1
|
Kocsi D, Orthaber A, Borbas E. Tuning the photophysical properties of luminescent lanthanide complexes through regioselective antenna fluorination. Chem Commun (Camb) 2022; 58:6853-6856. [DOI: 10.1039/d2cc01229d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbostyrils monofluorinated in the 3, 5, or 6 positions were synthesised from olefinic precursors via a photochemical isomerisation-cyclisation route, and incorporated into octadentate cyclen triacetate ligands that formed luminescent complexes...
Collapse
|
2
|
Kocsi D, Kovacs D, Wells JAL, Borbas KE. Reduced quenching effect of pyridine ligands in highly luminescent Ln(III) complexes: the role of tertiary amide linkers. Dalton Trans 2021; 50:16670-16677. [PMID: 34757364 DOI: 10.1039/d1dt02893f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Luminescent Eu(III) and Tb(III) complexes were synthesised from octadentate ligands carrying various carbostyril sensitizing antennae and two bidentate picolinate donors. Antennae were connected to the metal binding site via tertiary amide linkers. Antennae and donors were assembled on a 1,4,7-triazacyclononane (tacn) platform. Solution- and solid-state structures were comparable to those of previously reported complexes with tacn architectures, with nine-coordinate distorted tricapped trigonal prismatic Ln(III) centres, and distinct from those based on 1,4,7,10-tetraazacyclododecane (cyclen) macrocycles. In contrast, the photophysical properties of these tertiary amide tacn-based complexes were more comparable to those of previously reported systems with cyclen ligands, showing efficient Eu(III) and Tb(III) luminescence. This represents an improvement over secondary amide-linked analogues, and is due to a greatly increased sensitization efficiency in the tertiary amide-linked complexes. Tertiary amide-linked Eu(III) and Tb(III) emitters were more photostable than their secondary amide-linked analogues due to the suppression of photoinduced electron transfer and back energy transfer.
Collapse
Affiliation(s)
- Daniel Kocsi
- Department of Chemistry, Ångström Laboratory, Box 523, Uppsala University, 75120, Uppsala, Sweden.
| | - Daniel Kovacs
- Department of Chemistry, Ångström Laboratory, Box 523, Uppsala University, 75120, Uppsala, Sweden.
| | - Jordann A L Wells
- Department of Chemistry, Ångström Laboratory, Box 523, Uppsala University, 75120, Uppsala, Sweden.
| | - K Eszter Borbas
- Department of Chemistry, Ångström Laboratory, Box 523, Uppsala University, 75120, Uppsala, Sweden.
| |
Collapse
|
3
|
Fligelman A, Johns G, Guyn C, Petrauskas A, Vadola PA, Griffin GB. Electronic Relaxation Dynamics in 2-Quinolinones with Extended Conjugation. J Phys Chem A 2021; 125:9757-9769. [PMID: 34734719 DOI: 10.1021/acs.jpca.1c04560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The 2-quinolinone family of molecules, also known as carbostyrils, have been proposed as light absorbing donor molecules in energy transfer based sensing schemes and as possible photocatalysts. Both of these applications make use of electronic excited states, but the photophysics of 2-quinolinones have not yet been examined closely. This study applies static and dynamic spectroscopy, with supporting density functional theory calculations, to reveal the electronic relaxation dynamics of a family of five 2-quinolinones with extended conjugated rings. These modifications lead to red-shifted absorbance and emission maxima, relative to unmodified 2-quinolinone. Optical excitation of these molecules with near UV light resulted in transitions with strong π → π* and HOMO → LUMO character. Time-correlated single photon counting measurements yielded fluorescence lifetimes ranging from 849.3 (±0.6) ps to 4.586 (±0.002) ns. Transient absorption spectroscopy revealed relaxation dynamics of the S1 excited state formed by photoexcitation at 350 nm, along with formation of a long-lived signal assigned as excited state absorption by a triplet excited state. Vibrational relaxation in the S1 state was also characterized in some compounds. Overlapping signals of S1 decay and triplet growth in the transient absorption data set could not be fully disentangled. These results demonstrate a highly competitive relaxation scheme following multiple simultaneous pathways, a promising situation for establishing chemical control of electronic relaxation in the 2-quinolinone family.
Collapse
Affiliation(s)
- Alana Fligelman
- Department of Chemistry and Biochemistry, DePaul University, 1110 West Belden Avenue, Chicago Illinois 60614, United States
| | - Gonto Johns
- Department of Chemistry and Biochemistry, DePaul University, 1110 West Belden Avenue, Chicago Illinois 60614, United States
| | - Christina Guyn
- Department of Chemistry and Biochemistry, DePaul University, 1110 West Belden Avenue, Chicago Illinois 60614, United States
| | - Alexis Petrauskas
- Department of Chemistry and Biochemistry, DePaul University, 1110 West Belden Avenue, Chicago Illinois 60614, United States
| | - Paul A Vadola
- Department of Chemistry and Biochemistry, DePaul University, 1110 West Belden Avenue, Chicago Illinois 60614, United States
| | - Graham B Griffin
- Department of Chemistry and Biochemistry, DePaul University, 1110 West Belden Avenue, Chicago Illinois 60614, United States
| |
Collapse
|
4
|
Abad‐Galán L, Cieslik P, Comba P, Gast M, Maury O, Neupert L, Roux A, Wadepohl H. Excited State Properties of Lanthanide(III) Complexes with a Nonadentate Bispidine Ligand. Chemistry 2021; 27:10303-10312. [PMID: 33780569 PMCID: PMC8360039 DOI: 10.1002/chem.202005459] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 12/03/2022]
Abstract
EuIII , TbIII , GdIII and YbIII complexes of the nonadentate bispidine derivative L2 (bispidine=3,7-diazabicyclo[3.3.1]nonane) were successfully synthesized and their emission properties studied. The X-ray crystallography reveals full encapsulation by the nonadentate ligand L2 that enforces to all LnIII cations a common highly symmetrical capped square antiprismatic (CSAPR) coordination geometry (pseudo C4v symmetry). The well-resolved identical emission spectra in solid state and in solution confirm equal structures in both media. As therefore expected, this results in long-lived excited states and high emission quantum yields ([EuIII L2 ]+ , H2 O, 298 K, τ=1.51 ms, ϕ=0.35; [TbIII L2 ]+ , H2 O, 298 K, τ=1.95 ms, ϕ=0.68). Together with the very high kinetic and thermodynamic stabilities, these complexes are a possible basis for interesting biological probes.
Collapse
Affiliation(s)
- Laura Abad‐Galán
- Université de LyonENS de LyonLaboratoire de ChimieCNRS UMR 5182Université Claude Bernard Lyon 169342LyonFrance
| | - Patrick Cieslik
- Universität HeidelbergAnorganisch-Chemisches InstitutINF 27069120HeidelbergGermany
| | - Peter Comba
- Universität HeidelbergAnorganisch-Chemisches InstitutINF 27069120HeidelbergGermany
- Universität HeidelbergInterdisciplinary Center for Scientific Computing69120HeidelbergGermany
| | - Michael Gast
- Universität HeidelbergAnorganisch-Chemisches InstitutINF 27069120HeidelbergGermany
| | - Olivier Maury
- Université de LyonENS de LyonLaboratoire de ChimieCNRS UMR 5182Université Claude Bernard Lyon 169342LyonFrance
| | - Lucca Neupert
- Universität HeidelbergAnorganisch-Chemisches InstitutINF 27069120HeidelbergGermany
| | - Amandine Roux
- Université de LyonENS de LyonLaboratoire de ChimieCNRS UMR 5182Université Claude Bernard Lyon 169342LyonFrance
| | - Hubert Wadepohl
- Universität HeidelbergAnorganisch-Chemisches InstitutINF 27069120HeidelbergGermany
| |
Collapse
|
5
|
Arnedo-Sanchez L, Smith KF, Deblonde GJP, Carter KP, Moreau LM, Rees JA, Tratnjek T, Booth CH, Abergel RJ. Combining the Best of Two Chelating Titans: A Hydroxypyridinone-Decorated Macrocyclic Ligand for Efficient and Concomitant Complexation and Sensitized Luminescence of f-Elements. Chempluschem 2021; 86:483-491. [PMID: 33733616 DOI: 10.1002/cplu.202100083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/02/2021] [Indexed: 12/11/2022]
Abstract
An ideal chelator for f-elements features rapid kinetics of complexation, high thermodynamic stability, and slow kinetics of dissociation. Here we present the facile synthesis of a macrocyclic ligand bearing four 1-hydroxy-2-pyridinone units linked to a cyclen scaffold that rapidly forms thermodynamically stable complexes with lanthanides (Sm3+ , Eu3+ , Tb3+ , Dy3+ ) and a representative late actinide (Cm3+ ) in aqueous media and concurrently sensitizes them. Extended X-ray absorption fine structure (EXAFS) spectroscopy revealed an increase in the Ln/An-O bond lengths following the trend Cm>Eu>Tb and EXAFS data were compatible with time-resolved luminescence studies, which indicated one to two water molecules in the inner metal coordination sphere of Eu(III) and two water molecules for the Cm(III) complex. Spectrofluorimetric ligand competition titrations against DTPA confirmed the high thermodynamic stability of DOTHOPO complexes, with pM values between 19.9(1) and 21.9(2).
Collapse
Affiliation(s)
- Leticia Arnedo-Sanchez
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kurt F Smith
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Gauthier J-P Deblonde
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Glenn T. Seaborg Institute, Physical & Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Korey P Carter
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Liane M Moreau
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Julian A Rees
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Toni Tratnjek
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Corwin H Booth
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Department of Nuclear Engineering, University of California, Berkeley, CA 94709, USA
| |
Collapse
|
6
|
Solid-state photoluminescence, energy transfer mechanism and optical band gap of two 4f-5d complexes with 1-D chain-like structure. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Fremy G, Raibaut L, Cepeda C, Sanson M, Boujut M, Sénèque O. A novel DOTA-like building block with a picolinate arm for the synthesis of lanthanide complex-peptide conjugates with improved luminescence properties. J Inorg Biochem 2020; 213:111257. [DOI: 10.1016/j.jinorgbio.2020.111257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 12/28/2022]
|
8
|
Kiraev SR, Mathieu E, Siemens F, Kovacs D, Demeyere E, Borbas KE. Lanthanide(III) Complexes of Cyclen Triacetates and Triamides Bearing Tertiary Amide-Linked Antennae. Molecules 2020; 25:molecules25225282. [PMID: 33198318 PMCID: PMC7698001 DOI: 10.3390/molecules25225282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 01/08/2023] Open
Abstract
The coordination compounds of the trivalent lanthanide ions (Ln(III)) have unique photophysical properties. Ln(III) excitation is usually performed through a light-harvesting antenna. To enable Ln(III)-based emitters to reach their full potential, an understanding of how complex structure affects sensitization and quenching processes is necessary. Here, the role of the linker between the antenna and the metal binding fragment was studied. Four macrocyclic ligands carrying coumarin 2 or 4-methoxymethylcarbostyril sensitizing antennae linked to an octadentate macrocyclic ligand binding site were synthesized. Complexation with Ln(III) (Ln = La, Sm, Eu, Gd, Tb, Yb and Lu) yielded species with overall −1, 0, or +2 and +3-charge. Paramagnetic 1H NMR spectroscopy indicated subtle differences between the coumarin- and carbostyril-carrying Eu(III) and Yb(III) complexes. Cyclic voltammetry showed that the effect of the linker on the Eu(III)/Eu(II) apparent reduction potential was dependent on the electronic properties of the N-substituent. The Eu(III), Tb(III) and Sm(III) complexes were all luminescent. Coumarin-sensitized complexes were poorly emissive; photoinduced electron transfer was not a major quenching pathway in these species. These results show that seemingly similar emitters can undergo very different photophysical processes, and highlight the crucial role the linker can play.
Collapse
|
9
|
Pallares RM, Panyala NR, Sturzbecher-Hoehne M, Illy MC, Abergel RJ. Characterizing the general chelating affinity of serum protein fetuin for lanthanides. J Biol Inorg Chem 2020; 25:941-948. [DOI: 10.1007/s00775-020-01815-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/31/2020] [Indexed: 12/27/2022]
|
10
|
Hummel T, Leis W, Eckhardt A, Ströbele M, Enseling D, Jüstel T, Meyer HJ. Energy transfer in supramolecular [Crypt-RE]-[W 6I 14] solids. Dalton Trans 2020; 49:9795-9803. [PMID: 32627778 DOI: 10.1039/d0dt01705a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Photophysical properties of tungsten iodides with the [W6I14]2- cluster core have been described with respect to phosphorescence and phosphorescence quenching by molecular oxygen. This process involves energy transfer from excited triplet states of the cluster onto molecular oxygen. In the present study we investigate deactivation channels of exited triplet states of the [W6I14]2- cluster towards rare earth ions. For this purpose, we synthesized several supramolecular assemblies made of [W6I14]2- clusters and metal cryptates and investigated their crystal structures and photophysical properties. UV/Vis photoexcitation of solid [Crypt-A]-[W6I14] (A = alkaline metal) and [Crypt-RE]-[W6I14] revealed phosphorescence of the cluster, respectively of the photophysically active rare earth metal (RE) center. A cluster to cryptate energy transfer is proven with a photophysically active rare earth ion by the emission of Yb3+ at 977 nm (2F5/2-2F7/2) and Nd3+ 1072 nm (4F3/2-4I11/2). These results show that an effective excitation of near-infrared-emitting rare earth ions is possible under excitation up to 550 nm with [Crypt-RE]-[W6I14] assemblies.
Collapse
Affiliation(s)
- Thorsten Hummel
- Section for Solid State and Theoretical Inorganic Chemistry, Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany.
| | - Wolfgang Leis
- Section for Translational Chemistry, Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Aaron Eckhardt
- Section for Solid State and Theoretical Inorganic Chemistry, Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany.
| | - Markus Ströbele
- Section for Solid State and Theoretical Inorganic Chemistry, Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany.
| | - David Enseling
- Department of Chemical Engineering, Münster University of Applied Sciences, Stegerwaldstraße 39, 48565 Steinfurt, Germany
| | - Thomas Jüstel
- Department of Chemical Engineering, Münster University of Applied Sciences, Stegerwaldstraße 39, 48565 Steinfurt, Germany
| | - Hans-Jürgen Meyer
- Section for Solid State and Theoretical Inorganic Chemistry, Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany.
| |
Collapse
|
11
|
Kovacs D, Mathieu E, Kiraev SR, Wells JAL, Demeyere E, Sipos A, Borbas KE. Coordination Environment-Controlled Photoinduced Electron Transfer Quenching in Luminescent Europium Complexes. J Am Chem Soc 2020; 142:13190-13200. [DOI: 10.1021/jacs.0c05518] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Daniel Kovacs
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Emilie Mathieu
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Salauat R. Kiraev
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Jordann A. L. Wells
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Ellen Demeyere
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Agnès Sipos
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - K. Eszter Borbas
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| |
Collapse
|
12
|
Fueyo-González F, Garcia-Fernandez E, Martínez D, Infantes L, Orte A, González-Vera JA, Herranz R. Smart lanthanide antennas for sensing water. Chem Commun (Camb) 2020; 56:5484-5487. [PMID: 32347241 DOI: 10.1039/d0cc01725f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Two new families of lanthanide antennas are described. 8-Methoxy-4,5-dihydrocyclopenta[de]quinolin-2(1H)-one phosphonates or carboxylates behave as selective antennas exhibiting Eu3+ luminescence in organic solvents, while quinolin-2(1H)-one analogues selectively sensitize the Tb3+ emission. These emissions are quenched by H2O addition. Based on this behaviour, the new lanthanide antennas can be used as highly sensitive water sensors.
Collapse
Affiliation(s)
| | - Emilio Garcia-Fernandez
- Departmento de Fisicoquímica, Unidad de Excelencia de Química aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, Granada 18071, Spain.
| | - David Martínez
- Departmento de Fisicoquímica, Unidad de Excelencia de Química aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, Granada 18071, Spain.
| | - Lourdes Infantes
- Instituto de Química Física Rocasolano, IQFR-CSIC, Serrano 119, Madrid 28006, Spain
| | - Angel Orte
- Departmento de Fisicoquímica, Unidad de Excelencia de Química aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, Granada 18071, Spain.
| | - Juan A González-Vera
- Instituto de Química Médica (CSIC), Juan de la Cierva 3, Madrid 28006, Spain. and Departmento de Fisicoquímica, Unidad de Excelencia de Química aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, Granada 18071, Spain.
| | - Rosario Herranz
- Instituto de Química Médica (CSIC), Juan de la Cierva 3, Madrid 28006, Spain.
| |
Collapse
|
13
|
Fan K, Bao SS, Huo R, Huang XD, Liu YJ, Yu ZW, Kurmoo M, Zheng LM. Luminescent Ir(iii)–Ln(iii) coordination polymers showing slow magnetization relaxation. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01504c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two structural types of iridium(iii)–lanthanide(iii) coordination polymers, single-chain Ir2Ln and double-chain Ir4Ln2 (Ln = Gd, Dy, Er, and Yb), have been prepared. SMM behaviour and NIR luminescence were observed for the Ir–Er and Ir–Yb systems.
Collapse
Affiliation(s)
- Kun Fan
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
| | - Song-Song Bao
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
| | - Ran Huo
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
| | - Xin-Da Huang
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
| | - Yu-Jie Liu
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
| | - Zi-Wen Yu
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
| | - Mohamedally Kurmoo
- Institut de Chimie
- Université de Strasbourg CNRS-UMR7177
- Strasbourg Cedex 67007
- France
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
| |
Collapse
|
14
|
Ahn SH, Iuliano JN, Boros E. Trivalent metal complex geometry of the substrate governs cathepsin B enzymatic cleavage rate. Chem Commun (Camb) 2020; 56:7289-7292. [DOI: 10.1039/d0cc02862b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The identity of the trivalent metal ion controls the rate of the enzymatic cleavage of a series of metal-complexed cathepsin B substrates. Increasing the distance between the metal complex and the enzyme cleavage site diminishes this effect.
Collapse
Affiliation(s)
- Shin Hye Ahn
- Department of Chemistry
- Stony Brook University
- 100 Nicolls Rd
- Stony Brook
- New York
| | - James N. Iuliano
- Department of Chemistry
- Stony Brook University
- 100 Nicolls Rd
- Stony Brook
- New York
| | - Eszter Boros
- Department of Chemistry
- Stony Brook University
- 100 Nicolls Rd
- Stony Brook
- New York
| |
Collapse
|
15
|
Clerc M, Heinemann F, Spingler B, Gasser G. A Luminescent NOTA-Based Terbium(III) “Turn-Off” Sensor for Copper. Inorg Chem 2019; 59:669-677. [DOI: 10.1021/acs.inorgchem.9b02934] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Michèle Clerc
- Department of Chemistry, University of Zurich Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Franz Heinemann
- Department of Chemistry, University of Zurich Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemistry, F-75005 Paris, France
| | - Bernhard Spingler
- Department of Chemistry, University of Zurich Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemistry, F-75005 Paris, France
| |
Collapse
|
16
|
Kovacs D, Kiraev SR, Phipps D, Orthaber A, Borbas KE. Eu(III) and Tb(III) Complexes of Octa- and Nonadentate Macrocyclic Ligands Carrying Azide, Alkyne, and Ester Reactive Groups. Inorg Chem 2019; 59:106-117. [DOI: 10.1021/acs.inorgchem.9b01576] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Daniel Kovacs
- Department of Chemistry, Ångström Laboratory, Box 523, Uppsala University, 75120, Uppsala, Sweden
| | - Salauat R. Kiraev
- Department of Chemistry, Ångström Laboratory, Box 523, Uppsala University, 75120, Uppsala, Sweden
| | - Dulcie Phipps
- Department of Chemistry, Ångström Laboratory, Box 523, Uppsala University, 75120, Uppsala, Sweden
| | - Andreas Orthaber
- Department of Chemistry, Ångström Laboratory, Box 523, Uppsala University, 75120, Uppsala, Sweden
| | - K. Eszter Borbas
- Department of Chemistry, Ångström Laboratory, Box 523, Uppsala University, 75120, Uppsala, Sweden
| |
Collapse
|
17
|
Gregório T, Leão JDM, Barbosa GA, Ramos JDL, Om Kumar Giese S, Briganti M, Rodrigues PC, de Sá EL, Viana ER, Hughes DL, Carlos LD, Ferreira RAS, Macedo AG, Nunes GG, Soares JF. Promoting a Significant Increase in the Photoluminescence Quantum Yield of Terbium(III) Complexes by Ligand Modification. Inorg Chem 2019; 58:12099-12111. [DOI: 10.1021/acs.inorgchem.9b01397] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thaiane Gregório
- Department of Chemistry, Federal University of Paraná, Centro Politécnico, Jardim das Américas, 81530-900 Curitiba, Paraná, Brazil
| | - Joyce de M. Leão
- Department of Physics, Federal University of Technology, Av. Sete de Setembro, 3165, 80230-901 Curitiba, Paraná, Brazil
| | - Guilherme A. Barbosa
- Department of Chemistry, Federal University of Paraná, Centro Politécnico, Jardim das Américas, 81530-900 Curitiba, Paraná, Brazil
| | - Jaqueline de L. Ramos
- Department of Chemistry, Federal University of Paraná, Centro Politécnico, Jardim das Américas, 81530-900 Curitiba, Paraná, Brazil
| | - Siddhartha Om Kumar Giese
- Department of Chemistry, Federal University of Paraná, Centro Politécnico, Jardim das Américas, 81530-900 Curitiba, Paraná, Brazil
| | - Matteo Briganti
- Department of Chemistry, Federal University of Paraná, Centro Politécnico, Jardim das Américas, 81530-900 Curitiba, Paraná, Brazil
| | - Paula C. Rodrigues
- Department of Chemistry, Federal University of Technology, Rua Deputado Heitor Alencar Furtado, 5000, 81280-340 Curitiba, Paraná, Brazil
| | - Eduardo L. de Sá
- Department of Chemistry, Federal University of Paraná, Centro Politécnico, Jardim das Américas, 81530-900 Curitiba, Paraná, Brazil
| | - Emilson R. Viana
- Department of Physics, Federal University of Technology, Av. Sete de Setembro, 3165, 80230-901 Curitiba, Paraná, Brazil
| | - David L. Hughes
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K
| | - Luís D. Carlos
- Department of Physics, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rute A. S. Ferreira
- Department of Physics, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Andreia G. Macedo
- Department of Physics, Federal University of Technology, Av. Sete de Setembro, 3165, 80230-901 Curitiba, Paraná, Brazil
| | - Giovana G. Nunes
- Department of Chemistry, Federal University of Paraná, Centro Politécnico, Jardim das Américas, 81530-900 Curitiba, Paraná, Brazil
| | - Jaísa F. Soares
- Department of Chemistry, Federal University of Paraná, Centro Politécnico, Jardim das Américas, 81530-900 Curitiba, Paraná, Brazil
| |
Collapse
|
18
|
Cosby AG, Quevedo G, Boros E. A High-Throughput Method To Measure Relative Quantum Yield of Lanthanide Complexes for Bioimaging. Inorg Chem 2019; 58:10611-10615. [PMID: 31380629 PMCID: PMC6935265 DOI: 10.1021/acs.inorgchem.9b01786] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Luminescent lanthanides provide a promising alternative to organic chromophores for cellular bioimaging and bioassay applications; efficacy is closely governed by their respective quantum yields. Conventionally utilized quantum-yield measurements for lanthanides are laborious and not amenable to rapid relative comparison of compound performance. Here, we introduce a high-throughput optical imaging method to determine and directly compare relative quantum yield using Cherenkov-radiation-mediated excitation of luminescent lanthanide complexes.
Collapse
Affiliation(s)
- Alexia G. Cosby
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11790, United States
| | - Gregory Quevedo
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11790, United States
| | - Eszter Boros
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11790, United States
| |
Collapse
|
19
|
Lanthanide coordination polymers constructed from the asymmetrical N-heterocyclic rigid carboxylate: Synthesis, crystal structures, luminescence properties and magnetic properties. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.12.030] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
20
|
Zheng K, Liu Z, Jiang Y, Guo P, Li H, Zeng C, Ng SW, Zhong S. Ultrahigh luminescence quantum yield lanthanide coordination polymer as a multifunctional sensor. Dalton Trans 2018; 47:17432-17440. [PMID: 30488066 DOI: 10.1039/c8dt03832e] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The investigation and development of advanced multifunctional and sensitive sensors with high luminescent quantum yield and the capability of detecting different analytes, such as metal ions, is imperative. Due to its inherent properties the lanthanide coordination complex is one candidate for sensing applications, particularly for multifunctional sensors. Herein, we present two series of alkali ion decorated lanthanide coordination polymers (Ln-CPs), which show ultrahigh luminescence quantum yields (QYs) of 77% (1a) and 92% (2a). To the best of our knowledge, 1a represents the first trifunctional lanthanide complex sensor that can simultaneous detect and discriminate three different analytes, namely H+/Cd2+/Cr3+ through a multimode optical response. Furthermore, the limit of detection (LOD) for Cr3+ is an ultralow value of 2.0 × 10-9 M with a sensing time of 2 h, which is comparable to the most sensitive Cr3+ chemosensor. More interestingly, 92% (2a) is an unprecedented luminescence QY among the reported lanthanide coordination complexes.
Collapse
Affiliation(s)
- Kai Zheng
- College of Chemistry and Chemical Engineering, Research Center for Ultra Fine Powder Materials, Key Laboratory of Functional Small Organic Molecule, Ministry of Education and Jiangxi's Key Laboratory of Green Chemistry, Jiangxi Normal University, Nanchang, 330022 P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|