1
|
Yang F, Huang X, Su C, Song EH, Liu BX, Xiao BB. 2D Transition Metal Chalcogenides (TMDs) for Electrocatalytic Hydrogen Evolution Reaction: A Review. Chemphyschem 2024:e202400640. [PMID: 39467256 DOI: 10.1002/cphc.202400640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/30/2024] [Indexed: 10/30/2024]
Abstract
Since the MoS2 synthesis, the family of two-dimensional transition metal chalcogenides (TMDs) have been intensively explored theoretically and experimentally. TMDs endowed with adjustable electronic, physical and chemical properties lead to increasing interest in the application of energy storage, molecule detection and catalysis. In the mini review, we present a forward-looking summary of 2D TMDs in hydrogen evolution electrocatalysis, including synthesis methods, hydrogen evolution performance, and optimization strategies. This review will deepen the fundamental understanding of the physical-chemical properties of TMDs with different phases and contribute unveil the universal principle among electronic configuration, atomic arrangement, physical and chemical property for the material design.
Collapse
Affiliation(s)
- Fei Yang
- School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Xu Huang
- School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Chao Su
- School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Er-Hong Song
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Bing-Xia Liu
- School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Bei-Bei Xiao
- School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| |
Collapse
|
2
|
Zhai Y, Shi Z, Xia Q, Han W, Li W, Deng X, Zhang X. Lithiation: Advancing Material Synthesis and Structural Engineering for Emerging Applications. ACS NANO 2024; 18:26477-26502. [PMID: 39301666 DOI: 10.1021/acsnano.4c09114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Lithiation, a process of inserting lithium ions into a host material, is revolutionizing nanomaterials synthesis and structural engineering as well as enhancing their performance across emerging applications, particularly valuable for large-scale synthesis of high-quality low-dimensional nanomaterials. Through a systematic investigation of the synthetic strategies and structural changes induced by lithiation, this review aims to offer a comprehensive understanding of the development, potential, and challenges associated with this promising approach. First, the basic principles of lithiation/delithiation processes will be introduced. Then, the recent advancements in the lithiation-induced structure changes of nanomaterials, such as morphology tuning, phase transition, defect generation, etc., will be stressed, emphasizing the importance of lithiation in structural modulation of nanomaterials. With the tunable structures induced by the lithiation, the properties and performance in electrochemical, photochemical, electronic devices, bioapplications, etc. will be discussed, followed by outlining the current challenges and perspectives in this research area.
Collapse
Affiliation(s)
- Yanjie Zhai
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Zhenqi Shi
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Qing Xia
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Wenkai Han
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Weisong Li
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Xiaoran Deng
- Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Jiangsu 221004, China
| | - Xiao Zhang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
- Research Institute for Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
- Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
3
|
Yi L, Nie K, Li B, Zhang Y, Hu C, Hao X, Wang Z, Qu X, Liu Z, Huang W. Tailoring Copper Single-Atoms-Stabilized Metastable Transition-Metal-Dichalcogenides for Sustainable Hydrogen Production. Angew Chem Int Ed Engl 2024:e202414701. [PMID: 39275887 DOI: 10.1002/anie.202414701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/16/2024]
Abstract
Unconventional 1T' phase transition metal dichalcogenides (TMDs) show great potential for hydrogen evolution reaction (HER). However, they are susceptible to transitioning into the stable 2H phase, which reduces their catalytic activity and stability. Herein, we present a scalable approach for designing thermally stable 1T'-TMDs hollow structures (HSs) by etching Cu1.94S templates from pre-synthesized Cu1.94S@TMDs heterostructures, including 1T'-MoS2, MoSe2, WS2, and WSe2 HSs. Furthermore, taking 1T'-MoS2 HSs as an example, the etched Cu ions can be firmly adsorbed on their surface in the form of single atoms (SAs) through Cu-S bonds, thereby elevating the phase transition temperature from 149 °C to 373 °C. Due to the advantages conferred by the 1T' phase, hollow structure, and synergistic effect between Cu SAs and 1T'-MoS2 supports, the fabricated 1T'-MoS2 HSs demonstrate superior HER performance. Notably, their high-phase stability enables continuous operation of designed 1T'-MoS2 HSs for up to 200 hours at an ampere-level current density without significant activity decay. This work provides a universal method for synthesizing highly stable 1T'-TMDs electrocatalysts, with a particular focus on the relationship between their phase and catalytic stability.
Collapse
Affiliation(s)
- Lixin Yi
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710129, China
| | - Kunkun Nie
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710129, China
| | - Binjie Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710129, China
| | - Yujia Zhang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710129, China
| | - Chen Hu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710129, China
| | - Xiaorong Hao
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710129, China
| | - Ziyi Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710129, China
| | - Xiaoyan Qu
- Frontier Institute of Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhengqing Liu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710129, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710129, China
| |
Collapse
|
4
|
Roy S, Joseph A, Zhang X, Bhattacharyya S, Puthirath AB, Biswas A, Tiwary CS, Vajtai R, Ajayan PM. Engineered Two-Dimensional Transition Metal Dichalcogenides for Energy Conversion and Storage. Chem Rev 2024; 124:9376-9456. [PMID: 39042038 DOI: 10.1021/acs.chemrev.3c00937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Designing efficient and cost-effective materials is pivotal to solving the key scientific and technological challenges at the interface of energy, environment, and sustainability for achieving NetZero. Two-dimensional transition metal dichalcogenides (2D TMDs) represent a unique class of materials that have catered to a myriad of energy conversion and storage (ECS) applications. Their uniqueness arises from their ultra-thin nature, high fractions of atoms residing on surfaces, rich chemical compositions featuring diverse metals and chalcogens, and remarkable tunability across multiple length scales. Specifically, the rich electronic/electrical, optical, and thermal properties of 2D TMDs have been widely exploited for electrochemical energy conversion (e.g., electrocatalytic water splitting), and storage (e.g., anodes in alkali ion batteries and supercapacitors), photocatalysis, photovoltaic devices, and thermoelectric applications. Furthermore, their properties and performances can be greatly boosted by judicious structural and chemical tuning through phase, size, composition, defect, dopant, topological, and heterostructure engineering. The challenge, however, is to design and control such engineering levers, optimally and specifically, to maximize performance outcomes for targeted applications. In this review we discuss, highlight, and provide insights on the significant advancements and ongoing research directions in the design and engineering approaches of 2D TMDs for improving their performance and potential in ECS applications.
Collapse
Affiliation(s)
- Soumyabrata Roy
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
- Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Antony Joseph
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Xiang Zhang
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Sohini Bhattacharyya
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Anand B Puthirath
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Abhijit Biswas
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Chandra Sekhar Tiwary
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Robert Vajtai
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
5
|
Yang R, Ye H, Sun N, Wu Z, Liu Y, Liu W. Unveiling the Mechanism of Spontaneous Nanoscroll Formation from Janus Transition Metal Dichalcogenide Nanoribbons. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43860-43868. [PMID: 39105733 DOI: 10.1021/acsami.4c09662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Due to the atomic asymmetry, Janus transition metal dichalcogenide monolayers possess spontaneous curling and can even form one-dimensional nanoscrolls. Unveiling this spontaneous formation mechanism of nanoscrolls is of great importance for precise structural control. In this paper, we successfully simulate the process of Janus MoSSe nanoscroll formation from flat nanoribbons, based on molecular dynamics (MD) simulations with hybrid potentials. The spontaneous scrolling is purely driven by the relaxation of intrinsic strain in Janus MoSSe. The final structure of nanoscroll is strongly affected by the length of nanoribbon with a nonmonotonous relation. To further understand the mechanism, we establish a thermodynamic model to determine the inner radius of MoSSe nanoscrolls, which is shown to be related to spontaneous curvature, bending stiffness, interlayer van der Waals interaction, interlayer distance, and length of initial nanoribbon. The results correspond well with MD simulations of nanoscrolls from flat nanoribbons and the molecular static simulations of directly built nanoscrolls. Moreover, the inner radii of MoSeTe and MoSTe nanoscrolls are predicted based on the model. Our results provide insights into the Janus TMD nanoscroll formation and a pathway for controllable fabrication of nanoscrolls.
Collapse
Affiliation(s)
- Ruhao Yang
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Han Ye
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Naizhang Sun
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Zhenping Wu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Yumin Liu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Wenjun Liu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
| |
Collapse
|
6
|
Li H, Wang Y, Chen S, Peng F, Gao F. Boosting Electrochemical Reduction of Nitrate to Ammonia by Constructing Nitrate-Favored Active Cu-B Sites on SnS 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308182. [PMID: 38308386 DOI: 10.1002/smll.202308182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/13/2024] [Indexed: 02/04/2024]
Abstract
The electrochemical reduction of nitrate to ammonia is an effective method for mitigating nitrate pollution and generating ammonia. To design superior electrocatalysts, it is essential to construct a reaction site with high activity. Herein, a simple two-step method is applied to in situ reduce amorphous copper over boron-doped SnS2 nanosheets(denoted as aCu@B-SnS2-x. DFT calculations reveal the combination of amorphous copper and B-doping strategy can construct Cu-B active twins and introduce sulfur vacancies on the surface of the inert SnS2, the active twins can efficiently adsorb nitrate and forcibly separate oxygen atoms from nitrate under the assistance of the exposed Sn atom, leading to strong nitrate adsorption. Benefiting from this, aCu@B-SnS2-x exhibited an ultrahigh NH3 FE of 94.6% at -0.67 V versus RHE and the highest NH3 yield rate of 0.55 mmol h-1 mg-1 cat (9350 µg h-1 mg-1 cat) at -0.77 V versus RHE under alkaline conditions. Besides, aCu@B-SnS2-x is confirmed to remain active after various stability tests, suggesting the practicality of utilizing aCu@B-SnS2-x in industrial applications. This work highlights the feasibility of enhanced nitrate-to-ammonia conversion efficiency by combining the doping method and amorphous metal.
Collapse
Affiliation(s)
- Heen Li
- Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Yuanzhe Wang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Ecological Utilization, Tianjin University of Science & Technology, Tianjin, 300222, P. R. China
| | - Shuheng Chen
- Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Fei Peng
- Analyses and Testing Center, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, P. R. China
| | - Faming Gao
- Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, P. R. China
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Ecological Utilization, Tianjin University of Science & Technology, Tianjin, 300222, P. R. China
| |
Collapse
|
7
|
Zhou YH, Dang ZM, Wang HD. Simulation of electrical rectification effect in two-dimensional MoSe 2/WSe 2lateral heterostructures. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:375602. [PMID: 38848731 DOI: 10.1088/1361-648x/ad5595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/07/2024] [Indexed: 06/09/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenides lateral heterostructures exhibit excellent performance in electrics and optics. The electron transport of the heterostructures can be effectively regulated by ingenious design. In this study, we construct a monolayer MoSe2/WSe2lateral heterostructure, covalently connecting monolayer MoSe2and monolayer WSe2. Using the Extended Huckel Theory method, we explored current-voltage characteristics under varied conditions, including altering carrier density, atomic replacement and interface angles. Calculations demonstrate a significant electrical rectification ratio (ERR) ranging from 200 to 800. Additionally, Employing Density Functional Theory with non-equilibrium Green's function method, we investigated electronic properties, attributing the rectification effect to electronic state distribution differences, asymmetric transmission coefficients and band bending of projected local density of states. The expandability of the interfacial energy barrier enhances the rectification effect through adjustments in carrier concentration, atomic replacements and interface size. However, these enhancements introduce challenges such as increased electron-boundary scattering and reduced ambipolarity, resulting in a lower ERR. This study provides valuable theoretical insights for optimizing 2D electronic diode devices, offering avenues for precise control of the rectification effect.
Collapse
Affiliation(s)
- Yao-Hong Zhou
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, People's Republic of China
| | - Zhi-Min Dang
- State Key Laboratory of Power System Operation and Control, Department of Electrical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Hai-Dong Wang
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
8
|
Mirzaei A, Alizadeh M, Ansari HR, Moayedi M, Kordrostami Z, Safaeian H, Lee MH, Kim TU, Kim JY, Kim HW, Kim SS. Resistive gas sensors for the detection of NH 3gas based on 2D WS 2, WSe 2, MoS 2, and MoSe 2: a review. NANOTECHNOLOGY 2024; 35:332002. [PMID: 38744265 DOI: 10.1088/1361-6528/ad4b22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Transition metal dichalcogenides (TMDs) with a two-dimensional (2D) structure and semiconducting features are highly favorable for the production of NH3gas sensors. Among the TMD family, WS2, WSe2, MoS2, and MoSe2exhibit high conductivity and a high surface area, along with high availability, reasons for which they are favored in gas-sensing studies. In this review, we have discussed the structure, synthesis, and NH3sensing characteristics of pristine, decorated, doped, and composite-based WS2, WSe2, MoS2, and MoSe2gas sensors. Both experimental and theoretical studies are considered. Furthermore, both room temperature and higher temperature gas sensors are discussed. We also emphasized the gas-sensing mechanism. Thus, this review provides a reference for researchers working in the field of 2D TMD gas sensors.
Collapse
Affiliation(s)
- Ali Mirzaei
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran
| | - Morteza Alizadeh
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran
| | - Hamid Reza Ansari
- Department of Electrical Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran
| | - Mehdi Moayedi
- Department of Electrical Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran
| | - Zoheir Kordrostami
- Department of Electrical Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran
| | - Haniyeh Safaeian
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran
| | - Myoung Hoon Lee
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Tae-Un Kim
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Jin-Young Kim
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
- The Research Institute of Industrial Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyoun Woo Kim
- The Research Institute of Industrial Science, Hanyang University, Seoul 04763, Republic of Korea
- Division of Materials Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Sang Sub Kim
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
9
|
Dai Y, He Q, Huang Y, Duan X, Lin Z. Solution-Processable and Printable Two-Dimensional Transition Metal Dichalcogenide Inks. Chem Rev 2024; 124:5795-5845. [PMID: 38639932 DOI: 10.1021/acs.chemrev.3c00791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) with layered crystal structures have been attracting enormous research interest for their atomic thickness, mechanical flexibility, and excellent electronic/optoelectronic properties for applications in diverse technological areas. Solution-processable 2D TMD inks are promising for large-scale production of functional thin films at an affordable cost, using high-throughput solution-based processing techniques such as printing and roll-to-roll fabrications. This paper provides a comprehensive review of the chemical synthesis of solution-processable and printable 2D TMD ink materials and the subsequent assembly into thin films for diverse applications. We start with the chemical principles and protocols of various synthesis methods for 2D TMD nanosheet crystals in the solution phase. The solution-based techniques for depositing ink materials into solid-state thin films are discussed. Then, we review the applications of these solution-processable thin films in diverse technological areas including electronics, optoelectronics, and others. To conclude, a summary of the key scientific/technical challenges and future research opportunities of solution-processable TMD inks is provided.
Collapse
Affiliation(s)
- Yongping Dai
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 99907, China
| | - Yu Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Zhaoyang Lin
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Zhou M, Zhang P, Zhang M, Jin X, Zhang Y, Liu B, Quan D, Jia M, Zhang Z, Zhang Z, Kong XY, Jiang L. Bioinspired Light-Driven Proton Pump: Engineering Band Alignment of WS 2 with PEDOT:PSS and PDINN. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308277. [PMID: 38044301 DOI: 10.1002/smll.202308277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/14/2023] [Indexed: 12/05/2023]
Abstract
Bioinspired two-dimensional (2D) nanofluidic systems for photo-induced ion transport have attracted great attention, as they open a new pathway to enabling light-to-ionic energy conversion. However, there is still a great challenge in achieving a satisfactory performance. It is noticed that organic solar cells (OSCs, light-harvesting device based on photovoltaic effect) commonly require hole/electron transport layer materials (TLMs), PEDOT:PSS (PE) and PDINN (PD), respectively, to promote the energy conversion. Inspired by such a strategy, an artificial proton pump by coupling a nanofluidic system with TLMs is proposed, in which the PE- and PD-functionalized tungsten disulfide (WS2) multilayers construct a heterogeneous membrane, realizing an excellent output power of ≈1.13 nW. The proton transport is fine-regulated due to the TLMs-engineered band structure of WS2. Clearly, the incorporating TLMs of OSCs into 2D nanofluidic systems offers a feasible and promising approach for band edge engineering and promoting the light-to-ionic energy conversion.
Collapse
Affiliation(s)
- Min Zhou
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Peikun Zhang
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Ming Zhang
- State Key Laboratory of Organic/Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaoyan Jin
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yuhui Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Biying Liu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Di Quan
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Meijuan Jia
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhiguo Zhang
- State Key Laboratory of Organic/Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhuhua Zhang
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Science and Technology Center for Quantum Biology, National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou, Zhejiang, 310051, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Science and Technology Center for Quantum Biology, National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou, Zhejiang, 310051, P. R. China
| |
Collapse
|
11
|
Liu Y, Pan X, He Y, Guo B, Xu J. In Situ Monitoring and Tuning Multilayer Stacking of Polymer Lamellar Crystals in Solution with Aggregation-Induced Emission. NANO LETTERS 2024. [PMID: 38621356 DOI: 10.1021/acs.nanolett.3c03048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Many types of self-assembled 2D materials with fascinating morphologies and novel properties have been prepared and used in solution. However, it is still a challenge to monitor their in situ growth in solution and to control the number of layers in these materials. Here, we demonstrate that the aggregation-induced emission (AIE) effect can be applied for the in situ decoupled tracing of the lateral growth and multilayer stacking of polymer lamellar crystals in solution. Multilayer stacking considerably enhances the photoluminescence intensity of the AIE molecules sandwiched between two layers of lamellar crystals, which is 2.4 times that on the surface of monolayer crystals. Both variation of the self-seeding temperature of crystal seeds and addition of a trace amount of long polymer chains during growth can control multilayer lamellar stacking, which are applied to produce tunable fluorescent patterns for functional applications.
Collapse
Affiliation(s)
- Yang Liu
- Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering, Tsinghua University, 100084 Beijing, China
| | - Xinyi Pan
- Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering, Tsinghua University, 100084 Beijing, China
| | - Yaning He
- Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering, Tsinghua University, 100084 Beijing, China
| | - Baohua Guo
- Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering, Tsinghua University, 100084 Beijing, China
| | - Jun Xu
- Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering, Tsinghua University, 100084 Beijing, China
| |
Collapse
|
12
|
Wang Y, Zhai W, Ren Y, Zhang Q, Yao Y, Li S, Yang Q, Zhou X, Li Z, Chi B, Liang J, He Z, Gu L, Zhang H. Phase-Controlled Growth of 1T'-MoS 2 Nanoribbons on 1H-MoS 2 Nanosheets. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307269. [PMID: 37934742 DOI: 10.1002/adma.202307269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/31/2023] [Indexed: 11/09/2023]
Abstract
2D heterostructures are emerging as alternatives to conventional semiconductors, such as silicon, germanium, and gallium nitride, for next-generation electronics and optoelectronics. However, the direct growth of 2D heterostructures, especially for those with metastable phases still remains challenging. To obtain 2D transition metal dichalcogenides (TMDs) with designed phases, it is highly desired to develop phase-controlled synthetic strategies. Here, a facile chemical vapor deposition method is reported to prepare vertical 1H/1T' MoS2 heterophase structures. By simply changing the growth atmosphere, semimetallic 1T'-MoS2 can be in situ grown on the top of semiconducting 1H-MoS2, forming vertical semiconductor/semimetal 1H/1T' heterophase structures with a sharp interface. The integrated device based on the 1H/1T' MoS2 heterophase structure displays a typical rectifying behavior with a current rectifying ratio of ≈103. Moreover, the 1H/1T' MoS2-based photodetector achieves a responsivity of 1.07 A W-1 at 532 nm with an ultralow dark current of less than 10-11 A. The aforementioned results indicate that 1H/1T' MoS2 heterophase structures can be a promising candidate for future rectifiers and photodetectors. Importantly, the approach may pave the way toward tailoring the phases of TMDs, which can help us utilize phase engineering strategies to promote the performance of electronic devices.
Collapse
Affiliation(s)
- Yongji Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Wei Zhai
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Yi Ren
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yao Yao
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Siyuan Li
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Qi Yang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Xichen Zhou
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Banlan Chi
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Jinzhe Liang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Zhen He
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Lin Gu
- Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
13
|
Kwak IH, Kim JY, Zewdie GM, Yang J, Lee KS, Yoo SJ, Kwon IS, Park J, Kang HS. Electrocatalytic Activation in ReSe 2-VSe 2 Alloy Nanosheets to Boost Water-Splitting Hydrogen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310769. [PMID: 38239004 DOI: 10.1002/adma.202310769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/29/2023] [Indexed: 01/25/2024]
Abstract
It is challenging to control the electronic structure of 2D transition metal dichalcogenides (TMD) for extended applications in renewable energy devices. Here, ReSe2-VSe2 (Re1- xVxSe2) alloy nanosheets over the whole composition range via a colloidal reaction is synthesized. Increasing x makes the nanosheets more metallic and induces a 1T″-to-1T phase transition at x = 0.5-0.6. Compared to the MoSe2-VSe2 and WSe2-VSe2 alloy nanosheets, ReSe2 and VSe2 are mixed more homogeneously at the atomic scale. The alloy nanosheets at x = 0.1-0.7 exhibit an enhanced electrocatalytic activity toward acidic hydrogen evolution reaction (HER). In situ X-ray absorption fine structure measurements reveal that alloying caused the Re and V atoms to be synergically more active in the HER. Gibbs free energy (ΔGH*) and density of state calculations confirm that alloying and Se vacancies effectively activate the metal sites toward HER. The composition dependence of HER performance is explained by homogenous atomic mixing with the increased Se vacancies. The study provides a strategy for designing new TMD alloy nanosheets with enhanced catalytic activity.
Collapse
Affiliation(s)
- In Hye Kwak
- Department of Advanced Materials Chemistry, Korea University, Sejong, 339-700, Republic of Korea
- Research Center for Materials Analysis, Division of Analytical Science, Korea Basic Science Institute (KBSI), Daejeon, 34133, Republic of Korea
| | - Ju Yeon Kim
- Department of Advanced Materials Chemistry, Korea University, Sejong, 339-700, Republic of Korea
| | - Getasew Mulualem Zewdie
- Institute for Application of Advanced Materials, Jeonju University, Chonbuk, 55069, Republic of Korea
| | - JuHyun Yang
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Kug-Seung Lee
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Seung Jo Yoo
- Research Center for Materials Analysis, Division of Analytical Science, Korea Basic Science Institute (KBSI), Daejeon, 34133, Republic of Korea
| | - Ik Seon Kwon
- Department of Advanced Materials Chemistry, Korea University, Sejong, 339-700, Republic of Korea
- Beamline Science Team, 4GSR Project Headquarters, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Jeunghee Park
- Department of Advanced Materials Chemistry, Korea University, Sejong, 339-700, Republic of Korea
| | - Hong Seok Kang
- Department of Nano and Advanced Materials, Jeonju University, Chonju, Chonbuk, 55069, Republic of Korea
| |
Collapse
|
14
|
Lee J, Lee J, Jin X, Kim H, Hwang SJ. Atomically-Thin Holey 2D Nanosheets of Defect-Engineered MoN-Mo 5 N 6 Composites as Effective Hybridization Matrices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306781. [PMID: 37806758 DOI: 10.1002/smll.202306781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/27/2023] [Indexed: 10/10/2023]
Abstract
The defect engineering of inorganic solids has received significant attention because of its high efficacy in optimizing energy-related functionalities. Consequently, this approach is effectively leveraged in the present study to synthesize atomically-thin holey 2D nanosheets of a MoN-Mo5 N6 composite. This is achieved by controlled nitridation of assembled MoS2 monolayers, which induced sequential cation/anion migration and a gradual decrease in the Mo valency. Precise control of the interlayer distance of the MoS2 monolayers via assembly with various tetraalkylammonium ions is found to be crucial for synthesizing sub-nanometer-thick holey MoN-Mo5 N6 nanosheets with a tunable anion/cation vacancy content. The holey MoN-Mo5 N6 nanosheets are employed as efficient immobilization matrices for Pt single atoms to achieve high electrocatalytic mass activity, decent durability, and low overpotential for the hydrogen evolution reaction (HER). In situ/ex situ spectroscopy and density functional theory (DFT) calculations reveal that the presence of cation-deficient Mo5 N6 domain is crucial for enhancing the interfacial interactions between the conductive molybdenum nitride substrate and Pt single atoms, leading to enhanced electron injection efficiency and electrochemical stability. The beneficial effects of the Pt-immobilizing holey MoN-Mo5 N6 nanosheets are associated with enhanced electronic coupling, resulting in improvements in HER kinetics and interfacial charge transfer.
Collapse
Affiliation(s)
- Jihyeong Lee
- Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Junsoo Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Xiaoyan Jin
- Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seong-Ju Hwang
- Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
15
|
Morabito F, Synnatschke K, Mehew JD, Varghese S, Sayers CJ, Folpini G, Petrozza A, Cerullo G, Tielrooij KJ, Coleman J, Nicolosi V, Gadermaier C. Long lived photogenerated charge carriers in few-layer transition metal dichalcogenides obtained from liquid phase exfoliation. NANOSCALE ADVANCES 2024; 6:1074-1083. [PMID: 38356640 PMCID: PMC10863726 DOI: 10.1039/d3na00862b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/26/2023] [Indexed: 02/16/2024]
Abstract
Semiconducting transition metal dichalcogenides are important optoelectronic materials thanks to their intense light-matter interaction and wide selection of fabrication techniques, with potential applications in light harvesting and sensing. Crucially, these applications depend on the lifetimes and recombination dynamics of photogenerated charge carriers, which have primarily been studied in monolayers obtained from labour-intensive mechanical exfoliation or costly chemical vapour deposition. On the other hand, liquid phase exfoliation presents a high throughput and cost-effective method to produce dispersions of mono- and few-layer nanosheets. This approach allows for easy scalability and enables the subsequent processing and formation of macroscopic films directly from the liquid phase. Here, we use transient absorption spectroscopy and spatiotemporally resolved pump-probe microscopy to study the charge carrier dynamics in tiled nanosheet films of MoS2 and WS2 deposited from the liquid phase using an adaptation of the Langmuir-Schaefer technique. We find an efficient photogeneration of charge carriers with lifetimes of several nanoseconds, which we ascribe to stabilisation at nanosheet edges. These findings provide scope for photocatalytic and photodetector applications, where long-lived charge carriers are crucial, and suggest design strategies for photovoltaic devices.
Collapse
Affiliation(s)
- Floriana Morabito
- Area Science Park Basovizza S.S. 14 Km 163.5 34149 Trieste Italy
- Dipartimento di Fisica, Politecnico di Milano Piazza L. da Vinci 32 20133 Milano Italy
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia Via Rubattino 81 20134 Milan Italy
- CNR-IOM, Consiglio Nazionale delle Ricerche Istituto Officina dei Materiali Trieste Italy
| | - Kevin Synnatschke
- School of Physics, CRANN & AMBER Research Centres, Trinity College Dublin Dublin D02 Ireland
| | - Jake Dudley Mehew
- Catalan Institute of Nanoscience and Nanotechnology ICN2 UAB Campus Bellaterra (Barcelona) 08193 Spain
| | - Sebin Varghese
- Catalan Institute of Nanoscience and Nanotechnology ICN2 UAB Campus Bellaterra (Barcelona) 08193 Spain
| | - Charles James Sayers
- Dipartimento di Fisica, Politecnico di Milano Piazza L. da Vinci 32 20133 Milano Italy
| | - Giulia Folpini
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia Via Rubattino 81 20134 Milan Italy
| | - Annamaria Petrozza
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia Via Rubattino 81 20134 Milan Italy
| | - Giulio Cerullo
- Dipartimento di Fisica, Politecnico di Milano Piazza L. da Vinci 32 20133 Milano Italy
| | - Klaas-Jan Tielrooij
- Catalan Institute of Nanoscience and Nanotechnology ICN2 UAB Campus Bellaterra (Barcelona) 08193 Spain
- TU Eindhoven, Department of Applied Physics Den Dolech 2 5612 AZ Eindhoven The Netherlands
| | - Jonathan Coleman
- School of Physics, CRANN & AMBER Research Centres, Trinity College Dublin Dublin D02 Ireland
| | - Valeria Nicolosi
- School of Physics, CRANN & AMBER Research Centres, Trinity College Dublin Dublin D02 Ireland
| | - Christoph Gadermaier
- Dipartimento di Fisica, Politecnico di Milano Piazza L. da Vinci 32 20133 Milano Italy
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia Via Rubattino 81 20134 Milan Italy
| |
Collapse
|
16
|
Bijoy TK, Sudhakaran S, Lee SC. WS 2-Graphene van der Waals Heterostructure as Promising Anode Material for Lithium-Ion Batteries: A First-Principles Approach. ACS OMEGA 2024; 9:6482-6491. [PMID: 38371824 PMCID: PMC10870414 DOI: 10.1021/acsomega.3c06559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/20/2024]
Abstract
In this work, we report the results of density functional theory (DFT) calculations on a van der Waals (VdW) heterostructure formed by vertically stacking single-layers of tungsten disulfide and graphene (WS2/graphene) for use as an anode material in lithium-ion batteries (LIBs). The electronic properties of the heterostructure reveal that the graphene layer improves the electronic conductivity of this hybrid system. Phonon calculations demonstrate that the WS2/graphene heterostructure is dynamically stable. Charge transfer from Li to the WS2/graphene heterostructure further enhances its metallic character. Moreover, the Li binding energy in this heterostructure is higher than that of the Li metal's cohesive energy, significantly reducing the possibility of Li-dendrite formation in this WS2/graphene electrode. Ab initio molecular dynamics (AIMD) simulations of the lithiated WS2/graphene heterostructure show the system's thermal stability. Additionally, we explore the effect of heteroatom doping (boron (B) and nitrogen (N)) on the graphene layer of the heterostructure and its impact on Li-adsorption ability. The results suggest that B-doping strengthens the Li-adsorption energy. Notably, the calculated open-circuit voltage (OCV) and Li-diffusion energy barrier further support the potential of this heterostructure as a promising anode material for LIBs.
Collapse
Affiliation(s)
- T. K. Bijoy
- Indo-Korea
Science and Technology Center (IKST), Third Floor, Windsor, NCC Urban Building, New Airport Road, Yelahanka, Bengaluru 560065, India
| | - Sooryadas Sudhakaran
- Mechanical
Engineering Department, National Institute
of Technology Calicut, Calicut, Kerala 673601, India
| | - Seung-Cheol Lee
- Indo-Korea
Science and Technology Center (IKST), Third Floor, Windsor, NCC Urban Building, New Airport Road, Yelahanka, Bengaluru 560065, India
- Electronic
Materials Research Center, KIST, Seoul 136-791, South Korea
| |
Collapse
|
17
|
Kwon IS, Kwak IH, Kim JY, Lee SJ, Sial QA, Ihsan J, Lee KS, Yoo SJ, Park J, Kang HS. 2H-2M Phase Control of WSe 2 Nanosheets by Se Enrichment Toward Enhanced Electrocatalytic Hydrogen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307867. [PMID: 38009401 DOI: 10.1002/adma.202307867] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/23/2023] [Indexed: 11/28/2023]
Abstract
The phase control of transition metal dichalcogenides (TMDs) is an intriguing approach for tuning the electronic structure toward extensive applications. In this study, WSe2 nanosheets synthesized via a colloidal reaction exhibit a phase conversion from semiconducting 2H to metallic 2M under Se-rich growth conditions (i.e., increasing the concentration of Se precursor or lowering the growth temperature). High-resolution scanning transmission electron microscopy images are used to identify the stacking sequence of the 2M phase, which is distinctive from that of the 1T' phase. First-principles calculations employing various Se-rich models (intercalation and substitution) indicated that Se enrichment induces conversion to the 2M phase. The 2M phase WSe2 nanosheets with the Se excess exhibited enhanced electrocatalytic performance in the hydrogen evolution reaction (HER). In situ X-ray absorption fine structure studies suggested that the excess Se atoms in the 2M phase WSe2 enhanced the HER catalytic activity, which is supported by the Gibbs free energy (ΔGH* ) of H adsorption and the Fermi abundance function. These results provide an appealing strategy for phase control of TMD catalysts.
Collapse
Affiliation(s)
- Ik Seon Kwon
- Department of Advanced Materials Chemistry, Korea University, Sejong, 339-700, Republic of Korea
- Beamline Science Team, 4GSR Project Headquarters, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - In Hye Kwak
- Department of Advanced Materials Chemistry, Korea University, Sejong, 339-700, Republic of Korea
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Ju Yeon Kim
- Department of Advanced Materials Chemistry, Korea University, Sejong, 339-700, Republic of Korea
| | - Seung Jae Lee
- Department of Advanced Materials Chemistry, Korea University, Sejong, 339-700, Republic of Korea
| | - Qadeer Akbar Sial
- Department of Advanced Materials Chemistry, Korea University, Sejong, 339-700, Republic of Korea
| | - Junaid Ihsan
- Department of Advanced Materials Chemistry, Korea University, Sejong, 339-700, Republic of Korea
| | - Kug-Seung Lee
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Seung Jo Yoo
- Division of Scientific Instrumentation & Management, Korea Basic Science Institute, Daejeon, 305-806, Republic of Korea
| | - Jeunghee Park
- Department of Advanced Materials Chemistry, Korea University, Sejong, 339-700, Republic of Korea
| | - Hong Seok Kang
- Department of Nano and Advanced Materials, Jeonju University, Chonju, Chonbuk, 55069, Republic of Korea
| |
Collapse
|
18
|
Ali S, Ahmad Shah SS, Sufyan Javed M, Najam T, Parkash A, Khan S, Bajaber MA, Eldin SMM, Tayeb RA, Rahman MM, Qi J. Recent Advances of Transition Metal Dichalcogenides-Based Materials for Energy Storage Devices, in View of Monovalent to Divalent Ions. CHEM REC 2024; 24:e202300145. [PMID: 37358343 DOI: 10.1002/tcr.202300145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/08/2023] [Indexed: 06/27/2023]
Abstract
The fast growth of electrochemical energy storage (EES) systems necessitates using innovative, high-performance electrode materials. Among the various EES devices, rechargeable batteries (RBs) with potential features like high energy density and extensive lifetime are well suited to meet rapidly increasing energy demands. Layered transition metal dichalcogenides (TMDs), typical two dimensional (2D) nanomaterial, are considered auspicious materials for RBs because of their layered structures and large specific surface areas (SSA) that benefit quick ion transportation. This review summarizes and highlights recent advances in TMDs with improved performance for various RBs. Through novel engineering and functionalization used for high-performance RBs, we briefly discuss the properties, characterizations, and electrochemistry phenomena of TMDs. We summarised that engineering with multiple techniques, like nanocomposites used for TMDs receives special attention. In conclusion, the recent issues and promising upcoming research openings for developing TMDs-based electrodes for RBs are discussed.
Collapse
Affiliation(s)
- Salamat Ali
- School of Materials and Energy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Syed Shoaib Ahmad Shah
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology Lanzhou University, Lanzhou, 730000, China
| | - Tayyaba Najam
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Anand Parkash
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830000, China
| | - Shaukat Khan
- Department of Chemical Engineering, College of Engineering, Dhofar University, 400021, Salalah 211, Sultanate of Oman
| | - Majed A Bajaber
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Sayed M M Eldin
- Faculty of Engineering and Technology, Future University in Egypt, New Cairo, 11835, Egypt
| | - Roaa A Tayeb
- Department of Chemistry, College of Science, University of Jeddah, Alfaisaliah, Jeddah, Saudi Arabia
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR)&Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Jing Qi
- School of Materials and Energy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| |
Collapse
|
19
|
Yun Q, Ge Y, Shi Z, Liu J, Wang X, Zhang A, Huang B, Yao Y, Luo Q, Zhai L, Ge J, Peng Y, Gong C, Zhao M, Qin Y, Ma C, Wang G, Wa Q, Zhou X, Li Z, Li S, Zhai W, Yang H, Ren Y, Wang Y, Li L, Ruan X, Wu Y, Chen B, Lu Q, Lai Z, He Q, Huang X, Chen Y, Zhang H. Recent Progress on Phase Engineering of Nanomaterials. Chem Rev 2023. [PMID: 37962496 DOI: 10.1021/acs.chemrev.3c00459] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
As a key structural parameter, phase depicts the arrangement of atoms in materials. Normally, a nanomaterial exists in its thermodynamically stable crystal phase. With the development of nanotechnology, nanomaterials with unconventional crystal phases, which rarely exist in their bulk counterparts, or amorphous phase have been prepared using carefully controlled reaction conditions. Together these methods are beginning to enable phase engineering of nanomaterials (PEN), i.e., the synthesis of nanomaterials with unconventional phases and the transformation between different phases, to obtain desired properties and functions. This Review summarizes the research progress in the field of PEN. First, we present representative strategies for the direct synthesis of unconventional phases and modulation of phase transformation in diverse kinds of nanomaterials. We cover the synthesis of nanomaterials ranging from metal nanostructures such as Au, Ag, Cu, Pd, and Ru, and their alloys; metal oxides, borides, and carbides; to transition metal dichalcogenides (TMDs) and 2D layered materials. We review synthesis and growth methods ranging from wet-chemical reduction and seed-mediated epitaxial growth to chemical vapor deposition (CVD), high pressure phase transformation, and electron and ion-beam irradiation. After that, we summarize the significant influence of phase on the various properties of unconventional-phase nanomaterials. We also discuss the potential applications of the developed unconventional-phase nanomaterials in different areas including catalysis, electrochemical energy storage (batteries and supercapacitors), solar cells, optoelectronics, and sensing. Finally, we discuss existing challenges and future research directions in PEN.
Collapse
Affiliation(s)
- Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Department of Chemical and Biological Engineering & Energy Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yiyao Ge
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Zhenyu Shi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jiawei Liu
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Singapore, 627833, Singapore
| | - Xixi Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - An Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Biao Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Yao Yao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Qinxin Luo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Jingjie Ge
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Yongwu Peng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chengtao Gong
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Meiting Zhao
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Yutian Qin
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Chen Ma
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Gang Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Qingbo Wa
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xichen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Siyuan Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Wei Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Hua Yang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yi Ren
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yongji Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Lujing Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xinyang Ruan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yuxuan Wu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Bo Chen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qipeng Lu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuangchai Lai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Xiao Huang
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
20
|
Chen B, Sui S, He F, He C, Cheng HM, Qiao SZ, Hu W, Zhao N. Interfacial engineering of transition metal dichalcogenide/carbon heterostructures for electrochemical energy applications. Chem Soc Rev 2023; 52:7802-7847. [PMID: 37869994 DOI: 10.1039/d3cs00445g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
To support the global goal of carbon neutrality, numerous efforts have been devoted to the advancement of electrochemical energy conversion (EEC) and electrochemical energy storage (EES) technologies. For these technologies, transition metal dichalcogenide/carbon (TMDC/C) heterostructures have emerged as promising candidates for both electrode materials and electrocatalysts over the past decade, due to their complementary advantages. It is worth noting that interfacial properties play a crucial role in establishing the overall electrochemical characteristics of TMDC/C heterostructures. However, despite the significant scientific contribution in this area, a systematic understanding of TMDC/C heterostructures' interfacial engineering is currently lacking. This literature review aims to focus on three types of interfacial engineering, namely interfacial orientation engineering, interfacial stacking engineering, and interfacial doping engineering, of TMDC/C heterostructures for their potential applications in EES and EEC devices. To accomplish this goal, a combination of experimental and theoretical approaches was used to allow the analysis and summary of the fundamental electrochemical properties and preparation strategies of TMDC/C heterostructures. Moreover, this review highlights the design and utilization of the interfacial engineering of TMDC/C heterostructures for specific EES and EEC devices. Finally, the challenges and opportunities of using interfacial engineering of TMDC/C heterostructures in practical EES and EEC devices are outlined. We expect that this review will effectively guide readers in their understanding, design, and application of interfacial engineering of TMDC/C heterostructures.
Collapse
Affiliation(s)
- Biao Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China.
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, People's Republic of China
| | - Simi Sui
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China.
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, People's Republic of China
| | - Fang He
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China.
| | - Chunnian He
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China.
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, People's Republic of China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, People's Republic of China
| | - Hui-Ming Cheng
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, People's Republic of China
| | - Shi-Zhang Qiao
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
| | - Wenbin Hu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China.
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, People's Republic of China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, People's Republic of China
| | - Naiqin Zhao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China.
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, People's Republic of China
| |
Collapse
|
21
|
Goswami T, Yadav DK, Bhatt H, Kaur G, Ghosh HN. Temperature dependent charge carrier dynamics in 2D ternary Cu2MoS4 nanoflakes: An effect of electron-phonon coupling. J Chem Phys 2023; 159:174705. [PMID: 37921251 DOI: 10.1063/5.0165985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
Two-dimensional transition metal chalcogenides (2D TMCs) like MoS2, WS2 etc., have established significant dominance in the field of nanoscience and nanotechnology, owing to their unique properties like strong light-matter interaction, high carrier mobility, large photo-responsivity etc. Despite the widespread utilization of these binary TMCs, their potential in the advancement of the optoelectronic research is limited due to the constraints in band tuning and charge carrier lifetime. To overcome these limitations, ternary transition metal chalcogenides have emerged as promising alternatives. Although, the optical properties of these materials have never been explored properly. Herein, we have investigated one such promising member of this group, Cu2MoS4 (CMS) using both steady state and time-resolved spectroscopic techniques. The material exhibits a broad range of visible light absorption, peaking at 576 nm. Photoluminescence spectroscopy confirmed the presence of both band gap emission and trap state-mediated emissions. Transient absorption spectroscopy unraveled the excited state charge carrier dynamics of CMS in sub-ps timescale, upon irradiation of visible light. We found significant influence of the trap mediated recombination, while Auger process being dominant at high charge density. We extended our study in a wide temperature range (5-300 K), which reveals the impact of electron-phonon coupling strength on the band gap and charge carrier dynamics of this material. This detailed study would draw more attention toward the unexplored optical properties of ternary 2D chalcogenides and will open new avenues for the construction of 2D material-based optical devices.
Collapse
Affiliation(s)
- Tanmay Goswami
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Dharmendra Kumar Yadav
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Himanshu Bhatt
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Gurpreet Kaur
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Hirendra N Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha 752050, India
| |
Collapse
|
22
|
Qiao P, Xia J, Li X, Li Y, Cao J, Zhang Z, Lu H, Meng Q, Li J, Meng XM. Epitaxial van der Waals contacts of 2D TaSe 2-WSe 2 metal-semiconductor heterostructures. NANOSCALE 2023; 15:17036-17044. [PMID: 37846513 DOI: 10.1039/d3nr03538g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
The electronic contact between two-dimensional (2D) transition metal dichalcogenide (TMD) semiconductors and metal electrodes is a formidable challenge due to the undesired Schottky barrier, which severely limits the electrical performance of TMD devices and impedes the exploration of their unconventional physical properties and potential electronic applications. In this study, we report a two-step chemical vapor deposition (CVD) growth of 2D TaSe2-WSe2 metal-semiconductor heterostructures. Raman mapping confirms the precise spatial modulation of the as-grown 2D TaSe2-WSe2 heterostructures. Transmission electron microscopy (TEM) characterization reveals that this two-step method provides a high-quality and clean interface of the 2D TaSe2-WSe2 heterostructures. Meanwhile, the upper 1T-TaSe2 is formed heteroepitaxially on/around the pre-synthesized 2H-WSe2 monolayers, exhibiting an epitaxial relationship of (20-20)TaSe2//(20-20)WSe2 and [0001]TaSe2//[0001]WSe2. Furthermore, characterization studies using a Kelvin probe force microscope (KPFM) and electrical transport measurements present compelling evidence that the 2D metal-semiconductor heterostructures under investigation can improve the performance of electrical devices. These results bear substantial significance in augmenting the properties of field-effect transistors (FETs), leading to notable improvements in FET mobility and on/off ratio. Our study not only broadens the horizons of direct growth of high-quality 2D metal-semiconductor heterostructures but also sheds light on potential applications in future high-performance integrated circuits.
Collapse
Affiliation(s)
- Peiyu Qiao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- Centre of Material Science and Optoelectronic Engineering, University of Chinese Academy of Science, Beijing, 10049, P. R. China
| | - Jing Xia
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- Centre of Material Science and Optoelectronic Engineering, University of Chinese Academy of Science, Beijing, 10049, P. R. China
| | - Xuanze Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- Centre of Material Science and Optoelectronic Engineering, University of Chinese Academy of Science, Beijing, 10049, P. R. China
| | - Yuye Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- Centre of Material Science and Optoelectronic Engineering, University of Chinese Academy of Science, Beijing, 10049, P. R. China
| | - Jianyu Cao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- Centre of Material Science and Optoelectronic Engineering, University of Chinese Academy of Science, Beijing, 10049, P. R. China
| | - Zhongshi Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- Centre of Material Science and Optoelectronic Engineering, University of Chinese Academy of Science, Beijing, 10049, P. R. China
| | - Heng Lu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- Centre of Material Science and Optoelectronic Engineering, University of Chinese Academy of Science, Beijing, 10049, P. R. China
| | - Qing Meng
- Centre of Material Science and Optoelectronic Engineering, University of Chinese Academy of Science, Beijing, 10049, P. R. China
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jiangtao Li
- Centre of Material Science and Optoelectronic Engineering, University of Chinese Academy of Science, Beijing, 10049, P. R. China
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xiang-Min Meng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- Centre of Material Science and Optoelectronic Engineering, University of Chinese Academy of Science, Beijing, 10049, P. R. China
| |
Collapse
|
23
|
Yang X, Shu Y, Takada R, Taniguchi Y, Miyake K, Uchida Y, Nishiyama N. Facile and Cost-effective Synthesis of CoP@N-doped Carbon with High Catalytic Performance for Electrochemical Hydrogen Evolution Reaction. Chem Asian J 2023; 18:e202300534. [PMID: 37545336 DOI: 10.1002/asia.202300534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 08/08/2023]
Abstract
The manufacture of efficient and low-cost hydrogen evolution reaction (HER) catalysts is regarded as a critical solution to achieve carbon neutrality. Herein, we developed an economical method to synthesize a CoP-anchored N-doped carbon catalyst via one-step pyrolysis using inexpensive starting materials (cobalt ion salt, phytic acid, and glycine). The size of the CoP nanoparticles was controlled by adjusting the Co/P ratio of the catalysts. Nanoscale CoP particles with adequate exposure to active sites were uniformly anchored on the surface of the conductive nitrogen-doped carbon substrate, ensuring the rapid transfer of electrons and species. When Co/P=0.89, the as-made catalyst exhibited outstanding HER activity, with an extraordinarily low overpotential of 202 mV at 10 mA cm-2 and long-term stability.
Collapse
Affiliation(s)
- Xinran Yang
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Yasuhiro Shu
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Ryuji Takada
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Yurika Taniguchi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Koji Miyake
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University Suita, Osaka, 565-0871, Japan
| | - Yoshiaki Uchida
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Norikazu Nishiyama
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University Suita, Osaka, 565-0871, Japan
| |
Collapse
|
24
|
Guan Z, Shen Z, Xue Y, Zhong T, Wu X, Song C. Electronic properties, skyrmions and bimerons in Janus CrXY (X, Y = S, Se, Te, Cl, Br, I, and X ≠ Y) monolayers. Phys Chem Chem Phys 2023; 25:24968-24975. [PMID: 37697805 DOI: 10.1039/d3cp02470a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Using first-principles calculations, we systematically investigate the electronic properties, chiral skyrmions and bimerons in two-dimensional (2D) Janus CrXY (X, Y = S, Se, Te, Cl, Br, I, and X ≠ Y) monolayers. We found that the categories of nonmagnetic atoms (X and Y in CrXY) determine whether CrXY is a ferromagnetic metal or a semiconductor. Unexpectedly, the CrBrS monolayer of these CrXY materials is a room temperature ferromagnetic semiconductor with a Curie temperature of 303 K, and it possesses an off-plane magnetic anisotropy energy of 0.06 meV. Besides, a strong Dzyaloshinskii-Moriya interaction (DMI) of 3.10 meV is found in CrTeI and is mainly induced by the strong spin-orbit coupling of the nonmagnetic atoms Te(I) rather than that of the magnetic Cr atoms. Furthermore, using micromagnetic simulations, skyrmions can be stabilized in CrSeBr without external magnetic fields. More importantly, the bimerons in CrSeCl with in-plane magnetic anisotropy can be transformed into skyrmions or a ferromagnetic state by controlling the direction of external magnetic fields. Our work investigates fourteen kinds of Janus monolayers, serving as guidelines for materials research on DMI, skyrmions and bimerons.
Collapse
Affiliation(s)
- Zhihao Guan
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Zhong Shen
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Yufei Xue
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Tingting Zhong
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Xiaoping Wu
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Changsheng Song
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
- Longgang Institute of Zhejiang Sci-Tech University, Wenzhou, 325802, China
| |
Collapse
|
25
|
Hamsa AP, Arulprakasam M, Unni SM. Electrochemical nitrogen fixation on single metal atom catalysts. Chem Commun (Camb) 2023; 59:10689-10710. [PMID: 37584339 DOI: 10.1039/d3cc02229c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
The electrochemical reduction of nitrogen (eNRR) offers a promising alternative to the Haber-Bosch (H-B) process for producing ammonia under moderate conditions. However, the inertness of dinitrogen and the competing hydrogen evolution reaction pose significant challenges for eNRR. Thus, developing more efficient electrocatalysts requires a deeper understanding of the underlying mechanistic reactions and electrocatalytic activity. Single atom catalysts, which offer tunable catalytic properties and increased selectivity, have emerged as a promising avenue for eNRR. Carbon and metal-based substrates have proven effective for dispersing highly active single atoms that can enhance eNRR activity. In this review, we explore the use of atomically dispersed single atoms on different substrates for eNRR from both conceptual and experimental perspectives. The review is divided into four sections: the first section describes eNRR mechanistic pathways, the second section focuses on single metal atom catalysts (SMACs) with metal atoms dispersed on carbon substrates for eNRR, the third section covers SMACs with metal atoms dispersed on non-carbon substrates for eNRR, and the final section summarizes the remaining challenges and future scope of eNRR for green ammonia production.
Collapse
Affiliation(s)
- Ashida P Hamsa
- CSIR-Central Electrochemical Research Institute Madras Unit, CSIR Madras Complex, Taramani, Chennai 600113, Tamil Nadu, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Muraliraj Arulprakasam
- CSIR-Central Electrochemical Research Institute Madras Unit, CSIR Madras Complex, Taramani, Chennai 600113, Tamil Nadu, India.
| | - Sreekuttan M Unni
- CSIR-Central Electrochemical Research Institute Madras Unit, CSIR Madras Complex, Taramani, Chennai 600113, Tamil Nadu, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
26
|
Jiao H, Wang C, Zhang ZY, Song YF, Feng BQ, Na P, Wang ZL. Ultrafine NiFe-Based (Oxy)Hydroxide Nanosheet Arrays with Rich Edge Planes and Superhydrophilic-Superaerophobic Characteristics for Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301609. [PMID: 37116125 DOI: 10.1002/smll.202301609] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/29/2023] [Indexed: 06/19/2023]
Abstract
NiFe-based (oxy)hydroxides are the benchmark catalysts for the oxygen evolution reaction (OER) in alkaline medium, however, it is still challenging to control their structures and compositions. Herein, molybdates (NiFe(MoO4 )x ) are applied as unique precursors to synthesize ultrafine Mo modified NiFeOx Hy (oxy)hydroxide nanosheet arrays. The electrochemical activation process enables the molybdate ions (MoO4 2- ) in the precursors gradually dissolve, and at the same time, hydroxide ions (OH- ) in the electrolyte diffuse into the precursor and react with Ni2+ and Fe3+ ions in confined space to produce ultrafine NiFeOx Hy (oxy)hydroxides nanosheets (<10 nm), which are densely arranged into microporous arrays and maintain the rod-like morphology of the precursor. Such dense ultrafine nanosheet arrays produce rich edge planes on the surface of NiFeOx Hy (oxy)hydroxides to expose more active sites. More importantly, the capillary phenomenon of microporous structures and hydrophilic hydroxyl groups induce the superhydrophilicity and the rough surface produces the superaerophobic characteristic for bubbles. With these advantages, the optimized catalyst exhibits excellent performance for OER, with a small overpotential of 182 mV at 10 mA cm-2 and long-term stability (200 h) at 200 mA cm-2 . Theoretical calculations show that the modification of Mo enhances the electron delocalization and optimizes the adsorption of intermediates.
Collapse
Affiliation(s)
- Han Jiao
- Tianjin Laboratory of Mass Transfer & Separation Process, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, China
| | - Chun Wang
- Tianjin Laboratory of Mass Transfer & Separation Process, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, China
| | - Zi-Yang Zhang
- Tianjin Key Laboratory of Applied Catalysis Science & Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, China
| | - Yi-Fu Song
- Tianjin Key Laboratory of Applied Catalysis Science & Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, China
| | - Bai-Qi Feng
- Tianjin Laboratory of Mass Transfer & Separation Process, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, China
| | - Ping Na
- Tianjin Laboratory of Mass Transfer & Separation Process, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, China
| | - Zhong-Li Wang
- Tianjin Key Laboratory of Applied Catalysis Science & Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, China
| |
Collapse
|
27
|
Huang X, Jia L, Song X, Chen Y, Song Y, Yang K, Guo JG, Huang Y, Liu L, Wang Y. Observation of Two-Dimensional Type-II Superconductivity in Bulk 3R-TaSe 2 by Scanning Tunneling Spectroscopy. J Phys Chem Lett 2023; 14:7235-7240. [PMID: 37552580 DOI: 10.1021/acs.jpclett.3c01730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Here we report a low-temperature and vector-magnetic-field scanning tunneling microscopy/spectroscopy (STM/S) study on 3R-TaSe2. The sample surface was obtained by exfoliating a bulk 3R-TaSe2 single crystal in an ultrahigh-vacuum (UHV) chamber and then transferred in situ to STM. It was observed that the topmost layer shows a 3 × 3 charge density wave pattern at T = 4.2 K with metallic character in STS. The electronic characterization study by variable-temperature and magnetic field STS revealed that 3R-TaSe2 behaves as a type-II superconductor. More intriguingly, such superconductivity (SC) can survive under strong in-plane magnetic fields even up to 2.5 T and out-of-plane magnetic fields up to 0.7 T, exhibiting an anisotropic superconducting property. Temperature-dependent STS showed that 3R-TaSe2 undergoes a transition above 0.58 K. Our results may be important for understanding the intriguing SC properties of the 3R-phase van der Waals materials.
Collapse
Affiliation(s)
- Xinyu Huang
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
| | - Liangguang Jia
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
| | - Xuan Song
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
| | - Yaoyao Chen
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
| | - Yanpeng Song
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Kai Yang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jian-Gang Guo
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuan Huang
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
| | - Liwei Liu
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
| | - Yeliang Wang
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
28
|
Ge Y, Huang B, Li L, Yun Q, Shi Z, Chen B, Zhang H. Structural Transformation of Unconventional-Phase Materials. ACS NANO 2023. [PMID: 37428980 DOI: 10.1021/acsnano.3c01922] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The structural transformation of materials, which involves the evolution of different structural features, including phase, composition, morphology, etc., under external conditions, represents an important fundamental phenomenon and has drawn substantial research interest. Recently, materials with unconventional phases that are different from their thermodynamically stable ones have been demonstrated to possess distinct properties and compelling functions and can further serve as starting materials for structural transformation studies. The identification and mechanism study of the structural transformation process of unconventional-phase starting materials can not only provide deep insights into their thermodynamic stability in potential applications but also offer effective approaches for the synthesis of other unconventional structures. Here, we briefly summarize the recent research progress on the structural transformation of some typical starting materials with various unconventional phases, including the metastable crystalline phase, amorphous phase, and heterophase, induced by different approaches. The importance of unconventional-phase starting materials in the structural modulation of resultant intermediates and products will be highlighted. The employment of diverse in situ/operando characterization techniques and theoretical simulations in studying the mechanism of the structural transformation process will also be introduced. Finally, we discuss the existing challenges in this emerging research field and provide some future research directions.
Collapse
Affiliation(s)
- Yiyao Ge
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Biao Huang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Lujiang Li
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Zhenyu Shi
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Bo Chen
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
29
|
Li Q, Wu X, Mu S, He C, Ren X, Luo X, Adeli M, Han X, Ma L, Cheng C. Microenvironment Restruction of Emerging 2D Materials and their Roles in Therapeutic and Diagnostic Nano-Bio-Platforms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207759. [PMID: 37129318 PMCID: PMC10369261 DOI: 10.1002/advs.202207759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/30/2023] [Indexed: 05/03/2023]
Abstract
Engineering advanced therapeutic and diagnostic nano-bio-platforms (NBPFs) have emerged as rapidly-developed pathways against a wide range of challenges in antitumor, antipathogen, tissue regeneration, bioimaging, and biosensing applications. Emerged 2D materials have attracted extensive scientific interest as fundamental building blocks or nanostructures among material scientists, chemists, biologists, and doctors due to their advantageous physicochemical and biological properties. This timely review provides a comprehensive summary of creating advanced NBPFs via emerging 2D materials (2D-NBPFs) with unique insights into the corresponding molecularly restructured microenvironments and biofunctionalities. First, it is focused on an up-to-date overview of the synthetic strategies for designing 2D-NBPFs with a cross-comparison of their advantages and disadvantages. After that, the recent key achievements are summarized in tuning the biofunctionalities of 2D-NBPFs via molecularly programmed microenvironments, including physiological stability, biocompatibility, bio-adhesiveness, specific binding to pathogens, broad-spectrum pathogen inhibitors, stimuli-responsive systems, and enzyme-mimetics. Moreover, the representative therapeutic and diagnostic applications of 2D-NBPFs are also discussed with detailed disclosure of their critical design principles and parameters. Finally, current challenges and future research directions are also discussed. Overall, this review will provide cutting-edge and multidisciplinary guidance for accelerating future developments and therapeutic/diagnostic applications of 2D-NBPFs.
Collapse
Affiliation(s)
- Qian Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Xizheng Wu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Shengdong Mu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Chao He
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Xiancheng Ren
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Xianglin Luo
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Mohsen Adeli
- Department of Organic ChemistryFaculty of ChemistryLorestan UniversityKhorramabad68137‐17133Iran
- Department of Chemistry and BiochemistryFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Xianglong Han
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Lang Ma
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Chong Cheng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
- Department of Chemistry and BiochemistryFreie Universität BerlinTakustrasse 314195BerlinGermany
| |
Collapse
|
30
|
Muller SE, Prange MP, Lu Z, Rosenthal WS, Bilbrey JA. An open database of computed bulk ternary transition metal dichalcogenides. Sci Data 2023; 10:336. [PMID: 37253748 DOI: 10.1038/s41597-023-02103-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/24/2023] [Indexed: 06/01/2023] Open
Abstract
We present a dataset of structural relaxations of bulk ternary transition metal dichalcogenides (TMDs) computed via plane-wave density functional theory (DFT). We examined combinations of up to two chalcogenides with seven transition metals from groups 4-6 in octahedral (1T) or trigonal prismatic (2H) coordination. The full dataset consists of 672 unique stoichiometries, with a total of 50,337 individual configurations generated during structural relaxation. Our motivations for building this dataset are (1) to develop a training set for the generation of machine and deep learning models and (2) to obtain structural minima over a range of stoichiometries to support future electronic analyses. We provide the dataset as individual VASP xml files as well as all configurations encountered during relaxations collated into an ASE database with the corresponding total energy and atomic forces. In this report, we discuss the dataset in more detail and highlight interesting structural and electronic features of the relaxed structures.
Collapse
Affiliation(s)
- Scott E Muller
- Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Micah P Prange
- Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Zexi Lu
- Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | | | - Jenna A Bilbrey
- Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| |
Collapse
|
31
|
Solangi NH, Mazari SA, Mubarak NM, Karri RR, Rajamohan N, Vo DVN. Recent trends in MXene-based material for biomedical applications. ENVIRONMENTAL RESEARCH 2023; 222:115337. [PMID: 36682442 DOI: 10.1016/j.envres.2023.115337] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/03/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
MXene is a magical class of 2D nanomaterials and emerging in many applications in diverse fields. Due to the multiple advantageous characteristics of its fundamental components, such as structural, physicochemical, optical, and occasionally even biological characteristics. However, it is limited in the biomedical industry due to poor physiological stability, decomposition rate, and lack of controlled and sustained drug release. These limitations can be overcome when MXene forms composites with other 2D materials. The efficiency of pure MXene in biomedicine is inferior to that of MXene-based composites. The availability of functionality on the exterior part of MXene has a key role in the modification of their surface and their characteristics. This review provides an extensive discussion on the synthesizing of MXene and the role of the surface functionalities on the efficiency of MXene. In addition, a detailed discussion of the biomedical applications of MXene, including antibacterial activity, regenerative medicine, CT scan capability, drug delivery, diagnostics, MRI and biosensing capability. Furthermore, an outline of the future problems and challenges of MXene-based materials for biomedical applications was narrated. Thus, these salient features showcase the potential of MXene-based material and will be a breakthrough in biomedical applications in the near future.
Collapse
Affiliation(s)
- Nadeem Hussain Solangi
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| | - Shaukat Ali Mazari
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan.
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| | - Natarajan Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, P C-311, Oman
| | - Dai-Viet N Vo
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, 755414, Viet Nam
| |
Collapse
|
32
|
Ramadan A, Adam Hamouda H, Zhu X, Ding J, Pei H, Liu N, Guo R, Mo Z. Fabrication of Co2Mn3O8@NiMnLDH nanocomposite Array on Nickel Foam for Oxygen Evaluation Reaction. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
33
|
Ullah N, Guziejewski D, Yuan A, Shah SA. Recent Advancement and Structural Engineering in Transition Metal Dichalcogenides for Alkali Metal Ions Batteries. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2559. [PMID: 37048850 PMCID: PMC10095088 DOI: 10.3390/ma16072559] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Currently, transition metal dichalcogenides-based alkaline metal ion batteries have been extensively investigated for renewable energy applications to overcome the energy crisis and environmental pollution. The layered morphologys with a large surface area favors high electrochemical properties. Thermal stability, mechanical structural stability, and high conductivity are the primary features of layered transition metal dichalcogenides (L-TMDs). L-TMDs are used as battery materials and as supporters for other active materials. However, these materials still face aggregation, which reduces their applicability in batteries. In this review, a comprehensive study has been undertaken on recent advancements in L-TMDs-based materials, including 0D, 1D, 2D, 3D, and other carbon materials. Types of structural engineering, such as interlayer spacing, surface defects, phase control, heteroatom doping, and alloying, have been summarized. The synthetic strategy of structural engineering and its effects have been deeply discussed. Lithium- and sodium-ion battery applications have been summarized in this study. This is the first review article to summarize different morphology-based TMDs with their intrinsic properties for alkali metal ion batteries (AMIBs), so it is believed that this review article will improve overall knowledge of TMDs for AMIBS applications.
Collapse
Affiliation(s)
- Nabi Ullah
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 90-403 Lodz, Poland
| | - Dariusz Guziejewski
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 90-403 Lodz, Poland
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Sayyar Ali Shah
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| |
Collapse
|
34
|
Zhang B, Zhang W, Jin H, Wan J. Research Progress of Cathode Materials for Rechargeable Aluminum Batteries in AlCl
3
/[EMIm]Cl and Other Electrolyte Systems. ChemistrySelect 2023. [DOI: 10.1002/slct.202204575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
- Boya Zhang
- College of Materials Science & Engineering Qingdao University of Science & Technology Qingdao 266042, Shandong P. R. China
| | - Wenyang Zhang
- Kagami Memorial Research Institute for Materials Science and Technology Waseda University 2-8-26 Nishiwaseda, Shinjuku-ku Tokyo 169-0051 Japan
| | - Huixin Jin
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering Shandong University Jinan 250061 PR China
| | - Jiaqi Wan
- College of Materials Science & Engineering Qingdao University of Science & Technology Qingdao 266042, Shandong P. R. China
| |
Collapse
|
35
|
Lei T, Gu M, Fu H, Wang J, Wang L, Zhou J, Liu H, Lu B. Bond modulation of MoSe 2+x driving combined intercalation and conversion reactions for high-performance K cathodes. Chem Sci 2023; 14:2528-2536. [PMID: 36908953 PMCID: PMC9993863 DOI: 10.1039/d2sc07121e] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/09/2023] [Indexed: 02/12/2023] Open
Abstract
The urgent demand for large-scale global energy storage systems and portable electronic devices is driving the need for considerable energy density and stable batteries. Here, Se atoms are introduced between MoSe2 layers (denoted as MoSe2+x ) by bond modulation to produce a high-performance cathode for potassium-ion batteries. The introduced Se atoms form covalent Se-Se bonds with the Se in MoSe2, and the advantages of bond modulation are as follows: (i) the interlayer spacing is enlarged which increases the storage space of K+; (ii) the system possesses a dual reaction mechanism, and the introduced Se can provide an additional conversion reaction when discharged to 0.5 V, which improves the capacity further; (iii) the Se atoms confined between MoSe2 layers do not give rise to the shuttle effect. MoSe2+x is compounded with rGO (MoSe2+x -rGO) as a cathode for potassium-ion batteries and displays an ultrahigh capacity (235 mA h g-1 at 100 mA g-1), a long cycle life (300 cycles at 100 mA g-1) and an extraordinary rate performance (135 mA h g-1 at 1000 mA g-1 and 89 mA h g-1 at 2000 mA g-1). Pairing the MoSe2+x -rGO cathode with graphite, the full cell delivers considerable energy density compared to other K cathode materials. The MoSe2+x -rGO cathode also exhibits excellent electrochemical performance for lithium-ion batteries. This study on bond modulation driving combined intercalation and conversion reactions offers new insights into the design of high-performance K cathodes.
Collapse
Affiliation(s)
- Ting Lei
- School of Physics and Electronics, Hunan University Changsha 410082 P. R. China
| | - Mingyuan Gu
- School of Physics and Electronics, Hunan University Changsha 410082 P. R. China
| | - Hongwei Fu
- School of Physics and Electronics, Hunan University Changsha 410082 P. R. China
| | - Jue Wang
- College of Chemistry and Chemical Engineering, Central South University Changsha 410083 P. R. China
| | - Longlu Wang
- Jiangsu Province Engineering Research Center for Fabrication and Application of Special Optical Fiber Materials and Devices, Nanjing University of Posts & Telecommunications Nanjing 210003 P. R. China
| | - Jiang Zhou
- School of Materials Science and Engineering, Central South University Changsha 410083 P. R. China
| | - Huan Liu
- Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology Xiangtan 411201 P. R. China
| | - Bingan Lu
- School of Physics and Electronics, Hunan University Changsha 410082 P. R. China
| |
Collapse
|
36
|
Singh M, Nguyen TT, P MA, Ngo QP, Kim DH, Kim NH, Lee JH. Metallic Metastable Hybrid 1T'/1T Phase Triggered Co,PSnS 2 Nanosheets for High Efficiency Trifunctional Electrocatalyst. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206726. [PMID: 36599644 DOI: 10.1002/smll.202206726] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/29/2022] [Indexed: 06/17/2023]
Abstract
The development of trifunctional electrocatalyst for oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) with deeply understanding the mechanism to enhance the electrochemical performance is still a challenging task. In this work, the distorted metastable hybrid-phase induced 1T'/1T Co,PSnS2 nanosheets on carbon cloth (1T'/1T Co,PSnS2 @CC) is prepared and examined. The density functional theoretical (DFT) calculation suggests that the distorted 1T'/1T Co,PSnS2 can provide excellent conductivity and strong hydrogen adsorption ability. The electronic structure tuning and enhancement mechanism of electrochemical performance are investigated and discussed. The optimal 1T'/1T Co,PSnS2 @CC catalyst exhibits low overpotential of ≈94 and 219.7 mV at 10 mA cm-2 for HER and OER, respectively. Remarkably, the catalyst exhibits exceptional ORR activity with small onset potential value (≈0.94 V) and half-wave potential (≈0.87 V). Most significantly, the 1T'/1T Co,PSnS2 ||Co,PSnS2 electrolyzer required small cell voltages of ≈1.53, 1.70, and 1.82 V at 10, 100, and 400 mA cm-2 , respectively, which are better than those of state-of-the-art Pt-C||RuO2 (≈1.56 and 1.84 V at 10 and 100 mA cm-2 ). The present study suggests a new approach for the preparation of large-scalable, high performance hierarchical 3D next-generation trifunctional electrocatalysts.
Collapse
Affiliation(s)
- Manjinder Singh
- Advanced Materials Institute of Nano Convergence Technology (BK21 FOUR), Department of Nano Convergence Technology, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Thanh Tuan Nguyen
- Advanced Materials Institute of Nano Convergence Technology (BK21 FOUR), Department of Nano Convergence Technology, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Muthu Austeria P
- Division of Science Education, Graduate School of Department of Energy Storage/Conversion Engineering, Jeonbuk National University Jeonju, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Quynh Phuong Ngo
- Advanced Materials Institute of Nano Convergence Technology (BK21 FOUR), Department of Nano Convergence Technology, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Do Hwan Kim
- Division of Science Education, Graduate School of Department of Energy Storage/Conversion Engineering, Jeonbuk National University Jeonju, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Nam Hoon Kim
- Advanced Materials Institute of Nano Convergence Technology (BK21 FOUR), Department of Nano Convergence Technology, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Joong Hee Lee
- Advanced Materials Institute of Nano Convergence Technology (BK21 FOUR), Department of Nano Convergence Technology, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
- Carbon Composite Research Centre, Department of Polymer Nano Science and Technology, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| |
Collapse
|
37
|
Kwon IS, Lee SJ, Kim JY, Kwak IH, Zewdie GM, Yoo SJ, Kim JG, Lee KS, Park J, Kang HS. Composition-Tuned (MoWV)Se 2 Ternary Alloy Nanosheets as Excellent Hydrogen Evolution Reaction Electrocatalysts. ACS NANO 2023; 17:2968-2979. [PMID: 36656992 DOI: 10.1021/acsnano.2c11528] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ternary alloying of transition metal dichalcogenides (TMDs) has the potential for altering the electronic structure of materials to suit electrochemical applications. Herein, we synthesized (MoWV)Se2 nanosheets at various compositions via a colloidal reaction. The mole fraction of V atoms (xV) was successfully increased up to 0.8, producing a metallic phase that is highly durable against hydration. Furthermore, we synthesized (MoW)Se2 nanosheets over the entire composition range. The atomic mixing of the ternary alloys is more random than that of the constitutional binary alloys, as supported by first-principles calculations. Compared to binary alloying, ternary alloying more effectively enhanced the electrocatalytic activity for acidic hydrogen evolution reaction (HER). The HER performance increased upon increasing xV to 0.44, and thereafter, it declined at higher xV primarily owing to surface oxidation. The analysis of Gibbs free energy for H adsorption revealed that ternary alloying strongly activates the basal plane for the HER. VSe2 contains numerous sites favorable for H adsorption, facilitating the composition-dependent HER. These results provide a pioneering strategy for designing multicomponent TMD catalysts that maximize the advantages of each component.
Collapse
Affiliation(s)
- Ik Seon Kwon
- Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Republic of Korea
| | - Seung Jae Lee
- Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Republic of Korea
| | - Ju Yeon Kim
- Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Republic of Korea
| | - In Hye Kwak
- Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Republic of Korea
| | - Getasew Mulualem Zewdie
- Institute for Application of Advanced Materials, Jeonju University, Chonju, Chonbuk 55069, Republic of Korea
| | - Seung Jo Yoo
- Division of Scientific Instrumentation & Management, Korea Basic Science Institute, Daejeon 305-806, Republic of Korea
| | - Jin-Gyu Kim
- Division of Scientific Instrumentation & Management, Korea Basic Science Institute, Daejeon 305-806, Republic of Korea
| | - Kug-Seung Lee
- Pohang Accelerator Laboratory, 80 Jigokro-127-beongil, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jeunghee Park
- Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Republic of Korea
| | - Hong Seok Kang
- Department of Nano and Advanced Materials, Jeonju University, Chonju, Chonbuk 55069, Republic of Korea
| |
Collapse
|
38
|
Wei X, Liu C, Qin H, Ye Z, Liu X, Zong B, Li Z, Mao S. Fast, specific, and ultrasensitive antibiotic residue detection by monolayer WS 2-based field-effect transistor sensor. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130299. [PMID: 36356526 DOI: 10.1016/j.jhazmat.2022.130299] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/16/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Antibiotic residues cause increasing concern in environmental ecology and public health, which needs efficient analysis strategy for monitoring and control. In this study, a fast, specific, and ultrasensitive sensor based on field-effect transistor (FET) has been proposed for the detection of ampicillin (AMP). The sensor involves monolayer tungsten disulfide (WS2) nanosheet as the sensing channel, single-stranded DNA (ssDNA) as the sensing probe, and gold nanoparticle (Au NP) as the linker. The WS2/Au/ssDNA FET sensor responds rapidly to AMP in a wide linear detection range (10-12-10-6 M) and has low limit of detection (0.556 pM), which meets the permissible standards of AMP in water and food. The sensing mechanism study suggests that the excellent sensor response results from the increased number of negative charges in the Debye length and the consequent accumulation of holes in WS2 channel after the addition of AMP. Moreover, satisfactory sensing performance was confirmed in real water samples, indicating the potential application of the proposed method in practical AMP detection. The reported FET sensing strategy provides new insights in antibiotic analysis for risk assessment and control.
Collapse
Affiliation(s)
- Xiaojie Wei
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Chengbin Liu
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Hehe Qin
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Ziwei Ye
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xinru Liu
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Boyang Zong
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zhuo Li
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shun Mao
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
39
|
Ferrando G, Gardella M, Zambito G, Barelli M, Chowdhury D, Giordano MC, Buatier de Mongeot F. Flat-optics hybrid MoS 2/polymer films for photochemical conversion. NANOSCALE 2023; 15:1953-1961. [PMID: 36625311 DOI: 10.1039/d2nr05004h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Novel light harvesting platforms and strategies are crucial to develop renewable photon to energy conversion technologies that overcome the current global energy and environmental challenges. Two-dimensional (2D) transition metal dichalcogenide (TMD) semiconductor layers are particularly attractive for photoconversion applications but new ultra-compact photon harvesting schemes are urgently required to mitigate their poor photon absorption properties. Here, we propose a flat-optics scheme based on nanogrooved ultra-thin MoS2 layers conformally grown onto large area (cm2 scale) nanopatterned templates. The subwavelength re-shaping of the 2D-TMD layers promotes the excitation of photonic Rayleigh anomaly (RA) modes, uniquely boosting a strong in-plane electromagnetic confinement. By tailoring the illumination conditions, we demonstrate effective tuning of the photonic anomalies over a broadband visible spectrum across the absorption band of relevant polluting dye molecules. Thanks to the strong photonic in-plane confinement, we achieve a resonant enhancement of the photodissociation rate of methylene blue (MB) molecules, well above a factor of 2. These results highlight the potential of flat-optics photon harvesting schemes for boosting photoconversion efficiency in large-scale hybrid 2D-TMD/polymer layers, with a strong impact in various applications ranging from new-generation photonics to waste water remediation and renewable energy storage.
Collapse
Affiliation(s)
- Giulio Ferrando
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy.
| | - Matteo Gardella
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy.
| | - Giorgio Zambito
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy.
| | - Matteo Barelli
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy.
| | - Debasree Chowdhury
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy.
| | | | | |
Collapse
|
40
|
Sun J, Shengping Zhang BS, Alomar M, Alqarni AS, Najla Alotaibi MS, Badriah Alshahrani MS, Alghamdi AA, Kou Z, Shen W, Chen Y, Zhang J. Recent Advances in the Synthesis of MXene Quantum Dots. CHEM REC 2023:e202200268. [PMID: 36653938 DOI: 10.1002/tcr.202200268] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/26/2022] [Indexed: 01/20/2023]
Abstract
Quantum dots (QDs) with ultrahigh surface-to-volume ratio, abundant edge active sites, forceful quantum confinement and other remarkable physio-chemical properties, have garnered considerable research interest. MXene QDs, as an emerging member of them, have also attracted wide attention in the last six years, and shown great achievements in many fields. This critical review systematically summarizes the various methods for synthesizing MXene QDs. The characteristics and corresponding applications of various MXene QDs are also presented. The advantages and disadvantages of various synthetic methods, and the limitations of corresponding MXene QDs are compared and highlighted. Finally, the challenges and perspectives of synthesizing MXene QDs are proposed. We hope this review will enlighten researchers to the fabrication of more advancing and promising MXene-based QDs with proprietary properties in diverse applications.
Collapse
Affiliation(s)
- Jiuxiao Sun
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - B S Shengping Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Muneerah Alomar
- Department of Physics, College of Sciences, Princess Nourah bint Abdulrahman University, P. O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Areej S Alqarni
- Department of Physics, College of Sciences, Princess Nourah bint Abdulrahman University, P. O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - M S Najla Alotaibi
- Department of Physics, College of Sciences, Princess Nourah bint Abdulrahman University, P. O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - M S Badriah Alshahrani
- Department of Physics, College of Sciences, Princess Nourah bint Abdulrahman University, P. O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Abeer A Alghamdi
- Department of Physics, College of Sciences, Princess Nourah bint Abdulrahman University, P. O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Zongkui Kou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Wangqiang Shen
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Yingquan Chen
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Jian Zhang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| |
Collapse
|
41
|
Zhao C, Han X, Wang S, Pan Z, Tang X, Jiang Z. Violet Phosphorus Nanosheet: A Biocompatible and Stable Platform for Stimuli-Responsive Multimodal Cancer Phototherapy. Adv Healthc Mater 2023; 12:e2201995. [PMID: 36285829 DOI: 10.1002/adhm.202201995] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/18/2022] [Indexed: 01/26/2023]
Abstract
As a functional 2D material, black phosphorus (BP) has garnered wide attention from many researchers in recent years. BP has a wide NIR absorption window and is a promising candidate for cancer phototherapy including photothermal therapy (PTT) and photodynamic therapy (PDT). However, due to its rapid degradation and short shelf-life in conventional water, the application of BP in the field of cancer therapy is limited. Violet phosphorus (VP), the more stable allotrope of phosphorus, has not yet been investigated for its function and biological application. In this study, VP nanosheets are successfully fabricated by liquid-phase exfoliation and demonstrated that their shelf-life in deionized water could be as long as 10 days, which is much longer than that of BP. Through in vivo and in vitro experiments, the PDT, PTT, and catalytic therapeutic effects of VP, as well as its excellent biosafety for the first time are shown. VP effectively inhibits tumor growth without causing major side effects. The current study provides new ideas and strategies for the biological application of 2D sheets of phosphorus isotope and lays the foundation for further studies on exploring the biomedical application of phosphorus isotopes.
Collapse
Affiliation(s)
- Chen Zhao
- School of Life Science, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiao Han
- School of Life Science, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Shanshan Wang
- School of Life Science, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - ZhenYi Pan
- School of Life Science, Beijing University of Chemical Technology, Beijing, 100081, China
| | - Xiaoying Tang
- School of Life Science, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhenqi Jiang
- School of Life Science, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
42
|
Shao X, Yan C, Wang C, Wang C, Cao Y, Zhou Y, Guan P, Hu X, Zhu W, Ding S. Advanced nanomaterials for modulating Alzheimer's related amyloid aggregation. NANOSCALE ADVANCES 2022; 5:46-80. [PMID: 36605800 PMCID: PMC9765474 DOI: 10.1039/d2na00625a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/15/2022] [Indexed: 05/17/2023]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease that brings about enormous economic pressure to families and society. Inhibiting abnormal aggregation of Aβ and accelerating the dissociation of aggregates is treated as an effective method to prevent and treat AD. Recently, nanomaterials have been applied in AD treatment due to their excellent physicochemical properties and drug activity. As a drug delivery platform or inhibitor, various excellent nanomaterials have exhibited potential in inhibiting Aβ fibrillation, disaggregating, and clearing mature amyloid plaques by enhancing the performance of drugs. This review comprehensively summarizes the advantages and disadvantages of nanomaterials in modulating amyloid aggregation and AD treatment. The design of various functional nanomaterials is discussed, and the strategies for improved properties toward AD treatment are analyzed. Finally, the challenges faced by nanomaterials with different dimensions in AD-related amyloid aggregate modulation are expounded, and the prospects of nanomaterials are proposed.
Collapse
Affiliation(s)
- Xu Shao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University 127 Youyi Road Xi'an 710072 China
| | - Chaoren Yan
- School of Medicine, Xizang Minzu University, Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region Xianyang Shaanxi 712082 China
| | - Chao Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University 127 Youyi Road Xi'an 710072 China
| | - Chaoli Wang
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Air Force Medical University 169 Changle West Road Xi'an 710032 China
| | - Yue Cao
- School of the Environment, School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Pollution Control & Resource Reuse, Nanjing University Nanjing 210023 P. R. China
| | - Yang Zhou
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT) Nanjing 210046 China
| | - Ping Guan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University 127 Youyi Road Xi'an 710072 China
| | - Xiaoling Hu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University 127 Youyi Road Xi'an 710072 China
| | - Wenlei Zhu
- School of the Environment, School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Pollution Control & Resource Reuse, Nanjing University Nanjing 210023 P. R. China
| | - Shichao Ding
- School of Mechanical and Materials Engineering, Washington State University Pullman WA 99164 USA
| |
Collapse
|
43
|
Xu T, Li A, Wang S, Tan Y, Cheng X. Phase-Controllable Chemical Vapor Deposition Synthesis of Atomically Thin MoTe 2. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4133. [PMID: 36500756 PMCID: PMC9737202 DOI: 10.3390/nano12234133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Two-dimensional (2D) molybdenum telluride (MoTe2) is attracting increasing attention for its potential applications in electronic, optoelectronic, photonic and catalytic fields, owing to the unique band structures of both stable 2H phase and 1T′ phase. However, the direct growth of high-quality atomically thin MoTe2 with the controllable proportion of 2H and 1T′ phase seems hard due to easy phase transformation since the potential barrier between the two phases is extremely small. Herein, we report a strategy of the phase-controllable chemical vapor deposition (CVD) synthesis for few-layer (<3 layer) MoTe2. Besides, a new understanding of the phase-controllable growth mechanism is presented based on a combination of experimental results and DFT calculations. The lattice distortion caused by Te vacancies or structural strain might make 1T′-MoTe2 more stable. The conditions for 2H to 1T′ phase conversion are determined to be the following: Te monovacancies exceeding 4% or Te divacancies exceeding 8%, or lattice strain beyond 6%. In contrast, sufficient Te supply and appropriate tellurization velocity are essential to obtaining the prevailing 2H-MoTe2. Our work provides a novel perspective on the preparation of 2D transition metal chalcogenides (TMDs) with the controllable proportion of 2H and 1T′ phase and paves the way to their subsequent potential application of these hybrid phases.
Collapse
Affiliation(s)
- Tao Xu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
| | - Aolin Li
- Powder Metallurgy Research Institute, Central South University, Changsha 410073, China
| | - Shanshan Wang
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
| | - Yinlong Tan
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
| | - Xiang’ai Cheng
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
| |
Collapse
|
44
|
Jin X, Jang H, Jarulertwathana N, Kim MG, Hwang SJ. Atomically Thin Holey Two-Dimensional Ru 2P Nanosheets for Enhanced Hydrogen Evolution Electrocatalysis. ACS NANO 2022; 16:16452-16461. [PMID: 36153986 DOI: 10.1021/acsnano.2c05691] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The defect engineering of low-dimensional nanostructured materials has led to increased scientific efforts owing to their high efficiency concerning high-performance electrocatalysts that play a crucial role in renewable energy technologies. Herein, we report an efficient methodology for fabricating atomically thin, holey metal-phosphide nanosheets with excellent electrocatalyst functionality. Two-dimensional, subnanometer-thick, holey Ru2P nanosheets containing crystal defects were synthesized via the phosphidation of monolayer RuO2 nanosheets. Holey Ru2P nanosheets exhibited superior electrocatalytic activity for the hydrogen evolution reaction (HER) compared to that exhibited by nonholey Ru2P nanoparticles. Further, holey Ru2P nanosheets exhibited overpotentials of 17 and 26 mV in acidic and alkaline electrolytes, respectively. Thus, they are among the best-performing Ru-P-based HER catalysts reported to date. In situ spectroscopic investigations indicated that the holey nanosheet morphology enhanced the accumulation of surface hydrogen through the adsorption of protons and/or water, resulting in an increased contribution of the Volmer-Tafel mechanism toward the exceptional HER activity of these ultrathin electrocatalysts.
Collapse
Affiliation(s)
- Xiaoyan Jin
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Haeseong Jang
- PLS-II Beamline Division, PLS-II Department, Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | | | - Min Gyu Kim
- PLS-II Beamline Division, PLS-II Department, Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seong-Ju Hwang
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
45
|
Kwon IS, Kwak IH, Zewdie GM, Lee SJ, Kim JY, Yoo SJ, Kim JG, Park J, Kang HS. MoSe 2 -VSe 2 -NbSe 2 Ternary Alloy Nanosheets to Boost Electrocatalytic Hydrogen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205524. [PMID: 35985986 DOI: 10.1002/adma.202205524] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Alloying of transition metal dichalcogenides (TMDs) is a pioneering method for engineering electronic structures with expanded applications. In this study, MoSe2 -VSe2 -NbSe2 ternary alloy nanosheets are synthesized via a colloidal reaction. The composition is successfully tuned over a wide range to adjust the 2H-1T phase transition. The alloy nanosheets consist of miscible atomic structures at all compositions, which is distinct from immiscible binary alloys. Compared to each binary alloy, the ternary alloys display higher electrocatalytic activity toward the hydrogen evolution reaction (HER) in an acidic electrolyte. The HER performance exhibits a volcano-type composition dependence, which is correlated with the experimental d-band center (εd ). Spin-polarized density functional theory (DFT) calculations consistently predict the homogenous atomic distributions. The Gibbs free energy of H adsorption (ΔGH* ) and the activation barrier (Ea ) support that miscible ternary alloying greatly enhances the HER performance.
Collapse
Affiliation(s)
- Ik Seon Kwon
- Department of Advanced Materials Chemistry, Korea University, Sejong, 339-700, Republic of Korea
| | - In Hye Kwak
- Department of Advanced Materials Chemistry, Korea University, Sejong, 339-700, Republic of Korea
| | - Getasew Mulualem Zewdie
- Institute for Application of Advanced Materials, Jeonju University, Chonju, Chonbuk, 55069, Republic of Korea
| | - Seung Jae Lee
- Department of Advanced Materials Chemistry, Korea University, Sejong, 339-700, Republic of Korea
| | - Ju Yeon Kim
- Department of Advanced Materials Chemistry, Korea University, Sejong, 339-700, Republic of Korea
| | - Seung Jo Yoo
- Division of Scientific Instrumentation & Management, Korea Basic Science Institute, Daejeon, 305-806, Korea
| | - Jin-Gyu Kim
- Division of Scientific Instrumentation & Management, Korea Basic Science Institute, Daejeon, 305-806, Korea
| | - Jeunghee Park
- Department of Advanced Materials Chemistry, Korea University, Sejong, 339-700, Republic of Korea
| | - Hong Seok Kang
- Department of Nano and Advanced Materials, Jeonju University, Chonju, Chonbuk, 55069, Republic of Korea
| |
Collapse
|
46
|
Kwak IH, Kwon IS, Kim JY, Zewdie GM, Lee SJ, Yoo SJ, Kim JG, Park J, Kang HS. Full Composition Tuning of W 1-xNb xSe 2 Alloy Nanosheets to Promote the Electrocatalytic Hydrogen Evolution Reaction. ACS NANO 2022; 16:13949-13958. [PMID: 36098669 DOI: 10.1021/acsnano.2c03157] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Composition modulation of transition metal dichalcogenides is an effective way to engineer their crystal/electronic structures for expanded applications. Here, fully composition-tuned W1-xNbxSe2 alloy nanosheets were produced via colloidal synthesis. These nanosheets ultimately exhibited a notable transition between WSe2 and NbSe2 hexagonal phases at x = 0.6. As x approaches 0.6, point doping is converted into cluster doping and eventually separated domains of WSe2 and NbSe2. Extensive density functional theory calculations predicted the composition-dependent crystal structures and phase transitions, consistently with the experiments. The electrocatalytic activity for the hydrogen evolution reaction (HER) in acidic electrolyte was significantly enhanced at x = 0.2, which was linked with the d-band center. The Gibbs free energy for the H adsorption at various basal and edge sites supported the enhanced HER performance of the metallic alloy nanosheets. We suggested that the dispersed doping structures of Nb atoms resulted in the best HER performance. Our findings highlight the significance of composition tuning in enhancing the catalytic activity of alloys.
Collapse
Affiliation(s)
- In Hye Kwak
- Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Republic of Korea
| | - Ik Seon Kwon
- Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Republic of Korea
| | - Ju Yeon Kim
- Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Republic of Korea
| | - Getasew Mulualem Zewdie
- Institute for Application of Advanced Materials, Jeonju University, Chonju, Chonbuk 55069, Republic of Korea
| | - Seung Jae Lee
- Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Republic of Korea
| | - Seung Jo Yoo
- Division of Scientific Instrumentation & Management, Korea Basic Science Institute, Daejeon 305-806, Republic of Korea
| | - Jin-Gyu Kim
- Division of Scientific Instrumentation & Management, Korea Basic Science Institute, Daejeon 305-806, Republic of Korea
| | - Jeunghee Park
- Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Republic of Korea
| | - Hong Seok Kang
- Department of Nano and Advanced Materials, Jeonju University, Chonju, Chonbuk 55069, Republic of Korea
| |
Collapse
|
47
|
Kwon IS, Kwak IH, Kang HS, Park J. Molecular intercalation of transition metal dichalcogenide nanosheets to enhance electrocatalytic activity toward hydrogen evolution reaction. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ik Seon Kwon
- Department of Advanced Materials Chemistry Korea University Seojong South Korea
| | - In Hye Kwak
- Department of Advanced Materials Chemistry Korea University Seojong South Korea
| | - Hong Seok Kang
- Department of Nano and Advanced Materials Jeonju University South Korea
| | - Jeunghee Park
- Department of Advanced Materials Chemistry Korea University Seojong South Korea
| |
Collapse
|
48
|
Huang Z, He L, Zhang W, Huang W, Mo Q, Yang L, Fu Q, Gao Q. Nickel sulfide-oxide heterostructured electrocatalysts: Bi-functionality for overall water splitting and in-situ reconstruction. J Colloid Interface Sci 2022; 622:728-737. [DOI: 10.1016/j.jcis.2022.04.150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/17/2022] [Accepted: 04/26/2022] [Indexed: 12/11/2022]
|
49
|
Kwon IS, Kwak IH, Zewdie GM, Lee SJ, Kim JY, Yoo SJ, Kim JG, Park J, Kang HS. WSe 2-VSe 2 Alloyed Nanosheets to Enhance the Catalytic Performance of Hydrogen Evolution Reaction. ACS NANO 2022; 16:12569-12579. [PMID: 35940577 DOI: 10.1021/acsnano.2c04113] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tuning the electronic structures of transition metal dichalcogenides (TMD) is essential for their implementation in next-generation energy technologies. In this study, we synthesized composition-tuned WSe2-VSe2 (W1-xVxSe2, x = 0-1) alloyed nanosheets using a colloidal reaction. Alloying the semiconducting WSe2 with VSe2 converts the material into a metallic one, followed by a 2H-to-1T phase transition at x = 0.7. Over a wide composition range, WSe2 and VSe2 are atomically immiscible and form separate ordered domains. The miscible alloy at x = 0.1 displayed enhanced electrocatalytic activity toward the hydrogen evolution reaction (HER) in an acidic electrolyte. This trend was correlated with the d-band center via a volcano-type relationship. Spin-polarized density functional theory calculations consistently predicted the atomic immiscibility, which became more significant at the 2H-1T phase transition composition. The Gibbs free energy of H adsorption on the basal planes (Se or hole sites) and the activation barriers along the Volmer-Heyrovsky reaction pathway supported the enhanced HER performance of the alloy phase, suggesting that the dispersed V-doped structures were responsible for the best HER catalytic activity. Our study demonstrates how the atomic structure of TMD alloy nanosheets plays a crucial role in enhancing catalytic activity.
Collapse
Affiliation(s)
- Ik Seon Kwon
- Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Republic of Korea
| | - In Hye Kwak
- Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Republic of Korea
| | - Getasew Mulualem Zewdie
- Institute for Application of Advanced Materials, Jeonju University, Chonju, Chonbuk 55069, Republic of Korea
| | - Seung Jae Lee
- Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Republic of Korea
| | - Ju Yeon Kim
- Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Republic of Korea
| | - Seung Jo Yoo
- Division of Electron Microscopic Research, Korea Basic Science Institute, Daejeon 305-806, Republic of Korea
| | - Jin-Gyu Kim
- Division of Electron Microscopic Research, Korea Basic Science Institute, Daejeon 305-806, Republic of Korea
| | - Jeunghee Park
- Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Republic of Korea
| | - Hong Seok Kang
- Department of Nano and Advanced Materials, Jeonju University, Chonju, Chonbuk 55069, Republic of Korea
| |
Collapse
|
50
|
Eshete YA, Kang K, Kang S, Kim Y, Nguyen PL, Cho DY, Kim Y, Lee J, Cho S, Yang H. Atomic and Electronic Manipulation of Robust Ferroelectric Polymorphs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202633. [PMID: 35730715 DOI: 10.1002/adma.202202633] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Polymorphism allows the symmetry of the lattice and spatial charge distributions of atomically thin materials to be designed. While various polymorphs for superconducting, magnetic, and topological states have been extensively studied, polymorphic control is a challenge for robust ferroelectricity in atomically thin geometries. Here, the atomic and electric manipulation of ferroelectric polymorphs in Mo1- x Wx Te2 is reported. Atomic manipulation for polymorphic control via chemical pressure (substituting tungsten for molybdenum atoms) and charge density modulation can realize tunable polar lattice structures and robust ferroelectricity up to T = 400 K with a constant coercive field in an atomically thin material. Owing to the effective inversion symmetry breaking, the ferroelectric switching withstands a charge carrier density of up to 1.1 × 1013 cm-2 , developing an original diagram for ferroelectric switching in atomically thin materials.
Collapse
Affiliation(s)
| | - Kyungrok Kang
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Korea
| | - Seunghun Kang
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419, Korea
| | - Yejin Kim
- IPIT and Department of Physics, Jeonbuk National University, Jeonju, 54896, Korea
| | | | - Deok-Yong Cho
- IPIT and Department of Physics, Jeonbuk National University, Jeonju, 54896, Korea
| | - Yunseok Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419, Korea
| | - Jaekwang Lee
- Department of Physics, Pusan National University, Busan, 46241, Korea
| | - Suyeon Cho
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, ELTEC College of Engineering, Ewha Womans University, Seoul, 03760, Korea
| | - Heejun Yang
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| |
Collapse
|