1
|
Sánchez-Dengra B, Alfonso M, González-Álvarez I, Bermejo M, González-Álvarez M, Martínez-Máñez R. Intranasal administration of molecular-gated mesoporous nanoparticles to increase ponatinib delivery to the brain. Nanomedicine (Lond) 2023; 18:1799-1813. [PMID: 37990994 DOI: 10.2217/nnm-2023-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
Background: Glioblastoma is the most common and lethal brain cancer. New treatments are needed. However, the presence of the blood-brain barrier is limiting the development of new treatments directed toward the brain, as it restricts the access and distribution of drugs to the CNS. Materials & methods: In this work, two different nanoparticles (i.e., mesoporous silica nanoparticles and magnetic mesoporous silica nanoparticles) loaded with ponatinib were prepared. Results & conclusion: Both particles were characterized and tested in vitro and in vivo, proving that they are not toxic for blood-brain barrier cells and they increase the amount of drug reaching the brain when administered intranasally in comparison with the results obtained for the free drug.
Collapse
Affiliation(s)
- Bárbara Sánchez-Dengra
- Engineering: Pharmacokinetics & Pharmaceutical Technology Area, Miguel Hernandez University, San Juan Alicante, 03550, Spain
| | - María Alfonso
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, Valencia, 46022, Spain
| | - Isabel González-Álvarez
- Engineering: Pharmacokinetics & Pharmaceutical Technology Area, Miguel Hernandez University, San Juan Alicante, 03550, Spain
| | - Marival Bermejo
- Engineering: Pharmacokinetics & Pharmaceutical Technology Area, Miguel Hernandez University, San Juan Alicante, 03550, Spain
| | - Marta González-Álvarez
- Engineering: Pharmacokinetics & Pharmaceutical Technology Area, Miguel Hernandez University, San Juan Alicante, 03550, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, Valencia, 46022, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, València, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, València, 46012, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, València, 46026, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, 28029, Spain
| |
Collapse
|
2
|
Fernandes NB, Nayak Y, Garg S, Nayak UY. Multifunctional engineered mesoporous silica/inorganic material hybrid nanoparticles: Theranostic perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
3
|
Khizar S, Elkalla E, Zine N, Jaffrezic-Renault N, Errachid A, Elaissari A. Magnetic nanoparticles: multifunctional tool for cancer therapy. Expert Opin Drug Deliv 2023; 20:189-204. [PMID: 36608938 DOI: 10.1080/17425247.2023.2166484] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Cancer has one of the highest mortality rates globally. The traditional therapies used to treat cancer have harmful adverse effects. Considering these facts, researchers have explored new therapeutic possibilities with enhanced benefits. Nanoparticle development for cancer detection, in addition to therapy, has shown substantial progress over the past few years. AREA COVERED Herein, the latest research regarding cancer treatment employing magnetic nanoparticles (MNPs) in chemo-, immuno-, gene-, and radiotherapy along with hyperthermia is summarized, in addition to their physio-chemical features, advantages, and limitations for clinical translation have also been discussed. EXPERT OPINION MNPs are being extensively investigated and developed into effective modules for cancer therapy. They are highly functional tools aimed at cancer therapy owing to their excellent superparamagnetic, chemical, biocompatible, physical, and biodegradable properties.
Collapse
Affiliation(s)
- Sumera Khizar
- Univ Lyon, University Cla-ude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | - Eslam Elkalla
- Univ Lyon, University Cla-ude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | - Nadia Zine
- Univ Lyon, University Cla-ude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | | | - Abdelhamid Errachid
- Univ Lyon, University Cla-ude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | | |
Collapse
|
4
|
Muñoz-Pina S, Duch-Calabuig A, Ruiz De Assín David E, Ros-Lis JV, Amorós P, Argüelles Á, Andrés A. Bioactive compounds and enzymatic browning inhibition in cloudy apple juice by a new magnetic UVM-7-SH mesoporous material. Food Res Int 2022; 162:112073. [DOI: 10.1016/j.foodres.2022.112073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/14/2022] [Accepted: 10/18/2022] [Indexed: 11/27/2022]
|
5
|
Novel MR imaging nanoprobe for hepatocellular carcinoma detection based on manganese–zinc ferrite nanoparticles: in vitro and in vivo assessments. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04427-x. [DOI: 10.1007/s00432-022-04427-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/16/2022] [Indexed: 10/31/2022]
|
6
|
Galarreta-Rodriguez I, Marcano L, Castellanos-Rubio I, Gil de Muro I, García I, Olivi L, Fernández-Gubieda ML, Castellanos-Rubio A, Lezama L, de Larramendi IR, Insausti M. Towards the design of contrast-enhanced agents: systematic Ga 3+ doping on magnetite nanoparticles. Dalton Trans 2022; 51:2517-2530. [PMID: 35060578 DOI: 10.1039/d1dt03029a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The main objective of the preparation of the Fe3-xGaxO4 (0.14 ≤ x ≤ 1.35) system was to further the knowledge of the magnetic response of Ga3+-doped magnetite for application as MRI contrast agents. With this purpose, monodisperse nanoparticles between 7 and 10 nm with different amounts of gallium were prepared from an optimized protocol based on thermal decomposition of metallo-organic precursors. Thorough characterization of the sample was conducted in order to understand the influence of gallium doping on the structural, morphological and magnetic properties of the Fe3-xGaxO4 system. X-ray diffraction and X-ray absorption near-edge structure measurements have proved the progressive incorporation of Ga in the spinel structure, with different occupations in both tetrahedral and octahedral sites. Magnetization measurements as a function of field temperature have shown a clear dependence of magnetic saturation on the gallium content, reaching an Ms value of 110 Am2 kg-1 at 5 K for x = 0.14 (significantly higher than bulk magnetite) and considerably decreasing for amounts above x = 0.57 of gallium. For this reason, nanoparticles with moderate Ga quantities were water-transferred by coating them with the amphiphilic polymer PMAO to further analyse their biomedical potential. Cytotoxicity assays have demonstrated that Fe3-xGaxO4@PMAO formulations with x ≤ 0.57, which are the ones with better magnetic response, are not toxic for cells. Finally, the effect of gallium doping on relaxivities has been analysed by measuring longitudinal (T1-1) and transverse (T1-1) proton relaxation rates at 1.4 T revealing that nanoparticles with x = 0.14 Ga3+ content present remarkable T2 contrast and the nanoparticles with x = 0.26 have great potential to act as dual T1-T2 contrast agents.
Collapse
Affiliation(s)
- Itziar Galarreta-Rodriguez
- Dpto. Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, UPV/EHU, Sarriena s/n, 48940 Leioa, Spain.
| | - Lourdes Marcano
- Dpto. Electricidad y Electrónica, Facultad de Ciencia y Tecnología, UPV/EHU, Sarriena s/n, 48940 Leioa, Spain
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - Idoia Castellanos-Rubio
- Dpto. Electricidad y Electrónica, Facultad de Ciencia y Tecnología, UPV/EHU, Sarriena s/n, 48940 Leioa, Spain
| | - Izaskun Gil de Muro
- Dpto. Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, UPV/EHU, Sarriena s/n, 48940 Leioa, Spain.
| | - Isabel García
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia San Sebastián, Spain
- Centro de Investigación Biomédica en Red, Biomateriales, Bioingeniería y Nanomedicina (CIBER-BBN), Spain
| | - Luca Olivi
- Elettra Synchrotron Trieste, 34149 Basovizza, Italy
| | - M L Fernández-Gubieda
- Dpto. Electricidad y Electrónica, Facultad de Ciencia y Tecnología, UPV/EHU, Sarriena s/n, 48940 Leioa, Spain
| | - Ainara Castellanos-Rubio
- Dpto. Genética, Antropología Física y Fisiología Animal, Facultad de Medicina, UPV/EHU, Leioa, Spain
| | - Luis Lezama
- Dpto. Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, UPV/EHU, Sarriena s/n, 48940 Leioa, Spain.
| | - Idoia Ruiz de Larramendi
- Dpto. Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, UPV/EHU, Sarriena s/n, 48940 Leioa, Spain.
| | - Maite Insausti
- Dpto. Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, UPV/EHU, Sarriena s/n, 48940 Leioa, Spain.
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| |
Collapse
|
7
|
Farinha P, Coelho JMP, Reis CP, Gaspar MM. A Comprehensive Updated Review on Magnetic Nanoparticles in Diagnostics. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3432. [PMID: 34947781 PMCID: PMC8706278 DOI: 10.3390/nano11123432] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023]
Abstract
Magnetic nanoparticles (MNPs) have been studied for diagnostic purposes for decades. Their high surface-to-volume ratio, dispersibility, ability to interact with various molecules and superparamagnetic properties are at the core of what makes MNPs so promising. They have been applied in a multitude of areas in medicine, particularly Magnetic Resonance Imaging (MRI). Iron oxide nanoparticles (IONPs) are the most well-accepted based on their excellent superparamagnetic properties and low toxicity. Nevertheless, IONPs are facing many challenges that make their entry into the market difficult. To overcome these challenges, research has focused on developing MNPs with better safety profiles and enhanced magnetic properties. One particularly important strategy includes doping MNPs (particularly IONPs) with other metallic elements, such as cobalt (Co) and manganese (Mn), to reduce the iron (Fe) content released into the body resulting in the creation of multimodal nanoparticles with unique properties. Another approach includes the development of MNPs using other metals besides Fe, that possess great magnetic or other imaging properties. The future of this field seems to be the production of MNPs which can be used as multipurpose platforms that can combine different uses of MRI or different imaging techniques to design more effective and complete diagnostic tests.
Collapse
Affiliation(s)
- Pedro Farinha
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| | - João M. P. Coelho
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| |
Collapse
|
8
|
Guo H, Fan S, Liu J, Wang Y. Facile synthesis of superparamagnetic manganese ferrite nanoparticles as a novel T2 MRI contrast agent. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Dar MS, Akram KB, Sohail A, Arif F, Zabihi F, Yang S, Munir S, Zhu M, Abid M, Nauman M. Heat induction in two-dimensional graphene-Fe 3O 4 nanohybrids for magnetic hyperthermia applications with artificial neural network modeling. RSC Adv 2021; 11:21702-21715. [PMID: 35478795 PMCID: PMC9034160 DOI: 10.1039/d1ra03428f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/13/2021] [Indexed: 12/13/2022] Open
Abstract
We report the synthesis and characterization of graphene functionalized with iron (Fe3+) oxide (G-Fe3O4) nanohybrids for radio-frequency magnetic hyperthermia application. We adopted the wet chemical procedure, using various contents of Fe3O4 (magnetite) from 0-100% for making two-dimensional graphene-Fe3O4 nanohybrids. The homogeneous dispersal of Fe3O4 nanoparticles decorated on the graphene surface combined with their biocompatibility and high thermal conductivity make them an excellent material for magnetic hyperthermia. The morphological and magnetic properties of the nanohybrids were studied using scanning electron microscopy (SEM) and a vibrating sample magnetometer (VSM), respectively. The smart magnetic platforms were exposed to an alternating current (AC) magnetic field of 633 kHz and of strength 9.1 mT for studying their hyperthermic performance. The localized antitumor effects were investigated with artificial neural network modeling. A neural net time-series model was developed for the assessment of the best nanohybrid composition to serve the purpose with an accuracy close to 100%. Six Nonlinear Autoregressive with External Input (NARX) models were obtained, one for each of the components. The assessment of the accuracy of the predicted results has been done on the basis of Mean Squared Error (MSE). The highest Mean Squared Error value was obtained for the nanohybrid containing 45% magnetite and 55% graphene (F45G55) in the training phase i.e., 0.44703, which is where the model achieved optimal results after 71 epochs. The F45G55 nanohybrid was found to be the best for hyperthermia applications in low dosage with the highest specific absorption rate (SAR) and mean squared error values.
Collapse
Affiliation(s)
- M S Dar
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 P. R. China
- Centre for Advanced Electronics and Photovoltaic Engineering (CAEPE), International Islamic University Islamabad Pakistan
| | - Khush Bakhat Akram
- School of Applied Sciences & Humanities, National University of Technology (NUTECH) Main IJP Road, Sector I-12 Islamabad Pakistan
| | - Ayesha Sohail
- Department of Mathematics, COMSATS University Islamabad Lahore Campus 54000 Pakistan
| | - Fatima Arif
- Department of Mathematics, COMSATS University Islamabad Lahore Campus 54000 Pakistan
| | - Fatemeh Zabihi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 P. R. China
| | - Shengyuan Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 P. R. China
| | - Shamsa Munir
- School of Applied Sciences & Humanities, National University of Technology (NUTECH) Main IJP Road, Sector I-12 Islamabad Pakistan
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 P. R. China
| | - M Abid
- Department of Mechanical Engineering, COMSATS University Islamabad (Wah Campus) G.T. Road Wah Cantt Pakistan
| | - Muhammad Nauman
- Thermodynamics of Quantum Materials at the Microscale Laboratory, Institute of Science and Technology (IST) Austria
| |
Collapse
|
10
|
Darwish MSA, Kim H, Bui MP, Le TA, Lee H, Ryu C, Lee JY, Yoon J. The Heating Efficiency and Imaging Performance of Magnesium Iron Oxide@tetramethyl Ammonium Hydroxide Nanoparticles for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1096. [PMID: 33922608 PMCID: PMC8145217 DOI: 10.3390/nano11051096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/05/2021] [Accepted: 04/16/2021] [Indexed: 12/30/2022]
Abstract
Multifunctional magnetic nanomaterials displaying high specific loss power (SLP) and high imaging sensitivity with good spatial resolution are highly desired in image-guided cancer therapy. Currently, commercial nanoparticles do not sufficiently provide such multifunctionality. For example, Resovist® has good image resolution but with a low SLP, whereas BNF® has a high SLP value with very low image resolution. In this study, hydrophilic magnesium iron oxide@tetramethyl ammonium hydroxide nanoparticles were prepared in two steps. First, hydrophobic magnesium iron oxide nanoparticles were fabricated using a thermal decomposition technique, followed by coating with tetramethyl ammonium hydroxide. The synthesized nanoparticles were characterized using XRD, DLS, TEM, zeta potential, UV-Vis spectroscopy, and VSM. The hyperthermia and imaging properties of the prepared nanoparticles were investigated and compared to the commercial nanoparticles. One-dimensional magnetic particle imaging indicated the good imaging resolution of our nanoparticles. Under the application of a magnetic field of frequency 614.4 kHz and strength 9.5 kA/m, nanoparticles generated heat with an SLP of 216.18 W/g, which is much higher than that of BNF (14 W/g). Thus, the prepared nanoparticles show promise as a novel dual-functional magnetic nanomaterial, enabling both high performance for hyperthermia and imaging functionality for diagnostic and therapeutic processes.
Collapse
Affiliation(s)
- Mohamed S. A. Darwish
- School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (M.S.A.D.); (H.K.); (M.P.B.); (T.-A.L.)
- Egyptian Petroleum Research Institute, 1 Ahmed El-Zomor Street, El Zohour Region, Nasr City, Cairo 11727, Egypt
| | - Hohyeon Kim
- School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (M.S.A.D.); (H.K.); (M.P.B.); (T.-A.L.)
| | - Minh Phu Bui
- School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (M.S.A.D.); (H.K.); (M.P.B.); (T.-A.L.)
| | - Tuan-Anh Le
- School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (M.S.A.D.); (H.K.); (M.P.B.); (T.-A.L.)
| | - Hwangjae Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea; (H.L.); (C.R.)
| | - Chiseon Ryu
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea; (H.L.); (C.R.)
| | - Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea; (H.L.); (C.R.)
| | - Jungwon Yoon
- School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (M.S.A.D.); (H.K.); (M.P.B.); (T.-A.L.)
| |
Collapse
|
11
|
Pan C, Lin J, Zheng J, Liu C, Yuan B, Akakuru OU, Zubair Iqbal M, Fang Q, Hu J, Chen J, Lin J, Dai Q, Guo X, Li Z, Zhang T, Xu C, Ma X, Chen T, Wu A, Jin Y. An intelligent T 1-T 2 switchable MRI contrast agent for the non-invasive identification of vulnerable atherosclerotic plaques. NANOSCALE 2021; 13:6461-6474. [PMID: 33885526 DOI: 10.1039/d0nr08039j] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Unlike stable atherosclerotic plaques, vulnerable plaques are very likely to cause serious cardio-cerebrovascular diseases. Meanwhile, how to non-invasively identify vulnerable plaques at early stages has been an urgent but challenging problem in clinical practices. Here, we propose a macrophage-targeted and in situ stimuli-triggered T1-T2 switchable magnetic resonance imaging (MRI) nanoprobe for the non-invasive diagnosis of vulnerable plaques. Precisely, single-dispersed iron oxide nanoparticles (IONPs) modified with hyaluronic acid (HA), denoted as IONP-HP, show macrophage targetability and T1 MRI enhancement (r2/r1 = 3.415). Triggered by the low pH environment of macrophage lysosomes, the single-dispersed IONP-HP transforms into a cluster analogue, which exhibits T2 MRI enhancement (r2/r1 = 13.326). Furthermore, an in vivo switch of T1-T2 enhancement modes shows that the vulnerable plaques exhibit strong T1 enhancement after intravenous administration of the nanoprobe, followed by a switch to T2 enhancement after 9 h. In contrast, stable plaques show only slight T1 enhancement but without T2 enhancement. It is therefore imperative that the intelligent and novel nanoplatform proposed in this study achieves a substantial non-invasive diagnosis of vulnerable plaques by means of a facile but effective T1-T2 switchable process, which will significantly contribute to the application of materials science in solving clinical problems.
Collapse
Affiliation(s)
- Chunshu Pan
- Department of Radiology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Lorkowski ME, Atukorale PU, Ghaghada KB, Karathanasis E. Stimuli-Responsive Iron Oxide Nanotheranostics: A Versatile and Powerful Approach for Cancer Therapy. Adv Healthc Mater 2021; 10:e2001044. [PMID: 33225633 PMCID: PMC7933107 DOI: 10.1002/adhm.202001044] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/14/2020] [Indexed: 12/16/2022]
Abstract
Recent advancements in unravelling elements of cancer biology involved in disease progression and treatment resistance have highlighted the need for a holistic approach to effectively tackle cancer. Stimuli-responsive nanotheranostics based on iron oxide nanoparticles are an emerging class of versatile nanomedicines with powerful capabilities to "seek, sense, and attack" multiple components of solid tumors. In this work, the rationale for using iron oxide nanoparticles and the basic physical principles that impact their function in biomedical applications are reviewed. Subsequently, recent advances in the integration of iron oxide nanoparticles with various stimulus mechanisms to facilitate the development of stimuli-responsive nanotheranostics for application in cancer therapy are summarized. The integration of an iron oxide core with various surface coating mechanisms results in the generation of hybrid nanoconstructs with capabilities to codeliver a wide variety of highly potent anticancer therapeutics and immune modulators. Finally, emerging future directions and considerations for their clinical translation are touched upon.
Collapse
Affiliation(s)
- Morgan E. Lorkowski
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Prabhani U. Atukorale
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ketan B. Ghaghada
- Edward B. Singleton Department of Pediatric Radiology, Texas Children’s Hospital, Houston, Texas, USA
- Department of Radiology, Baylor College of Medicine, Houston, Texas, USA
| | - Efstathios Karathanasis
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
13
|
Martínez-Negro M, González-Rubio G, Aicart E, Landfester K, Guerrero-Martínez A, Junquera E. Insights into colloidal nanoparticle-protein corona interactions for nanomedicine applications. Adv Colloid Interface Sci 2021; 289:102366. [PMID: 33540289 DOI: 10.1016/j.cis.2021.102366] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/17/2022]
Abstract
Colloidal nanoparticles (NPs) have attracted significant attention due to their unique physicochemical properties suitable for diagnosing and treating different human diseases. Nevertheless, the successful implementation of NPs in medicine demands a proper understanding of their interactions with the different proteins found in biological fluids. Once introduced into the body, NPs are covered by a protein corona (PC) that determines the biological behavior of the NPs. The formation of the PC can eventually favor the rapid clearance of the NPs from the body before fulfilling the desired objective or lead to increased cytotoxicity. The PC nature varies as a function of the different repulsive and attractive forces that govern the NP-protein interaction and their colloidal stability. This review focuses on the phenomenon of PC formation on NPs from a physicochemical perspective, aiming to provide a general overview of this critical process. Main issues related to NP toxicity and clearance from the body as a result of protein adsorption are covered, including the most promising strategies to control PC formation and, thereby, ensure the successful application of NPs in nanomedicine.
Collapse
|
14
|
Mohapatra A, Uthaman S, Park IK. External and Internal Stimuli-Responsive Metallic Nanotherapeutics for Enhanced Anticancer Therapy. Front Mol Biosci 2021; 7:597634. [PMID: 33505987 PMCID: PMC7831291 DOI: 10.3389/fmolb.2020.597634] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Therapeutic, diagnostic, and imaging approaches based on nanotechnology offer distinct advantages in cancer treatment. Various nanotherapeutics have been presented as potential alternatives to traditional anticancer therapies such as chemotherapy, radiotherapy, and surgical intervention. Notably, the advantage of nanotherapeutics is mainly attributable to their accumulation and targeting ability toward cancer cells, multiple drug-carrying abilities, combined therapies, and imaging approaches. To date, numerous nanoparticle formulations have been developed for anticancer therapy and among them, metallic nanotherapeutics reportedly demonstrate promising cancer therapeutic and diagnostic efficiencies owing to their dense surface functionalization ability, uniform size distribution, and shape-dependent optical responses, easy and cost-effective synthesis procedure, and multiple anti-cancer effects. Metallic nanotherapeutics can remodel the tumor microenvironment by changing unfavorable therapeutic conditions into therapeutically accessible ones with the help of different stimuli, including light, heat, ultrasound, an alternative magnetic field, redox, and reactive oxygen species. The combination of metallic nanotherapeutics with both external and internal stimuli can be used to trigger the on-demand release of therapeutic molecules, augmenting the therapeutic efficacies of anticancer therapies such as photothermal therapy, photodynamic therapy, magnetic hyperthermia, sonodynamic therapy, chemodynamic therapy, and immunotherapy. In this review, we have summarized the role of different metallic nanotherapeutics in anti-cancer therapy, as well as their combinational effects with multiple stimuli for enhanced anticancer therapy.
Collapse
Affiliation(s)
- Adityanarayan Mohapatra
- Department of Biomedical Sciences, Chonnam National University Medical School, Jeollanam-do, South Korea
| | - Saji Uthaman
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon, South Korea
| | - In-Kyu Park
- Department of Biomedical Sciences, Chonnam National University Medical School, Jeollanam-do, South Korea
| |
Collapse
|
15
|
R K C, Rajagopalan V, Sahu NK. Synthesis of manganese doped β-FeOOH and MnFe 2O 4 nanorods for enhanced drug delivery and hyperthermia application. IET Nanobiotechnol 2020; 14:823-829. [PMID: 33399114 PMCID: PMC8676647 DOI: 10.1049/iet-nbt.2020.0098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/25/2020] [Accepted: 07/10/2020] [Indexed: 12/18/2022] Open
Abstract
Preparation of manganese ferrite (MnFe2O4) nanorods by the reduction of akaganeite seeds in the presence of oleylamine is reported. The Mn-doped β-FeOOH akaganeite seeds have been processed by the hydrolysis of metal-chloride salts in the presence of polyethylenimine (PEI) surfactant. The hydrophobic oleylamine capped nanorods are made hydrophilic using trisodium citrate as a phase transferring agent. The nanorods form with an aspect ratio of 5.47 and possess a high magnetisation value of 69 emu/g at an applied magnetic field of 1.5 T. The colloidal water dispersion of nanorods exhibits superior heating efficiency by the application of alternating magnetic field (AMF). A specific absorption rate value of 798 W/g is achieved at an applied AMF of field strength 500 Oe and frequency 316 kHz. Further, the citrate functionalised nanorods are capable of attaching with doxorubicin (DOX) electrostatically with a loading efficiency of 97% and the drug release is pH responsive. The DOX loaded nanorods show a promising effect on the apoptosis of MCF-7 as experimented in vitro.
Collapse
Affiliation(s)
- Chandunika R K
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore, TN 632014, India
| | | | - Niroj Kumar Sahu
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore, TN 632014, India.
| |
Collapse
|
16
|
Malla RR, Kumari S, Kgk D, Momin S, Nagaraju GP. Nanotheranostics: Their role in hepatocellular carcinoma. Crit Rev Oncol Hematol 2020; 151:102968. [DOI: 10.1016/j.critrevonc.2020.102968] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/24/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
|
17
|
Therapeutic Efficiency of Multiple Applications of Magnetic Hyperthermia Technique in Glioblastoma Using Aminosilane Coated Iron Oxide Nanoparticles: In Vitro and In Vivo Study. Int J Mol Sci 2020; 21:ijms21030958. [PMID: 32023985 PMCID: PMC7038138 DOI: 10.3390/ijms21030958] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/13/2022] Open
Abstract
Magnetic hyperthermia (MHT) has been shown as a promising alternative therapy for glioblastoma (GBM) treatment. This study consists of three parts: The first part evaluates the heating potential of aminosilane-coated superparamagnetic iron oxide nanoparticles (SPIONa). The second and third parts comprise the evaluation of MHT multiple applications in GBM model, either in vitro or in vivo. The obtained heating curves of SPIONa (100 nm, +20 mV) and their specific absorption rates (SAR) stablished the best therapeutic conditions for frequencies (309 kHz and 557 kHz) and magnetic field (300 Gauss), which were stablished based on three in vitro MHT application in C6 GBM cell line. The bioluminescence (BLI) signal decayed in all applications and parameters tested and 309 kHz with 300 Gauss have shown to provide the best therapeutic effect. These parameters were also established for three MHT applications in vivo, in which the decay of BLI signal correlates with reduced tumor and also with decreased tumor glucose uptake assessed by positron emission tomography (PET) images. The behavior assessment showed a slight improvement after each MHT therapy, but after three applications the motor function displayed a relevant and progressive improvement until the latest evaluation. Thus, MHT multiple applications allowed an almost total regression of the GBM tumor in vivo. However, futher evaluations after the therapy acute phase are necessary to follow the evolution or tumor total regression. BLI, positron emission tomography (PET), and spontaneous locomotion evaluation techniques were effective in longitudinally monitoring the therapeutic effects of the MHT technique.
Collapse
|
18
|
Myrovali E, Maniotis N, Samaras T, Angelakeris M. Spatial focusing of magnetic particle hyperthermia. NANOSCALE ADVANCES 2020; 2:408-416. [PMID: 36133972 PMCID: PMC9417684 DOI: 10.1039/c9na00667b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/24/2019] [Indexed: 05/09/2023]
Abstract
Magnetic particle hyperthermia is a promising cancer therapy, but a typical constraint of its applicability is localizing heat solely to malignant regions sparing healthy surrounding tissues. By simultaneous application of a constant magnetic field together with the hyperthermia inducing alternating magnetic field, heating focus may be confined to smaller regions in a tunable manner. The main objective of this work is to evaluate the focusing parameters, by adequate selection of magnetic nanoparticles and field conditions, and explore spatially focused magnetic particle hyperthermia efficiency in tissue phantom systems comprising agarose gel and magnetic nanoparticles. Our results suggest the possibility of spatially focused heating efficiency of magnetic nanoparticles through the application of a constant magnetic field. Tuning of the constant magnetic field parameters may result in minimizing thermal shock in surrounding regions without affecting the beneficiary thermal outcome in the focusing region.
Collapse
Affiliation(s)
- Eirini Myrovali
- School of Physics, Aristotle University of Thessaloniki Thessaloniki 54124 Greece
- Magnetic Nanostructure Characterization: Technology and Applications, CIRI-AUTH 57001 Thessaloniki Greece
| | - Nikos Maniotis
- School of Physics, Aristotle University of Thessaloniki Thessaloniki 54124 Greece
- Magnetic Nanostructure Characterization: Technology and Applications, CIRI-AUTH 57001 Thessaloniki Greece
| | - Theodoros Samaras
- School of Physics, Aristotle University of Thessaloniki Thessaloniki 54124 Greece
- Magnetic Nanostructure Characterization: Technology and Applications, CIRI-AUTH 57001 Thessaloniki Greece
- Department of Physics, University of Malta Msida MSD 2080 Malta
| | - Makis Angelakeris
- School of Physics, Aristotle University of Thessaloniki Thessaloniki 54124 Greece
- Magnetic Nanostructure Characterization: Technology and Applications, CIRI-AUTH 57001 Thessaloniki Greece
| |
Collapse
|
19
|
Synthesis of Magnetic Ferrite Nanoparticles with High Hyperthermia Performance via a Controlled Co-Precipitation Method. NANOMATERIALS 2019; 9:nano9081176. [PMID: 31426427 PMCID: PMC6724091 DOI: 10.3390/nano9081176] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/10/2019] [Accepted: 08/13/2019] [Indexed: 12/17/2022]
Abstract
Magnetic nanoparticles (MNPs) that exhibit high specific loss power (SLP) at lower metal content are highly desirable for hyperthermia applications. The conventional co-precipitation process has been widely employed for the synthesis of magnetic nanoparticles. However, their hyperthermia performance is often insufficient, which is considered as the main challenge to the development of practicable cancer treatments. In particular, ferrite MNPs have unique properties, such as a strong magnetocrystalline anisotropy, high coercivity, and moderate saturation magnetization, however their hyperthermia performance needs to be further improved. In this study, cobalt ferrite (CoFe2O4) and zinc cobalt ferrite nanoparticles (ZnCoFe2O4) were prepared to achieve high SLP values by modifying the conventional co-precipitation method. Our modified method, which allows for precursor material compositions (molar ratio of Fe+3:Fe+2:Co+2/Zn+2 of 3:2:1), is a simple, environmentally friendly, and low temperature process carried out in air at a maximum temperature of 60 °C, without the need for oxidizing or coating agents. The particles produced were characterized using multiple techniques, such as X-ray diffraction (XRD), dynamic light scattering (DLS), transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV–Vis spectroscopy), and a vibrating sample magnetometer (VSM). SLP values of the prepared nanoparticles were carefully evaluated as a function of time, magnetic field strength (30, 40, and 50 kA m−1), and the viscosity of the medium (water and glycerol), and compared to commercial magnetic nanoparticle materials under the same conditions. The cytotoxicity of the prepared nanoparticles by in vitro culture with NIH-3T3 fibroblasts exhibited good cytocompatibility up to 0.5 mg/mL. The safety limit of magnetic field parameters for SLP was tested. It did not exceed the 5 × 109 Am−1 s−1 threshold. A saturation temperature of 45 °C could be achieved. These nanoparticles, with minimal metal content, can ideally be used for in vivo hyperthermia applications, such as cancer treatments.
Collapse
|