1
|
Armstrong M, Chiangraeng N, Jitvisate M, Rimjaem S, Tashiro K, Nimmanpipug P. Symmetric effect on electrical double-layer characteristics and molecular assembly interplay in imidazolium-based Ionic liquid electrolytes in supercapacitor models. Phys Chem Chem Phys 2024; 26:25808-25818. [PMID: 39354902 DOI: 10.1039/d4cp03017f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Studies on the ion-layer formation of imidazolium-based ionic liquids have extensively explored how to improve in-depth knowledge of electrical double-layer (EDL) properties. In this computational study, 1-alkyl-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Cnmim][NTf2]), namely, [C1mim][NTf2] and [C2mim][NTf2], inside a simulated supercapacitor were investigated to expose an symmetric alkyl chain effect. Molecular dynamic simulations of a supercapacitor model with graphite electrodes were conducted. Changes in charging dynamics and EDL structures at different voltages were studied. Although [C1mim][NTf2] equilibrated much quicker than [C2mim][NTf2], surface charge development on the symmetrical imidazolium ionic liquid was slower than that on the asymmetrical counterpart. Physical EDL structural analysis showed that [C1mim][NTf2] could not rearrange in a rigid co-ion layer, whereby the [C1mim]+ cation stayed adsorbed on the positive electrode throughout all the tested voltages. The strongly attached [C1mim]+ on the electrode surface contributed to low responsiveness in symmetrical [C1mim][NTf2], which was supported by lower overall differential capacitance (CD) magnitude and less sharp CD wings at high voltage when compared to [C2mim][NTf2].
Collapse
Affiliation(s)
- Michael Armstrong
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
- Computational Simulation and Modelling Laboratory (CSML), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Unit for Development and Utilization of Electron Linear Accelerator and Ultrafast Infrared/Terahertz Laser, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Natthiti Chiangraeng
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
- Computational Simulation and Modelling Laboratory (CSML), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Monchai Jitvisate
- Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, Bangkok, 10400, Thailand
- School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Sakhorn Rimjaem
- Research Unit for Development and Utilization of Electron Linear Accelerator and Ultrafast Infrared/Terahertz Laser, Chiang Mai University, Chiang Mai 50200, Thailand
- Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, Bangkok, 10400, Thailand
- PBP-CMU Electron Linac Laboratory, Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kohji Tashiro
- Department of Future Industry-Oriented Basic Science and Materials, Toyota Technological Institute, Tempaku, Nagoya, 468-8511, Japan
- Aichi Synchrotron Radiation Center, Knowledge Hub Aichi, Minami-Yamaguchi, Seto, 489-0965, Japan
| | - Piyarat Nimmanpipug
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
- Computational Simulation and Modelling Laboratory (CSML), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Unit for Development and Utilization of Electron Linear Accelerator and Ultrafast Infrared/Terahertz Laser, Chiang Mai University, Chiang Mai 50200, Thailand
- Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, Bangkok, 10400, Thailand
| |
Collapse
|
2
|
Mitta SB, Kim J, Rana HH, Kokkiligadda S, Lim YT, Bhang SH, Park HS, Um SH. A biospecies-derived genomic DNA hybrid gel electrolyte for electrochemical energy storage. PNAS NEXUS 2024; 3:pgae213. [PMID: 38881843 PMCID: PMC11177232 DOI: 10.1093/pnasnexus/pgae213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024]
Abstract
Intrinsic impediments, namely weak mechanical strength, low ionic conductivity, low electrochemical performance, and stability have largely inhibited beyond practical applications of hydrogels in electronic devices and remains as a significant challenge in the scientific world. Here, we report a biospecies-derived genomic DNA hybrid gel electrolyte with many synergistic effects, including robust mechanical properties (mechanical strength and elongation of 6.98 MPa and 997.42%, respectively) and ion migration channels, which consequently demonstrated high ionic conductivity (73.27 mS/cm) and superior electrochemical stability (1.64 V). Notably, when applied to a supercapacitor the hybrid gel-based devices exhibit a specific capacitance of 425 F/g. Furthermore, it maintained rapid charging/discharging with a capacitance retention rate of 93.8% after ∼200,000 cycles while exhibiting a maximum energy density of 35.07 Wh/kg and a maximum power density of 193.9 kW/kg. This represents the best value among the current supercapacitors and can be immediately applied to minicars, solar cells, and LED lightning. The widespread use of DNA gel electrolytes will revolutionize human efforts to industrialize high-performance green energy.
Collapse
Affiliation(s)
- Sekhar Babu Mitta
- Progeneer Inc., #1002, 12, Digital-ro 31-gil, Guro-gu, Seoul 08380, South Korea
| | - Jeonghun Kim
- Progeneer Inc., #1002, 12, Digital-ro 31-gil, Guro-gu, Seoul 08380, South Korea
| | - Harpalsinh H Rana
- Laboratory of Electrochemistry and Physicochemistry of Materials & Interfaces (LEPMI), CNRS/Grenoble-INP/UGA 1130, Rue de la Piscine, 38402 Saint-Martin d'Heres Cedex, France
| | - Samanth Kokkiligadda
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, South Korea
| | - Yong Taik Lim
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, South Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, South Korea
| | - Ho Seok Park
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, South Korea
| | - Soong Ho Um
- Progeneer Inc., #1002, 12, Digital-ro 31-gil, Guro-gu, Seoul 08380, South Korea
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, South Korea
| |
Collapse
|
3
|
Gaudy N, Salanne M, Merlet C. Dynamics and Energetics of Ion Adsorption at the Interface between a Pure Ionic Liquid and Carbon Electrodes. J Phys Chem B 2024; 128:5064-5071. [PMID: 38738820 DOI: 10.1021/acs.jpcb.4c01192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Molecular dynamics simulations have been used extensively to determine equilibrium properties of the electrode-electrolyte interface in supercapacitors held at various potentials. While such studies are essential to understand and optimize the performance of such energy storage systems, investigation of the dynamics of adsorption during the charge of the supercapacitors is also necessary. Dynamical properties are especially important to get an insight into the power density of supercapacitors, one of their main assets. In this work, we propose a new method to coarse-grain simulations of all-atom systems and compute effective Lennard-Jones and Coulomb parameters, allowing subsequently to analyze the trajectories of adsorbing ions. We focus on pure 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide in contact with planar carbon electrodes. We characterize the evolution of the ion orientation and ion-electrode distance during adsorption and show that ions reorientate as they adsorb. We then determine the forces experienced by the adsorbing ions and demonstrate that Coulomb forces are dominant at a long range while van der Waals forces are dominant at a short range. We also show that there is an almost equal contribution from the two forces at an intermediate distance, explaining the peak of ion density close to the electrode surface.
Collapse
Affiliation(s)
- Nicolas Gaudy
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, 118 Route de Narbonne, 31062 cedex 9 Toulouse, France
- Réseau sur le Stockage Électrochimique de l'Énergie (RS2E), Fédération de Recherche CNRS 3459, HUB de l'Énergie, Rue Baudelocque, 80039 Amiens, France
| | - Mathieu Salanne
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France
- Réseau sur le Stockage Électrochimique de l'Énergie (RS2E), Fédération de Recherche CNRS 3459, HUB de l'Énergie, Rue Baudelocque, 80039 Amiens, France
| | - Céline Merlet
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, 118 Route de Narbonne, 31062 cedex 9 Toulouse, France
- Réseau sur le Stockage Électrochimique de l'Énergie (RS2E), Fédération de Recherche CNRS 3459, HUB de l'Énergie, Rue Baudelocque, 80039 Amiens, France
| |
Collapse
|
4
|
Roy T, Goel S, Costa LT, Titirici MM, Offer GJ, Marinescu M, Wang H. Strain induced electrochemical behaviors of ionic liquid electrolytes in an electrochemical double layer capacitor: Insights from molecular dynamics simulations. J Chem Phys 2023; 159:244308. [PMID: 38149932 DOI: 10.1063/5.0166976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/24/2023] [Indexed: 12/28/2023] Open
Abstract
Electrochemical Double Layer Capacitors (EDLCs) with ionic liquid electrolytes outperform conventional ones using aqueous and organic electrolytes in energy density and safety. However, understanding the electrochemical behaviors of ionic liquid electrolytes under compressive/tensile strain is essential for the design of flexible EDLCs as well as normal EDLCs, which are subject to external forces during assembly. Despite many experimental studies, the compression/stretching effects on the performance of ionic liquid EDLCs remain inconclusive and controversial. In addition, there is hardly any evidence of prior theoretical work done in this area, which makes the literature on this topic scarce. Herein, for the first time, we developed an atomistic model to study the processes underlying the electrochemical behaviors of ionic liquids in an EDLC under strain. Constant potential non-equilibrium molecular dynamics simulations are conducted for EMIM BF4 placed between two graphene walls as electrodes. Compared to zero strain, low compression of the EDLC resulted in compromised performance as the electrode charge density dropped by 29%, and the performance reduction deteriorated significantly with a further increase in compression. In contrast, stretching is found to enhance the performance by increasing the charge storage in the electrodes by 7%. The performance changes with compression and stretching are due to changes in the double-layer structure. In addition, an increase in the value of the applied potential during the application of strain leads to capacity retention with compression revealed by the newly performed simulations.
Collapse
Affiliation(s)
- Tribeni Roy
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Mechanical Engineering, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani 333031, India
- London South Bank University, 103 Borough Road, London SE1 0AA, United Kingdom
| | - Saurav Goel
- London South Bank University, 103 Borough Road, London SE1 0AA, United Kingdom
- Department of Mechanical Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Luciano T Costa
- MolMod-CS, Institute of Chemistry, Universidade Federal Fluminense, CEP 24020-141 Niteroi-RJ, Brazil
| | | | - Gregory J Offer
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Monica Marinescu
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Huizhi Wang
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
5
|
Wan S, Bhati AP, Wade AD, Coveney PV. Ensemble-Based Approaches Ensure Reliability and Reproducibility. J Chem Inf Model 2023; 63:6959-6963. [PMID: 37965695 PMCID: PMC10685440 DOI: 10.1021/acs.jcim.3c01654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Indexed: 11/16/2023]
Abstract
It is increasingly widely recognized that ensemble-based approaches are required to achieve reliability, accuracy, and precision in molecular dynamics calculations. The purpose of the present article is to address a frequently raised question: what is the optimal way to perform ensemble simulation to calculate quantities of interest?
Collapse
Affiliation(s)
- Shunzhou Wan
- Centre
for Computational Science, Department of Chemistry, University College London, London WC1H 0AJ, U. K
| | - Agastya P. Bhati
- Centre
for Computational Science, Department of Chemistry, University College London, London WC1H 0AJ, U. K
| | - Alexander D. Wade
- Centre
for Computational Science, Department of Chemistry, University College London, London WC1H 0AJ, U. K
| | - Peter V. Coveney
- Centre
for Computational Science, Department of Chemistry, University College London, London WC1H 0AJ, U. K
- Advanced
Research Computing Centre, University College
London, London WC1H 0AJ, U.K.
- Institute
for Informatics, Faculty of Science, University
of Amsterdam, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
6
|
Zhou T, Gui C, Sun L, Hu Y, Lyu H, Wang Z, Song Z, Yu G. Energy Applications of Ionic Liquids: Recent Developments and Future Prospects. Chem Rev 2023; 123:12170-12253. [PMID: 37879045 DOI: 10.1021/acs.chemrev.3c00391] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Ionic liquids (ILs) consisting entirely of ions exhibit many fascinating and tunable properties, making them promising functional materials for a large number of energy-related applications. For example, ILs have been employed as electrolytes for electrochemical energy storage and conversion, as heat transfer fluids and phase-change materials for thermal energy transfer and storage, as solvents and/or catalysts for CO2 capture, CO2 conversion, biomass treatment and biofuel extraction, and as high-energy propellants for aerospace applications. This paper provides an extensive overview on the various energy applications of ILs and offers some thinking and viewpoints on the current challenges and emerging opportunities in each area. The basic fundamentals (structures and properties) of ILs are first introduced. Then, motivations and successful applications of ILs in the energy field are concisely outlined. Later, a detailed review of recent representative works in each area is provided. For each application, the role of ILs and their associated benefits are elaborated. Research trends and insights into the selection of ILs to achieve improved performance are analyzed as well. Challenges and future opportunities are pointed out before the paper is concluded.
Collapse
Affiliation(s)
- Teng Zhou
- Sustainable Energy and Environment Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen 518048, China
| | - Chengmin Gui
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Longgang Sun
- Sustainable Energy and Environment Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
| | - Yongxin Hu
- Sustainable Energy and Environment Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
| | - Hao Lyu
- Sustainable Energy and Environment Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
| | - Zihao Wang
- Department for Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, D-39106 Magdeburg, Germany
| | - Zhen Song
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Gangqiang Yu
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| |
Collapse
|
7
|
Wang Y, Tian G. Theoretical Insight into the Imidazolium-Based Ionic Liquid Interface Structure and Differential Capacitance on Au(111): Effects of the Cationic Substituent Group. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14231-14245. [PMID: 37751408 DOI: 10.1021/acs.langmuir.3c01381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Electric double layers (EDLs) play a key role in the electrochemical and energy storage of supercapacitors. It is important to understand the structure and properties of EDLs. In this work, quantum chemical calculations and molecular dynamics (MD) simulations are used to study the microstructure of EDLs of four different substituents of imidazolium-based bis(trifluoromethylsulfonyl)imide ionic liquids (ILs) on the Au(111) surface. It is shown that the particle interactions influence the different arrangements of the anion and cation. More alkyl substitutions and longer alkyl chains result in a higher ELUMO and thus a stronger interaction energy between cations and electrodes. Strong interactions produce linear patterns of anions/cations on the electrode and a maximum value of differential capacitance near PZC, whereas weak interactions generate worm-like patterns of anions/cations on Au(111) and a minimum value of differential capacitance near the PZC. We hold the opinion that the alkyl substitution has more effects on the EDLs. Our analysis provides a new perspective on EDLs structures at the atomic and molecular level. This study provides a good basis and guidance for further understanding the interface phenomena and characteristics of ionic liquids in electrochemical and energy device applications.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Complex Non-ferrous Metal Resource Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
- Yunnan Open University, Kunming 650223, China
| | - Guocai Tian
- State Key Laboratory of Complex Non-ferrous Metal Resource Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| |
Collapse
|
8
|
Carr AJ, Lee SE, Uysal A. Ion and water adsorption to graphene and graphene oxide surfaces. NANOSCALE 2023; 15:14319-14337. [PMID: 37561081 DOI: 10.1039/d3nr02452k] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Graphene and graphene oxide (GO) are two particularly promising nanomaterials for a range of applications including energy storage, catalysis, and separations. Understanding the nanoscale interactions between ions and water near graphene and GO surfaces is critical for advancing our fundamental knowledge of these systems and downstream application success. This minireview highlights the necessity of using surface-specific experimental probes and computational techniques to fully characterize these interfaces, including the nanomaterial, surrounding water, and any adsorbed ions, if present. Key experimental and simulation studies considering water and ion structures near both graphene and GO are discussed. The major findings are: water forms 1-3 hydration layers near graphene; ions adsorb electrostatically to graphene under an applied potential; the chemical and physical properties of GO vary considerably depending on the synthesis route; and these variations influence water and ion adsorption to GO. Lastly, we offer outlooks and perspectives for these research areas.
Collapse
Affiliation(s)
- Amanda J Carr
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA.
| | - Seung Eun Lee
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA.
| | - Ahmet Uysal
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA.
| |
Collapse
|
9
|
Zaboli A, Raissi H, Hashemzadeh H, Farzad F. Toward efficient electrodes for a high-performance fast-charge Li-ion battery: molecular dynamics simulation and DFT calculations. Phys Chem Chem Phys 2023; 25:23937-23953. [PMID: 37642543 DOI: 10.1039/d2cp06020e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Due to the increasing demand for electrochemical energy storage, rechargeable lithium-ion batteries (LIBs) are gaining more and more attention. However, much research still needs to be conducted to enhance their cycling and storage capacity. Recently, computational studies have provided valuable information for LIB development, which is very difficult and expensive to obtain experimentally. In this study, molecular dynamics (MD) simulation and first-principles calculations are performed to investigate the potential of a Cu-BHT MOF and phosphorene as the cathode and anode, respectively. An external electrical field is applied to simulate the charging process and study lithium-ion behavior during migration from the cathode to the anode in an electrolyte. Time and space-dependent variables such as energy, radial distribution function, mean square displacement (MSD), density, and so on have been used to evaluate the studied system. The MSD calculations showed that there are two different regimes in the MSD curves of Li-ions; diffusion and cage. In the designed LIB, the cathode has a better performance in the presence of a high electric field, whereas under an external electric field of 1.5 V Å-1, more lithium ions move from the cathode to the anode. By using first-principles calculations the lithium insertion in phosphorene and Cu-BHT is studied in various configurations and concentrations. The obtained results indicated that the adsorption energy of lithium on the cathode in the most stable configuration is -3.21 eV which is enough to prevent the clustering effect. Furthermore, the interaction of Li with phosphorene is strong enough and forms a stable complex. It is found that by insertion of Li into the anode the band gap is decreased which indicates the possibility of fast charging of LIBs. Investigation of different concentrations of ions reveals that the Li-Li repulsive interactions lead to a decrease in the adsorption energy of Li with the anode and cathode. The results of this study provide an in-depth insight into LIBs.
Collapse
Affiliation(s)
- Ameneh Zaboli
- Department of Chemistry, University of Birjand, Birjand, Iran.
| | - Heidar Raissi
- Department of Chemistry, University of Birjand, Birjand, Iran.
| | - Hassan Hashemzadeh
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran.
| | - Farzaneh Farzad
- Department of chemistry, University of Birjand, Birjand, Iran.
| |
Collapse
|
10
|
Kondrat S, Feng G, Bresme F, Urbakh M, Kornyshev AA. Theory and Simulations of Ionic Liquids in Nanoconfinement. Chem Rev 2023; 123:6668-6715. [PMID: 37163447 PMCID: PMC10214387 DOI: 10.1021/acs.chemrev.2c00728] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Indexed: 05/12/2023]
Abstract
Room-temperature ionic liquids (RTILs) have exciting properties such as nonvolatility, large electrochemical windows, and remarkable variety, drawing much interest in energy storage, gating, electrocatalysis, tunable lubrication, and other applications. Confined RTILs appear in various situations, for instance, in pores of nanostructured electrodes of supercapacitors and batteries, as such electrodes increase the contact area with RTILs and enhance the total capacitance and stored energy, between crossed cylinders in surface force balance experiments, between a tip and a sample in atomic force microscopy, and between sliding surfaces in tribology experiments, where RTILs act as lubricants. The properties and functioning of RTILs in confinement, especially nanoconfinement, result in fascinating structural and dynamic phenomena, including layering, overscreening and crowding, nanoscale capillary freezing, quantized and electrotunable friction, and superionic state. This review offers a comprehensive analysis of the fundamental physical phenomena controlling the properties of such systems and the current state-of-the-art theoretical and simulation approaches developed for their description. We discuss these approaches sequentially by increasing atomistic complexity, paying particular attention to new physical phenomena emerging in nanoscale confinement. This review covers theoretical models, most of which are based on mapping the problems on pertinent statistical mechanics models with exact analytical solutions, allowing systematic analysis and new physical insights to develop more easily. We also describe a classical density functional theory, which offers a reliable and computationally inexpensive tool to account for some microscopic details and correlations that simplified models often fail to consider. Molecular simulations play a vital role in studying confined ionic liquids, enabling deep microscopic insights otherwise unavailable to researchers. We describe the basics of various simulation approaches and discuss their challenges and applicability to specific problems, focusing on RTIL structure in cylindrical and slit confinement and how it relates to friction and capacitive and dynamic properties of confined ions.
Collapse
Affiliation(s)
- Svyatoslav Kondrat
- Institute
of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Institute
for Computational Physics, University of
Stuttgart, Stuttgart 70569, Germany
| | - Guang Feng
- State
Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
- Nano
Interface Centre for Energy, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fernando Bresme
- Department
of Chemistry, Molecular Sciences Research
Hub, White City Campus, London W12 0BZ,United Kingdom
- Thomas Young
Centre for Theory and Simulation of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
- London
Centre for Nanotechnology, Imperial College
London, London SW7 2AZ, United Kingdom
| | - Michael Urbakh
- School
of Chemistry and the Sackler Center for Computational Molecular and
Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Alexei A. Kornyshev
- Department
of Chemistry, Molecular Sciences Research
Hub, White City Campus, London W12 0BZ,United Kingdom
- Thomas Young
Centre for Theory and Simulation of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
11
|
Asha AS, Iroegbu JN, Visayas BRB, Mayes M, Shen C. Molecular Insights into the Electric Double-Layer Structure at a Polymer Electrolyte-Electrode Interface. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
12
|
Smith BN, Meikle H, Doherty JL, Lu S, Tutoni G, Becker ML, Therien MJ, Franklin AD. Ionic dielectrics for fully printed carbon nanotube transistors: impact of composition and induced stresses. NANOSCALE 2022; 14:16845-16856. [PMID: 36331392 PMCID: PMC9719746 DOI: 10.1039/d2nr04206a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Printed carbon nanotube thin-film transistors (CNT-TFTs) are candidates for flexible electronics with printability on a wide range of substrates. Among the layers comprising a CNT-TFT, the gate dielectric has proven most difficult to additively print owing to challenges in film uniformity, thickness, and post-processing requirements. Printed ionic dielectrics show promise for addressing these issues and yielding devices that operate at low voltages thanks to their high-capacitance electric double layers. However, the printing of ionic dielectrics in their various compositions is not well understood, nor is the impact of certain stresses on these materials. In this work, we studied three compositionally distinct ionic dielectrics in fully printed CNT-TFTs: the polar-fluorinated polymer elastomer PVDF-HFP; an ion gel consisting of triblock polymer PS-PMMA-PS and ionic liquid EMIM-TFSI; and crystalline nanocellulose (CNC) with a salt concentration of 0.05%. Although ion gel has been thoroughly studied, e-PVDF-HFP and CNC printing are relatively new and this study provides insights into their ink formulation, print processing, and performance as gate dielectrics. Using a consistent aerosol jet printing approach, each ionic dielectric was printed into similar CNT-TFTs, allowing for direct comparison through extensive characterization, including mechanical and electrical stress tests. The ionic dielectrics were found to have distinct operational dependencies based on their compositional and ionic attributes. Overall, the results reveal a number of trade-offs that must be managed when selecting a printable ionic dielectric, with CNC showing the strongest performance for low-voltage operation but the ion gel and elastomer exhibiting better stability under bias and mechanical stresses.
Collapse
Affiliation(s)
- Brittany N Smith
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA.
| | - Hope Meikle
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA.
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | - James L Doherty
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA.
| | - Shiheng Lu
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA.
| | - Gianna Tutoni
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | | | | | - Aaron D Franklin
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA.
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| |
Collapse
|
13
|
Ers H, Voroshylova IV, Pikma P, Ivaništšev VB. Double layer in ionic liquids: Temperature effect and bilayer model. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Peng K, Lin J, Yang D, Fu F, Dai Z, Zhou G, Yang Z. Molecular-Level Insights into Interfacial Interaction–Nanostructure Relationships of Imidazolium-Based Ionic Liquids around Carbon Nanotube Electrodes. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kuilin Peng
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People’s Republic of China
| | - Jie Lin
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People’s Republic of China
| | - Deshuai Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of the Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Fangjia Fu
- School of Mathematical Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Zhongyang Dai
- National Supercomputing Center in Shenzhen, Shenzhen 518055, People’s Republic of China
| | - Guobing Zhou
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People’s Republic of China
| | - Zhen Yang
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People’s Republic of China
| |
Collapse
|
15
|
Ahrens-Iwers LJ, Janssen M, Tee SR, Meißner RH. ELECTRODE: An electrochemistry package for atomistic simulations. J Chem Phys 2022; 157:084801. [DOI: 10.1063/5.0099239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Constant potential methods (CPM) enable computationally efficient simulations of the solid-liquid interface at conducting electrodes in molecular dynamics (MD). They have been successfully used, for example, to realistically model the behavior of ionic liquids or water-in-salt electrolytes in supercapacitors and batteries. The CPM models conductive electrodes by updating charges of individual electrode atoms according to the applied electric potential and the (time-dependent) local electrolyte structure. Here we present a feature-rich CPM implementation, called ELECTRODE, for the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), which includes a constrained charge method and a thermo-potentiostat. The ELECTRODE package also contains a finite-field approach, multiple corrections for non-periodic boundary conditions of the particle-particle particle-mesh solver, and a Thomas-Fermi model for using non-ideal metals as electrodes. We demonstrate the capabilities of this implementation for a parallel-plate electrical double-layer capacitor, for which we have investigated the charging times with the different implemented methods and found an interesting relationship between water and ionic dipole relaxations. To prove the validity of the one-dimensional correction for the long-range electrostatics, we estimated the vacuum capacitance of two co-axial carbon nanotubes and compared it to structureless cylinders, for which an analytical expression exists. In summary, the ELECTRODE package enables efficient electrochemical simulations using state-of-the-art methods, allowing one to simulate even heterogeneous electrodes. Moreover, it allows unveiling more rigorously how electrode curvature affects the capacitance with the one-dimensional correction.
Collapse
Affiliation(s)
| | | | - Shern Ren Tee
- The University of Queensland Australian Institute for Bioengineering and Nanotechnology, Australia
| | | |
Collapse
|
16
|
Takahashi K, Nakano H, Sato H. Unified polarizable electrode models for open and closed circuits: Revisiting the effects of electrode polarization and different circuit conditions on electrode-electrolyte interfaces. J Chem Phys 2022; 157:014111. [DOI: 10.1063/5.0093095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A precise understanding of the interfacial structure and dynamics is essential for the optimal design of various electrochemical devices. Herein, we propose a method for classical molecular dynamics simulations to deal with electrochemical interfaces with polarizable electrodes under the open circuit condition. Less attention has been paid to electrochemical circuit conditions in computation despite being often essential for a proper assessment, especially comparison between different models. The present method is based on the chemical potential equalization principle, as is a method developed previously to deal with systems under the closed circuit condition. These two methods can be interconverted through the Legendre transformation, so that the difference in the circuit conditions can be compared on the same footing. Furthermore, the electrode polarization effect can be correctly studied by comparing the present method with the conventional simulations with the electrodes represented by fixed charges, since both of the methods describe systems under the open circuit condition. The method is applied to a parallel-plate capacitor composed of platinum electrodes and an aqueous electrolyte solution. The electrode polarization effects have an impact on the interfacial structure of the electrolyte solution. We found that the difference in the circuit conditions significantly affects the dynamics of the electrolyte solution. The electric field at the charged electrode surface is poorly screened by the nonequilibrium solution structure in the open circuit condition, which accelerates the motion of the electrolyte solution.
Collapse
Affiliation(s)
| | | | - Hirofumi Sato
- Department of Molecular Engineering, Kyoto University - Katsura Campus, Japan
| |
Collapse
|
17
|
Huang P, Tao H, Yang J, Lian C, Liu H. Four
stages of thermal effect coupled with ion‐charge transports during the charging process of porous electrodes. AIChE J 2022. [DOI: 10.1002/aic.17790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Pan Huang
- State Key Laboratory of Chemical Engineering, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering East China University of Science and Technology Shanghai People's Republic of China
| | - Haolan Tao
- State Key Laboratory of Chemical Engineering, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering East China University of Science and Technology Shanghai People's Republic of China
| | - Jie Yang
- School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai People's Republic of China
| | - Cheng Lian
- State Key Laboratory of Chemical Engineering, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering East China University of Science and Technology Shanghai People's Republic of China
- School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai People's Republic of China
| | - Honglai Liu
- State Key Laboratory of Chemical Engineering, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering East China University of Science and Technology Shanghai People's Republic of China
- School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai People's Republic of China
| |
Collapse
|
18
|
Ye BB, Wang ZG. A coarse-grained model of room-temperature ionic liquids between metal electrodes: a molecular dynamics study. Phys Chem Chem Phys 2022; 24:11573-11584. [PMID: 35522924 DOI: 10.1039/d2cp00166g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent mean-field theories predict that room-temperature ionic liquid (RTIL) electric double-layer capacitors (EDLCs) undergo a spontaneous surface charge separation (SSCS) with no applied potential. In this study, we construct a coarse-grained molecular model that corresponds to the mean-field models to directly simulate the behavior of RTILs without invoking mean-field approximations. In addition to observing the SSCS transition, we highlight the importance of the image charge interactions and explore the enhanced in-plane ordering on the electrodes, two effects not accounted for by the mean-field theories. By calculating and comparing the differential capacitance for RTILs confined between perfectly conducting and non-metal electrodes, we show that the image charge interactions drastically improve the energy storage properties of RTIL EDLCs.
Collapse
Affiliation(s)
- Benjamin Bobin Ye
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, USA.
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, USA.
| |
Collapse
|
19
|
Tee SR, Searles DJ. Fully periodic, computationally efficient constant potential molecular dynamics simulations of ionic liquid supercapacitors. J Chem Phys 2022; 156:184101. [DOI: 10.1063/5.0086986] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Molecular dynamics (MD) simulations of complex electrochemical systems, such as ionic liquid supercapacitors, are increasingly including the constant potential method (CPM) to model conductive electrodes at a specified potential difference, but the inclusion of CPM can be computationally expensive. We demonstrate the computational savings available in CPM MD simulations of ionic liquid supercapacitors when the usual non-periodic slab geometry is replaced with fully periodic boundary conditions. We show how a doubled cell approach, previously used in non-CPM MD simulations of charged interfaces, can be used to enable fully periodic CPM MD simulations. Using either a doubled cell approach or a finite field approach previously reported by others, fully periodic CPM MD simulations produce comparable results to the traditional slab geometry simulations with a nearly double speedup in computational time. Indeed, these savings can offset the additional cost of the CPM algorithm, resulting in periodic CPM MD simulations that are computationally competitive with the non-periodic, fixed charge equivalent simulations for the ionic liquid supercapacitors studied here.
Collapse
Affiliation(s)
- Shern R. Tee
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Debra J. Searles
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
20
|
Uralcan B, Uralcan IB. Origin of Enhanced Performance in Nanoporous Electrical Double Layer Capacitors: Insights on Micropore Structure and Electrolyte Composition from Molecular Simulations. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16800-16808. [PMID: 35377144 DOI: 10.1021/acsami.1c24088] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We explore the effect of solvation and micropore structure on the energy storage performance of electrical double layer capacitors using constant potential molecular dynamics simulations of realistically modeled nanoporous carbon electrodes and ionic liquid/organic solvent mixtures. We show that the time-dependent charging profiles of electrodes with larger pores reach the plateau regime faster, while the charging time has a nonmonotonic dependence on ion concentration, mirroring the composition dependence of bulk electrolyte conductivity. When the average pore size of the electrode is similar to or slightly larger than the size of a solvated ion, the solvation enhances ion electrosorption into nanopores by disrupting anion-cation coordination and decreasing the barrier to counterion penetration while blocking the co-ions. In these systems, areal capacitance exhibits a significant nonmonotonic dependence on ion concentration, in which capacitance increases with the introduction of solvent in the concentrated regime followed by a decrease with further dilution. This gives rise to a maximum in capacitance at intermediate dilution levels. When pores are significantly larger than solvated ions, capacitance maximum weakens and eventually disappears. These findings provide novel insights on the combined effect of electrolyte composition and electrode pore size on the charging kinetics and equilibrium behavior of realistically modeled electrical double layer capacitors. Generalization of the approach developed here can facilitate the rational optimization of material properties for electrical double layer capacitor applications.
Collapse
Affiliation(s)
- Betul Uralcan
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, Bebek 34342, Istanbul, Turkey
| | - Irem Beyza Uralcan
- Department of Physics, Bogazici University, Bebek 34342, Istanbul, Turkey
| |
Collapse
|
21
|
Ferreira PH, Sampaio AM, Siqueira LJ. Energy and power performances of binary mixtures of ionic liquids in planar and porous electrodes by molecular dynamics simulations. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139982] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Wang Z, Chen J, Li Y, Dong K, Yu Y. EDL structure of ionic liquid-MXene-based supercapacitor and hydrogen bond role on the interface: a molecular dynamics simulation investigation. Phys Chem Chem Phys 2022; 24:5903-5913. [PMID: 35195622 DOI: 10.1039/d1cp05355h] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a new class of electrodes, MXenes have shown excellent performance in supercapacitors. At the same time, ionic liquid (IL) electrolytes with wider electrochemical windows are expected to substantially increase the supercapacitor capacitance. The combination of MXenes and ILs is promising for energy storage devices with a high energy density and power density. The studies have indicated that the surface terminations of MXenes and the functional groups of ILs, can both strongly influence the supercapacitor's performance. However, studies at the molecular level are still lacking. In this work, we performed molecular dynamics simulations to investigate the interfacial structures and their influence on the energy storage mechanism. The results show that the two ILs exhibit very different charging rates, though the charge densities are similar after charging equilibrium. The interfacial analysis reveals different electrical double-layer (EDL) structures, in which most cations stay perpendicular to the Ti3C2(OH)2 electrode when some cations shift to a vertical arrangement near the Ti3C2O2 electrode. Such structures have led to the higher capacitance of the Ti3C2(OH)2 electrode, even more than 2 times that of the Ti3C2O2 electrode as the potential difference ranges from 0 to 2 V. It was also found that hydrogen bonds between the -OH groups of HEMIm+ cations and terminations of the MXene play an important role in improving the capacitances by aggregating more HEMIm+ cations on the surface of the Ti3C2(OH)2 electrode. Our work provides clear mechanistic evidence that both terminations of the MXene electrodes and functional groups of the IL electrolytes affect the interfacial structures and the EDL formation, further leading to the different supercapacitor performance, which will be helpful in designing highly efficient energy-storage devices.
Collapse
Affiliation(s)
- Ziyi Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510641, P. R. China.
| | - Junwu Chen
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Yao Li
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Kun Dong
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Yinghao Yu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510641, P. R. China.
| |
Collapse
|
23
|
Lim H, Jung Y. Computational investigation of dynamical heterogeneity in ionic liquids based on the restricted primitive model. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hyuntae Lim
- Department of Chemistry Seoul National University Seoul Korea
| | - YounJoon Jung
- Department of Chemistry Seoul National University Seoul Korea
| |
Collapse
|
24
|
Gäding J, Tocci G, Busch M, Huber P, Meißner RH. Impact of confinement and polarizability on dynamics of ionic liquids. J Chem Phys 2022; 156:064703. [DOI: 10.1063/5.0077408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Johannes Gäding
- Institute of Polymers and Composites, Hamburg University of Technology, 21073 Hamburg, Germany
| | - Gabriele Tocci
- Department of Chemistry, University of Zurich, 8057 Zürich, Switzerland
| | - Mark Busch
- Institute for Materials and X-Ray Physics, Hamburg University of Technology, 21073 Hamburg, Germany
- Deutsches Elektronen-Synchrotron DESY, Centre for X-Ray and Nano Science CXNS, 22607 Hamburg, Germany
- Centre for Hybrid Nanostructures CHyN, Hamburg University, 22761 Hamburg, Germany
| | - Patrick Huber
- Institute for Materials and X-Ray Physics, Hamburg University of Technology, 21073 Hamburg, Germany
- Deutsches Elektronen-Synchrotron DESY, Centre for X-Ray and Nano Science CXNS, 22607 Hamburg, Germany
- Centre for Hybrid Nanostructures CHyN, Hamburg University, 22761 Hamburg, Germany
| | - Robert H. Meißner
- Institute of Polymers and Composites, Hamburg University of Technology, 21073 Hamburg, Germany
- Helmholtz-Zentrum Hereon, Institute of Surface Science, 21502 Geesthacht, Germany
| |
Collapse
|
25
|
Carr AJ, Lee SS, Uysal A. Trivalent ion overcharging on electrified graphene. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:144001. [PMID: 35016162 DOI: 10.1088/1361-648x/ac4a58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
The structure of the electrical double layer (EDL) formed near graphene in aqueous environments strongly impacts its performance for a plethora of applications, including capacitive deionization. In particular, adsorption and organization of multivalent counterions near the graphene interface can promote nonclassical behaviors of EDL including overcharging followed by co-ion adsorption. In this paper, we characterize the EDL formed near an electrified graphene interface in dilute aqueous YCl3solution usingin situhigh resolution x-ray reflectivity (also known as crystal truncation rod) and resonant anomalous x-ray reflectivity (RAXR). These interface-specific techniques reveal the electron density profiles with molecular-scale resolution. We find that yttrium ions (Y3+) readily adsorb to the negatively charged graphene surface to form an extended ion profile. This ion distribution resembles a classical diffuse layer but with a significantly high ion coverage, i.e., 1 Y3+per 11.4 ± 1.6 Å2, compared to the value calculated from the capacitance measured by cyclic voltammetry (1 Y3+per ∼240 Å2). Such overcharging can be explained by co-adsorption of chloride that effectively screens the excess positive charge. The adsorbed Y3+profile also shows a molecular-scale gap (⩾5 Å) from the top graphene surfaces, which is attributed to the presence of intervening water molecules between the adsorbents and adsorbates as well as the lack of inner-sphere surface complexation on chemically inert graphene. We also demonstrate controlled adsorption by varying the applied potential and reveal consistent Y3+ion position with respect to the surface and increasing cation coverage with increasing the magnitude of the negative potential. This is the first experimental description of a model graphene-aqueous system with controlled potential and provides important insights into the application of graphene-based systems for enhanced and selective ion separations.
Collapse
Affiliation(s)
- Amanda J Carr
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, United States of America
| | - Sang Soo Lee
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, United States of America
| | - Ahmet Uysal
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, United States of America
| |
Collapse
|
26
|
Ma K, Janssen M, Lian C, van Roij R. Dynamic density functional theory for the charging of electric double layer capacitors. J Chem Phys 2022; 156:084101. [DOI: 10.1063/5.0081827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ke Ma
- School of Materials Science and Engineering, Tianjin University of Technology, China
| | | | - Cheng Lian
- East China University of Science and Technology, China
| | - Rene van Roij
- Institute for Theoretical Physics, Utrecht University Institut for Theoretical Physics, Netherlands
| |
Collapse
|
27
|
Eyvazi N, Biagooi M, Nedaaee Oskoee S. Molecular dynamics investigation of charging process in polyelectrolyte-based supercapacitors. Sci Rep 2022; 12:1098. [PMID: 35058494 PMCID: PMC8776737 DOI: 10.1038/s41598-022-04837-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/31/2021] [Indexed: 11/09/2022] Open
Abstract
Supercapacitors are one of the technologically impressive types of energy storage devices that are supposed to fill the gap between chemical batteries and dielectric capacitors in terms of power and energy density. Many kinds of materials have been investigated to be used as supercapacitors' electrolytes to overcome the known limitations of them. The properties of polymer-based electrolytes show a promising way to defeat some of these limitations. In this paper, a simplified model of polymer-based electrolytes between two electrodes is numerically investigated using the Molecular Dynamics simulation. The simulations are conducted for three different Bjerrum lengths and a typical range of applied voltages. The results showed a higher differential capacitance compared to the cases using ionic-liquid electrolytes. Our investigations indicate a rich domain in molecular behaviors of polymer-based electrolytes that should be considered in future supercapacitors.
Collapse
Affiliation(s)
- Nasrin Eyvazi
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Morad Biagooi
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - SeyedEhsan Nedaaee Oskoee
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran.
- Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran.
| |
Collapse
|
28
|
Moradi K, Rahimi S, Ebrahimi S, Salimi A. Understanding of Bulk and Interfacial Structures Ternary and Binary Deep Eutectic Solvents with a Constant Potential Method: A Molecular Dynamics Study. Phys Chem Chem Phys 2022; 24:10962-10973. [DOI: 10.1039/d2cp01014c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the last decade, deep eutectic solvents (DESs) emerge as promising electrolytes in supercapacitors and rechargeable batteries due to their unique properties, wide electrochemical window, low viscosity, and high ionic...
Collapse
|
29
|
The Structure of the Electric Double Layer of the Protic Ionic Liquid [Dema][TfO] Analyzed by Atomic Force Spectroscopy. Int J Mol Sci 2021; 22:ijms222312653. [PMID: 34884462 PMCID: PMC8658030 DOI: 10.3390/ijms222312653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/05/2022] Open
Abstract
Protic ionic liquids are promising electrolytes for fuel cell applications. They would allow for an increase in operation temperatures to more than 100 °C, facilitating water and heat management and, thus, increasing overall efficiency. As ionic liquids consist of bulky charged molecules, the structure of the electric double layer significantly differs from that of aqueous electrolytes. In order to elucidate the nanoscale structure of the electrolyte–electrode interface, we employ atomic force spectroscopy, in conjunction with theoretical modeling using molecular dynamics. Investigations of the low-acidic protic ionic liquid diethylmethylammonium triflate, in contact with a platinum (100) single crystal, reveal a layered structure consisting of alternating anion and cation layers at the interface, as already described for aprotic ionic liquids. The structured double layer depends on the applied electrode potential and extends several nanometers into the liquid, whereby the stiffness decreases with increasing distance from the interface. The presence of water distorts the layering, which, in turn, significantly changes the system’s electrochemical performance. Our results indicate that for low-acidic ionic liquids, a careful adjustment of the water content is needed in order to enhance the proton transport to and from the catalytic electrode.
Collapse
|
30
|
Chen W, Lu Y, Wang Y, Huo F, Ding WL, Wei L, He H. Probing Charge Injection-Induced Structural Transition in Ionic Liquids Confined at the MoS 2 Surface. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wei Chen
- College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
- CAS Key Laboratory of Green Process and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yumiao Lu
- CAS Key Laboratory of Green Process and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yanlei Wang
- CAS Key Laboratory of Green Process and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Feng Huo
- CAS Key Laboratory of Green Process and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Wei-Lu Ding
- CAS Key Laboratory of Green Process and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Li Wei
- College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Hongyan He
- CAS Key Laboratory of Green Process and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
31
|
Voroshylova IV, Ers H, Koverga V, Docampo-Álvarez B, Pikma P, Ivaništšev VB, Cordeiro M. Ionic liquid–metal interface: The origins of capacitance peaks. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138148] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Shin S, Greco F, Maier F, Steinrück HP. Enrichment effects of ionic liquid mixtures at polarized electrode interfaces monitored by potential screening. Phys Chem Chem Phys 2021; 23:10756-10762. [PMID: 33978646 PMCID: PMC8115399 DOI: 10.1039/d0cp04811a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The behavior of ionic liquids (ILs) at charged interfaces is pivotal for their application in supercapacitors and electrochemical cells. Recently, we demonstrated for neat ILs that potential screening at polarized electrode interfaces shows a characteristic voltage dependence, as determined in situ by X-ray photoelectron spectroscopy. Herein, we use this fingerprint-type behavior to characterize the nature of the IL/electrode interfaces for IL mixtures of [C8C1Im][Tf2N] and [C8C1Im]Cl on Au and Pt electrodes. For Au, the IL/electrode interfaces are dominated by the Cl− anions, even down to a 0.1 mol% [C8C1Im]Cl content. In contrast, [Tf2N]− anions enrich at the IL/Pt electrode interfaces down to 10 mol% [C8C1Im][Tf2N]; only at lower concentrations does a transition to Cl− enrichment occur. These mixture studies demonstrate that even small concentrations of another IL or contamination, e.g. remaining from synthesis, can strongly influence the situation at charged IL interfaces. The interface of electrodes and IL mixtures has been studied by in situ XPS. We found that the concentration of counterions at the interface can strongly deviate from the bulk composition due to interactions between electrode and IL.![]()
Collapse
Affiliation(s)
- Sunghwan Shin
- Lehrstuhl für Physikalische Chemie 2, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany.
| | | | | | | |
Collapse
|
33
|
Voroshylova IV, Ers H, Docampo-Álvarez B, Pikma P, Ivaništšev VB, Cordeiro MNDS. Hysteresis in the MD Simulations of Differential Capacitance at the Ionic Liquid-Au Interface. J Phys Chem Lett 2020; 11:10408-10413. [PMID: 33253582 DOI: 10.1021/acs.jpclett.0c03212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this Letter, we report the first observation of the capacitance-potential hysteresis at the ionic liquid | electrode interface in atomistic molecular dynamics simulations. While modeling the differential capacitance dependence on the potential scan direction, we detected two long-living types of interfacial structure for the BMImPF6 ionic liquid at specific charge densities of the gold Au(111) surface. These structures differ in how counterions overscreen the surface charge. The high barrier for the transition from one structure to another slows down the interfacial restructuring process and leads to the marked capacitance-potential hysteresis.
Collapse
Affiliation(s)
- Iuliia V Voroshylova
- LAQV@REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Heigo Ers
- Institute of Chemistry, University of Tartu, Ravila 14a, Tartu 50411, Estonia
| | | | - Piret Pikma
- Institute of Chemistry, University of Tartu, Ravila 14a, Tartu 50411, Estonia
| | | | - M Natália D S Cordeiro
- LAQV@REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
34
|
Investigation of the Ionic Liquid Graphene Electric Double Layer in Supercapacitors Using Constant Potential Simulations. NANOMATERIALS 2020; 10:nano10112181. [PMID: 33139670 PMCID: PMC7693729 DOI: 10.3390/nano10112181] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 11/30/2022]
Abstract
In this work, we investigate the effect of the cation structure on the structure and dynamics of the electrode–electrolyte interface using molecular dynamics simulations. A constant potential method is used to capture the behaviour of 1-ethyl-3-methylimidazolium bis (trifluoromethane)sulfonimide ([C2mim][NTf2]) and butyltrimethylammonium bis(trifluoromethane) sulfonimide ([N4,1,1,1][NTf2]) ionic liquids at varying potential differences applied across the supercapacitor. We find that the details of the structure in the electric double layer and the dynamics differ significantly, yet the charge profile and capacitance do not vary greatly. For the systems considered, charging results in the rearrangement and reorientation of ions within ∼1 nm of the electrode rather than the diffusion of ions to/from the bulk region. This occurs on timescales of O(10 ns) for the ionic liquids considered, and depends on the viscosity of the fluid.
Collapse
|
35
|
Electrode surface modification of graphene-MnO 2 supercapacitors using molecular dynamics simulations. J Mol Model 2020; 26:251. [PMID: 32833166 DOI: 10.1007/s00894-020-04483-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/21/2020] [Indexed: 10/23/2022]
Abstract
In this study, molecular dynamics (MD) simulations have been performed to explore the variation of ion density and electric potential due to electrode surface modification. Two different surface morphologies, having planer and slit pore with different conditions of surface charge, have been studied for graphene-MnO2 surface using LAMMPS. For different pore widths, the concentration of ions in the double layer is observed to be very low when the surface of the graphene-MnO2 electrode is charged. With a view to identify the optimal pore size for the simulation domain considered, three different widths for the nano-slit type pores and the corresponding ion-ion interactions are examined. Though this effect is negligible for pores with 9.23 and 3.55 Å widths, a considerable increase in the ionic concentration within the 7.10 Å pores is observed when the electrode is kept neutral. The edge region of these nano-slit pores leads to effective energy storage by promoting ion separation and a significantly higher charge accumulation is found to occur on the edges compared to the basal planes. For the simulation domain of the present study, partition coefficient is maximum for a pore size of 7.10 Å, indicating that the ions' penetration and movement into nano-slit pores are most favorable for this optimum pore size for MnO2-graphene electrodes with aqueous NaCl electrolyte. Graphical Abstract The importance of understanding the commercial feasibility of supercapacitor material has made qualitatively predicting the optimized electrode structure one of the main targets of energy related researches. While great progress has been made in recent years, a coherent theoretical picture of the optimized electrode structure remains elusive. This article discusses the most favorable design of supercapacitor electrode for ion-electrode interaction.
Collapse
|
36
|
Takahashi K, Nakano H, Sato H. A polarizable molecular dynamics method for electrode–electrolyte interfacial electron transfer under the constant chemical-potential-difference condition on the electrode electrons. J Chem Phys 2020; 153:054126. [DOI: 10.1063/5.0020619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Ken Takahashi
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Hiroshi Nakano
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Kyoto 615-8510, Japan
| | - Hirofumi Sato
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
37
|
Sampaio AM, Siqueira LJA. Ether-Functionalized Sulfonium Ionic Liquid and Its Binary Mixtures with Acetonitrile as Electrolyte for Electrochemical Double Layer Capacitors: A Molecular Dynamics Study. J Phys Chem B 2020; 124:6679-6689. [DOI: 10.1021/acs.jpcb.0c02643] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Abner Massari Sampaio
- Laboratório de Materiais Híbridos, Departamento de Química, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Rua São Nicolau, 210, Diadema, SP-CEP 09913-030, Brazil
| | - Leonardo José Amaral Siqueira
- Laboratório de Materiais Híbridos, Departamento de Química, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Rua São Nicolau, 210, Diadema, SP-CEP 09913-030, Brazil
| |
Collapse
|
38
|
Funari R, Matsumoto A, de Bruyn JR, Shen AQ. Rheology of the Electric Double Layer in Electrolyte Solutions. Anal Chem 2020; 92:8244-8253. [DOI: 10.1021/acs.analchem.0c00475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Riccardo Funari
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Atsushi Matsumoto
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - John R. de Bruyn
- Department of Physics and Astronomy, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Amy Q. Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
39
|
Lian C, Janssen M, Liu H, van Roij R. Blessing and Curse: How a Supercapacitor's Large Capacitance Causes its Slow Charging. PHYSICAL REVIEW LETTERS 2020; 124:076001. [PMID: 32142339 DOI: 10.1103/physrevlett.124.076001] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/15/2020] [Indexed: 06/10/2023]
Abstract
The development of novel electrolytes and electrodes for supercapacitors is hindered by a gap of several orders of magnitude between experimentally measured and theoretically predicted charging time scales. Here, we propose an electrode model, containing many parallel stacked electrodes, that explains the slow charging dynamics of supercapacitors. At low applied potentials, the charging behavior of this model is described well by an equivalent circuit model. Conversely, at high potentials, charging dynamics slow down and evolve on two relaxation time scales: a generalized RC time and a diffusion time, which, interestingly, become similar for porous electrodes. The charging behavior of the stack-electrode model presented here helps to understand the charging dynamics of porous electrodes and qualitatively agrees with experimental time scales measured with porous electrodes.
Collapse
Affiliation(s)
- Cheng Lian
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Mathijs Janssen
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstraße 3, 70569 Stuttgart, Germany
- Institut für Theoretische Physik IV, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Honglai Liu
- State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - René van Roij
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| |
Collapse
|
40
|
Greco F, Shin S, Williams FJ, Heller BSJ, Maier F, Steinrück H. Potential Screening at Electrode/Ionic Liquid Interfaces from In Situ X-ray Photoelectron Spectroscopy. ChemistryOpen 2019; 8:1365-1368. [PMID: 31844602 PMCID: PMC6892450 DOI: 10.1002/open.201900211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Indexed: 11/12/2022] Open
Abstract
A new approach to investigate potential screening at the interface of ionic liquids (ILs) and charged electrodes in a two-electrode electrochemical cell by in situ X-ray photoelectron spectroscopy has been introduced. Using identical electrodes, we deduce the potential screening at the working and the counter electrodes as a function of applied voltage from the potential change of the bulk IL, as derived from corresponding core level binding energy shifts for different IL/electrode combinations. For imidazolium-based ILs and Pt electrodes, we find a significantly larger potential screening at the anode than at the cathode, which we attribute to strong attractive interactions between the imidazolium cation and Pt. In the absence of specific ion/electrode interactions, asymmetric potential screening only occurs for ILs with different cation and anion sizes as demonstrated for an imidazolium chloride IL and Au electrodes, which we assign to the different thicknesses of the electrical double layers. Our results imply that potential screening in ILs is mainly established by a single layer of counterions at the electrode.
Collapse
Affiliation(s)
- Francesco Greco
- Lehrstuhl für Physikalische Chemie 2Friedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Sunghwan Shin
- Lehrstuhl für Physikalische Chemie 2Friedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Federico J. Williams
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, INQUIMAE-CONICETUniversidad de Buenos Aires, Ciudad UniversitariaPabellón 2Buenos AiresC1428EHAArgentina
| | - Bettina S. J. Heller
- Lehrstuhl für Physikalische Chemie 2Friedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Florian Maier
- Lehrstuhl für Physikalische Chemie 2Friedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Hans‐Peter Steinrück
- Lehrstuhl für Physikalische Chemie 2Friedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| |
Collapse
|
41
|
Lim H, Jung Y. Delfos: deep learning model for prediction of solvation free energies in generic organic solvents. Chem Sci 2019; 10:8306-8315. [PMID: 32110289 PMCID: PMC7017869 DOI: 10.1039/c9sc02452b] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/19/2019] [Indexed: 11/21/2022] Open
Abstract
Prediction of aqueous solubilities or hydration free energies is an extensively studied area in machine learning applications in chemistry since water is the sole solvent in the living system. However, for non-aqueous solutions, few machine learning studies have been undertaken so far despite the fact that the solvation mechanism plays an important role in various chemical reactions. Here, we introduce Delfos (deep learning model for solvation free energies in generic organic solvents), which is a novel, machine-learning-based QSPR method which predicts solvation free energies for various organic solute and solvent systems. A novelty of Delfos involves two separate solvent and solute encoder networks that can quantify structural features of given compounds via word embedding and recurrent layers, augmented with the attention mechanism which extracts important substructures from outputs of recurrent neural networks. As a result, the predictor network calculates the solvation free energy of a given solvent-solute pair using features from encoders. With the results obtained from extensive calculations using 2495 solute-solvent pairs, we demonstrate that Delfos not only has great potential in showing accuracy comparable to that of the state-of-the-art computational chemistry methods, but also offers information about which substructures play a dominant role in the solvation process.
Collapse
Affiliation(s)
- Hyuntae Lim
- Department of Chemistry , Seoul National University , Seoul 08826 , Korea . ;
| | - YounJoon Jung
- Department of Chemistry , Seoul National University , Seoul 08826 , Korea . ;
| |
Collapse
|
42
|
Inagaki T, Nagaoka M. Electrode polarization effects on interfacial kinetics of ionic liquid at graphite surface: An extended lagrangian-based constant potential molecular dynamics simulation study. J Comput Chem 2019; 40:2131-2145. [PMID: 31155755 DOI: 10.1002/jcc.25865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/01/2019] [Accepted: 05/10/2019] [Indexed: 01/02/2023]
Abstract
Computational models including electrode polarization can be essential to study electrode/electrolyte interfacial phenomena more realistically. We present here a constant-potential classical molecular dynamics simulation method based on the extended Lagrangian formulation where the fluctuating electrode atomic charges are treated as independent dynamical variables. The method is applied to a graphite/ionic liquid system for the validation and the interfacial kinetics study. While the correct adiabatic dynamics is achieved with a sufficiently small fictitious mass of charge, static properties have been shown to be almost insensitive to the fictitious mass. As for the kinetics study, electrical double layer (EDL) relaxation and ion desorption from the electrode surface are considered. We found that the polarization slows EDL relaxation greatly whereas it has little impact on the ion desorption kinetics. The findings suggest that the polarization is essential to estimate the kinetics in nonequilibrium processes, not in equilibrium. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Taichi Inagaki
- Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.,Institute for Molecular Science, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Masataka Nagaoka
- Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.,Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Honmachi, Kawaguchi, 332-0012, Japan
| |
Collapse
|