1
|
Niccoli L, Casano G, Menzildjian G, Yulikov M, Robinson T, Akrial SE, Wang Z, Reiter C, Purea A, Siri D, Venkatesh A, Emsley L, Gajan D, Lelli M, Ouari O, Lesage A. Efficient DNP at high fields and fast MAS with antenna-sensitized dinitroxides. Chem Sci 2024:d4sc04473h. [PMID: 39309076 PMCID: PMC11411413 DOI: 10.1039/d4sc04473h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
Dynamic Nuclear Polarization (DNP) can significantly enhance the sensitivity of solid-state NMR. In DNP, microwave irradiation induces polarization transfer from unpaired electron spins to 1H nuclear spins via hyperfine couplings and spin-diffusion. The structure of the polarizing agents that host the electron spins is key for DNP efficiency. Currently, only a handful of structures perform well at very high magnetic fields (≥18.8 T), and enhancements are significantly lower than those obtained at lower fields. Here, we introduce a new series of water-soluble nitroxide biradicals with a scaffold augmented by dihydroxypropyl antenna chains that perform significantly better than previous dinitroxides at 18.8 T. The new radical M-TinyPol(OH)4 yields enhancement factors of ∼220 at 18.8 T and 60 kHz MAS, which is a nearly factor 2 larger than for the previous best performing dinitroxides. The performance is understood through 2H ESEEM measurements to probe solvent accessibility, supported by Molecular Dynamics simulations, and by experiments on deuterated samples. We find that the deuterated glycerol molecules in the matrix are located mainly in the second solvation shell of the NO bond, limiting access for protonated water molecules, and restricting spin diffusion pathways. This provides a rational understanding of why the dihydroxypropyl chains present in the best-performing structures are essential to deliver the polarization to the bulk solution.
Collapse
Affiliation(s)
- Lorenzo Niccoli
- Centre de RMN à Hauts Champs de Lyon, UMR 5082, Université de Lyon (CNRS/ENS Lyon/UCBL) 5 rue de la Doua Villeurbanne 69100 France
- Center of Magnetic Resonance (CERM), University of Florence 50019 Sesto Fiorentino Italy
- Department of Chemistry 'Ugo Schiff', University of Florence Via della Lastruccia 13 50019 Sesto Fiorentino FI Italy
- Consorzio Interuniversitario Risonanze Magnetiche Metalloproteine Paramagnetiche (CIRMMP) Via Luigi Sacconi 6 50019 Sesto Fiorentino FI Italy
| | | | - Georges Menzildjian
- Centre de RMN à Hauts Champs de Lyon, UMR 5082, Université de Lyon (CNRS/ENS Lyon/UCBL) 5 rue de la Doua Villeurbanne 69100 France
| | - Maxim Yulikov
- Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich CH-8093 Zürich Switzerland
| | - Thomas Robinson
- Centre de RMN à Hauts Champs de Lyon, UMR 5082, Université de Lyon (CNRS/ENS Lyon/UCBL) 5 rue de la Doua Villeurbanne 69100 France
| | - Salah-Eddine Akrial
- Centre de RMN à Hauts Champs de Lyon, UMR 5082, Université de Lyon (CNRS/ENS Lyon/UCBL) 5 rue de la Doua Villeurbanne 69100 France
| | - Zhuoran Wang
- Centre de RMN à Hauts Champs de Lyon, UMR 5082, Université de Lyon (CNRS/ENS Lyon/UCBL) 5 rue de la Doua Villeurbanne 69100 France
| | | | | | - Didier Siri
- Aix Marseille Uni, CNRS, ICR 13013 Marseille France
| | - Amrit Venkatesh
- Laboratory of Magnetic Resonance, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
- National High Magnetic Field Laboratory, Florida State University Tallahassee FL 32310 USA
| | - Lyndon Emsley
- Laboratory of Magnetic Resonance, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| | - David Gajan
- Centre de RMN à Hauts Champs de Lyon, UMR 5082, Université de Lyon (CNRS/ENS Lyon/UCBL) 5 rue de la Doua Villeurbanne 69100 France
| | - Moreno Lelli
- Center of Magnetic Resonance (CERM), University of Florence 50019 Sesto Fiorentino Italy
- Department of Chemistry 'Ugo Schiff', University of Florence Via della Lastruccia 13 50019 Sesto Fiorentino FI Italy
- Consorzio Interuniversitario Risonanze Magnetiche Metalloproteine Paramagnetiche (CIRMMP) Via Luigi Sacconi 6 50019 Sesto Fiorentino FI Italy
| | | | - Anne Lesage
- Centre de RMN à Hauts Champs de Lyon, UMR 5082, Université de Lyon (CNRS/ENS Lyon/UCBL) 5 rue de la Doua Villeurbanne 69100 France
| |
Collapse
|
2
|
Scott FJ, Dubroca T, Schurko RW, Hill S, Long JR, Mentink-Vigier F. Characterization of dielectric properties and their impact on MAS-DNP NMR applications. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 365:107742. [PMID: 39116460 DOI: 10.1016/j.jmr.2024.107742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/17/2024] [Accepted: 07/13/2024] [Indexed: 08/10/2024]
Abstract
The dielectric properties of materials play a crucial role in the propagation and absorption of microwave beams employed in Magic Angle Spinning - Dynamic Nuclear Polarization (MAS-DNP) NMR experiments. Despite ongoing optimization efforts in sample preparation, routine MAS-DNP NMR applications often fall short of theoretical sensitivity limits. Offering a different perspective, we report the refractive indices and extinction coefficients of diverse materials used in MAS-DNP NMR experiments, spanning a frequency range from 70 to 960 GHz. Knowledge of their dielectric properties enables the accurate simulation of electron nutation frequencies, thereby guiding the design of more efficient hardware and sample preparation of biological or material samples. This is illustrated experimentally for four different rotor materials (sapphire, yttria-stabilized zirconia (YSZ), aluminum nitride (AlN), and SiAlON ceramics) used for DNP at 395 GHz/1H 600 MHz. Finally, electromagnetic simulations and state-of-the-art MAS-DNP numerical simulations provide a rational explanation for the observed magnetic field dependence of the enhancement when using nitroxide biradicals, offering insights that will improve MAS-DNP NMR at high magnetic fields.
Collapse
Affiliation(s)
- Faith J Scott
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr., Tallahassee, FL 32310, USA
| | - Thierry Dubroca
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr., Tallahassee, FL 32310, USA
| | - Robert W Schurko
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr., Tallahassee, FL 32310, USA; Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Stephen Hill
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr., Tallahassee, FL 32310, USA; Department of Physics, Florida State University, Tallahassee, FL 32306, USA
| | - Joanna R Long
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr., Tallahassee, FL 32310, USA; Department of Biochemistry and Molecular Biology, University of Florida, PO Box 100245, Gainesville, FL 32610, USA.
| | - Frédéric Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr., Tallahassee, FL 32310, USA.
| |
Collapse
|
3
|
Millen M, Alaniva N, Saliba EP, Overall SA, Däpp A, Pagonakis IG, Sigurdsson ST, Björgvinsdóttir S, Barnes AB. Frequency-Chirped Magic Angle Spinning Dynamic Nuclear Polarization Combined with Electron Decoupling. J Phys Chem Lett 2024; 15:7228-7235. [PMID: 38975905 PMCID: PMC11261599 DOI: 10.1021/acs.jpclett.4c01075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/09/2024]
Abstract
Magic angle spinning (MAS) dynamic nuclear polarization (DNP) increases the signal intensity of solid-state nuclear magnetic resonance. DNP typically uses continuous wave (CW) microwave irradiation close to the resonance frequency of unpaired electron spins. In this study, we demonstrate that frequency-chirped microwaves improve DNP performance under MAS. By modulating the gyrotron anode potential, we generate a train of microwave chirps with a maximum bandwidth of 310 MHz and a maximum incident power on the spinning sample of 18 W. We characterize the efficiency of chirped DNP using the following polarizing agents: TEMTriPol-1, AsymPolPOK, AMUPol, and Finland trityl. The effects of different chirp widths and periods are analyzed at different MAS frequencies and microwave powers. Furthermore, we show that chirped DNP can be combined with electron decoupling to improve signal intensity by 59%, compared to CW DNP without electron decoupling, using Finland trityl as a polarizing agent.
Collapse
Affiliation(s)
- Marthe Millen
- Institute
of Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Nicholas Alaniva
- Institute
of Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Edward P. Saliba
- Institute
of Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Sarah A. Overall
- Institute
of Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Alexander Däpp
- Institute
of Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Ioannis Gr. Pagonakis
- Institute
of Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | | | - Snædís Björgvinsdóttir
- Institute
of Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Alexander B. Barnes
- Institute
of Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
4
|
Chatterjee S, Venkatesh A, Sigurdsson ST, Mentink-Vigier F. Role of Protons in and around Strongly Coupled Nitroxide Biradicals for Cross-Effect Dynamic Nuclear Polarization. J Phys Chem Lett 2024; 15:2160-2168. [PMID: 38364262 DOI: 10.1021/acs.jpclett.3c03472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
In magic angle spinning dynamic nuclear polarization (DNP), biradicals such as bis-nitroxides are used to hyperpolarize protons under microwave irradiation through the cross-effect mechanism. This mechanism relies on electron-electron spin interactions (dipolar coupling and exchange interaction) and electron-nuclear spin interactions (hyperfine coupling) to hyperpolarize the protons surrounding the biradical. This hyperpolarization is then transferred to the bulk sample via nuclear spin diffusion. However, the involvement of the protons in the biradical in the cross-effect DNP process has been under debate. In this work, we address this question by exploring the hyperpolarization pathways in and around bis-nitroxides. We demonstrate that for biradicals with strong electron-electron interactions, as in the case of the AsymPols, the protons on the biradical may not be necessary to quickly generate hyperpolarization. Instead, such biradicals can efficiently, and directly, polarize the surrounding protons of the solvent. The findings should impact the design of the next generation of biradicals.
Collapse
Affiliation(s)
- Satyaki Chatterjee
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland
| | - Amrit Venkatesh
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Snorri Th Sigurdsson
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland
| | - Frédéric Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| |
Collapse
|
5
|
Venkatesh A, Casano G, Wei R, Rao Y, Lingua H, Karoui H, Yulikov M, Ouari O, Emsley L. Rational Design of Dinitroxide Polarizing Agents for Dynamic Nuclear Polarization to Enhance Overall NMR Sensitivity. Angew Chem Int Ed Engl 2024; 63:e202317337. [PMID: 38193258 DOI: 10.1002/anie.202317337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
We evaluate the overall sensitivity gains provided by a series of eighteen nitroxide biradicals for dynamic nuclear polarization (DNP) solid-state NMR at 9.4 T and 100 K, including eight new biradicals. We find that in the best performing group the factors contributing to the overall sensitivity gains, namely the DNP enhancement, the build-up time, and the contribution factor, often compete with each other leading to very similar overall sensitivity across a range of biradicals. NaphPol and HydroPol are found to provide the best overall sensitivity factors, in organic and aqueous solvents respectively. One of the new biradicals, AMUPolCbm, provides high sensitivity for all three solvent formulations measured here, and can be considered to be a "universal" polarizing agent.
Collapse
Affiliation(s)
- Amrit Venkatesh
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
- Current address: National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - Gilles Casano
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, 13013, Marseille, France
| | - Ran Wei
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Yu Rao
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Hugo Lingua
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, 13013, Marseille, France
| | - Hakim Karoui
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, 13013, Marseille, France
| | - Maxim Yulikov
- Laboratory of Physical Chemistry, Department of Chemistry, ETH Zürich, 8093, Zürich, Switzerland
| | - Olivier Ouari
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, 13013, Marseille, France
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
6
|
Harrabi R, Halbritter T, Alarab S, Chatterjee S, Wolska-Pietkiewicz M, Damodaran KK, van Tol J, Lee D, Paul S, Hediger S, Sigurdsson ST, Mentink-Vigier F, De Paëpe G. AsymPol-TEKs as efficient polarizing agents for MAS-DNP in glass matrices of non-aqueous solvents. Phys Chem Chem Phys 2024; 26:5669-5682. [PMID: 38288878 PMCID: PMC10849081 DOI: 10.1039/d3cp04271e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Two polarizing agents from the AsymPol family, AsymPol-TEK and cAsymPol-TEK (methyl-free version) are introduced for MAS-DNP applications in non-aqueous solvents. The performance of these new biradicals is rationalized in detail using a combination of electron paramagnetic resonance spectroscopy, density functional theory, molecular dynamics and quantitative MAS-DNP spin dynamics simulations. By slightly modifying the experimental protocol to keep the sample temperature low at insertion, we are able to obtain reproducable DNP-NMR data with 1,1,2,2-tetrachloroethane (TCE) at 100 K, which facilitates optimization and comparison of different polarizing agents. At intermediate magnetic fields, AsymPol-TEK and cAsymPol-TEK provide 1.5 to 3-fold improvement in sensitivity compared to TEKPol, one of the most widely used polarizing agents for organic solvents, with significantly shorter DNP build-up times of ∼1 s and ∼2 s at 9.4 and 14.1 T respectively. In the course of the work, we also isolated and characterized two diastereoisomers that can form during the synthesis of AsymPol-TEK; their difference in performance is described and discussed. Finally, the advantages of the AsymPol-TEKs are demonstrated by recording 2D 13C-13C correlation experiments at natural 13C-abundance of proton-dense microcrystals and by polarizing the surface of ZnO nanocrystals (NCs) coated with diphenyl phosphate ligands. For those experiments, cAsymPol-TEK yielded a three-fold increase in sensitivity compared to TEKPol, corresponding to a nine-fold time saving.
Collapse
Affiliation(s)
- Rania Harrabi
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000 Grenoble, France.
| | - Thomas Halbritter
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland.
| | - Shadi Alarab
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000 Grenoble, France.
| | - Satyaki Chatterjee
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland.
| | | | - Krishna K Damodaran
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland.
| | - Johan van Tol
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32301, USA.
| | - Daniel Lee
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000 Grenoble, France.
| | - Subhradip Paul
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000 Grenoble, France.
| | - Sabine Hediger
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000 Grenoble, France.
| | - Snorri Th Sigurdsson
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland.
| | - Frederic Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32301, USA.
| | - Gaël De Paëpe
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000 Grenoble, France.
| |
Collapse
|
7
|
Menzildjian G, Schlagnitweit J, Casano G, Ouari O, Gajan D, Lesage A. Polarizing agents for efficient high field DNP solid-state NMR spectroscopy under magic-angle spinning: from design principles to formulation strategies. Chem Sci 2023; 14:6120-6148. [PMID: 37325158 PMCID: PMC10266460 DOI: 10.1039/d3sc01079a] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Dynamic Nuclear Polarization (DNP) has recently emerged as a cornerstone approach to enhance the sensitivity of solid-state NMR spectroscopy under Magic Angle Spinning (MAS), opening unprecedented analytical opportunities in chemistry and biology. DNP relies on a polarization transfer from unpaired electrons (present in endogenous or exogenous polarizing agents) to nearby nuclei. Developing and designing new polarizing sources for DNP solid-state NMR spectroscopy is currently an extremely active research field per se, that has recently led to significant breakthroughs and key achievements, in particular at high magnetic fields. This review describes recent developments in this area, highlighting key design principles that have been established over time and led to the introduction of increasingly more efficient polarizing sources. After a short introduction, Section 2 presents a brief history of solid-state DNP, highlighting the main polarization transfer schemes. The third section is devoted to the development of dinitroxide radicals, discussing the guidelines that were progressively established to design the fine-tuned molecular structures in use today. In Section 4, we describe recent efforts in developing hybrid radicals composed of a narrow EPR line radical covalently linked to a nitroxide, highlighting the parameters that modulate the DNP efficiency of these mixed structures. Section 5 reviews recent advances in the design of metal complexes suitable for DNP MAS NMR as exogenous electron sources. In parallel, current strategies that exploit metal ions as endogenous polarization sources are discussed. Section 6 briefly describes the recent introduction of mixed-valence radicals. In the last part, experimental aspects regarding sample formulation are reviewed to make best use of these polarizing agents in a broad panel of application fields.
Collapse
Affiliation(s)
- Georges Menzildjian
- Centre de RMN à, Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1) 5 Rue de la doua 69100 Villeurbanne France
| | - Judith Schlagnitweit
- Centre de RMN à, Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1) 5 Rue de la doua 69100 Villeurbanne France
| | - Gilles Casano
- Aix Marseille Univ., CNRS, Institut de Chimie Radicalaire, UMR 7273 Marseille France
| | - Olivier Ouari
- Aix Marseille Univ., CNRS, Institut de Chimie Radicalaire, UMR 7273 Marseille France
| | - David Gajan
- Centre de RMN à, Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1) 5 Rue de la doua 69100 Villeurbanne France
| | - Anne Lesage
- Centre de RMN à, Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1) 5 Rue de la doua 69100 Villeurbanne France
| |
Collapse
|
8
|
Eills J, Budker D, Cavagnero S, Chekmenev EY, Elliott SJ, Jannin S, Lesage A, Matysik J, Meersmann T, Prisner T, Reimer JA, Yang H, Koptyug IV. Spin Hyperpolarization in Modern Magnetic Resonance. Chem Rev 2023; 123:1417-1551. [PMID: 36701528 PMCID: PMC9951229 DOI: 10.1021/acs.chemrev.2c00534] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 01/27/2023]
Abstract
Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.
Collapse
Affiliation(s)
- James Eills
- Institute
for Bioengineering of Catalonia, Barcelona
Institute of Science and Technology, 08028Barcelona, Spain
| | - Dmitry Budker
- Johannes
Gutenberg-Universität Mainz, 55128Mainz, Germany
- Helmholtz-Institut,
GSI Helmholtzzentrum für Schwerionenforschung, 55128Mainz, Germany
- Department
of Physics, UC Berkeley, Berkeley, California94720, United States
| | - Silvia Cavagnero
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute
(KCI), Wayne State University, Detroit, Michigan48202, United States
- Russian
Academy of Sciences, Moscow119991, Russia
| | - Stuart J. Elliott
- Molecular
Sciences Research Hub, Imperial College
London, LondonW12 0BZ, United Kingdom
| | - Sami Jannin
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Anne Lesage
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstr. 3, 04103Leipzig, Germany
| | - Thomas Meersmann
- Sir
Peter Mansfield Imaging Centre, University Park, School of Medicine, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Thomas Prisner
- Institute
of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic
Resonance, Goethe University Frankfurt, , 60438Frankfurt
am Main, Germany
| | - Jeffrey A. Reimer
- Department
of Chemical and Biomolecular Engineering, UC Berkeley, and Materials Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| | - Hanming Yang
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Igor V. Koptyug
- International Tomography Center, Siberian
Branch of the Russian Academy
of Sciences, 630090Novosibirsk, Russia
| |
Collapse
|
9
|
Carnahan SL, Chen Y, Wishart JF, Lubach JW, Rossini AJ. Magic angle spinning dynamic nuclear polarization solid-state NMR spectroscopy of γ-irradiated molecular organic solids. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 119:101785. [PMID: 35405629 DOI: 10.1016/j.ssnmr.2022.101785] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 02/22/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
In the past 15 years, magic angle spinning (MAS) dynamic nuclear polarization (DNP) has emerged as a method to increase the sensitivity of high-resolution solid-state NMR spectroscopy experiments. Recently, γ-irradiation has been used to generate significant concentrations of homogeneously distributed free radicals in a variety of solids, including quartz, glucose, and cellulose. Both γ-irradiated quartz and glucose previously showed significant MAS DNP enhancements. Here, γ-irradiation is applied to twelve small organic molecules to test the applicability of γ-irradiation as a general method of creating stable free radicals for MAS DNP experiments on organic solids and pharmaceuticals. Radical concentrations in the range of 0.25 mM-10 mM were observed in irradiated glucose, histidine, malic acid, and malonic acid, and significant 1H DNP enhancements of 32, 130, 19, and 11 were obtained, respectively, as measured by 1H→13C CPMAS experiments. However, concentrations of free radicals below 0.05 mM were generally observed in organic molecules containing aromatic rings, preventing sizeable DNP enhancements. DNP sensitivity gains for several of the irradiated compounds exceed that which can be obtained with the relayed DNP approach that uses exogeneous polarizing agent solutions and impregnation procedures. In several cases, significant 1H DNP enhancements were realized at room temperature. This study demonstrates that in many cases γ-irradiation is a viable alternative to addition of stable exogenous radicals for DNP experiments on organic solids.
Collapse
Affiliation(s)
- Scott L Carnahan
- US DOE Ames Laboratory, Ames, IA, 50011, USA; Iowa State University, Department of Chemistry, Ames, IA, 50011, USA
| | - Yunhua Chen
- US DOE Ames Laboratory, Ames, IA, 50011, USA; Iowa State University, Department of Chemistry, Ames, IA, 50011, USA
| | - James F Wishart
- Brookhaven National Laboratory, Chemistry Division, Upton, NY, 11973, United States
| | - Joseph W Lubach
- Genentech Inc., South San Francisco, CA, 94080, United States
| | - Aaron J Rossini
- US DOE Ames Laboratory, Ames, IA, 50011, USA; Iowa State University, Department of Chemistry, Ames, IA, 50011, USA.
| |
Collapse
|
10
|
Kundu K, Dubroca T, Rane V, Mentink-Vigier F. Spinning-Driven Dynamic Nuclear Polarization with Optical Pumping. J Phys Chem A 2022; 126:2600-2608. [PMID: 35417169 PMCID: PMC9121629 DOI: 10.1021/acs.jpca.2c01559] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We propose a new, more efficient, and potentially cost effective, solid-state nuclear spin hyperpolarization method combining the cross-effect mechanism and electron spin optical hyperpolarization in rotating solids. We first demonstrate optical hyperpolarization in the solid state at low temperatures and low field and then investigate its field dependence to obtain the optimal condition for high-field electron spin hyperpolarization. The results are then incorporated into advanced magic-angle spinning dynamic nuclear polarization (MAS-DNP) numerical simulations that show that optically pumped MAS-DNP could yield breakthrough enhancements at very high magnetic fields. Based on these investigations, enhancements greater than the ratio of electron to nucleus magnetic moments (>658 for 1H) are possible without microwave irradiation. This could solve at once the MAS-DNP performance decrease with increasing field and the high cost of MAS-DNP instruments at very high fields.
Collapse
Affiliation(s)
- Krishnendu Kundu
- National High Magnetic Field Laboratory, Florida State University, 1800 E Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Thierry Dubroca
- National High Magnetic Field Laboratory, Florida State University, 1800 E Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Vinayak Rane
- Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Frederic Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, 1800 E Paul Dirac Drive, Tallahassee, Florida 32310, United States
| |
Collapse
|
11
|
Perras FA, Carnahan SL, Lo WS, Ward CJ, Yu J, Huang W, Rossini AJ. Hybrid quantum-classical simulations of magic angle spinning dynamic nuclear polarization in very large spin systems. J Chem Phys 2022; 156:124112. [DOI: 10.1063/5.0086530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Solid-state nuclear magnetic resonance can be enhanced using unpaired electron spins with a method known as dynamic nuclear polarization (DNP). Fundamentally, DNP involves ensembles of thousands of spins, a scale that is difficult to match computationally. This scale prevents us from gaining a complete understanding of the spin dynamics and applying simulations to design sample formulations. We recently developed an ab initio model capable of calculating DNP enhancements in systems of up to ∼1000 nuclei; however, this scale is insufficient to accurately simulate the dependence of DNP enhancements on radical concentration or magic angle spinning (MAS) frequency. We build on this work by using ab initio simulations to train a hybrid model that makes use of a rate matrix to treat nuclear spin diffusion. We show that this model can reproduce the MAS rate and concentration dependence of DNP enhancements and build-up time constants. We then apply it to predict the DNP enhancements in core–shell metal-organic-framework nanoparticles and reveal new insights into the composition of the particles’ shells.
Collapse
Affiliation(s)
| | - Scott L. Carnahan
- Ames Laboratory, U.S. DOE, Ames, Iowa 50011, USA
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| | - Wei-Shang Lo
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Charles J. Ward
- Ames Laboratory, U.S. DOE, Ames, Iowa 50011, USA
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| | - Jiaqi Yu
- Ames Laboratory, U.S. DOE, Ames, Iowa 50011, USA
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| | - Wenyu Huang
- Ames Laboratory, U.S. DOE, Ames, Iowa 50011, USA
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| | - Aaron J. Rossini
- Ames Laboratory, U.S. DOE, Ames, Iowa 50011, USA
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
12
|
Jardón-Álvarez D, Malka T, van Tol J, Feldman Y, Carmieli R, Leskes M. Monitoring electron spin fluctuations with paramagnetic relaxation enhancement. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 336:107143. [PMID: 35085928 DOI: 10.1016/j.jmr.2022.107143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
The magnetic interactions between the spin of an unpaired electron and the surrounding nuclear spins can be exploited to gain structural information, to reduce nuclear relaxation times as well as to create nuclear hyperpolarization via dynamic nuclear polarization (DNP). A central aspect that determines how these interactions manifest from the point of view of NMR is the timescale of the fluctuations of the magnetic moment of the electron spins. These fluctuations, however, are elusive, particularly when electron relaxation times are short or interactions among electronic spins are strong. Here we map the fluctuations by analyzing the ratio between longitudinal and transverse nuclear relaxation times T1/T2, a quantity which depends uniquely on the rate of the electron fluctuations and the Larmor frequency of the involved nuclei. This analysis enables rationalizing the evolution of NMR lineshapes, signal quenching as well as DNP enhancements as a function of the concentration of the paramagnetic species and the temperature, demonstrated here for LiMg1-xMnxPO4 and Fe(III) doped Li4Ti5O12, respectively. For the latter, we observe a linear dependence of the DNP enhancement and the electron relaxation time within a temperature range between 100 and 300 K.
Collapse
Affiliation(s)
- Daniel Jardón-Álvarez
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tahel Malka
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Johan van Tol
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr, Tallahassee, FL 32310, United States
| | - Yishay Feldman
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Raanan Carmieli
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michal Leskes
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
13
|
Ghosh R, Dumarieh R, Xiao Y, Frederick KK. Stability of the nitroxide biradical AMUPol in intact and lysed mammalian cells. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 336:107150. [PMID: 35151975 PMCID: PMC8961433 DOI: 10.1016/j.jmr.2022.107150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Dynamic Nuclear Polarization (DNP) enhanced solid state NMR increases experimental sensitivity, potentially enabling detection of biomolecules at their physiological concentrations. The sensitivity of DNP experiments is due to the transfer of polarization from electron spins of free radicals to the nuclear spins of interest. Here, we investigate the reduction of AMUPol in both lysed and intact HEK293 cells. We find that nitroxide radicals are reduced with first order reduction kinetics by cell lysates at a rate of ∼ 12% of the added nitroxide radical concentration per hour. We also found that electroporation delivered a consistent amount of AMUPol to intact cells and that nitroxide radicals are reduced just slightly more rapidly (∼15% per hour) by intact cells than by cell lysates. The two nitroxide radicals of AMUPol are reduced independently and this leads to considerable accumulation of the DNP-silent monoradical form of AMUPol, particularly in preparations of intact cells where nearly half of the AMUPol is already reduced to the DNP silent monoradical form at the earliest experimental time points. This confirms that the loss of the DNP-active biradical form of AMUPol is faster than the nitroxide reduction rate. Finally, we investigate the effect of adding N-ethyl maleimide, a well-known inhibitor of thiol (-SH) group-based reduction of nitroxide biradicals in cells, on AMUPol reduction, cellular viability, and DNP performance. Although pre-treatment of cells with NEM effectively inhibited the reduction of AMUPol, exposure to NEM compromised cellular viability and, surprisingly, did not improve DNP performance. Collectively, these results indicate that, currently, the most effective strategy to obtain high DNP enhancements for DNP-assisted in-cell NMR is to minimize room temperature contact times with cellular constituents and suggest that the development of bio-resistant polarization agents for DNP could considerably increase the sensitivity of DNP-assisted in-cell NMR experiments.
Collapse
Affiliation(s)
- Rupam Ghosh
- Department of Biophysics, UT Southwestern Medical Center, Dallas, 75390-8816, United States
| | - Rania Dumarieh
- Department of Biophysics, UT Southwestern Medical Center, Dallas, 75390-8816, United States
| | - Yiling Xiao
- Department of Biophysics, UT Southwestern Medical Center, Dallas, 75390-8816, United States
| | - Kendra K Frederick
- Department of Biophysics, UT Southwestern Medical Center, Dallas, 75390-8816, United States; Center for Neurodegenerative and Alzheimer's Disease, UT Southwestern Medical Center, Dallas 75390, United States.
| |
Collapse
|
14
|
Biedenbänder T, Aladin V, Saeidpour S, Corzilius B. Dynamic Nuclear Polarization for Sensitivity Enhancement in Biomolecular Solid-State NMR. Chem Rev 2022; 122:9738-9794. [PMID: 35099939 DOI: 10.1021/acs.chemrev.1c00776] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Solid-state NMR with magic-angle spinning (MAS) is an important method in structural biology. While NMR can provide invaluable information about local geometry on an atomic scale even for large biomolecular assemblies lacking long-range order, it is often limited by low sensitivity due to small nuclear spin polarization in thermal equilibrium. Dynamic nuclear polarization (DNP) has evolved during the last decades to become a powerful method capable of increasing this sensitivity by two to three orders of magnitude, thereby reducing the valuable experimental time from weeks or months to just hours or days; in many cases, this allows experiments that would be otherwise completely unfeasible. In this review, we give an overview of the developments that have opened the field for DNP-enhanced biomolecular solid-state NMR including state-of-the-art applications at fast MAS and high magnetic field. We present DNP mechanisms, polarizing agents, and sample constitution methods suitable for biomolecules. A wide field of biomolecular NMR applications is covered including membrane proteins, amyloid fibrils, large biomolecular assemblies, and biomaterials. Finally, we present perspectives and recent developments that may shape the field of biomolecular DNP in the future.
Collapse
Affiliation(s)
- Thomas Biedenbänder
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Victoria Aladin
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Siavash Saeidpour
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Björn Corzilius
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| |
Collapse
|
15
|
Yang C, Ooi Tan K, Griffin RG. DNPSOUP: A simulation software package for dynamic nuclear polarization. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 334:107107. [PMID: 34894420 PMCID: PMC8819672 DOI: 10.1016/j.jmr.2021.107107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 06/01/2023]
Abstract
Dynamic Nuclear Polarization Simulation Optimized with a Unified Propagator (DNPSOUP) is an open-source numerical software program that models spin dynamics for dynamic nuclear polarization (DNP). The software package utilizes a direct numerical approach using the inhomogeneous master equation to treat the time evolution of the spin density operator under coherent Hamiltonians and stochastic relaxation effects. Here we present the details of the theory behind the software, starting from the master equation, and arriving at characteristic operators for any section of density operator time-evolution. We then provide an overview of the DNPSOUP software architecture. The efficacy of the program is demonstrated by simulating DNP field profiles on small spin systems exploiting both continuous wave and time-domain DNP mechanisms. Examples include Zeeman field profiles for the solid effect, Overhauser effect, and cross effect, and microwave field profiles for NOVEL, off-resonance NOVEL, the integrated solid effect, the stretched solid effect, and TOP-DNP. The software should facilitate a better understanding of the DNP process, aid in the design of optimized DNP polarizing agents, and allow us to examine new pulsed DNP methods at conditions that are not currently experimentally accessible, especially at high magnetic fields with high-power microwave pulses.
Collapse
Affiliation(s)
- Chen Yang
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Aspen Technology, Inc., 20 Crosby Drive, Bedford, MA 01730, United States
| | - Kong Ooi Tan
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| |
Collapse
|
16
|
Menzildjian G, Lund A, Yulikov M, Gajan D, Niccoli L, Karthikeyan G, Casano G, Jeschke G, Ouari O, Lelli M, Lesage A. Efficient Dynamic Nuclear Polarization up to 230 K with Hybrid BDPA-Nitroxide Radicals at a High Magnetic Field. J Phys Chem B 2021; 125:13329-13338. [PMID: 34818009 DOI: 10.1021/acs.jpcb.1c07307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pairing the spectral resolution provided by high magnetic fields at ambient temperature with the enhanced sensitivity offered by dynamic nuclear polarization (DNP) is a major goal of modern solid-state NMR spectroscopy, which will allow one to unlock ever-challenging applications. This study demonstrates that, by combining HyTEK2, a hybrid BDPA-nitroxide biradical polarizing agent, with ortho-terphenyl (OTP), a rigid DNP matrix, enhancement factors as high as 65 can be obtained at 230 K, 40 kHz magic angle spinning (MAS), and 18.8 T. The temperature dependence of the DNP enhancement and its behavior around the glass transition temperature (Tg) of the matrix is investigated by variable-temperature EPR measurements of the electron relaxation properties and numerical simulations. A correlation is suggested between the decrease in enhancement at the passage of the Tg and the concomitant drop of both transverse electron relaxation times in the biradical.
Collapse
Affiliation(s)
- Georges Menzildjian
- Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCBL), 69100 Villeurbanne, France
| | - Alicia Lund
- Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCBL), 69100 Villeurbanne, France
| | - Maxim Yulikov
- Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich, CH-8093 Zürich, Switzerland
| | - David Gajan
- Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCBL), 69100 Villeurbanne, France
| | - Lorenzo Niccoli
- Center of Magnetic Resonance (CERM), University of Florence, 50019 Sesto Fiorentino, Italy
| | - Ganesan Karthikeyan
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire, 13013 Marseille, France
| | - Gilles Casano
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire, 13013 Marseille, France
| | - Gunnar Jeschke
- Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich, CH-8093 Zürich, Switzerland
| | - Olivier Ouari
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire, 13013 Marseille, France
| | - Moreno Lelli
- Center of Magnetic Resonance (CERM), University of Florence, 50019 Sesto Fiorentino, Italy
| | - Anne Lesage
- Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCBL), 69100 Villeurbanne, France
| |
Collapse
|
17
|
Ghassemi N, Poulhazan A, Deligey F, Mentink-Vigier F, Marcotte I, Wang T. Solid-State NMR Investigations of Extracellular Matrixes and Cell Walls of Algae, Bacteria, Fungi, and Plants. Chem Rev 2021; 122:10036-10086. [PMID: 34878762 DOI: 10.1021/acs.chemrev.1c00669] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Extracellular matrixes (ECMs), such as the cell walls and biofilms, are important for supporting cell integrity and function and regulating intercellular communication. These biomaterials are also of significant interest to the production of biofuels and the development of antimicrobial treatment. Solid-state nuclear magnetic resonance (ssNMR) and magic-angle spinning-dynamic nuclear polarization (MAS-DNP) are uniquely powerful for understanding the conformational structure, dynamical characteristics, and supramolecular assemblies of carbohydrates and other biomolecules in ECMs. This review highlights the recent high-resolution investigations of intact ECMs and native cells in many organisms spanning across plants, bacteria, fungi, and algae. We spotlight the structural principles identified in ECMs, discuss the current technical limitation and underexplored biochemical topics, and point out the promising opportunities enabled by the recent advances of the rapidly evolving ssNMR technology.
Collapse
Affiliation(s)
- Nader Ghassemi
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Alexandre Poulhazan
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States.,Department of Chemistry, Université du Québec à Montréal, Montreal H2X 2J6, Canada
| | - Fabien Deligey
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | | | - Isabelle Marcotte
- Department of Chemistry, Université du Québec à Montréal, Montreal H2X 2J6, Canada
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
18
|
Mentink-Vigier F. Numerical recipes for faster MAS-DNP simulations. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 333:107106. [PMID: 34837803 PMCID: PMC8639796 DOI: 10.1016/j.jmr.2021.107106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 05/11/2023]
Abstract
Numerical simulations of Magic Angle Spinning Dynamic Nuclear Polarization (MAS-DNP) have transformed the way the DNP process is understood in rotating samples. In 2012, two methods were concomitantly developed to simulate small spin systems (< 4 spin-1/2). The development of new polarizing agents, including those containing metal centers with S > 1/2, makes it necessary to further expand the numerical tools with minimal approximations that will help rationalize the experimental observations and build approximate models. In this paper, three strategies developed in the past five years are presented: an adaptive integration scheme, a hybrid Hilbert/Liouville formalism, and a method to truncate the Liouville space basis for periodic Hamiltonian. Each of these methods enable time savings ranging from a factor of 3 to > 100. We illustrate the code performance by reporting for the first time the MAS-DNP field profiles for "AMUPol", in which the couplings to the nitrogen nuclei are explicitly considered, as well as Cross-Effect MAS-DNP field profiles with two electrons spin 5/2 interacting with a nuclear spin 1/2.
Collapse
Affiliation(s)
- Frederic Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr, FL 32310, USA.
| |
Collapse
|
19
|
Zhu S, Kachooei E, Harmer JR, Brown LJ, Separovic F, Sani MA. TOAC spin-labeled peptides tailored for DNP-NMR studies in lipid membrane environments. Biophys J 2021; 120:4501-4511. [PMID: 34480924 DOI: 10.1016/j.bpj.2021.08.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 07/08/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
The benefit of combining in-cell solid-state dynamic nuclear polarization (DNP) NMR and cryogenic temperatures is providing sufficient signal/noise and preservation of bacterial integrity via cryoprotection to enable in situ biophysical studies of antimicrobial peptides. The radical source required for DNP was delivered into cells by adding a nitroxide-tagged peptide based on the antimicrobial peptide maculatin 1.1 (Mac1). In this study, the structure, localization, and signal enhancement properties of a single (T-MacW) and double (T-T-MacW) TOAC (2,2,6,6-tetramethylpiperidine-N-oxyl-4-amino-4-carboxylic acid) spin-labeled Mac1 analogs were determined within micelles or lipid vesicles. The solution NMR and circular dichroism results showed that the spin-labeled peptides adopted helical structures in contact with micelles. The peptides behaved as an isolated radical source in the presence of multilamellar vesicles, and the electron paramagnetic resonance (EPR) electron-electron distance for the doubly spin-labeled peptide was ∼1 nm. The strongest paramagnetic relaxation enhancement (PRE) was observed for the lipid NMR signals near the glycerol-carbonyl backbone and was stronger for the doubly spin-labeled peptide. Molecular dynamics simulation of the T-T-MacW radical source in phospholipid bilayers supported the EPR and PRE observations while providing further structural insights. Overall, the T-T-MacW peptide achieved better 13C and 15N signal NMR enhancements and 1H spin-lattice T1 relaxation than T-MacW.
Collapse
Affiliation(s)
- Shiying Zhu
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Ehsan Kachooei
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Jeffrey R Harmer
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia
| | - Louise J Brown
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Frances Separovic
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Marc-Antoine Sani
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
20
|
Equbal A, Jain SK, Li Y, Tagami K, Wang X, Han S. Role of electron spin dynamics and coupling network in designing dynamic nuclear polarization. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 126-127:1-16. [PMID: 34852921 DOI: 10.1016/j.pnmrs.2021.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/22/2021] [Indexed: 06/13/2023]
Abstract
Dynamic nuclear polarization (DNP) has emerged as a powerful sensitivity booster of nuclear magnetic resonance (NMR) spectroscopy for the characterization of biological solids, catalysts and other functional materials, but is yet to reach its full potential. DNP transfers the high polarization of electron spins to nuclear spins using microwave irradiation as a perturbation. A major focus in DNP research is to improve its efficiency at conditions germane to solid-state NMR, at high magnetic fields and fast magic-angle spinning. In this review, we highlight three key strategies towards designing DNP experiments: time-domain "smart" microwave manipulation to optimize and/or modulate electron spin polarization, EPR detection under operational DNP conditions to decipher the underlying electron spin dynamics, and quantum mechanical simulations of coupled electron spins to gain microscopic insights into the DNP mechanism. These strategies are aimed at understanding and modeling the properties of the electron spin dynamics and coupling network. The outcome of these strategies is expected to be key to developing next-generation polarizing agents and DNP methods.
Collapse
Affiliation(s)
- Asif Equbal
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Sheetal Kumar Jain
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Yuanxin Li
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Kan Tagami
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Xiaoling Wang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States; Department of Physics, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States; Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, United States.
| |
Collapse
|
21
|
Mentink-Vigier F, Dubroca T, Van Tol J, Sigurdsson ST. The distance between g-tensors of nitroxide biradicals governs MAS-DNP performance: The case of the bTurea family. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 329:107026. [PMID: 34246883 PMCID: PMC8316413 DOI: 10.1016/j.jmr.2021.107026] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 05/20/2023]
Abstract
Bis-nitroxide radicals are common polarizing agents (PA), used to enhance the sensitivity of solid-state NMR experiments via Magic Angle Spinning Dynamic Nuclear Polarization (MAS-DNP). These biradicals can increase the proton spin polarization through the Cross-Effect (CE) mechanism, which requires PAs with at least two unpaired electrons. The relative orientation of the bis-nitroxide moieties is critical to ensure efficient polarization transfer. Recently, we have defined a new quantity, the distance between g-tensors, that correlates the relative orientation of the nitroxides with the ability to polarize the surrounding nuclei. Here we analyse experimentally and theoretically a series of biradicals belonging to the bTurea family, namely bcTol, AMUPol and bcTol-M. They differ by the degree of substitution on the urea bridge that connects the two nitroxides. Using quantitative simulations developed for moderate MAS frequencies, we show that these modifications mostly affect the relative orientations of the nitroxide, i.e. the length and distribution of the distance between the g-tensors, that in turn impacts both the steady state nuclear polarization/depolarization as well as the build-up times. The doubly substituted urea bridge favours a large distance between the g-tensors, which enables bcTol-M to provide ∊on/off>200 at 14.1 T/600 MHz/395 GHz with build-up times of 3.8 s using a standard homogenous solution. The methodology described herein was used to show how the conformation of the spirocyclic rings flanking the nitroxide function in the recently described c- and o-HydrOPol affects the distance between the g-tensors and thereby polarization performance.
Collapse
Affiliation(s)
- Frédéric Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr, Tallahassee, FL 32310, United States.
| | - Thierry Dubroca
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr, Tallahassee, FL 32310, United States
| | - Johan Van Tol
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr, Tallahassee, FL 32310, United States
| | | |
Collapse
|
22
|
Zhai W, Lucini Paioni A, Cai X, Narasimhan S, Medeiros-Silva J, Zhang W, Rockenbauer A, Weingarth M, Song Y, Baldus M, Liu Y. Postmodification via Thiol-Click Chemistry Yields Hydrophilic Trityl-Nitroxide Biradicals for Biomolecular High-Field Dynamic Nuclear Polarization. J Phys Chem B 2020; 124:9047-9060. [PMID: 32961049 DOI: 10.1021/acs.jpcb.0c08321] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dynamic nuclear polarization (DNP) is a powerful method to enhance nuclear magnetic resonance (NMR) signal intensities, enabling unprecedented applications in life and material science. An ultimate goal is to expand the use of DNP-enhanced solid-state NMR to ultrahigh magnetic fields where optimal spectral resolution and sensitivity are integrated. Trityl-nitroxide (TN) biradicals have attracted significant interest in high-field DNP, but their application to complex (bio)molecules has so far been limited. Here we report a novel postmodification strategy for synthesis of hydrophilic TN biradicals in order to improve their use in biomolecular applications. Initially, three TN biradicals (referred to as NATriPols 1-3) with amino-acid linkers were synthesized. EPR studies showed that the α-position of the amino-acid linkers is an ideal modification site for these biradicals since their electron-electron magnetic interactions are marginally affected by the substituents at this position. On the basis of this finding, we synthesized NATriPol-4 with pyridine disulfide appended at the α-position. Postmodification of NATriPol-4 via thiol-click chemistry resulted in various TN biradicals including hydrophilic NATriPol-5 in a quantitative manner. Interestingly, DNP enhancements at 18.8 T of NATriPols for 13C,15N-proline in a glycerol/water matrix are inversely correlated with their hydrophobicity. Importantly, applications of hydrophilic NATriPol-5 and NATriPol-3 to biomolecules including a globular soluble protein and a membrane targeting peptide reveal significantly improved performance compared to TEMTriPol-1 and AMUPol. Our work provides an efficient approach for one-step synthesis of new polarizing agents with tunable physicochemical properties, thus expediting optimization of new biradicals for biomolecular applications at ultrahigh magnetic fields.
Collapse
Affiliation(s)
- Weixiang Zhai
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Alessandra Lucini Paioni
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Xinyi Cai
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Siddarth Narasimhan
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - João Medeiros-Silva
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Wenxiao Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Antal Rockenbauer
- Institute of Materials and Environmental Chemistry, Hungarian Academy of Sciences, and Department of Physics, Budapest University of Technology and Economics, Budafokiut 8, 1111 Budapest, Hungary
| | - Markus Weingarth
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Yuguang Song
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| |
Collapse
|
23
|
Wang Z, Hanrahan MP, Kobayashi T, Perras FA, Chen Y, Engelke F, Reiter C, Purea A, Rossini AJ, Pruski M. Combining fast magic angle spinning dynamic nuclear polarization with indirect detection to further enhance the sensitivity of solid-state NMR spectroscopy. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2020; 109:101685. [PMID: 32932182 DOI: 10.1016/j.ssnmr.2020.101685] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Dynamic nuclear polarization (DNP) and indirect detection are two commonly applied approaches for enhancing the sensitivity of solid-state NMR spectroscopy. However, their use in tandem has not yet been investigated. With the advent of low-temperature fast magic angle spinning (MAS) probes with 1.3-mm diameter rotors capable of MAS at 40 kHz it becomes feasible to combine these two techniques. In this study, we performed DNP-enhanced 2D indirectly detected heteronuclear correlation (idHETCOR) experiments on 13C, 15N, 113Cd and 89Y nuclei in functionalized mesoporous silica, CdS nanoparticles, and Y2O3 nanoparticles. The sensitivity of the 2D idHETCOR experiments was compared with those of DNP-enhanced directly-detected 1D cross polarization (CP) and 2D HETCOR experiments performed with a standard 3.2-mm rotor. Due to low CP polarization transfer efficiencies and large proton linewidth, the sensitivity gains achieved by indirect detection alone were lower than in conventional (non-DNP) experiments. Nevertheless, despite the smaller sample volume the 2D idHETCOR experiments showed better absolute sensitivities than 2D HETCOR experiments for nuclei with the lowest gyromagnetic ratios. For 89Y, 2D idHETCOR provided 8.2 times better sensitivity than the 1 D89Y-detected CP experiment performed with a 3.2-mm rotor.
Collapse
Affiliation(s)
- Zhuoran Wang
- U.S. DOE Ames Laboratory, Iowa State University, Ames, IA, 50011-3020, United States; Department of Chemistry, Iowa State University, Ames, IA, 50011-3020, United States
| | - Michael P Hanrahan
- U.S. DOE Ames Laboratory, Iowa State University, Ames, IA, 50011-3020, United States; Department of Chemistry, Iowa State University, Ames, IA, 50011-3020, United States
| | - Takeshi Kobayashi
- U.S. DOE Ames Laboratory, Iowa State University, Ames, IA, 50011-3020, United States
| | - Frédéric A Perras
- U.S. DOE Ames Laboratory, Iowa State University, Ames, IA, 50011-3020, United States
| | - Yunhua Chen
- U.S. DOE Ames Laboratory, Iowa State University, Ames, IA, 50011-3020, United States; Department of Chemistry, Iowa State University, Ames, IA, 50011-3020, United States
| | | | | | - Armin Purea
- Bruker Biospin, 76287, Rheinstetten, Germany
| | - Aaron J Rossini
- U.S. DOE Ames Laboratory, Iowa State University, Ames, IA, 50011-3020, United States; Department of Chemistry, Iowa State University, Ames, IA, 50011-3020, United States.
| | - Marek Pruski
- U.S. DOE Ames Laboratory, Iowa State University, Ames, IA, 50011-3020, United States; Department of Chemistry, Iowa State University, Ames, IA, 50011-3020, United States.
| |
Collapse
|
24
|
Tran NT, Mentink-Vigier F, Long JR. Dynamic Nuclear Polarization of Biomembrane Assemblies. Biomolecules 2020; 10:E1246. [PMID: 32867275 PMCID: PMC7565305 DOI: 10.3390/biom10091246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 01/02/2023] Open
Abstract
While atomic scale structural and dynamic information are hallmarks of nuclear magnetic resonance (NMR) methodologies, sensitivity is a fundamental limitation in NMR studies. Fully exploiting NMR capabilities to study membrane proteins is further hampered by their dilution within biological membranes. Recent developments in dynamic nuclear polarization (DNP), which can transfer the relatively high polarization of unpaired electrons to nuclear spins, show promise for overcoming the sensitivity bottleneck and enabling NMR characterization of membrane proteins under native-like conditions. Here we discuss fundamental aspects of DNP-enhanced solid-state NMR spectroscopy, experimental details relevant to the study of lipid assemblies and incorporated proteins, and sensitivity gains which can be realized in biomembrane-based samples. We also present unique insights which can be gained from DNP measurements and prospects for further development of the technique for elucidating structures and orientations of membrane proteins in native lipid environments.
Collapse
Affiliation(s)
- Nhi T. Tran
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA;
| | - Frédéric Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA;
| | - Joanna R. Long
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA;
- Department of Biochemistry & Molecular Biology and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
25
|
Jardón-Álvarez D, Reuveni G, Harchol A, Leskes M. Enabling Natural Abundance 17O Solid-State NMR by Direct Polarization from Paramagnetic Metal Ions. J Phys Chem Lett 2020; 11:5439-5445. [PMID: 32551646 PMCID: PMC7370305 DOI: 10.1021/acs.jpclett.0c01527] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/17/2020] [Indexed: 05/18/2023]
Abstract
Dynamic nuclear polarization (DNP) significantly enhances the sensitivity of nuclear magnetic resonance (NMR), increasing its applications and the quality of NMR spectroscopy as a characterization tool for materials. Efficient spin diffusion among the nuclear spins is considered to be essential for spreading the hyperpolarization throughout the sample, enabling large DNP enhancements. This scenario mostly limits the polarization enhancement of low-sensitivity nuclei in inorganic materials to the surface sites when the polarization source is an exogenous radical. In metal-ion-based DNP, the polarization agents are distributed in the bulk sample and act as a source of both relaxation and polarization enhancement. We have found that as long as the polarization agent is the main source of relaxation, the enhancement does not depend on the distance between the nucleus and dopant. As a consequence, the requirement of efficient spin diffusion is lifted, and the entire sample can be directly polarized. We exploit this finding to measure high-quality NMR spectra of 17O in the electrode material Li4Ti5O12 doped with Fe(III) despite its low abundance and long relaxation time.
Collapse
|
26
|
Perras FA, Raju M, Carnahan SL, Akbarian D, van Duin ACT, Rossini AJ, Pruski M. Full-Scale Ab Initio Simulation of Magic-Angle-Spinning Dynamic Nuclear Polarization. J Phys Chem Lett 2020; 11:5655-5660. [PMID: 32453582 DOI: 10.1021/acs.jpclett.0c00955] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Theoretical models aimed at describing magic-angle-spinning (MAS) dynamic nuclear polarization (DNP) NMR have great potential in facilitating the in silico design of DNP polarizing agents and formulations. These models must typically face a trade-off between the accuracy of a strict quantum mechanical description and the need for using realistically large spin systems, for instance, using phenomenological models. Here, we show that the use of aggressive state-space restrictions and an optimization strategy allows full-scale ab initio MAS-DNP simulations of spin systems containing thousands of nuclei. Our simulations are shown to reproduce experimental DNP enhancements quantitatively, including their MAS rate dependence, for both frozen solutions and solid materials. They also reveal the importance of a previously unrecognized structural feature found in some polarizing agents that helps minimize the sensitivity losses imposed by the spin diffusion barrier.
Collapse
Affiliation(s)
| | - Muralikrishna Raju
- U.S. DOE, Ames Laboratory, Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Scott L Carnahan
- U.S. DOE, Ames Laboratory, Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Dooman Akbarian
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Adri C T van Duin
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Aaron J Rossini
- U.S. DOE, Ames Laboratory, Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Marek Pruski
- U.S. DOE, Ames Laboratory, Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
27
|
Abstract
Dynamic nuclear polarization (DNP) is one of the most prominent methods of sensitivity enhancement in nuclear magnetic resonance (NMR). Even though solid-state DNP under magic-angle spinning (MAS) has left the proof-of-concept phase and has become an important tool for structural investigations of biomolecules as well as materials, it is still far from mainstream applicability because of the potentially overwhelming combination of unique instrumentation, complex sample preparation, and a multitude of different mechanisms and methods available. In this review, I introduce the diverse field and history of DNP, combining aspects of NMR and electron paramagnetic resonance. I then explain the general concepts and detailed mechanisms relevant at high magnetic field, including solution-state methods based on Overhauser DNP but with a greater focus on the more established MAS DNP methods. Finally, I review practical considerations and fields of application and discuss future developments.
Collapse
Affiliation(s)
- Björn Corzilius
- Institute of Chemistry and Department of Life, Light and Matter, University of Rostock, 18059 Rostock, Germany;
| |
Collapse
|
28
|
Mentink-Vigier F. Optimizing nitroxide biradicals for cross-effect MAS-DNP: the role of g-tensors' distance. Phys Chem Chem Phys 2020; 22:3643-3652. [PMID: 31998899 DOI: 10.1039/c9cp06201g] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nitroxide biradicals are common polarizing agents used to enhance the sensitivity of solid-state NMR experiments via Magic Angle Spinning Dynamic Nuclear Polarization (MAS-DNP). These biradicals are used to increase the polarization of protons through the cross-effect mechanism, which requires two unpaired electrons with a Larmor frequency difference greater than that of the protons. From their early conception, the relative orientation of the nitroxide rings has been identified as a critical factor determining their MAS-DNP performance. However, the MAS leads to a complex DNP mechanism with time dependent energy level anti-crossings making it difficult to pinpoint the role of relative g-tensor orientation. In this article, a single parameter called "g-tensors' distance" is introduced to characterize the relative orientation's impact on the MAS-DNP field profiles. It is demonstrated for the first time how the g-tensors' distance determines the nuclear hyperpolarization and depolarization properties of a given biradical. This provides a new critical parameter that paves the way for more efficient bis-nitroxides for MAS-DNP.
Collapse
Affiliation(s)
- Frédéric Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr, Tallahassee, FL 32310, USA.
| |
Collapse
|
29
|
Equbal A, Tagami K, Han S. Pulse-Shaped Dynamic Nuclear Polarization under Magic-Angle Spinning. J Phys Chem Lett 2019; 10:7781-7788. [PMID: 31790265 DOI: 10.1021/acs.jpclett.9b03070] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dynamic nuclear polarization (DNP) under magic-angle spinning (MAS) is transforming the scope of solid-state NMR by enormous signal amplification through transfer of polarization from electron spins to nuclear spins. Contemporary MAS-DNP exclusively relies on monochromatic continuous-wave (CW) irradiation of the electron spin resonance. This limits control on electron spin dynamics, which renders the DNP process inefficient, especially at higher magnetic fields and non cryogenic temperatures. Pulse-shaped microwave irradiation of the electron spins is predicted to overcome these challenges but hitherto has never been implemented under MAS. Here, we debut pulse-shaped microwave irradiation using arbitrary-waveform generation (AWG) which allows controlled recruitment of a greater number of electron spins per unit time, favorable for MAS-DNP. Experiments and quantum mechanical simulations demonstrate that pulse-shaped DNP is superior to CW-DNP for mixed radical system, especially when the electron spin resonance is heterogeneously broadened and/or when its spin-lattice relaxation is fast compared to the MAS rotor period, opening new prospects for MAS-DNP.
Collapse
Affiliation(s)
- Asif Equbal
- Department of Chemistry and Biochemistry , University of California , Santa Barbara , California 93106 , United States
| | - Kan Tagami
- Department of Chemistry and Biochemistry , University of California , Santa Barbara , California 93106 , United States
| | - Songi Han
- Department of Chemistry and Biochemistry , University of California , Santa Barbara , California 93106 , United States
- Department of Chemical Engineering , University of California , Santa Barbara , California 93106 , United States
| |
Collapse
|
30
|
Rankin AGM, Trébosc J, Pourpoint F, Amoureux JP, Lafon O. Recent developments in MAS DNP-NMR of materials. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 101:116-143. [PMID: 31189121 DOI: 10.1016/j.ssnmr.2019.05.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 05/03/2023]
Abstract
Solid-state NMR spectroscopy is a powerful technique for the characterization of the atomic-level structure and dynamics of materials. Nevertheless, the use of this technique is often limited by its lack of sensitivity, which can prevent the observation of surfaces, defects or insensitive isotopes. Dynamic Nuclear Polarization (DNP) has been shown to improve by one to three orders of magnitude the sensitivity of NMR experiments on materials under Magic-Angle Spinning (MAS), at static magnetic field B0 ≥ 5 T, conditions allowing for the acquisition of high-resolution spectra. The field of DNP-NMR spectroscopy of materials has undergone a rapid development in the last ten years, spurred notably by the availability of commercial DNP-NMR systems. We provide here an in-depth overview of MAS DNP-NMR studies of materials at high B0 field. After a historical perspective of DNP of materials, we describe the DNP transfers under MAS, the transport of polarization by spin diffusion and the various contributions to the overall sensitivity of DNP-NMR experiments. We discuss the design of tailored polarizing agents and the sample preparation in the case of materials. We present the DNP-NMR hardware and the influence of key experimental parameters, such as microwave power, magnetic field, temperature and MAS frequency. We give an overview of the isotopes that have been detected by this technique, and the NMR methods that have been combined with DNP. Finally, we show how MAS DNP-NMR has been applied to gain new insights into the structure of organic, hybrid and inorganic materials with applications in fields, such as health, energy, catalysis, optoelectronics etc.
Collapse
Affiliation(s)
- Andrew G M Rankin
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
| | - Julien Trébosc
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France; Univ. Lille, CNRS-FR2638, Fédération Chevreul, F-59000 Lille, France
| | - Frédérique Pourpoint
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
| | - Jean-Paul Amoureux
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France; Bruker Biospin, 34 rue de l'industrie, F-67166, Wissembourg, France
| | - Olivier Lafon
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France; Institut Universitaire de France, 1 rue Descartes, F-75231, Paris, France.
| |
Collapse
|