1
|
Yang Y, Yang Z, Liu H, Zhou Y. Aptamers in dentistry: diagnosis, therapeutics, and future perspectives. Biomater Sci 2024. [PMID: 39523847 DOI: 10.1039/d4bm01233j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Oral health is essential to general health. The diagnosis of dental diseases and treatment planning of dental care need to be straightforward and accurate. Recent studies have reported the use of aptamers in dentistry to achieve a simple diagnosis and facilitate therapy. Aptamers comprise nucleic acid sequences that possess a strong affinity for their target. Synthesized chemically, aptamers have several advantages, including smaller size, higher stability, and lower immunogenicity compared with monoclonal antibodies. They can be used to detect biomarkers in saliva and the presence of various pathogens, or can be used as a targeted drug delivery system for disease treatment. This review highlights current research on aptamers for dental care, especially the recent progress in oral disease diagnosis and therapeutics. The challenges and unresolved problems faced by the clinical use of aptamers are also discussed. In the future, the clinical applications of aptamers will be further extended to include, for example, dental indications and regenerative dentistry.
Collapse
Affiliation(s)
- Yang Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, China.
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, China
| | - Zhen Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, China.
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, China
| | - Hao Liu
- Central Laboratory, Peking University School and Hospital of Stomatology, China.
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, China.
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, China
| |
Collapse
|
2
|
Su R, Li Z, Yang C, Li Y, Wang J, Sun C. Fluorescent aptasensors for sensitive detection of lead ions based on structure-switching DNA beacon probe and exonuclease I-mediated signal amplification. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124643. [PMID: 38901233 DOI: 10.1016/j.saa.2024.124643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/22/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024]
Abstract
Herein, two simple fluorescent signal-on sensing strategies for detecting lead ions (Pb2+) were established based on structure-switching aptamer probes and exonuclease-assisted signal amplification strategies. Two hairpin-structure fluorescent probes with blunt-ended stem arms were designed by extending the base sequence of Pb2+ aptamer (PS2.M) and labelling the probes with FAM (in probe 1) and 2-aminopurine (2-AP) (in probe 2), respectively. In method 1, graphene oxide (GO) was added to adsorb probe 1 and quench the fluorescence emission of FAM to achieve low fluorescent background. In method 2, fluorescent 2-AP molecule inserted into the double-stranded DNA of probe 2 was quenched as a result of base stacking interactions, leading to a simplified, quencher-free approach. The addition of Pb2+ can induce the probes to transform into G-quadruplex structures, exposing single DNA strands at the 3' end (the extended sequences). This exposure enables the activation of exonuclease I (Exo I) on the probes, leading to the cleavage effect and subsequent release of free bases and fluorophores, thereby resulting in amplified fluorescence signals. The two proposed methods exhibit good specificity and sensitivity, with detection limits of 0.327 nM and 0.049 nM Pb2+ for method 1 and method 2, respectively, and have been successfully applied to detect Pb2+ in river water and fish samples. Both detection methods employ the structure-switching aptamer probes and can be completed in two or three steps without the need for complex analytical instruments. Therefore, they have a broad prospect in the sensitive and simple detection of lead ion contamination in food and environmental samples.
Collapse
Affiliation(s)
- Ruifang Su
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Zhihong Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Chuanyu Yang
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ying Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Junyang Wang
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Chunyan Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China; Chongqing Research Institute, Jilin University, Chongqing 401123, China.
| |
Collapse
|
3
|
Cao J, Wang Y, Jin L, Liu Y, Wang W, Du P, Ma Y. Aptamer and sodium alginate decorated graphene oxide composite material with ion responsiveness for Low-density lipoprotein trapping. J Chromatogr A 2024; 1731:465166. [PMID: 39047445 DOI: 10.1016/j.chroma.2024.465166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
The accumulation of excess Low-density lipoprotein (LDL) is strongly associated with the occurrence of heart failure, coronary artery disease and hypercholesterolaemia, and is a major factor in cardiovascular and cerebrovascular disease. Concerns about the ways to decrease LDL level have continuously arisen. In this study, an ionic stimulation-responsive composite (i.e., GO@Apt@SA) is prepared with modification of graphene oxide (GO) utilising LDL-aptamer (Apt) and sodium alginate (SA). The ion-responsive behaviour of GO@Apt@SA synergistically interacts with the specific recognition property of the aptamer, enabling adsorption of LDL with higher capacity and specificity. Under the optimal experimental conditions, the maximum adsorption capacity of GO@Apt@SA for LDL is 730.6 μg mg-1. Interestingly, the aptamer complementary chain could trigger the release of LDL with favourable elution efficiency, which competitively binds with LDL-specific aptamer to trigger LDL release. More importantly, GO@Apt@SA exhibits satisfactory adsorption performances for LDL in goat serum, meaning that the composite material and technology are available for the extraction of LDL from complex sample matrices.
Collapse
Affiliation(s)
- Jianfang Cao
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro‑Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yuanshang Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Linshi Jin
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Yaobo Liu
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro‑Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Weiting Wang
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro‑Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| | - Pengfei Du
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro‑Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yanli Ma
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro‑Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
4
|
Yang DM, Han Y, Zhang Q, Zhao S, Zhang CY. Development of a DNAzyme-Driven Fluorescent Light-Up Aptasensor for Label-Free Detection of Multiple lncRNAs. Anal Chem 2024; 96:11603-11610. [PMID: 38953495 DOI: 10.1021/acs.analchem.4c02496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Long noncoding RNAs (lncRNAs) act as the dynamic regulatory molecules that control the expression of genes and affect numerous biological processes, and their dysregulation is associated with tumor progression. Herein, we develop a fluorescent light-up aptasensor to simultaneously measure multiple lncRNAs in living cells and breast tissue samples based on the DNAzyme-mediated cleavage reaction and transcription-driven synthesis of light-up aptamers. When target lncRNAs are present, they can be recognized by template probes to form the active DNAzyme structures, initiating the T4 PNK-catalyzed dephosphorylation-triggered extension reaction to generate double-strand DNAs with the T7 promoter sequences. The corresponding T7 promoters can initiate the transcription amplification catalyzed by the T7 RNA polymerase to generate abundant Broccoli aptamers and malachite green aptamers, which can bind DFHBI-1T and MG to generate strong fluorescence signals. Taking advantage of the good selectivity of DNAzyme-mediated cleavage of lncRNAs, high amplification efficiency of T7 transcription-driven amplification reaction, and bright fluorescence of the RNA aptamer-fluorophore complex, this method exhibits high sensitivity with a detection limit of 21.4 aM for lncRNA HOTAIR and 18.47 aM for lncRNA MALAT1, and it can accurately measure multiple lncRNAs in both tumor cell lines and breast tissue samples, providing a powerful paradigm for biomedical research and early clinic diagnostics.
Collapse
Affiliation(s)
- Dong-Ming Yang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yun Han
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| | - Qian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
5
|
Ge F, Ding W, Han C, Zhang L, Liu Q, Zhao J, Luo Z, Jia C, Qu P, Zhang L. Electrochemical Sensor for the Detection and Accurate Early Diagnosis of Ovarian Cancer. ACS Sens 2024; 9:2897-2906. [PMID: 38776471 DOI: 10.1021/acssensors.3c02776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Ovarian cancer (OC) has the highest mortality rate among malignant tumors, primarily because it is difficult to diagnose early. Exosomes, a type of extracellular vesicle rich in parental information, have garnered significant attention in the field of cancer diagnosis and treatment. They play an important regulatory role in the occurrence, development, and metastasis of OC. Consequently, exosomes have emerged as noninvasive biomarkers for early cancer detection. Therefore, identifying cancer-derived exosomes may offer a novel biomarker for the early detection of OC. In this study, we developed a metal-organic frameworks assembled "double hook"-type aptamer electrochemical sensor, which enables accurate early diagnosis of OC. Under optimal experimental conditions, electrochemical impedance spectroscopy technology demonstrated a good linear relationship within the concentration range of 31-3.1 × 106 particles per microliter, with a detection limit as low as 12 particles per microliter. The universal exosome detection platform is constructed, and this platform can not only differentiate between high-grade serous ovarian cancer (HGSOC) patients and healthy individuals but also distinguish between HGSOC patients and nonhigh-grade serous OC (non-HGSOC). Consequently, it provides a novel strategy for the early diagnosis of OC and holds great significance in clinical differential diagnosis.
Collapse
Affiliation(s)
- Feng Ge
- Clinical School of Obstetrics and Gynecology Center, Tianjin Medical University, Tianjin 301700, China
| | - Wei Ding
- Department of Gynecological Oncology, Tianjin Central Hospital of Gynecology and Obstetrics, Tianjin 300100, China
| | - Cong Han
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300350, P. R. China
| | - Limin Zhang
- Department of Internal Medicine, Leling Hospital of Traditional Chinese Medicine, Dezhou, Shandong 253600, P. R. China
| | - Qirui Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300350, P. R. China
| | - Jian Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300350, P. R. China
| | - Zhaofeng Luo
- Hangzhong Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Chao Jia
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300350, P. R. China
| | - Pengpeng Qu
- Clinical School of Obstetrics and Gynecology Center, Tianjin Medical University, Tianjin 301700, China
- Department of Gynecological Oncology, Tianjin Central Hospital of Gynecology and Obstetrics, Tianjin 300100, China
| | - Liyun Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300350, P. R. China
- Nankai International Advanced Research Institute, Shenzhen, Guangdong 518045, P. R. China
| |
Collapse
|
6
|
Kato S, Ishiba Y, Takinoue M, Onoe H. Histamine-Responsive Hydrogel Biosensors Based on Aptamer Recognition and DNA-Driven Swelling Hydrogels. ACS APPLIED BIO MATERIALS 2024; 7:4093-4101. [PMID: 38833550 DOI: 10.1021/acsabm.4c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Detection of chemical substances is essential for living a healthy and cultural life in the modern world. One type of chemical sensing technology, biosensing, uses biological components with molecular recognition abilities, enabling a broad spectrum of sensing targets. Short single-stranded nucleic acids called aptamers are one of the biological molecules used in biosensing, and sensing methods combining aptamers and hydrogels have been researched for simple sensing applications. In this research, we propose a hydrogel-based biosensor that uses aptamer recognition and DNA-driven swelling hydrogels for the rapid detection of histamine. Aptamer recognition and DNA-driven swelling hydrogels are directly linked via DNA molecular reactions, enabling rapid sensing. We selected histamine, a major food poisoning toxin, as our sensing target and detected the existence of histamine within 10 min with significance. Because this sensing foundation uses aptamers, which have a vast library of targets, we believe this system can be expanded to various targets, broadening the application of hydrogel-based biosensors.
Collapse
Affiliation(s)
- Satofumi Kato
- School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Yurika Ishiba
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Masahiro Takinoue
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama 226-8501, Japan
| | - Hiroaki Onoe
- School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
7
|
Qu Z, Ren X, Du Z, Hou J, Li Y, Yao Y, An Y. Fusarium mycotoxins: The major food contaminants. MLIFE 2024; 3:176-206. [PMID: 38948146 PMCID: PMC11211685 DOI: 10.1002/mlf2.12112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/23/2023] [Accepted: 12/13/2023] [Indexed: 07/02/2024]
Abstract
Mycotoxins, which are secondary metabolites produced by toxicogenic fungi, are natural food toxins that cause acute and chronic adverse reactions in humans and animals. The genus Fusarium is one of three major genera of mycotoxin-producing fungi. Trichothecenes, fumonisins, and zearalenone are the major Fusarium mycotoxins that occur worldwide. Fusarium mycotoxins have the potential to infiltrate the human food chain via contamination during crop production and food processing, eventually threatening human health. The occurrence and development of Fusarium mycotoxin contamination will change with climate change, especially with variations in temperature, precipitation, and carbon dioxide concentration. To address these challenges, researchers have built a series of effective models to forecast the occurrence of Fusarium mycotoxins and provide guidance for crop production. Fusarium mycotoxins frequently exist in food products at extremely low levels, thus necessitating the development of highly sensitive and reliable detection techniques. Numerous successful detection methods have been developed to meet the requirements of various situations, and an increasing number of methods are moving toward high-throughput features. Although Fusarium mycotoxins cannot be completely eliminated, numerous agronomic, chemical, physical, and biological methods can lower Fusarium mycotoxin contamination to safe levels during the preharvest and postharvest stages. These theoretical innovations and technological advances have the potential to facilitate the development of comprehensive strategies for effectively managing Fusarium mycotoxin contamination in the future.
Collapse
Affiliation(s)
- Zheng Qu
- Agro‐Environmental Protection InstituteMinistry of Agriculture and Rural AffairsTianjinChina
| | - Xianfeng Ren
- Institute of Quality Standard and Testing Technology for Agro‐ProductsShandong Academy of Agricultural SciencesJinanChina
| | - Zhaolin Du
- Agro‐Environmental Protection InstituteMinistry of Agriculture and Rural AffairsTianjinChina
| | - Jie Hou
- Agro‐Environmental Protection InstituteMinistry of Agriculture and Rural AffairsTianjinChina
| | - Ye Li
- Agro‐Environmental Protection InstituteMinistry of Agriculture and Rural AffairsTianjinChina
| | - Yanpo Yao
- Agro‐Environmental Protection InstituteMinistry of Agriculture and Rural AffairsTianjinChina
| | - Yi An
- Agro‐Environmental Protection InstituteMinistry of Agriculture and Rural AffairsTianjinChina
| |
Collapse
|
8
|
Han Y, You Y, Xu X, Li X, Liu G, Lai G. Amplified Assembly of G-Quadruplex-Decorated DNA Network Nanostructure toward AIE Signaling-Based Sensitive Biosensing. ACS Sens 2024; 9:1749-1755. [PMID: 38587118 DOI: 10.1021/acssensors.3c02594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Aggregation-induced emission (AIE) has offered a promising approach for developing low-background fluorescent methods; however, its applications often suffer from complex probe synthesis and poor biocompatibility. Herein, a novel AIE biosensing method for kanamycin antibiotic assays was developed by utilizing a DNA network nanostructure assembled from an aptamer recognition reaction to capture a large number of tetraphenylethylene fluorogen-labeled signal DNA (DTPE) probes. Due to the excellent hydrophilicity of the oligonucleotides, DTPE exhibited excellent water solubility without obvious background signal emission. Based on an ingenious nucleotide design, an abundance of G-quadruplex blocks neighboring the captured DTPE were formed on the DNA nanostructure. Because of the greatly restricted free motion of DTPE by this unique nanostructure, a strong AIE fluorescence signal response was produced to construct the signal transduction strategy. Together with target recycling and rolling circle amplification-based cascade nucleic acid amplification, this method exhibited a wide linear range from 75 fg mL-1 to 1 ng mL-1 and a detection limit down to 24 fg mL-1. The excellent analytical performance and effective manipulation improvement of the method over previous approaches determine its promising potential for various applications.
Collapse
Affiliation(s)
- Yicheng Han
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Yingying You
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Xiaoyue Xu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Xin Li
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Guozhen Liu
- Integrated Devices and Intelligent Diagnosis Laboratory, CUHK(SZ)-Boyalife Joint Laboratory for Regenerative Medicine Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, PR China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, PR China
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| |
Collapse
|
9
|
Kong D, Thompson IAP, Maganzini N, Eisenstein M, Soh HT. Aptamer-Antibody Chimera Sensors for Sensitive, Rapid, and Reversible Molecular Detection in Complex Samples. ACS Sens 2024; 9:1168-1177. [PMID: 38407035 DOI: 10.1021/acssensors.3c01638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The development of receptors suitable for the continuous detection of analytes in complex, interferent-rich samples remains challenging. Antibodies are highly sensitive but difficult to engineer in order to introduce signaling functionality, while aptamer switches are easy to construct but often yield only a modest target sensitivity. We present here a programmable antibody and DNA aptamer switch (PANDAS), which combines the desirable properties of both receptors by using a nucleic acid tether to link an analyte-specific antibody to an internal strand-displacement (ISD)-based aptamer switch that recognizes the same target through different epitopes. The antibody increases PANDAS analyte binding due to its high affinity, and the effective concentration between the two receptors further enhances two-epitope binding and fluorescent aptamer signaling. We developed a PANDAS sensor for the clotting protein thrombin and show that a tuned design achieves a greater than 300-fold enhanced sensitivity compared to that of using an aptamer alone. This design also exhibits reversible binding, enabling repeated measurements with a temporal resolution of ∼10 min, and retains excellent sensitivity even in interferent-rich samples. With future development, this PANDAS approach could enable the adaptation of existing protein-binding aptamers with modest affinity to sensors that deliver excellent sensitivity and minute-scale resolution in minimally prepared biological specimens.
Collapse
Affiliation(s)
- Dehui Kong
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - Ian A P Thompson
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Nicolo Maganzini
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Michael Eisenstein
- Department of Radiology, Stanford University, Stanford, California 94305, United States
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Hyongsok Tom Soh
- Department of Radiology, Stanford University, Stanford, California 94305, United States
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
10
|
Li Y, Shao F, Wu J, Liu M, Cao G, Zhao Z, Bai J, Gao Z. Ultrasensitive Ochratoxin A Detection in Cereal Products Using a Fluorescent Aptasensor Based on RecJ f Exonuclease-Assisted Target Recycling. Foods 2024; 13:595. [PMID: 38397572 PMCID: PMC10888426 DOI: 10.3390/foods13040595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin widely found in foodstuffs such as cereal grains. It greatly threatens human health owing to its strong toxicity and high stability. Aptasensors have emerged as promising tools for the analysis of small molecule contaminants. Nucleic-acid-based signal amplification enables detectable signals to be obtained from aptasensors. However, this strategy often requires the use of complex primers or multiple enzymes, entailing problems such as complex system instability. Herein, we propose a fluorescent aptasensor for the ultrasensitive detection of OTA in cereal products, with signal amplification through RecJf exonuclease-assisted target recycling. The aptamer/fluorescein-labeled complementary DNA (cDNA-FAM) duplex was effectively used as the target-recognition unit as well as the potential substrate for RecJf exonuclease cleavage. When the target invaded the aptamer-cDNA-FAM duplex to release cDNA-FAM, RecJf exonuclease could cleave the aptamer bonded with the target and release the target. Thus, the target-triggered cleavage cycling would continuously generate cDNA-FAM as a signaling group, specifically amplifying the response signal. The proposed exonuclease-assisted fluorescent aptasensor exhibited a good linear relationship with OTA concentration in the range from 1 pg/mL to 10 ng/mL with an ultralow limit of detection (6.2 ng/kg of cereal). The analytical method showed that recoveries of the cereal samples ranged from 83.7 to 109.3% with a repeatability relative standard deviation below 8%. Importantly, the proposed strategy is expected to become a common detection model because it can be adapted for other targets by replacing the aptamer. Thus, this model can guide the development of facile approaches for point-of-care testing applications.
Collapse
Affiliation(s)
- Yanxuan Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; (Y.L.); (F.S.); (J.W.); (M.L.); (J.B.); (Z.G.)
| | - Furong Shao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; (Y.L.); (F.S.); (J.W.); (M.L.); (J.B.); (Z.G.)
- Department of Public Health and Management, Binzhou Medical University, Yantai 264003, China;
| | - Jin Wu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; (Y.L.); (F.S.); (J.W.); (M.L.); (J.B.); (Z.G.)
| | - Mingzhu Liu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; (Y.L.); (F.S.); (J.W.); (M.L.); (J.B.); (Z.G.)
| | - Gaofang Cao
- Department of Public Health and Management, Binzhou Medical University, Yantai 264003, China;
| | - Zunquan Zhao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; (Y.L.); (F.S.); (J.W.); (M.L.); (J.B.); (Z.G.)
| | - Jialei Bai
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; (Y.L.); (F.S.); (J.W.); (M.L.); (J.B.); (Z.G.)
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; (Y.L.); (F.S.); (J.W.); (M.L.); (J.B.); (Z.G.)
- Department of Public Health and Management, Binzhou Medical University, Yantai 264003, China;
| |
Collapse
|
11
|
Guo Z, Wu X, Jayan H, Yin L, Xue S, El-Seedi HR, Zou X. Recent developments and applications of surface enhanced Raman scattering spectroscopy in safety detection of fruits and vegetables. Food Chem 2024; 434:137469. [PMID: 37729780 DOI: 10.1016/j.foodchem.2023.137469] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/01/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
This article reviewed the latest research progress of Surface-enhanced Raman Spectroscopy (SERS) in the security detection of fruits and vegetables in recent years, especially in three aspects: pesticide residues, microbial toxin contamination and harmful microorganism infection. The binding mechanism and application potential of SERS detection materials (including universal type and special type) and carrier materials (namely rigid and flexible materials) were discussed. Finally, the application prospect of SERS in fruit and vegetable safety detection was explored, and the problems to be solved and development trends were put forward. The poor stability and reproducibility of SERS substrates make it difficult for practical applications. It is necessary to continuously optimize SERS substrates and develop small and portable Raman spectroscopy analyzers. In the future, SERS technology is expected to play an important role in human health, food safety and economy.
Collapse
Affiliation(s)
- Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Xinchen Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Heera Jayan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Limei Yin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shanshan Xue
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Box 591, SE 751 24 Uppsala, Sweden; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang 212013, China
| |
Collapse
|
12
|
Liao X, Qin G, Liu Z, Ren J, Qu X. Bioorthogonal Aptamer-ATTEC Conjugates for Degradation of Alpha-Synuclein via Autophagy-Lysosomal Pathway. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306760. [PMID: 37821404 DOI: 10.1002/smll.202306760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Indexed: 10/13/2023]
Abstract
Autophagosome-tethering compound (ATTEC) technology has recently been emerging as a novel approach for degrading proteins of interest (POIs). However, it still faces great challenges in how to design target-specific ATTEC molecules. Aptamers are single-stranded DNA or RNA oligonucleotides that can recognize their target proteins with high specificity and affinity. Here, ATTEC is combined with aptamers for POIs degradation. As a proof of concept, pathological protein α-synuclein (α-syn) is chosen as the target and an efficient α-syn degrader is generated. Aptamer as a targeting warhead of α-syn is conjugated with LC3B-binding compound 5,7-dihydroxy-4-phenylcoumarin (DP) via bioorthogonal click reaction. It is demonstrated that the aptamer conjugated with DP is capable of clearing α-syn through LC3 and autophagic degradation. These results indicate that aptamer-based ATTECs are a versatile approach to degrade POIs by taking advantage of the well-defined different aptamers for targeting diverse proteins, which provides a new way for the design of ATTECs to degradation of targeted proteins.
Collapse
Affiliation(s)
- Xiaofeng Liao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Geng Qin
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhenqi Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
13
|
Lu JY, Guo Z, Huang WT, Bao M, He B, Li G, Lei J, Li Y. Peptide-graphene logic sensing system for dual-mode detection of exosomes, molecular information processing and protection. Talanta 2024; 267:125261. [PMID: 37801930 DOI: 10.1016/j.talanta.2023.125261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/26/2023] [Accepted: 09/30/2023] [Indexed: 10/08/2023]
Abstract
Peptides with highly sequence-dependent recognition, assembly, and encoding abilities can perform functions similar to DNA or even better, such as biosensing, molecular information processing, coding, or storage. However, the combination of versatile peptides and 2D materials are rarely used for multipurpose integrated applications, including biosensing, information processing and security. Herein, peptide-graphene sensing system was comprehensively used for dual-signal sensing of tumor-derived exosomes (TDEs), logic computing, and information protection. The system used fluorescent-labeled CD63-binding peptide CP05 and graphene oxide (GO) to selectively detect CD63 and TDEs by fluorescence and resonance light scattering. From three levels such as matter, energy, and information analysis, the matter and energy changes in GO-CP05 peptide sensing system were transformed into valuable information, which achieve the dual-mode quantitative detection of TDEs and its marker CD63, and the actual serum analysis. This matter-energy interaction network was also informationized, and utilized for parallel and batch logic computing, two kinds of molecular crypto-steganography (based on peptide sequence and Boolean logic relationships), which facilitates development of intelligent sensing and advanced information technology. This work not only provides a new method for sensitive detection of important disease markers, but also provides ideas for integrating molecular sensing and informatization to open molecular digitization.
Collapse
Affiliation(s)
- Jiao Yang Lu
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, "the 14th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Clinical Medicine), Changsha Medical University, Changsha, 410219, PR China; Wuzhou Medical College, Wuzhou, 543100, PR China
| | - Zhen Guo
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, "the 14th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Clinical Medicine), Changsha Medical University, Changsha, 410219, PR China
| | - Wei Tao Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Meihua Bao
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, "the 14th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Clinical Medicine), Changsha Medical University, Changsha, 410219, PR China
| | - Binsheng He
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, "the 14th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Clinical Medicine), Changsha Medical University, Changsha, 410219, PR China
| | - Guangyi Li
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, "the 14th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Clinical Medicine), Changsha Medical University, Changsha, 410219, PR China
| | - Jieni Lei
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, "the 14th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Clinical Medicine), Changsha Medical University, Changsha, 410219, PR China
| | - Yaqian Li
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, "the 14th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Clinical Medicine), Changsha Medical University, Changsha, 410219, PR China.
| |
Collapse
|
14
|
Chamorro A, Rossetti M, Bagheri N, Porchetta A. Rationally Designed DNA-Based Scaffolds and Switching Probes for Protein Sensing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:71-106. [PMID: 38273204 DOI: 10.1007/10_2023_235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The detection of a protein analyte and use of this type of information for disease diagnosis and physiological monitoring requires methods with high sensitivity and specificity that have to be also easy to use, rapid and, ideally, single step. In the last 10 years, a number of DNA-based sensing methods and sensors have been developed in order to achieve quantitative readout of protein biomarkers. Inspired by the speed, specificity, and versatility of naturally occurring chemosensors based on structure-switching biomolecules, significant efforts have been done to reproduce these mechanisms into the fabrication of artificial biosensors for protein detection. As an alternative, in scaffold DNA biosensors, different recognition elements (e.g., peptides, proteins, small molecules, and antibodies) can be conjugated to the DNA scaffold with high accuracy and precision in order to specifically interact with the target protein with high affinity and specificity. They have several advantages and potential, especially because the transduction signal can be drastically enhanced. Our aim here is to provide an overview of the best examples of structure switching-based and scaffold DNA sensors, as well as to introduce the reader to the rational design of innovative sensing mechanisms and strategies based on programmable functional DNA systems for protein detection.
Collapse
Affiliation(s)
| | - Marianna Rossetti
- Department of Chemistry, University of Rome Tor Vergata, Rome, Italy
| | - Neda Bagheri
- Department of Chemistry, University of Rome Tor Vergata, Rome, Italy
| | | |
Collapse
|
15
|
Cheng L, Xu J, Yuan H, Zhao Q, Yue W, Ma S, Lu W. An aptamer and Au/Si CCA based SERS sensor for ultra-sensitive detection of Vimentin during EMT in gastric cancer. Front Bioeng Biotechnol 2023; 11:1310258. [PMID: 38130825 PMCID: PMC10733448 DOI: 10.3389/fbioe.2023.1310258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction: In this study, a surface-enhanced Raman scattering (SERS) sensor based on a functionalized Au/Si cap-cone array (Au/Si CCA) was constructed using the identity-release strategy to detect Vimentin changes during epithelial-mesenchymal transition (EMT) in gastric cancer (GC). Methods: The periodic structure of Au/Si CCA, which can form "hot spots" with high density and regular arrangement, is a substrate with excellent performance. Au/Si CCA was functionalized with aptamers as the capture substrate, and Au nanocubes (AuNCs) were modified with 5-carboxyfluorescein (5-FAM) labelled complementary strand as SERS probe. The capture substrate and SERS probe were assembled by hybridization, and the SERS signal intensity of 5-FAM was greatly enhanced. The binding of Vimentin to the aptamer resulted in a broken connection between the SERS sensor Au/Si CCA array and AuNCs, which resulted in a decrease in the signal intensity of 5-FAM. The identity-release strategy requires only a simple step of reaction to achieve rapid detection of target proteins, which has clinical practicability. Results: Using this protocol, the concentration of Vimentin in GES-1 cells could be successfully detected, and the detection limit was as low as 4.92 pg/mL. Biological experiments of Vincristine, Oncovin (VCR)-treated GES-1 cells effectively mimicked the EMT process, and Vimentin changes during EMT could be accurately detected by this method. Discussion: This study provides a selective, ultra-sensitive and accurate assay for Vimentin detection, which may provide a means for the future detection of EMT process in GC.
Collapse
Affiliation(s)
- Lingling Cheng
- Department of Oncology, Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
| | - Jianlin Xu
- Department of Oncology, Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
| | - Hua Yuan
- Pharmacy Department, Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
| | - Qihao Zhao
- Department of Laboratory Medicine, Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
| | - Wei Yue
- Department of Oncology, Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
| | - Shuang Ma
- Department of Oncology, Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
| | - Weimin Lu
- General Internal Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
16
|
Xia J, Bo B, Yang S, Cao Y, Cao Y, Cui H. Interfacial reactivity-modulated fluorescent metal-organic frameworks for sensitive detection of interferon-γ towards tuberculosis diagnosis. Mikrochim Acta 2023; 191:6. [PMID: 38051387 DOI: 10.1007/s00604-023-06088-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/05/2023] [Indexed: 12/07/2023]
Abstract
A new aptamer-based method has been developed for interferon-γ (IFN-γ) detection by utilizing interface reactivity-modulated fluorescent metal-organic frameworks (MOFs). Specifically, the binding of IFN-γ to its aptamer decreases the interface reactivity between the biotin-labeled aptamer and the streptavidin-functionalized magnetic beads by generating significant steric effects. As a result, several biotin-labeled aptamers escape from the enrichment of magnetic beads and remain in the supernatant, which subsequently undergo the terminal deoxynucleotidyl transferase-catalyzed polymerization elongation. Along with the elongation, pyrophosphate is continuously produced as the by-product, triggering the decomposition of fluorescent MOFs to generate a remarkable fluorescent response with the excitation/emission wavelength of 610 nm/685 nm. Experimental results show that the method enables the detection of IFN-γ in the range 0.06 fM to 6 pM with a detection limit of 0.057 fM. The method also displays high specificity and repeatability with an average relative standard deviation of 2.04%. Moreover, the method demonstrates satisfactory recoveries from 96.3 to 105.5% in serum samples and excellent utility in clinical blood samples. Therefore, this work may provide a valuable tool for IFN-γ detection and is expected to be of high potential in tuberculosis diagnosis in the future.
Collapse
Affiliation(s)
- Jianan Xia
- Shanghai Clinical Research Center for Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, People's Republic of China
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Bing Bo
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, People's Republic of China
| | - Shuang Yang
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Yue Cao
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Ya Cao
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
| | - Haiyan Cui
- Shanghai Clinical Research Center for Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
17
|
Lee M, Shin S, Kim S, Park N. Recent Advances in Biological Applications of Aptamer-Based Fluorescent Biosensors. Molecules 2023; 28:7327. [PMID: 37959747 PMCID: PMC10647268 DOI: 10.3390/molecules28217327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Aptamers have been spotlighted as promising bio-recognition elements because they can be tailored to specific target molecules, bind to targets with a high affinity and specificity, and are easy to chemically synthesize and introduce functional groups to. In particular, fluorescent aptasensors are widely used in biological applications to diagnose diseases as well as prevent diseases by detecting cancer cells, viruses, and various biomarkers including nucleic acids and proteins as well as biotoxins and bacteria from food because they have the advantages of a high sensitivity, selectivity, rapidity, a simple detection process, and a low price. We introduce screening methods for isolating aptamers with q high specificity and summarize the sequences and affinities of the aptamers in a table. This review focuses on aptamer-based fluorescence detection sensors for biological applications, from fluorescent probes to mechanisms of action and signal amplification strategies.
Collapse
Affiliation(s)
- Minhyuk Lee
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; (M.L.); (S.K.)
| | - Seonhye Shin
- Department of Chemistry, The Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea;
| | - Sungjee Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; (M.L.); (S.K.)
| | - Nokyoung Park
- Department of Chemistry, The Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea;
| |
Collapse
|
18
|
Hu H, Hu J, Xue K, Zhou H, Yang X, Wang L, Chen X. A robust and facile colorimetric aptasensor for the detection of Salmonella Typhimurium based on the regulation of Fe 3O 4@Cu@PCPy yolk-shell nanozyme activity. Anal Chim Acta 2023; 1276:341618. [PMID: 37573108 DOI: 10.1016/j.aca.2023.341618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/29/2023] [Accepted: 07/12/2023] [Indexed: 08/14/2023]
Abstract
Due to their superparamagnetism and enzyme-like activity, iron oxide (Fe3O4) nanozymes can be readily used for sample pretreatment and the generation of detection signals, and have, thus, attracted much attention in the field of bioanalysis and diagnosis. However, the low catalytic activity of Fe3O4 nanozymes does reduce the sensitivity of Fe3O4-based methods, limiting their application. In this study, Fe3O4@Cu@poly(pyrrole-2-carboxylic acid) yolk-shell nanozymes (Fe3O4@Cu@PCPy YSNs) were synthesized using a facile approach and selective chemical etching technology. Compared with Fe3O4 nanozymes, the Fe3O4@Cu@PCPy YSNs demonstrated a three-fold increase in the peroxidase-like activity, good dispersity and strong superparamagnetism. In addition, the flower-shaped structure of aptamer-complementary strand (Apt-CS) conjugates was designed on the surface of the Fe3O4@Cu@PCPy YSNs, which effectively inhibited their peroxidase-like activity by creating a physical barrier that hindered the access of substrates to the center of the Fe3O4@Cu@PCPy YSNs. Based on this principle, a robust and facile colorimetric aptasensor was developed for detecting Salmonella Typhimurium. The flower-shaped Apt-CS were dissociated in the presence of S. Typhimurium, promoting the recovery of Fe3O4@Cu@PCPy YSN catalytic activity. Under optimized conditions, this proposed aptasensor successfully detected S. Typhimurium in a linear range of 3 to 3 × 106 CFU/mL, achieving a detection limit of 1 CFU/mL. Finally, the feasibility of this novel aptasensor was further validated by three actual samples, with recoveries of between 84.3% and 102%, thereby demonstrating the huge potential of the proposed aptasensor for detecting S. Typhimurium in foods.
Collapse
Affiliation(s)
- Haixia Hu
- School of Food and Bioengineering, Xihua University, Chengdu, 610000, China
| | - Jiangtao Hu
- Chengdu Customs Technology Center, Chengdu, 610000, China; Food Safety Detection Key Laboratory of Sichuan Province, Chengdu, 610000, China
| | - Kang Xue
- Chengdu Customs Technology Center, Chengdu, 610000, China; Food Safety Detection Key Laboratory of Sichuan Province, Chengdu, 610000, China
| | - Hong Zhou
- School of Food and Bioengineering, Xihua University, Chengdu, 610000, China
| | - Xiao Yang
- School of Food and Bioengineering, Xihua University, Chengdu, 610000, China
| | - Lijun Wang
- School of Food and Bioengineering, Xihua University, Chengdu, 610000, China; Food Microbiology Key Laboratory of Sichuan Province, Chengdu, 610000, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, 400000, China.
| | - Xianggui Chen
- School of Food and Bioengineering, Xihua University, Chengdu, 610000, China; Food Microbiology Key Laboratory of Sichuan Province, Chengdu, 610000, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, 400000, China.
| |
Collapse
|
19
|
P U A, Raj G, John J, Mohan K M, John F, George J. Aptamers: Features, Synthesis and Applications. Chem Biodivers 2023; 20:e202301008. [PMID: 37709723 DOI: 10.1002/cbdv.202301008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
Aptamers have become a topic of interest among the researchers and scientists since they not only possess all of the benefits of antibodies but also possess special qualities including heat stability, low cost, and limitless uses⋅ Here we give a review about the features, applications, and challenges of aptamers and also how they are beneficial over the antibodies for biomedical applications. Their unique features make aptamers a prominent tool in therapeutics, diagnostics, biosensors and targeted drug delivery. In conclusion, aptamers represent exciting materials for a variety of applications and can be modified to improve their properties and to extend their applications in biomedical field.
Collapse
Affiliation(s)
- Aiswarya P U
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - Gopika Raj
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - Jinju John
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - Malavika Mohan K
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - Franklin John
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - Jinu George
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| |
Collapse
|
20
|
Wang Y, Liu Y, Wang LL, Zhang QL, Xu L. Integrating Ligands into Nucleic Acid Systems. Chembiochem 2023; 24:e202300292. [PMID: 37401635 DOI: 10.1002/cbic.202300292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/12/2023] [Accepted: 07/04/2023] [Indexed: 07/05/2023]
Abstract
Signal transduction from non-nucleic acid ligands (small molecules and proteins) to structural changes of nucleic acids plays a crucial role in both biomedical analysis and cellular regulations. However, how to bridge between these two types of molecules without compromising the expandable complexity and programmability of the nucleic acid nanomachines is a critical challenge. Compared with the previously most widely applied transduction strategies, we review the latest advances of a kinetically controlled approach for ligand-oligonucleotide transduction in this Concept article. This new design works through an intrinsic conformational alteration of the nucleic acid aptamer upon the ligand binding as a governing factor for nucleic acid strand displacement reactions. The functionalities and applications of this transduction system as a ligand converter on biosensing and DNA computation are described and discussed. Furthermore, we propose some potential scenarios for utilization of this ligand transduction design to regulate gene expression through synthetic RNA switches in the cellular contexts. Finally, future perspectives regarding this ligand-oligonucleotide transduction platform are also discussed.
Collapse
Affiliation(s)
- Yang Wang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging National-Regional Key Technology Engineering Laboratory for Medical Ultrasound School of Biomedical Engineering, School of Medicine, Shenzhen, 518060, China
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yan Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Liang-Liang Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Qiu-Long Zhang
- School of Pharmacy and Medical Technology, Putian University, Putian, 351100, Fujian, China
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Liang Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
21
|
Lauzon D, Vallée-Bélisle A. Programing Chemical Communication: Allostery vs Multivalent Mechanism. J Am Chem Soc 2023; 145:18846-18854. [PMID: 37581934 DOI: 10.1021/jacs.3c04045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
The emergence of life has relied on chemical communication and the ability to integrate multiple chemical inputs into a specific output. Two mechanisms are typically employed by nature to do so: allostery and multivalent activation. Although a better understanding of allostery has recently provided a variety of strategies to optimize the binding affinity, sensitivity, and specificity of molecular switches, mechanisms relying on multivalent activation remain poorly understood. As a proof of concept to compare the thermodynamic basis and design principles of both mechanisms, we have engineered a highly programmable DNA-based switch that can be triggered by either a multivalent or an allosteric DNA activator. By precisely designing the binding interface of the multivalent activator, we show that the affinity, dynamic range, and activated half-life of the molecular switch can be programed with even more versatility than when using an allosteric activator. The simplicity by which the activation properties of molecular switches can be rationally tuned using multivalent assembly suggests that it may find many applications in biosensing, drug delivery, synthetic biology, and molecular computation fields, where precise control over the transduction of binding events into a specific output is key.
Collapse
Affiliation(s)
- Dominic Lauzon
- Département de Chimie, Laboratoire de Biosenseurs et Nanomachines, Université de Montréal, Montréal QC H2V 0B3, Canada
| | - Alexis Vallée-Bélisle
- Département de Chimie, Laboratoire de Biosenseurs et Nanomachines, Université de Montréal, Montréal QC H2V 0B3, Canada
| |
Collapse
|
22
|
Chen HM, Wang WC, Chen HR. Small-Molecule Analysis Based on DNA Strand Displacement Using a Bacteriorhodopsin Photoelectric Transducer: Taking ATP as an Example. SENSORS (BASEL, SWITZERLAND) 2023; 23:7453. [PMID: 37687909 PMCID: PMC10490725 DOI: 10.3390/s23177453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023]
Abstract
A uniformly oriented purple membrane (PM) monolayer containing photoactive bacteriorhodopsin has recently been applied as a sensitive photoelectric transducer to assay color proteins and microbes quantitatively. This study extends its application to detecting small molecules, using adenosine triphosphate (ATP) as an example. A reverse detection method is used, which employs AuNPs labeling and specific DNA strand displacement. A PM monolayer-coated electrode is first covalently conjugated with an ATP-specific nucleic acid aptamer and then hybridized with another gold nanoparticle-labeled nucleic acid strand with a sequence that is partially complementary to the ATP aptamer, in order to significantly minimize the photocurrent that is generated by the PM. The resulting ATP-sensing chip restores its photocurrent production in the presence of ATP, and the photocurrent recovers more effectively as the ATP concentration increases. Direct and single-step ATP detection is achieved in 15 min, with detection limits of 5 nM and a dynamic range of 5 nM-0.1 mM. The sensing chip exhibits high selectivity against other ATP analogs and is satisfactorily stable in storage. The ATP-sensing chip is used to assay bacterial populations and achieves a detection limit for Bacillus subtilis and Escherichia coli of 102 and 103 CFU/mL, respectively. The demonstration shows that a variety of small molecules can be simultaneously quantified using PM-based biosensors.
Collapse
Affiliation(s)
- Hsiu-Mei Chen
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Wen-Chang Wang
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Hong-Ren Chen
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
23
|
Li Y, Liu L, Qiao L, Deng F. Universal CRISPR/Cas12a-associated aptasensor suitable for rapid detection of small proteins with a plate reader. Front Bioeng Biotechnol 2023; 11:1201175. [PMID: 37334268 PMCID: PMC10272437 DOI: 10.3389/fbioe.2023.1201175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023] Open
Abstract
With the discovery of the collateral cleavage activity, CRISPR/Cas12a has recently been identified as a key enabling approach in novel DNA biosensor development. Despite its remarkable success in nucleic acid detection, realizing a universal CRISPR/Cas biosensing system for non-nucleic acid targets remains challenging, particularly at extremely high sensitivity ranges for analyte concentrations lower than the pM level. DNA aptamers can be designed to bind to a range of specific target molecules, such as proteins, small molecules, and cells, with high affinity and specificity through configuration changes. Here, by harnessing its diverse analyte-binding ability and also redirecting the specific DNA-cutting activity of Cas12a to selected aptamers, a simple, sensitive, and universal biosensing platform has been established, termed CRISPR/Cas and aptamer-mediated extra-sensitive assay (CAMERA). With simple modifications to the aptamer and guiding RNA of Cas12a RNP, CAMERA demonstrated 100 fM sensitivity for targeting small proteins, such as IFN-γ and insulin, with less than 1.5-h detection time. Compared with the gold-standard ELISA, CAMERA achieved higher sensitivity and a shorter detection time while retaining ELISA's simple setup. By replacing the antibody with an aptamer, CAMERA also achieved improved thermal stability, allowing to eliminate the requirement for cold storage. CAMERA shows potential to be used as a replacement for conventional ELISA for a variety of diagnostics but with no significant changes for the experimental setup.
Collapse
Affiliation(s)
- Yi Li
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW, Australia
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney, NSW, Australia
| | - Linyang Liu
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW, Australia
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney, NSW, Australia
| | - Laicong Qiao
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW, Australia
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney, NSW, Australia
| | - Fei Deng
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW, Australia
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
24
|
Hachigian T, Lysne D, Graugnard E, Lee J. Targeted Selection of Aptamer Complementary Elements toward Rapid Development of Aptamer Transducers. J Phys Chem B 2023; 127:4470-4479. [PMID: 37191170 DOI: 10.1021/acs.jpcb.3c01411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Biosensing using aptamers has been a recent interest for their versatility in detecting many different analytes across a wide range of applications, including medical and environmental applications. In our last work, we introduced a customizable aptamer transducer (AT) that could successfully feed-forward many different output domains to target a variety of reporters and amplification reaction networks. In this paper, we explore the kinetic behavior and performance of novel ATs by modifying the aptamer complementary element (ACE) chosen based on a technique for exploring the ligand-binding landscape of duplexed aptamers. Using published data, we selected and constructed several modified ATs that contain ACEs with varying length, position of the start sites, and position of single mismatches, whose kinetic responses were tracked with a simple fluorescence reporter. A kinetic model for ATs was derived and used to extract the strand-displacement reaction constant k1 and the effective aptamer dissociation constant Kd,eff, allowing us to calculate a relative performance metric, k1/Kd,eff. Comparing our results with the predictions based on the literature data, we provide useful insight into the dynamics of the adenosine AT's duplexed aptamer domain and suggest a high-throughput approach for future ATs to be developed with improved sensitivity. The performance of our ATs showed a moderate correlation to those predicted by the ACE scan method. Here, we find that predicted performance based on our ACE selection method was moderately correlated to our AT's performance.
Collapse
Affiliation(s)
- Tim Hachigian
- Micron School of Materials Science and Engineering, Boise State University, 1910 University Dr., Boise, Idaho 83725, United States
| | - Drew Lysne
- Micron School of Materials Science and Engineering, Boise State University, 1910 University Dr., Boise, Idaho 83725, United States
| | - Elton Graugnard
- Micron School of Materials Science and Engineering, Boise State University, 1910 University Dr., Boise, Idaho 83725, United States
| | - Jeunghoon Lee
- Micron School of Materials Science and Engineering, Boise State University, 1910 University Dr., Boise, Idaho 83725, United States
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Dr., Boise, Idaho 83725, United States
| |
Collapse
|
25
|
Hu Z, Jiang Z, Yang Z, Liu L, Zhu Z, Jin Y, Yin Y. Development of a modularized aptamer targeting the nuclear T-cell suppressor PAC1. Analyst 2023; 148:2616-2625. [PMID: 37191022 DOI: 10.1039/d3an00011g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Aptamers associated with cancer targeting therapy are commonly focused on cell membrane proteins; however, the study of intracellular, particularly, nuclear proteins is limited. The nuclear phosphatase PAC1 has been reported to be a potential T cell-related immunotherapeutic target. Here, we identified an aptamer, designated as PA5, with high affinity and specificity for PAC1 through the systematic evolution of ligands by exponential enrichment (SELEX) procedure. We then developed a dual-module aptamer PAC1-AS consisting of a cell-internalizing module and a targeting module, which can recognize PAC1 in the nucleus under physiological conditions. This modularized aptamer raises the possibility of manipulating endosomes and provides insights into the exploration and development of an efficient cancer immunotherapy approach.
Collapse
Affiliation(s)
- Zixi Hu
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, China.
| | - Zhongyu Jiang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, China.
| | - Zeliang Yang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, China.
| | - Liang Liu
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, China.
| | - Zhenyu Zhu
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, China.
| | - Yan Jin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, China.
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
26
|
Hao J, Wang J, Dong Y, Yang J, Wang Z, Zhao X, Zeng T, Zhao X, Liang H, Li J. Homogeneous, Simple, and Direct Analysis of Exosomal PD-L1 via Aptamer-Bivalent-Cholesterol-Anchor Assembly of DNAzyme (ABCzyme) for Tumor Immunotherapy. Anal Chem 2023; 95:6854-6862. [PMID: 37027485 DOI: 10.1021/acs.analchem.2c05461] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Breakthroughs in immune checkpoint inhibitor (ICI) therapy have revolutionized clinical tumor therapy. Immunohistochemistry (IHC) analysis of PD-L1 in tumor tissue has been used to predict the response to tumor immunotherapy, but the results are not reproducible, and IHC is invasive and cannot be used to monitor the dynamic changes in PD-L1 expression during treatment. Monitoring the expression level of the PD-L1 protein on exosomes (exosomal PD-L1) is promising for both tumor diagnosis and tumor immunotherapy. Here, we established an aptamer-bivalent-cholesterol-anchor assembly of DNAzyme (ABCzyme) analytical strategy that can directly detect exosomal PD-L1 with a minimum lower limit of detection of 5.21 pg/mL. In this way, we found that the levels of exosomal PD-L1 are significantly elevated in the peripheral blood of patients with progressive disease. The precise analysis of exosomal PD-L1 by the proposed ABCzyme strategy provides a potentially convenient method for the dynamic monitoring of tumor progression in patients who receive immunotherapy and proves to be a potential and effective liquid biopsy method for tumor immunotherapy.
Collapse
Affiliation(s)
- Jie Hao
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Junyi Wang
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yan Dong
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jingyao Yang
- The Department of Hyperbaric Oxygen, Xingcheng Special Service Sanatorium of Strategic Support Force, Liaoning 125105, China
| | - Zhe Wang
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiaoxin Zhao
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Tian Zeng
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiang Zhao
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Houjie Liang
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jianjun Li
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
27
|
Suliman Maashi M. CRISPR/Cas-based Aptasensor as an Innovative Sensing Approaches for Food Safety Analysis: Recent Progresses and New Horizons. Crit Rev Anal Chem 2023; 54:2599-2617. [PMID: 36940173 DOI: 10.1080/10408347.2023.2188955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Food safety is one of the greatest public problems occurring around the world. Chemical, physical, and microbiological hazards could lead to food safety problems, which might occur at all stages of the supply chain. To tackle food safety problems and protect consumer health, specific, accurate, and rapid diagnosis techniques meeting various requirements are the imperative measures to ensure food safety. CRISPR-Cas system, a novel emerging technology, is effectively repurposed in (bio)sensing and has shown a tremendous capability to develop on-site and portable diagnostic methods with high specificity and sensitivity. Among numerous existing CRISPR/Cas systems, CRISPR/Cas13a and CRISPR/Cas12a are extensively employed in the design of biosensors, owing to their ability to cleave both non-target and target sequences. However, the specificity limitation in CRISPR/Cas has hindered its progress. Nowadays, nucleic acid aptamers recognized for their specificity and high-affinity characteristics for their analytes are incorporated into CRISPR/Cas systems. With the benefits of reproducibility, high durability, portability, facile operation, and cost-effectiveness, CRISPR/Cas-based aptasensing approaches are an ideal choice for fabricating highly specific point-of-need analytical tools with enhanced response signals. In the current study, we explore some of the most recent progress in the CRISPR/Cas-mediated aptasensors for detecting food risk factors including veterinary drugs, pesticide residues, pathogens, mycotoxins, heavy metals, illegal additives, food additives, and other contaminants. The nanomaterial engineering support with CRISPR/Cas aptasensors is also signified to achieve a hopeful perspective to provide new straightforward test kits toward trace amounts of different contaminants encountered in food samples.
Collapse
Affiliation(s)
- Marwah Suliman Maashi
- Medical Laboratory Science Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Regenerative Medicine Unit at King Fahad Medical Research Centre, Jeddah, Saudi Arabia
| |
Collapse
|
28
|
Li L, Li S, Wang J, Wen X, Yang M, Chen H, Guo Q, Wang K. Extracellular ATP-activated hybridization chain reaction for accurate and sensitive detection of cancer cells. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
29
|
Dillen A, Scarpellini C, Daenen W, Driesen S, Zijlstra P, Lammertyn J. Integrated Signal Amplification on a Fiber Optic SPR Sensor Using Duplexed Aptamers. ACS Sens 2023; 8:811-821. [PMID: 36734337 DOI: 10.1021/acssensors.2c02388] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Throughout the past decades, fiber optic surface plasmon resonance (FO-SPR)-based biosensors have proven to be powerful tools for both the characterization of biomolecular interactions and target detection. However, as FO-SPR signals are generally related to the mass that binds to the sensor surface, multistep processes and external reagents are often required to obtain significant signals for low molecular weight targets. This increases the time, cost, and complexity of the respective bioassays and hinders continuous measurements. To overcome these requirements, in this work, cis-duplexed aptamers (DAs) were implemented on FO-SPR sensors, which underwent a conformational change upon target binding. This induced a spatial redistribution of gold nanoparticles (AuNPs) upon specific target binding and resulted in an amplified and concentration-dependent signal. Importantly, the AuNPs were covalently conjugated to the sensor, so the principle does not rely on multistep processes or external reagents. To implement this concept, first, the thickness of the gold fiber coating was adapted to match the resonance conditions of the surface plasmons present on the FO-SPR sensors with those on the AuNPs. As a result, the signal obtained due to the spatial redistribution of the AuNPs was amplified by a factor of 3 compared to the most commonly used thickness. Subsequently, the cis-DAs were successfully implemented on the FO-SPR sensors, and it was demonstrated that the DA-based FO-SPR sensors could specifically and quantitatively detect an ssDNA target with a detection limit of 230 nM. Furthermore, the redistribution of the AuNPs was proven to be reversible, which is an important prerequisite for continuous measurements. Altogether, the established DA-based FO-SPR bioassay holds much promise for the detection of low molecular weight targets in the future and opens up possibilities for FO-SPR-based continuous biosensing.
Collapse
Affiliation(s)
- Annelies Dillen
- Department of Biosystems─Biosensors Group, KU Leuven, Willem de Croylaan 42, Box 2428, 3001Leuven, Belgium
| | - Claudia Scarpellini
- Department of Biosystems─Biosensors Group, KU Leuven, Willem de Croylaan 42, Box 2428, 3001Leuven, Belgium
| | - Woud Daenen
- Department of Biosystems─Biosensors Group, KU Leuven, Willem de Croylaan 42, Box 2428, 3001Leuven, Belgium
| | - Seppe Driesen
- Department of Biosystems─Biosensors Group, KU Leuven, Willem de Croylaan 42, Box 2428, 3001Leuven, Belgium
| | - Peter Zijlstra
- Department of Applied Physics─Molecular Plasmonics, Eindhoven University of Technology, De Rondom 70, 5612 APEindhoven, The Netherlands
| | - Jeroen Lammertyn
- Department of Biosystems─Biosensors Group, KU Leuven, Willem de Croylaan 42, Box 2428, 3001Leuven, Belgium
| |
Collapse
|
30
|
Kadam US, Cho Y, Park TY, Hong JC. Aptamer-based CRISPR-Cas powered diagnostics of diverse biomarkers and small molecule targets. APPLIED BIOLOGICAL CHEMISTRY 2023; 66:13. [PMID: 36843874 PMCID: PMC9937869 DOI: 10.1186/s13765-023-00771-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 02/03/2023] [Indexed: 06/06/2023]
Abstract
CRISPR-Cas systems have been widely used in genome editing and transcriptional regulation. Recently, CRISPR-Cas effectors are adopted for biosensor construction due to its adjustable properties, such as simplicity of design, easy operation, collateral cleavage activity, and high biocompatibility. Aptamers' excellent sensitivity, specificity, in vitro synthesis, base-pairing, labeling, modification, and programmability has made them an attractive molecular recognition element for inclusion in CRISPR-Cas systems. Here, we review current advances in aptamer-based CRISPR-Cas sensors. We briefly discuss aptamers and the knowledge of Cas effector proteins, crRNA, reporter probes, analytes, and applications of target-specific aptamers. Next, we provide fabrication strategies, molecular binding, and detection using fluorescence, electrochemical, colorimetric, nanomaterials, Rayleigh, and Raman scattering. The application of CRISPR-Cas systems in aptamer-based sensing of a wide range of biomarkers (disease and pathogens) and toxic contaminants is growing. This review provides an update and offers novel insights into developing CRISPR-Cas-based sensors using ssDNA aptamers with high efficiency and specificity for point-of-care setting diagnostics.
Collapse
Affiliation(s)
- Ulhas Sopanrao Kadam
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam-do 52828 Republic of Korea
| | - Yuhan Cho
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam-do 52828 Republic of Korea
| | - Tae Yoon Park
- Graduate School of Education, Yonsei University, Seoul, 03722 Republic of Korea
| | - Jong Chan Hong
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam-do 52828 Republic of Korea
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211 USA
| |
Collapse
|
31
|
Yu L, Ma Z, He Q. Dynamic DNA Nanostructures for Cell Manipulation. ACS Biomater Sci Eng 2023; 9:562-576. [PMID: 36592368 DOI: 10.1021/acsbiomaterials.2c01204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Dynamic DNA nanostructures are DNA nanostructures with reconfigurable elements that can undergo structural transformations in response to specific stimuli. Thus, anchoring dynamic DNA nanostructures on cell membranes is an attractive and promising strategy for well-controlled cell manipulation. Here, we review the latest progress in dynamic DNA nanostructures for cell manipulation. Commonly used mechanisms for dynamic DNA nanostructures are first introduced. Subsequently, we summarize the anchoring strategies for dynamic DNA nanostructures on cell membranes and list possible applications (including programming cell membrane receptors, controlling ligand activity and drug delivery, capturing and releasing cells, and assembling cells into clusters). Finally, insights into the remaining challenges are presented.
Collapse
Affiliation(s)
- Lu Yu
- Department of Endocrinology and Metabolism, The First People's Hospital of Changde City, Renmin Middle Road 818, Changde, Hunan 415000, P. R. China
| | - Zongrui Ma
- Department of Ophthalmology, The First People's Hospital of Changde City, Renmin Middle Road 818, Changde, Hunan 415000, P. R. China
| | - Qunye He
- School of Pharmacy, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200000, P. R. China
| |
Collapse
|
32
|
Wang GA, Wu X, Chen F, Shen C, Yang Q, Li F. Toehold-Exchange-Based Activation of Aptamer Switches Enables High Thermal Robustness and Programmability. J Am Chem Soc 2023; 145:2750-2753. [PMID: 36701187 DOI: 10.1021/jacs.2c10928] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Aptamer switches are attractive nature-inspired tools for developing smart materials and nanodevices. However, the thermal robustness and programmability of current aptamer switches are often limited by their activation processes that are coupled with high reaction enthalpy. Here, we present an enthalpy-independent activation approach that harnesses toehold-exchange as a general framework to design aptamer switches. We demonstrate mathematically and experimentally that this approach is highly effective in improving thermal robustness and thus leads to better analytical performances of aptamer switches. Enhanced programmability is also demonstrated through fine-grained and dynamic tuning of effective affinities and dynamic ranges, as well as the construction of a synthetic DNA network that resembled biological signaling cascades. Our study not only enriches the current toolbox for engineering and controlling synthetic molecular switches but also offers new insights into their thermodynamic basis, which is critical for diverse synthetic biological designs and applications.
Collapse
Affiliation(s)
- Guan Alex Wang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, China, 610064
| | - Xinghong Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, China, 610064
| | - Fangfang Chen
- College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, China, 710127
| | - Chenlan Shen
- Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan, China, 610041
| | - Qianfan Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, China, 610064
| | - Feng Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, China, 610064.,Department of Chemistry, Centre for Biotechnology, Brock University, St. Catharines, Ontario, Canada, L2S 3A1.,Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan, China, 610041
| |
Collapse
|
33
|
Li X, Jia M, Yu L, Li Y, He X, Chen L, Zhang Y. An ultrasensitive label-free biosensor based on aptamer functionalized two-dimensional photonic crystal for kanamycin detection in milk. Food Chem 2023; 402:134239. [DOI: 10.1016/j.foodchem.2022.134239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/01/2022] [Accepted: 09/11/2022] [Indexed: 11/29/2022]
|
34
|
Li J, Liu B, Liu L, Zhang N, Liao Y, Zhao C, Cao M, Zhong Y, Chai D, Chen X, Zhang D, Wang H, He Y, Li Z. Fluorescence-based aptasensors for small molecular food contaminants: From energy transfer to optical polarization. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121872. [PMID: 36152504 DOI: 10.1016/j.saa.2022.121872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/17/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Small molecular food contaminants, such as mycotoxins, pesticide residues and antibiotics, are highly probable to be passively introduced in food at all stages of its processing, including planting, harvest, production, transportation and storage. Owing to the high risks caused by the unknowing intake and accumulation in human, there is an urgent need to develop rapid, sensitive and efficient methods to monitor them. Fluorescence-based aptasensors provide a promising platform for this area owing to its simple operation, high sensitivity, wide application range and economical practicability. In this paper, the common sorts of small molecular contaminants in foods, namely mycotoxins, pesticides, antibiotics, etc, are briefly introduced. Then, we make a comprehensive review, from fluorescence resonance energy transfer (in turn-on, turn-off, and ratiometric mode, as well as energy upconversion) to fluorescence polarization, of the fluorescence-based aptasensors for the determination of these food contaminants reported in the last five years. The principle of signal generation, the advances of each sort of fluorescent aptasensors, as well as their applications are introduced in detail. Additionally, we also discussed the challenges and perspectives of the fluorescent aptasensors for small molecular food contaminants. This work will offer systematic overview and inspiration for amateurs, researchers and developers of fluorescence-based aptasensors for the detection of small molecules.
Collapse
Affiliation(s)
- Jingrong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Boshi Liu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| | - Li Liu
- Library of Tianjin Medical University, Tianjin 300070, China
| | - Nan Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yumeng Liao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chunyu Zhao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Manzhu Cao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuxuan Zhong
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Danni Chai
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoyu Chen
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Di Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| | - Haixia Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yongzhi He
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
35
|
Zhang QL, Wang Y, Wang LL, Xie F, Wu RY, Ma XY, Li H, Liu Y, Yao S, Xu L. Programming Non-Nucleic Acid Molecules into Computational Nucleic Acid Systems. Angew Chem Int Ed Engl 2023; 62:e202214698. [PMID: 36373715 DOI: 10.1002/anie.202214698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Indexed: 11/16/2022]
Abstract
Nucleic acid (NA) computation has been widely developed in the past years to solve kinds of logic and mathematic issues in both information technologies and biomedical analysis. However, the difficulty to integrate non-NA molecules limits its power as a universal platform for molecular computation. Here, we report a versatile prototype of hybridized computation integrated with both nucleic acids and non-NA molecules. Employing the conformationally controlled ligand converters, we demonstrate that non-NA molecules, including both small molecules and proteins, can be computed as nucleic acid strands to construct the circuitry with increased complexity and scalability, and can be even programmed to solve arithmetical calculations within the computational nucleic acid system. This study opens a new door for molecular computation in which all-NA circuits can be expanded with integration of various ligands, and meanwhile, ligands can be precisely programmed by the nuclei acid computation.
Collapse
Affiliation(s)
- Qiu-Long Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yang Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Liang-Liang Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Fan Xie
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ruo-Yue Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xu-Yang Ma
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Han Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yan Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Shunchun Yao
- School of Electric Power Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Liang Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
36
|
Chen Q, Yang W, Gong W, Chen X, Zhu Z, Chen H. Advanced Sensing Strategies Based on Different Types of Biomarkers toward Early Diagnosis of H. pylori. Crit Rev Anal Chem 2023; 54:2277-2289. [PMID: 36598423 DOI: 10.1080/10408347.2022.2163585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Helicobacter pylori (H. pylori) is a bacterium that can colonize human gastric epithelial cells and cause H. pylori infection, closely related to many gastric diseases. Compared with conventional H. pylori detection methods, emerging diagnostic approaches (such as biosensors) have become potentially more effective alternatives due to their high sensitivity, good selectivity and noninvasiveness. This review begins with a brief overview of H. pylori infection, the processes that lead to diseases, and current diagnostic methods. Subsequently, advanced biosensors in different target-based for diagnosing H. pylori infection are focused, including the detection of H. pylori-related nucleic acid, H. pylori-related protein (such as the cytotoxin, urease), and intact H. pylori. In addition, prospects for the development of H. pylori detection methods are also discussed in the end.
Collapse
Affiliation(s)
- Qiang Chen
- School of Medicine, Shanghai University, Shanghai, PR China
| | - Wenyi Yang
- School of Life Sciences, Shanghai University, Shanghai, PR China
| | - Weihua Gong
- Department of Oncology, Chongming Branch of Shanghai Tenth People's Hospital, Shanghai, PR China
| | - Xiaobing Chen
- Department of Oncology, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, PR China
| | - Zhongzheng Zhu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Hongxia Chen
- School of Life Sciences, Shanghai University, Shanghai, PR China
| |
Collapse
|
37
|
Li P, Luo C, Chen X, Huang C. An off-on fluorescence aptasensor for trace thrombin detection based on FRET between CdS QDs and AuNPs. RSC Adv 2022; 12:35763-35769. [PMID: 36545096 PMCID: PMC9749934 DOI: 10.1039/d2ra06891e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/08/2022] [Indexed: 12/16/2022] Open
Abstract
An off-on fluorescence aptasensor was developed for trace thrombin detection based on fluorescence resonance energy transfer (FRET) between CdS QDs and gold nanoparticles (AuNPs). Using DNA pairwise hybridization of the aptamer to the complementary DNA (cDNA), the CdS QDs (energy donor) were tightly coupled to the AuNPs (energy acceptor), resulting in the occurrence of FRET and there was a dramatic fluorescence quenching of CdS QDs (turn off). When the thrombin was added to the fluorescence aptasensor, the specific binding of the aptamer to the target formed a G-quadruplex that caused the AuNPs receptor to detach and the DNA duplex to be disassembled. The process would inhibit the FRET which contribute to the recovery of fluorescence (turn on) and an "off-on" fluorescence aptasensor for thrombin detection was constructed accordingly. Under optimal conditions, the fluorescence recovery showed good linearity with the concentration of thrombin in the range of 1.35-54.0 nmol L-1, and the detection limit was 0.38 nmol L-1 (S/N = 3, n = 9). Importantly, the fluorescence aptasensor presented excellent specificity for thrombin, and was successfully applied to the quantitative determination of thrombin in real serum with satisfactory recoveries of 98.60-102.2%.
Collapse
Affiliation(s)
- Pu Li
- College of Chemistry and Life Science, Zhejiang Normal University Jinhua 321004 China
| | - Chen Luo
- College of Chemistry and Life Science, Zhejiang Normal University Jinhua 321004 China
| | - Xiaoxiao Chen
- College of Chemistry and Life Science, Zhejiang Normal University Jinhua 321004 China
| | - Chaobiao Huang
- Xingzhi College, Zhejiang Normal University Lanxi 321100 China
- College of Chemistry and Life Science, Zhejiang Normal University Jinhua 321004 China
| |
Collapse
|
38
|
Controllable DNA hybridization by host-guest complexation-mediated ligand invasion. Nat Commun 2022; 13:5936. [PMID: 36209265 PMCID: PMC9547909 DOI: 10.1038/s41467-022-33738-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/30/2022] [Indexed: 11/09/2022] Open
Abstract
Dynamic regulation of nucleic acid hybridization is fundamental for switchable nanostructures and controllable functionalities of nucleic acids in both material developments and biological regulations. In this work, we report a ligand-invasion pathway to regulate DNA hybridization based on host-guest interactions. We propose a concept of recognition handle as the ligand binding site to disrupt Watson-Crick base pairs and induce the direct dissociation of DNA duplex structures. Taking cucurbit[7]uril as the invading ligand and its guest molecules that are integrated into the nucleobase as recognition handles, we successfully achieve orthogonal and reversible manipulation of DNA duplex dissociation and recovery. Moreover, we further apply this approach of ligand-controlled nucleic acid hybridization for functional regulations of both the RNA-cleaving DNAzyme in test tubes and the antisense oligonucleotide in living cells. This ligand-invasion strategy establishes a general pathway toward dynamic control of nucleic acid structures and functionalities by supramolecular interactions.
Collapse
|
39
|
Xiang J, Zhang J, Li S, Yuan R, Xiang Y. Aptamer-based and sensitive label-free colorimetric sensing of phenylalanine via cascaded signal amplifications. Anal Chim Acta 2022; 1230:340393. [DOI: 10.1016/j.aca.2022.340393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/31/2022] [Accepted: 09/11/2022] [Indexed: 11/24/2022]
|
40
|
Pan J, Deng F, Zeng L, Liu Z, Chen J. Target-mediated competitive hybridization of hairpin probes for kanamycin detection based on exonuclease III cleavage and DNAzyme catalysis. Anal Bioanal Chem 2022; 414:8255-8261. [PMID: 36178489 DOI: 10.1007/s00216-022-04354-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022]
Abstract
Based on aptamer recognition and target-mediated competitive hybridization of hairpin probes, we developed a fluorescence sensor for kanamycin (KAN) detection. The aptamer and KAN binding will open hairpin H1 to release the trigger DNA fragment, which can initiate the competitive hybridization between hairpins H2 and H3. Then, exonuclease III (Exo III) can cleave H2 and H3 to produce numerous DNA3 and DNA4. Through the synergetic hybridization among DNA1, DNA2, DNA3, and DNA4, an active Mg2+-DNAzyme can be formed. The cleavage reaction toward FAM-BHQ-modified DNA2 will produce a high fluorescence signal for KAN assay. Through Exo III-guided cleavage and Mg2+-DNAzyme-based catalysis, the sensor exhibits high sensitivity, with a detection limit of 3.1 fM. This method is robust and has been applied to the detection of KAN in milk and water samples with good accuracy and reliability. Our developed fluorescence sensor exhibits the advantages of simple operation, high sensitivity, and good robustness, which are beneficial for KAN detection in food samples.
Collapse
Affiliation(s)
- Jiafeng Pan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Fang Deng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Lingwen Zeng
- Guangdong Langyuan Biotechnology Co., LTD, Foshan, 528313, China
- School of Food Science and Engineering, Foshan University, Foshan, 528231, China
| | - Zhi Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| | - Junhua Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
41
|
Li X, Chen X, Mao M, Peng C, Wang Z. Accelerated CRISPR/Cas12a-based small molecule detection using bivalent aptamer. Biosens Bioelectron 2022; 217:114725. [PMID: 36179433 DOI: 10.1016/j.bios.2022.114725] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/04/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022]
Abstract
CRISPR/Cas holds great promise for biosensing applications, however, restricted to nucleic acid targets. Here, we broaden the sensing target of CRISPR/Cas to small molecules via integrating a bivalent aptamer as a recognition component. Using adenosine 5'-triphosphate (ATP) as a model molecule, we found that a bivalent aptamer we selected could shorten the binding time between the aptamer and ATP from 30 min to 3 min, thus dramatically accelerating the detection of ATP. The accelerated bivalent aptamer binding to ATP was mainly ascribed to the extended conformation of the aptamer, which was stabilized through linking with a 5 T bases connector on specific loops of the monovalent aptamer. To facilitate on-site detection, we integrated lateral flow assay (LFA) with the CRISPR/Cas sensing strategy (termed BA-CASLFA) to serve as a visual readout of the presence of ATP. In addition, in the CASLFA platform, due to the unique characteristics of LFA, the thermal step of Cas12a inactivation can be omitted. The BA-CASLFA could output a colorimetric "TURN ON" signal for ATP within 26 min, which could be easily discriminated by the naked eye and sensitively quantified by the portable reader. Furthermore, we showed the versatility of BA-CASLFA for detecting kanamycin using a kanamycin bivalent aptamer obtained through the same design as the ATP bivalent aptamer. Therefore, this strategy is amenable to serve as a general sensing strategy for small molecular targets. The above work opened a new way in developing CRISPR-based on-site sensors for clinic diagnosis, food safety, and environmental analysis.
Collapse
Affiliation(s)
- Xiuping Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China
| | - Xiujin Chen
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471000, PR China
| | - Minxin Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China
| | - Chifang Peng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China.
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China
| |
Collapse
|
42
|
Liu J, Li T, Qin H, Li L, Yan M, Zhu C, Qu F, Abd El-Aty AM. Self-assembly and label-free fluorescent aptasensor based on deoxyribonucleic acid intercalated dyes for detecting lactoferrin in milk powder. Front Nutr 2022; 9:992188. [PMID: 36185658 PMCID: PMC9521185 DOI: 10.3389/fnut.2022.992188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Lactoferrin (Lf), an iron-binding glycoprotein, regulates the immune system. It has broad-spectrum antimicrobial activity and is critical for child physical growth and development. As a common additive in the dairy industry, it is crucial to quantify LF content. This study established a self-assembly and universal fluorescence aptasensor for detecting LF in milk powder based on structure-selective dyes of PicoGreen intercalated in the label-free aptamer. Herein, the aptamer functions as both a specific recognition element against targets and a fluorescent signal reporter integrated with structure-selective dyes. First, the aptamer folds into a three-dimensional spatial structure based on complementary base pairings and intermolecular weak non-covalent interactions. Then, the dye is intercalated into the minor groove structures of the aptamer and triggers its potential fluorescent property. When the target exists, the aptamer binds to it preferentially, and its space structure unfolds. This causes the freeing of the subsequent dye and decreases the corresponding fluorescence. Hence, the reflected fluorescence signals could directly determine the target concentrations. Under the optimum conditions, a good linear relationship (R2, 0.980) was obtained in the Lf range from 20 to 500 nM with a detection limit of 3 nM (2.4 mg/kg) and good specificity, as well as a reliable recovery of 95.8–105.1% in milk powder. In addition, the universality was also confirmed with a good performance by quickly changing the aptamers against other targets (chlorpyrifos, acetamiprid, bovine thyroglobulin, and human transferrin) or utilizing another fluorescence dye. Therefore, this self-assembly aptasensor provides a universal and concise strategy for effective detection.
Collapse
Affiliation(s)
- Jiahui Liu
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, China
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Tengfei Li
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Hongwei Qin
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, China
| | - Linsen Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Mengmeng Yan
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, China
- *Correspondence: Mengmeng Yan,
| | - Chao Zhu
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, China
- Chao Zhu,
| | - Feng Qu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - A. M. Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| |
Collapse
|
43
|
Duan C, Cheng W, Yao Y, Li D, Wang Z, Xiang Y. Universal and Flexible Signal Transduction Module Based on Overload Triggering Probe Escape for Sensitive Detection of Tau Protein. Anal Chem 2022; 94:12919-12926. [PMID: 36069206 DOI: 10.1021/acs.analchem.2c03129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aptamer-based methods have attracted increasing interest due to flexible engineering, but their generality is limited by the heterogeneity of signal transduction mechanisms. Given the fact that nonlinear and large molecules are more likely to make the nanosurface overloaded, we investigated a novel signal transduction process to extend the application of aptasensors. In this work, an aptamer complementary element (ACE) is designed with a primer region to serve as the signal probe, which can fully hybridize with an aptamer and be separated by magnetic beads (MBs). Upon target binding, the formed aptamer/target complex is much larger than the linear aptamer/ACE-primer dimer, causing overload of MBs on account of steric hindrance. An extra aptamer/ACE-primer can escape from the surface to the supernatant, which can be amplified by a catalytic hairpin assembly (CHA) circle. The size-dependent signal transduction and the modular design endow the method with high generality and flexibility for protein analysis. The proposed aptasensor was successfully applied to the detection of tau proteins ranging from 0.5 to 1000 ng mL-1 with a limit of detection (LOD) as low as 0.254 ng mL-1. The recovery tests in both human serum and cerebra spinal fluid confirmed the high accuracy and stability. Furthermore, a successful distinction was made between AD patients and healthy controls by the method, suggesting the possible applicability for practical analysis of tau proteins.
Collapse
Affiliation(s)
- Chengjie Duan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Wenting Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Yanheng Yao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Dayong Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Zhongyun Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Yang Xiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.,State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, P. R. China
| |
Collapse
|
44
|
Zhu C, Zhang F, Li H, Chen Z, Yan M, Li L, Qu F. CRISPR/Cas Systems Accelerating the Development of Aptasensors. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
45
|
Zheng H, GhavamiNejad A, GhavamiNejad P, Samarikhalaj M, Giacca A, Poudineh M. Hydrogel Microneedle-Assisted Assay Integrating Aptamer Probes and Fluorescence Detection for Reagentless Biomarker Quantification. ACS Sens 2022; 7:2387-2399. [PMID: 35866892 DOI: 10.1021/acssensors.2c01033] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Analyzing interstitial fluid (ISF) via microneedle (MN) devices enables patient health monitoring in a minimally invasive manner and in point-of-care settings. However, most MN-based diagnostic approaches require complicated fabrication processes and postprocessing of the extracted ISF or are limited to detection of electrochemically active biomarkers. Here, we show on-needle measurement of target analytes by integrating hydrogel microneedles with aptamer probes as the recognition elements. Fluorescently tagged aptamer probes are chemically attached to the hydrogel matrix using a simple and novel approach, while a cross-linked patch is formed. For reagentless detection, we employ a strand displacement strategy where fluorophore-conjugated aptamers are hybridized with a DNA competitor strand conjugated to a quencher molecule. The assay is utilized for rapid (2 min) measurement of glucose, adenosine triphosphate, l-tyrosinamide, and thrombin ex vivo. Furthermore, the system enables specific and sensitive quantification of rising and falling concentrations of glucose in an animal model of diabetes to track hypoglycemia, euglycemia, and hyperglycemia conditions. Our assay can be applied for rapid measurement of a diverse range of biomarkers, proteins, or small molecules, introducing a generalizable platform for biomolecule quantification, and has the potential to improve the quality of life of patients who are in need of close monitoring of biomarkers of health and disease.
Collapse
Affiliation(s)
- Hanjia Zheng
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Amin GhavamiNejad
- Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Peyman GhavamiNejad
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Melisa Samarikhalaj
- Departments of Physiology and Medicine, Institute of Medical Science and Banting and Best Diabetes Centre, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Adria Giacca
- Departments of Physiology and Medicine, Institute of Medical Science and Banting and Best Diabetes Centre, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Mahla Poudineh
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
46
|
|
47
|
Jang K, Westbay JH, Asher SA. DNA-Crosslinked 2D Photonic Crystal Hydrogels for Detection of Adenosine Actuated by an Adenosine-Binding Aptamer. ACS Sens 2022; 7:1648-1656. [PMID: 35623053 DOI: 10.1021/acssensors.1c02424] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There is a need to develop versatile sensing motifs that can be used to detect a variety of chemical targets in resource-limited settings, for example, at the point of care. While numerous sensing technologies have been developed toward this effort, these technologies can be overly complex and require a skilled technician, extensive sample preparation, or sophisticated instrumentation to use, limiting their generalizability and application in resource-limited settings. Here, we report a novel sensing motif that utilizes DNA-crosslinked two-dimensional photonic crystal (2DPC) hydrogels. These hydrogel sensors contain a DNA aptamer recognition group that binds a target analyte. As proof of concept, we fabricated 2DPC hydrogels using a well-studied adenosine-binding aptamer. This adenosine aptamer is duplexed with a partially complementary strand and forms responsive crosslinks in the hydrogel polymer network. When adenosine is introduced, aptamer-adenosine binding occurs, breaking the DNA crosslinks and causing the hydrogel to swell. This in turn increases the particle spacing of an embedded 2DPC array, shifting the 2DPC Bragg diffraction. Thus, adenosine concentration can be monitored through 2DPC Bragg diffraction measurements. A linear range of 20 μM to 2 mM was observed. The detection limits were calculated to be 13.9 μM in adenosine-binding buffer and 26.7 μM in fetal bovine serum. This reported sensing motif has a readout that is simple and rapid and requires minimal equipment. We hypothesize that this sensing motif is generalizable and that other sensors can be easily fabricated by simply exchanging the aptamer that serves as a molecular recognition group.
Collapse
Affiliation(s)
- Kyeongwoo Jang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - James H. Westbay
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sanford A. Asher
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
48
|
Liu F, Li N, Shang Y, Wang Y, Liu Q, Ma Z, Jiang Q, Ding B. A DNA‐Based Plasmonic Nanodevice for Cascade Signal Amplification. Angew Chem Int Ed Engl 2022; 61:e202114706. [DOI: 10.1002/anie.202114706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Fengsong Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Na Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yingxu Shang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology Beijing 100190 China
| | - Yiming Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology Beijing 100190 China
| | - Zhentao Ma
- He'nan Institute of Advanced Technology School of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 China
| | - Qiao Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- He'nan Institute of Advanced Technology School of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
49
|
Wu Q, Yang L, Xie L, Shang J, He S, Liu J, Wang F. Modular Assembly of a Concatenated DNA Circuit for In Vivo Amplified Aptasensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200983. [PMID: 35460185 DOI: 10.1002/smll.202200983] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Probing endogenous molecular profiles in living entities is of fundamental significance to decipher biological functions and exploit novel theranostics. Despite programmable nucleic acid-based aptasensing systems across the breadth of molecular imaging, an aptasensing system enabling in vivo imaging with high sensitivity, accuracy, and adaptability is highly required yet is still in its infancy. Artificial catalytic DNA circuits that can modularly integrate to generate multiple outputs from a single input in an isothermal autonomous manner, have supplemented powerful toolkits for intracellular biosensing research. Herein, a multilayer nonenzymatic catalytic DNA circuits-based aptasensing system is devised for in situ imaging of a bioactive molecule in living mice by assembling branched DNA copolymers with high-molecular-weight and high-signal-gain based on avalanche-mimicking hybridization chain reactions (HCRs). The HCRs aptasensing circuit performs as a general and powerful sensing platform for precise analysis of a series of bioactive molecules due to its inherent rich recognition repertoire and hierarchical reaction accelerations. With tumor-targeting capsule encapsulation, the HCRs aptasensing circuit is specifically delivered into tumor cells and allowed the high-contrast imaging of intracellular adenosine triphosphate in living mice, highlighting its potential for visualizing these clinically important biomolecules and for studying the associated physiological processes.
Collapse
Affiliation(s)
- Qiong Wu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- Medical College, Wuhan University of Science and Technology, Wuhan, 430065, P. R. China
| | - Lei Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Lingling Xie
- Medical College, Wuhan University of Science and Technology, Wuhan, 430065, P. R. China
| | - Jinhua Shang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Shizhen He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Jing Liu
- Department of Gastroenterology, Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430072, P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
50
|
Parihar A, Singhal A, Kumar N, Khan R, Khan MA, Srivastava AK. Next-Generation Intelligent MXene-Based Electrochemical Aptasensors for Point-of-Care Cancer Diagnostics. NANO-MICRO LETTERS 2022; 14:100. [PMID: 35403935 PMCID: PMC8995416 DOI: 10.1007/s40820-022-00845-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/11/2022] [Indexed: 02/08/2023]
Abstract
Delayed diagnosis of cancer using conventional diagnostic modalities needs to be addressed to reduce the mortality rate of cancer. Recently, 2D nanomaterial-enabled advanced biosensors have shown potential towards the early diagnosis of cancer. The high surface area, surface functional groups availability, and excellent electrical conductivity of MXene make it the 2D material of choice for the fabrication of advanced electrochemical biosensors for disease diagnostics. MXene-enabled electrochemical aptasensors have shown great promise for the detection of cancer biomarkers with a femtomolar limit of detection. Additionally, the stability, ease of synthesis, good reproducibility, and high specificity offered by MXene-enabled aptasensors hold promise to be the mainstream diagnostic approach. In this review, the design and fabrication of MXene-based electrochemical aptasensors for the detection of cancer biomarkers have been discussed. Besides, various synthetic processes and useful properties of MXenes which can be tuned and optimized easily and efficiently to fabricate sensitive biosensors have been elucidated. Further, futuristic sensing applications along with challenges will be deliberated herein.
Collapse
Affiliation(s)
- Arpana Parihar
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, MP, India
| | - Ayushi Singhal
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, MP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Neeraj Kumar
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, MP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Raju Khan
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, MP, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Mohd Akram Khan
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, MP, India
| | - Avanish K Srivastava
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, MP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|