition to those responsible for stoichiometric SynGAP/PSD-95 complexes, produce tie-line patterns consistent with experiment. Hence, our combined theoretical-experimental analysis indicates that weaker interactions or higher-order complexes beyond the 3:2 stoichiometry, but not yet documented, are involved in the formation of SynGAP/PSD-95 condensates, imploring future efforts to ascertain the nature of these auxiliary interactions in PSD-like LLPS and underscoring a likely general synergy between stoichiometric, structurally specific binding and stochastic, multivalent "fuzzy" interactions in the assembly of functional biomolecular condensates.
Collapse
Affiliation(s)
- Yi-Hsuan Lin
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada,Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Haowei Wu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Bowen Jia
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China,School of Life Sciences, Southern University of Science and Technology, Shenzhen, China,Corresponding author
| | - Hue Sun Chan
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada,Corresponding author
| |
Collapse
|
40
|
Motif-pattern dependence of biomolecular phase separation driven by specific interactions. PLoS Comput Biol 2021; 17:e1009748. [PMID: 34965250 PMCID: PMC8751999 DOI: 10.1371/journal.pcbi.1009748] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 01/11/2022] [Accepted: 12/13/2021] [Indexed: 12/29/2022] Open
Abstract
Eukaryotic cells partition a wide variety of important materials and processes into biomolecular condensates—phase-separated droplets that lack a membrane. In addition to nonspecific electrostatic or hydrophobic interactions, phase separation also depends on specific binding motifs that link together constituent molecules. Nevertheless, few rules have been established for how these ubiquitous specific, saturating, motif-motif interactions drive phase separation. By integrating Monte Carlo simulations of lattice-polymers with mean-field theory, we show that the sequence of heterotypic binding motifs strongly affects a polymer’s ability to phase separate, influencing both phase boundaries and condensate properties (e.g. viscosity and polymer diffusion). We find that sequences with large blocks of single motifs typically form more inter-polymer bonds, which promotes phase separation. Notably, the sequence of binding motifs influences phase separation primarily by determining the conformational entropy of self-bonding by single polymers. This contrasts with systems where the molecular architecture primarily affects the energy of the dense phase, providing a new entropy-based mechanism for the biological control of phase separation. Cells need to concentrate biomolecules in the right place at the right time in order to function. Many important intracellular compartments are liquid droplets formed by phase separation, the same process that separates oil from vinegar. The properties of such “biomolecular condensates” depend on the component molecules, such as proteins and RNAs. These molecules are polymers made of many interacting monomers, often organized into “motifs,” and the sequence of motifs shapes the properties of the condensates. Recent work has revealed important principles governing phase separation when the motifs are charged and interact across long distances, but many phase-separating molecules form specific interactions that are short-range and one-to-one. How does the sequence of specifically-interacting motifs affect phase separation? Using a combination of simulations and theoretical calculations, we show that the sequence has profound effects on both the formation and properties of condensates. Sequences with large blocks of identical motifs are better at phase separating but more viscous and solid-like. Importantly, we find that sequence controls phase separation via the proclivity to form self-bonds instead of forming bonds with other polymers. Thus the sequence of specifically-interacting motifs provides a control point for the formation and properties of phase-separated intracellular compartments.
Collapse
|
41
|
Chu WT, Yan Z, Chu X, Zheng X, Liu Z, Xu L, Zhang K, Wang J. Physics of biomolecular recognition and conformational dynamics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:126601. [PMID: 34753115 DOI: 10.1088/1361-6633/ac3800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Biomolecular recognition usually leads to the formation of binding complexes, often accompanied by large-scale conformational changes. This process is fundamental to biological functions at the molecular and cellular levels. Uncovering the physical mechanisms of biomolecular recognition and quantifying the key biomolecular interactions are vital to understand these functions. The recently developed energy landscape theory has been successful in quantifying recognition processes and revealing the underlying mechanisms. Recent studies have shown that in addition to affinity, specificity is also crucial for biomolecular recognition. The proposed physical concept of intrinsic specificity based on the underlying energy landscape theory provides a practical way to quantify the specificity. Optimization of affinity and specificity can be adopted as a principle to guide the evolution and design of molecular recognition. This approach can also be used in practice for drug discovery using multidimensional screening to identify lead compounds. The energy landscape topography of molecular recognition is important for revealing the underlying flexible binding or binding-folding mechanisms. In this review, we first introduce the energy landscape theory for molecular recognition and then address four critical issues related to biomolecular recognition and conformational dynamics: (1) specificity quantification of molecular recognition; (2) evolution and design in molecular recognition; (3) flexible molecular recognition; (4) chromosome structural dynamics. The results described here and the discussions of the insights gained from the energy landscape topography can provide valuable guidance for further computational and experimental investigations of biomolecular recognition and conformational dynamics.
Collapse
Affiliation(s)
- Wen-Ting Chu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Zhiqiang Yan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Xiakun Chu
- Department of Chemistry & Physics, State University of New York at Stony Brook, Stony Brook, NY 11794, United States of America
| | - Xiliang Zheng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Zuojia Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Li Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Kun Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Jin Wang
- Department of Chemistry & Physics, State University of New York at Stony Brook, Stony Brook, NY 11794, United States of America
| |
Collapse
|
42
|
Ryu JK, Hwang DE, Choi JM. Current Understanding of Molecular Phase Separation in Chromosomes. Int J Mol Sci 2021; 22:10736. [PMID: 34639077 PMCID: PMC8509192 DOI: 10.3390/ijms221910736] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
Biomolecular phase separation denotes the demixing of a specific set of intracellular components without membrane encapsulation. Recent studies have found that biomolecular phase separation is involved in a wide range of cellular processes. In particular, phase separation is involved in the formation and regulation of chromosome structures at various levels. Here, we review the current understanding of biomolecular phase separation related to chromosomes. First, we discuss the fundamental principles of phase separation and introduce several examples of nuclear/chromosomal biomolecular assemblies formed by phase separation. We also briefly explain the experimental and computational methods used to study phase separation in chromosomes. Finally, we discuss a recent phase separation model, termed bridging-induced phase separation (BIPS), which can explain the formation of local chromosome structures.
Collapse
Affiliation(s)
- Je-Kyung Ryu
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Da-Eun Hwang
- Department of Chemistry, Pusan National University, Busan 46241, Korea;
| | - Jeong-Mo Choi
- Department of Chemistry, Pusan National University, Busan 46241, Korea;
| |
Collapse
|
43
|
Lichtinger SM, Garaizar A, Collepardo-Guevara R, Reinhardt A. Targeted modulation of protein liquid-liquid phase separation by evolution of amino-acid sequence. PLoS Comput Biol 2021; 17:e1009328. [PMID: 34428231 PMCID: PMC8415608 DOI: 10.1371/journal.pcbi.1009328] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/03/2021] [Accepted: 08/07/2021] [Indexed: 12/27/2022] Open
Abstract
Rationally and efficiently modifying the amino-acid sequence of proteins to control their ability to undergo liquid-liquid phase separation (LLPS) on demand is not only highly desirable, but can also help to elucidate which protein features are important for LLPS. Here, we propose a computational method that couples a genetic algorithm to a sequence-dependent coarse-grained protein model to evolve the amino-acid sequences of phase-separating intrinsically disordered protein regions (IDRs), and purposely enhance or inhibit their capacity to phase-separate. We validate the predicted critical solution temperatures of the mutated sequences with ABSINTH, a more accurate all-atom model. We apply the algorithm to the phase-separating IDRs of three naturally occurring proteins, namely FUS, hnRNPA1 and LAF1, as prototypes of regions that exist in cells and undergo homotypic LLPS driven by different types of intermolecular interaction, and we find that the evolution of amino-acid sequences towards enhanced LLPS is driven in these three cases, among other factors, by an increase in the average size of the amino acids. However, the direction of change in the molecular driving forces that enhance LLPS (such as hydrophobicity, aromaticity and charge) depends on the initial amino-acid sequence. Finally, we show that the evolution of amino-acid sequences to modulate LLPS is strongly coupled to the make-up of the medium (e.g. the presence or absence of RNA), which may have significant implications for our understanding of phase separation within the many-component mixtures of biological systems.
Collapse
Affiliation(s)
- Simon M. Lichtinger
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Adiran Garaizar
- Department of Physics, Cavendish Laboratory, Maxwell Centre, University of Cambridge, Cambridge, United Kingdom
| | - Rosana Collepardo-Guevara
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- Department of Physics, Cavendish Laboratory, Maxwell Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Aleks Reinhardt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
44
|
Nilsson D, Irbäck A. Finite-size shifts in simulated protein droplet phase diagrams. J Chem Phys 2021; 154:235101. [PMID: 34241264 DOI: 10.1063/5.0052813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Computer simulation can provide valuable insight into the forces driving biomolecular liquid-liquid phase separation. However, the simulated systems have a limited size, which makes it important to minimize and control finite-size effects. Here, using a phenomenological free-energy ansatz, we investigate how the single-phase densities observed in a canonical system under coexistence conditions depend on the system size and the total density. We compare the theoretical expectations with results from Monte Carlo simulations based on a simple hydrophobic/polar protein model. We consider both cubic systems with spherical droplets and elongated systems with slab-like droplets. The results presented suggest that the slab simulation method greatly facilitates the estimation of the coexistence densities in the large-system limit.
Collapse
Affiliation(s)
- Daniel Nilsson
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, SE-223 62 Lund, Sweden
| | - Anders Irbäck
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, SE-223 62 Lund, Sweden
| |
Collapse
|
45
|
Workman RJ, Pettitt BM. Thermodynamic Compensation in Peptides Following Liquid-Liquid Phase Separation. J Phys Chem B 2021; 125:6431-6439. [PMID: 34110175 DOI: 10.1021/acs.jpcb.1c02093] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Liquid-liquid phase separation of proteins often incorporates intrinsically disordered proteins or those with disordered regions. Examining these processes via the entropy change is desirable for establishing a quantitative foundation with which to probe and understand these phase transitions. Of interest is the effect of residue sequence on the entropy of the peptide backbone. In this work we model these systems via all atom simulations of liquid-liquid phase separation of peptides. Systems of supersaturated pentapeptides separate into a peptide-dense liquid droplet phase as well as a dilute (saturated) aqueous phase. An analysis of the change in backbone conformational entropy associated with the phase transition was performed. We examined systems of four different pentapeptides (GGGGG, GGQGG, GGNGG, and GGVGG) in order to explore the effect of sequence variation on the conformational entropy, as well as the effect of side chain variation on the physical characteristics of the droplet phases. We find that the loss of conformational entropy that accompanies aqueous → droplet transitions is more than compensated by a decrease in interaction enthalpy as contributions to the free energy change for the process.
Collapse
Affiliation(s)
- Riley J Workman
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - B Montgomery Pettitt
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
46
|
Latham AP, Zhang B. Consistent Force Field Captures Homologue-Resolved HP1 Phase Separation. J Chem Theory Comput 2021; 17:3134-3144. [PMID: 33826337 PMCID: PMC8119372 DOI: 10.1021/acs.jctc.0c01220] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Many proteins have been shown to function via liquid-liquid phase separation. Computational modeling could offer much needed structural details of protein condensates and reveal the set of molecular interactions that dictate their stability. However, the presence of both ordered and disordered domains in these proteins places a high demand on the model accuracy. Here, we present an algorithm to derive a coarse-grained force field, MOFF, which can model both ordered and disordered proteins with consistent accuracy. It combines maximum entropy biasing, least-squares fitting, and basic principles of energy landscape theory to ensure that MOFF recreates experimental radii of gyration while predicting the folded structures for globular proteins with lower energy. The theta temperature determined from MOFF separates ordered and disordered proteins at 300 K and exhibits a strikingly linear relationship with amino acid sequence composition. We further applied MOFF to study the phase behavior of HP1, an essential protein for post-translational modification and spatial organization of chromatin. The force field successfully resolved the structural difference of two HP1 homologues despite their high sequence similarity. We carried out large-scale simulations with hundreds of proteins to determine the critical temperature of phase separation and uncover multivalent interactions that stabilize higher-order assemblies. In all, our work makes significant methodological strides to connect theories of ordered and disordered proteins and provides a powerful tool for studying liquid-liquid phase separation with near-atomistic details.
Collapse
Affiliation(s)
- Andrew P Latham
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
47
|
Wessén J, Pal T, Das S, Lin YH, Chan HS. A Simple Explicit-Solvent Model of Polyampholyte Phase Behaviors and Its Ramifications for Dielectric Effects in Biomolecular Condensates. J Phys Chem B 2021; 125:4337-4358. [PMID: 33890467 DOI: 10.1021/acs.jpcb.1c00954] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biomolecular condensates such as membraneless organelles, underpinned by liquid-liquid phase separation (LLPS), are important for physiological function, with electrostatics, among other interaction types, being a prominent force in their assembly. Charge interactions of intrinsically disordered proteins (IDPs) and other biomolecules are sensitive to the aqueous dielectric environment. Because the relative permittivity of protein is significantly lower than that of water, the interior of an IDP condensate is expected to be a relatively low-dielectric regime, which aside from its possible functional effects on client molecules should facilitate stronger electrostatic interactions among the scaffold IDPs. To gain insight into this LLPS-induced dielectric heterogeneity, addressing in particular whether a low-dielectric condensed phase entails more favorable LLPS than that posited by assuming IDP electrostatic interactions are uniformly modulated by the higher dielectric constant of the pure solvent, we consider a simplified multiple-chain model of polyampholytes immersed in explicit solvents that are either polarizable or possess a permanent dipole. Notably, simulated phase behaviors of these systems exhibit only minor to moderate differences from those obtained using implicit-solvent models with a uniform relative permittivity equals to that of pure solvent. Buttressed by theoretical treatments developed here using random phase approximation and polymer field-theoretic simulations, these observations indicate a partial compensation of effects between favorable solvent-mediated interactions among the polyampholytes in the condensed phase and favorable polyampholyte-solvent interactions in the dilute phase, often netting only a minor enhancement of overall LLPS propensity from the very dielectric heterogeneity that arises from the LLPS itself. Further ramifications of this principle are discussed.
Collapse
Affiliation(s)
- Jonas Wessén
- Department of Biochemistry, University of Toronto, Medical Sciences Building-5th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Tanmoy Pal
- Department of Biochemistry, University of Toronto, Medical Sciences Building-5th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Suman Das
- Department of Biochemistry, University of Toronto, Medical Sciences Building-5th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Yi-Hsuan Lin
- Department of Biochemistry, University of Toronto, Medical Sciences Building-5th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.,Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Hue Sun Chan
- Department of Biochemistry, University of Toronto, Medical Sciences Building-5th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
48
|
Mazarakos K, Zhou HX. Macromolecular regulators have matching effects on the phase equilibrium and interfacial tension of biomolecular condensates. Protein Sci 2021; 30:1360-1370. [PMID: 33864415 DOI: 10.1002/pro.4084] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 02/01/2023]
Abstract
The interfacial tension of phase-separated biomolecular condensates affects their fusion and multiphase organization, and yet how this important property depends on the composition and interactions of the constituent macromolecules is poorly understood. Here we use molecular dynamics simulations to determine the interfacial tension and phase equilibrium of model condensate-forming systems. The model systems consist of binary mixtures of Lennard-Jones particles or chains of such particles. We refer to the two components as drivers and regulators; the former has stronger self-interactions and hence a higher critical temperature (Tc ) for phase separation. In previous work, we have shown that, depending on the relative strengths of driver-regulator and driver-driver interactions, regulators can either promote or suppress phase separation (i.e., increase or decrease Tc ). Here we find that the effects of regulators on Tc quantitatively match the effects on interfacial tension (γ). This important finding means that, when a condensate-forming system experiences a change in macromolecular composition or a change in intermolecular interactions (e.g., by mutation or posttranslational modification, or by variation in solvent conditions such as temperature, pH, or salt), the resulting change in Tc can be used to predict the change in γ and vice versa. We also report initial results showing that disparity in intermolecular interactions drives multiphase coexistence. These findings provide much needed guidance for understanding how biomolecular condensates mediate cellular functions.
Collapse
Affiliation(s)
| | - Huan-Xiang Zhou
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
49
|
Pal T, Wessén J, Das S, Chan HS. Subcompartmentalization of polyampholyte species in organelle-like condensates is promoted by charge-pattern mismatch and strong excluded-volume interaction. Phys Rev E 2021; 103:042406. [PMID: 34005864 DOI: 10.1103/physreve.103.042406] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Polyampholyte field theory and explicit-chain molecular dynamics models of sequence-specific phase separation of a system with two intrinsically disordered protein (IDP) species indicate consistently that a substantial polymer excluded volume and a significant mismatch of the IDP sequence charge patterns can act in concert, but not in isolation, to demix the two IDP species upon condensation. This finding reveals an energetic-geometric interplay in a stochastic, "fuzzy" molecular recognition mechanism that may facilitate subcompartmentalization of membraneless organelles.
Collapse
Affiliation(s)
- Tanmoy Pal
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jonas Wessén
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Suman Das
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Hue Sun Chan
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
50
|
Li J, Zhang Y, Chen X, Ma L, Li P, Yu H. Protein phase separation and its role in chromatin organization and diseases. Biomed Pharmacother 2021; 138:111520. [PMID: 33765580 DOI: 10.1016/j.biopha.2021.111520] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/04/2021] [Accepted: 03/14/2021] [Indexed: 12/25/2022] Open
Abstract
In the physical sciences, solid, liquid, and gas are the most familiar phase states, whose essence is their existence reflecting the different spatial distribution of molecular components. The biological molecules in the living cell also have differences in spatial distribution. The molecules organized in the form of membrane-bound organelles are well recognized. However, the biomolecules organized in membraneless compartments called biomolecular condensates remain elusive. The liquid-liquid phase separation (LLPS), as a new emerging scientific breakthrough, describes the biomolecules assembled in special distribution and appeared as membraneless condensates in the form of a new "phase" compared with the surrounding liquid milieu. LLPS provides an important theoretical basis for explaining the composition of biological molecules and related biological reactions. Mounting evidence has emerged recently that phase-separated condensates participate in various biological activities. This article reviews the occurrence of LLPS and underlying regulatory mechanisms for understanding how multivalent molecules drive phase transitions to form the biomolecular condensates. And, it also summarizes recent major progress in elucidating the roles of LLPS in chromatin organization and provides clues for the development of new innovative therapeutic strategies for related diseases.
Collapse
Affiliation(s)
- Jiaqi Li
- Dr. Neher's Laboratory for innovative Drug Discovery, Macau University of Science and Technology, Macao, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Yao Zhang
- Dr. Neher's Laboratory for innovative Drug Discovery, Macau University of Science and Technology, Macao, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Xi Chen
- Dr. Neher's Laboratory for innovative Drug Discovery, Macau University of Science and Technology, Macao, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Lijuan Ma
- Dr. Neher's Laboratory for innovative Drug Discovery, Macau University of Science and Technology, Macao, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Pilong Li
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Haijie Yu
- Dr. Neher's Laboratory for innovative Drug Discovery, Macau University of Science and Technology, Macao, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China.
| |
Collapse
|