1
|
Loos R, Daouk S, Marinov D, Gómez L, Porcel-Rodríguez E, Sanseverino I, Amalric L, Potalivo M, Calabretta E, Ferenčík M, Colzani L, DellaVedova L, Amendola L, Saurini M, Di Girolamo F, Lardy-Fontan S, Sengl M, Kunkel U, Svahn O, Weiss S, De Martin S, Gelao V, Bazzichetto M, Tarábek P, Stipaničev D, Repec S, Zacs D, Ricci M, Golovko O, Flores C, Ramani S, Rebane R, Rodríguez JA, Lettieri T. Summary recommendations on "Analytical methods for substances in the Watch List under the Water Framework Directive". THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168707. [PMID: 37992820 DOI: 10.1016/j.scitotenv.2023.168707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
The Watch List (WL) is a monitoring program under the European Water Framework Directive (WFD) to obtain high-quality Union-wide monitoring data on potential water pollutants for which scarce monitoring data or data of insufficient quality are available. The main purpose of the WL data collection is to determine if the substances pose a risk to the aquatic environment at EU level and subsequently to decide whether a threshold, the Environmental Quality Standards (EQS) should be set for them and, potentially to be listed as priority substance in the WFD. The first WL was established in 2015 and contained 10 individual or groups of substances while the 4th WL was launched in 2022. The results of monitoring the substances of the first WL showed that some countries had difficulties to reach an analytical Limit of Quantification (LOQ) below or equal to the Predicted No-Effect Concentrations (PNEC) or EQS. The Joint Research Centre (JRC) of the European Commission (EC) organised a series of workshops to support the EU Member States (MS) and their activities under the WFD. Sharing the knowledge among the Member States on the analytical methods is important to deliver good data quality. The outcome and the discussion engaged with the experts are described in this paper, and in addition a literature review of the most important publications on the analysis of 17-alpha-ethinylestradiol (EE2), amoxicillin, ciprofloxacin, metaflumizone, fipronil, metformin, and guanylurea from the last years is presented.
Collapse
Affiliation(s)
- Robert Loos
- European Commission, Joint Research Centre (JRC), Ispra, VA, Italy
| | | | | | - Livia Gómez
- European Commission, Joint Research Centre (JRC), Ispra, VA, Italy
| | | | | | | | | | | | - Martin Ferenčík
- Povodí Labe, státní podnik, Czech Republic; Institute of Environmental and Chemical Engineering, University of Pardubice, Czech Republic
| | - Luisa Colzani
- ARPA Lombardia, the Regional Environmental Protection Agency-Lombardy Region, Italy
| | - Luisa DellaVedova
- ARPA Lombardia, the Regional Environmental Protection Agency-Lombardy Region, Italy
| | - Luca Amendola
- ARPA Lazio, the Regional Environmental Protection Agency-Lazio Region, Italy
| | - Mariateresa Saurini
- ARPA Lazio, the Regional Environmental Protection Agency-Lazio Region, Italy
| | | | - Sophie Lardy-Fontan
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), France
| | | | - Uwe Kunkel
- Bavarian Environment Agency (LfU), Germany
| | - Ola Svahn
- Kristianstad University, MoLab, Sweden
| | - Stefan Weiss
- Federal Environment Agency, Umweltbundesamt (GmbH), Austria
| | - Stefano De Martin
- ARPA FVG, the Regional Environmental Protection Agency-Friuli Venezia Giulia Region, Italy
| | - Vito Gelao
- ARPA FVG, the Regional Environmental Protection Agency-Friuli Venezia Giulia Region, Italy
| | - Michele Bazzichetto
- ARPA FVG, the Regional Environmental Protection Agency-Friuli Venezia Giulia Region, Italy
| | - Peter Tarábek
- Water Research Institute (VÚVH), National Water Reference Laboratory, Slovakia
| | | | - Siniša Repec
- Josip Juraj Strossmayer Water Institute, Central Water Laboratory, Croatia
| | - Dzintars Zacs
- Institute of Food Safety, Animal Health and Environment "BIOR", Latvia
| | - Marina Ricci
- European Commission, Joint Research Centre (JRC), Geel, Belgium
| | - Oksana Golovko
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Sweden
| | - Cintia Flores
- Mass Spectrometry Laboratory/Organic Pollutants, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Spain
| | | | - Riin Rebane
- Estonian Environmental Research Centre, Estonia
| | - Juan Alández Rodríguez
- Área de Vigilancia y Control de Calidad de las Aguas, Ministerio para la Transición Ecológica y el Reto Demográfico, Spain
| | - Teresa Lettieri
- European Commission, Joint Research Centre (JRC), Ispra, VA, Italy.
| |
Collapse
|
2
|
Elizalde-Velázquez GA, Gómez-Oliván LM, García-Medina S, Hernández-Díaz M, Islas-Flores H, Galar-Martínez M, García-Medina AL, Chanona-Pérez JJ, Hernández-Varela JD. Polystyrene microplastics mitigate the embryotoxic damage of metformin and guanylurea in Danio rerio. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158503. [PMID: 36058320 DOI: 10.1016/j.scitotenv.2022.158503] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) alone may endanger the health and fitness of aquatic species through different mechanisms. However, the harmful effects of these when mixed with other emerging contaminants require additional research. Herein, we aimed to determine whether a mixture of MPs with metformin (MET) or guanylurea (GUA) might induce embryotoxicity and oxidative stress in Danio rerio. Upon exposure to mixtures, our results showed MPs reduced the mortality rate of MET and GUA in embryos. Moreover, the severity and the rate of malformations were also decreased in all mixtures with MPs. Concerning oxidative stress, our findings indicated MET, GUA, MPs, and the mixtures increased the levels of lipoperoxidation, hydroperoxide content, and protein carbonyl content in D. rerio larvae. However, the oxidative damage induced in all mixtures was lower than that produced by both drugs alone. Thus, it is likely that the accumulation of MPs avoided the entrance of MET and GUA into the embryos. Once the embryo hatched, MPs did only remain accumulated in the yolk sac of larvae and did not translocate to other organs. Our risk assessment analysis confirmed that MPs shrunk the damage produced by MET and GUA. In a nutshell, MPs mitigate the embryotoxic damage of metformin and guanylurea in D. rerio by blocking their entrance.
Collapse
Affiliation(s)
- Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico.
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP 07700, Mexico
| | - Misael Hernández-Díaz
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP 07700, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP 07700, Mexico
| | - Alba Lucero García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP 07700, Mexico
| | - José Jorge Chanona-Pérez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP 07700, Mexico
| | - Josué David Hernández-Varela
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP 07700, Mexico
| |
Collapse
|
3
|
He Y, Zhang Y, Ju F. Metformin Contamination in Global Waters: Biotic and Abiotic Transformation, Byproduct Generation and Toxicity, and Evaluation as a Pharmaceutical Indicator. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13528-13545. [PMID: 36107956 DOI: 10.1021/acs.est.2c02495] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metformin is the first-line antidiabetic drug and one of the most prescribed medications worldwide. Because of its ubiquitous occurrence in global waters and demonstrated ecotoxicity, metformin, as with other pharmaceuticals, has become a concerning emerging contaminant. Metformin is subject to transformation, producing numerous problematic transformation byproducts (TPs). The occurrence, removal, and toxicity of metformin have been continually reviewed; yet, a comprehensive analysis of its transformation pathways, byproduct generation, and the associated change in adverse effects is lacking. In this review, we provide a critical overview of the transformation fate of metformin during water treatments and natural processes and compile the 32 organic TPs generated from biotic and abiotic pathways. These TPs occur in aquatic systems worldwide along with metformin. Enhanced toxicity of several TPs compared to metformin has been demonstrated through organism tests and necessitates the development of complete mineralization techniques for metformin and more attention on TP monitoring. We also assess the potential of metformin to indicate overall contamination of pharmaceuticals in aquatic environments, and compared to the previously acknowledged ones, metformin is found to be a more robust or comparable indicator of such overall pharmaceutical contamination. In addition, we provide insightful avenues for future research on metformin.
Collapse
Affiliation(s)
- Yuanzhen He
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Yanyan Zhang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, China
- Research Center for Industries of the Future (RCIF), School of Engineering, Westlake University, Hangzhou 310030, China
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China
| |
Collapse
|
4
|
Balakrishnan A, Sillanpää M, Jacob MM, Vo DVN. Metformin as an emerging concern in wastewater: Occurrence, analysis and treatment methods. ENVIRONMENTAL RESEARCH 2022; 213:113613. [PMID: 35697083 DOI: 10.1016/j.envres.2022.113613] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/28/2022] [Accepted: 06/02/2022] [Indexed: 05/20/2023]
Abstract
Metformin is a wonder drug used as an anti-hypoglycemic medication; it is also used as a cancer suppression medicament. Metformin is a first line of drug choice used by doctors for patients with type 2 diabetes. It is used worldwide where the drug's application varies from an anti-hypoglycemic medication to cancer oppression and as a weight loss treatment drug. Due to its wide range of usage, metformin and its byproducts are found in waste water and receiving aquatic environment. This leads to the accumulation of metformin in living beings and the environment where excess concentration levels can lead to ailments such as lactic acidosis or vitamin B12 deficiency. This drug could become of future water treatment concerns with its tons of production per year and vast usage. As a result of continuous occurrence of metformin has demanded the need of implementing and adopting different strategies to save the aquatic systems and the exposure to metformin. This review discuss the various methods for the elimination of metformin from wastewater. Along with that, the properties, occurrence, and health and environmental impacts of metformin are addressed. The different analytical methods for the detection of metformin are also explained. The main findings are discussed with respect to the management of metformin as an emerging contaminants and the major recommendations are discussed to understand the major research gaps.
Collapse
Affiliation(s)
- Akash Balakrishnan
- Department of Chemical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa; Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia; Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India; Department of Biological and Chemical Engineering, Aarhus University, Norrebrogade 44, 8000 Aarhus C, Denmark
| | - Meenu Mariam Jacob
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
5
|
Nielsen KM, DeCamp L, Birgisson M, Palace VP, Kidd KA, Parrott JL, McMaster ME, Alaee M, Blandford N, Ussery EJ. Comparative Effects of Embryonic Metformin Exposure on Wild and Laboratory-Spawned Fathead Minnow ( Pimephales promelas) Populations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10193-10203. [PMID: 35748754 DOI: 10.1021/acs.est.2c01079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metformin is routinely detected in aquatic ecosystems because of its widespread use as a treatment for Type 2 diabetes. Laboratory studies have shown that exposure to environmentally relevant concentrations of metformin can alter metabolic pathways and impact the growth of early life stage (ELS) fish; however, it is unknown whether these effects occur in wild populations. Herein, we evaluate whether findings from laboratory studies are representative and describe the relative sensitivities of both populations. Duplicate exposures (0, 5, or 50 μg/L metformin) were conducted using wild- and lab-spawned fathead minnow (Pimephales promelas) embryos. Apart from the water source, exposure conditions remained constant. Wild embryos were exposed to previously dosed lake water to account for changes in bioavailability, while reconstituted freshwater was used for the laboratory study. Developmental metformin exposure differentially impacted the growth and morphology of both cohorts, with energy dyshomeostasis and visual effects indicated. The fitness of wild-spawned larvae was impacted to a greater extent relative to lab-spawned fish. Moreover, baseline data reveal important morphological differences between wild- and lab-spawned ELS fatheads that may diminish representativeness of lab studies. Findings also confirm the bioavailability of metformin in naturally occurring systems and suggest current exposure scenarios may be sufficient to negatively impact developing fish.
Collapse
Affiliation(s)
- Kristin M Nielsen
- Department of Marine Science, University of Texas at Austin, Port Aransas, Texas 78373, USA
| | - Lily DeCamp
- Department of Marine Science, University of Texas at Austin, Port Aransas, Texas 78373, USA
| | - Mona Birgisson
- Department of Marine Science, University of Texas at Austin, Port Aransas, Texas 78373, USA
| | - Vince P Palace
- International Institute for Sustainable Development─Experimental Lakes Area, Winnipeg, Manitoba R3B 0T4, Canada
- University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Karen A Kidd
- Department of Biology & School of Earth, Environment & Society, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Joanne L Parrott
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Mark E McMaster
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Mehran Alaee
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | | | - Erin J Ussery
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| |
Collapse
|
6
|
High-Performance COD Detection of Organic Compound Pollutants using Sulfurized-TiO2/Ti Nanotube Array Photoelectrocatalyst. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00746-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Elizalde-Velázquez GA, Gómez-Oliván LM, Rosales-Pérez KE, Orozco-Hernández JM, García-Medina S, Islas-Flores H, Galar-Martínez M. Chronic exposure to environmentally relevant concentrations of guanylurea induces neurotoxicity of Danio rerio adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153095. [PMID: 35038519 DOI: 10.1016/j.scitotenv.2022.153095] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Recent studies have shown guanylurea (GUA) alters the growth and development of fish, induces oxidative stress, and disrupts the levels and expression of several genes, metabolites, and proteins related to the overall fitness of fish. Nonetheless, up to date, no study has assessed the potential neurotoxic effects that GUA may induce in non-target organisms. To fill the current knowledge gaps about the effects of this metabolite in the central nervous system of fish, we aimed to determine whether or not environmentally relevant concentrations of this metabolite may disrupt the behavior, redox status, AChE activity in Danio rerio adults. In addition, we also meant to assess if 25, 50, and 200 μg/L of GUA can alter the expression of several antioxidant defenses-, apoptosis-, AMPK pathway-, and neuronal communication-related genes in the brain of fish exposed for four months to GUA. Our results demonstrated that chronic exposure to GUA altered the swimming behavior of D. rerio, as fish remained more time frozen and traveled less distance in the tank compared to the control group. Moreover, this metabolite significantly increased the levels of oxidative damage biomarkers and inhibited the activity of acetylcholinesterase of fish in a concentration-dependent manner. Concerning gene expression, environmentally relevant concentrations of GUA downregulated the expression GRID2IP, PCDH17, and PCDH19, but upregulated Nrf1, Nrf2, p53, BAX, CASP3, PRKAA1, PRKAA2, and APP in fish after four months of exposure. Collectively, we can conclude that GUA may alter the homeostasis of several essential brain biomarkers, generating anxiety-like behavior in fish.
Collapse
Affiliation(s)
- Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico.
| | - Karina Elisa Rosales-Pérez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - José Manuel Orozco-Hernández
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México, CP 07700, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México, CP 07700, Mexico
| |
Collapse
|
8
|
Ribbenstedt A, Posselt M, Benskin JP. Toxicometabolomics and Biotransformation Product Elucidation in Single Zebrafish Embryos Exposed to Carbamazepine from Environmentally-Relevant to Morphologically Altering Doses. Chem Res Toxicol 2022; 35:431-439. [PMID: 35166526 PMCID: PMC8941598 DOI: 10.1021/acs.chemrestox.1c00335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Indexed: 12/27/2022]
Abstract
Toxicometabolomics and biotransformation product (bioTP) elucidation were carried out in single zebrafish (ZF) embryos exposed to carbamazepine (CBZ). Exposures were conducted in 96-well plates containing six CBZ concentrations ranging from 0.5 μg/L to 50 mg/L (n = 12 embryos per dose). In the 50 mg/L dose group, 33% of embryos developed edema during the exposure (120 hpf), while hatching was significantly delayed in three of the lower-dose groups (0.46, 3.85, and 445 μg/L) compared to the control at 48 hpf. Toxicometabolomic analysis together with random forest modeling revealed a total of 80 significantly affected metabolites (22 identified via targeted lipidomics and 58 via nontarget analysis). The wide range of doses enabled the observation of both monotonic and nonmonotonic dose responses in the metabolome, which ultimately produced a unique and comprehensive biochemical picture that aligns with existing knowledge on the mode of action of CBZ. The combination of high dose exposures and apical endpoint assessment in single embryos also enabled hypothesis generation regarding the target organ for the morphologically altering insult. In addition, two CBZ bioTPs were identified without additional exposure experiments. Overall, this work showcases the potential of toxicometabolomics and bioTP determination in single ZF embryos for rapid and comprehensive chemical hazard assessment.
Collapse
Affiliation(s)
- Anton Ribbenstedt
- Department of Environmental
Science, Stockholm University, 114 18 Stockholm, Sweden
| | - Malte Posselt
- Department of Environmental
Science, Stockholm University, 114 18 Stockholm, Sweden
| | - Jonathan P. Benskin
- Department of Environmental
Science, Stockholm University, 114 18 Stockholm, Sweden
| |
Collapse
|
9
|
Fagnani E, Montemurro N, Pérez S. Multilayered solid phase extraction and ultra performance liquid chromatographic method for suspect screening of halogenated pharmaceuticals and photo-transformation products in freshwater - comparison between data-dependent and data-independent acquisition mass spectrometry. J Chromatogr A 2022; 1663:462760. [PMID: 34979338 DOI: 10.1016/j.chroma.2021.462760] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 11/28/2022]
Abstract
Since conventional biological wastewater treatments are not admittedly effective to convert pharmaceutical active compounds (PhACs) into nontoxic products, natural abiotic mechanisms such as solar photolysis arises as an important degradation process, especially for halogenated molecules. In the present work, photolysis simulation was carried out in-lab for precursors and their respective photo-transformation products (photo-TPs), which were analyzed through reversed-phase ultra-high performance liquid chromatography coupled to high resolution mass spectrometry (RP-UHPLCHRMS). An in-house library was created in order to provide reference information for target (precursors) and suspect screening (photo-TPs) analysis of freshwater samples from impacted aquatic environments. Strategies in the use of data-dependent acquisition (DDA) and data-independent acquisition (DIA), as well as the data processing software are discussed here for the identification of 6 PhACs and photo-TPs. Because no standards of photo-TPs were available, only the target compounds, i.e. sitagliptin (398 ± 2 ng L-1), iohexol (209 ± 5 ng L-1), lamotrigine (103 ± 10 ng L-1), losartan (43 ± 10 ng L-1), ofloxacin (28 ± 7 ng L-1), and sertraline (25 ± 7 ng L-1) could be quantified through multiple standard additions.
Collapse
Affiliation(s)
- Enelton Fagnani
- Research Group for Optimization of Analytical Technologies Applied to Environmental and Sanitary Samples (GOTAS), School of Technology, University of Campinas (FT-UNICAMP), Rua Paschoal Marmo, 1888, Limeira, SP 13484-332, Brazil; Water, Environmental and Food Chemistry research group (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research from the Spanish Council for Scientific Research (IDAEA-CSIC), Barcelona, Spain.
| | - Nicola Montemurro
- Water, Environmental and Food Chemistry research group (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research from the Spanish Council for Scientific Research (IDAEA-CSIC), Barcelona, Spain.
| | - Sandra Pérez
- Water, Environmental and Food Chemistry research group (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research from the Spanish Council for Scientific Research (IDAEA-CSIC), Barcelona, Spain.
| |
Collapse
|
10
|
Elizalde-Velázquez GA, Gómez-Oliván LM, Islas-Flores H, Hernández-Navarro MD, García-Medina S, Galar-Martínez M. Oxidative stress as a potential mechanism by which guanylurea disrupts the embryogenesis of Danio rerio. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149432. [PMID: 34365262 DOI: 10.1016/j.scitotenv.2021.149432] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Metformin is one the most prescribed drug to treat type 2 diabetes. In wastewater treatment plants, this drug is bacterially transformed to guanylurea, which occurs at higher concentrations in the aquatic environments than its parent compound. Since there is a huge knowledge gap about the toxicity of this metabolite on aquatic organisms, we aimed to investigate the impact of guanylurea on the embryonic development and oxidative stress biomarkers of zebrafish (Danio rerio). For this effect, zebrafish embryos (4 h post fertilization) were exposed to 25, 50, 100, 200, 250, 25,000, 50,000, 75,000 μg/L guanylurea until 96 h post fertilization. Guanylurea led to a significant delay in the hatching process in all exposure groups. Furthermore, this transformation product affected the embryonic development of fish, inducing severe body alterations and consequently leading to their death. The most pronounced malformations were malformation of tail, scoliosis, pericardial edema, yolk deformation and craniofacial malformation. Concerning oxidative stress response, we demonstrated that guanylurea induced the antioxidant activity of superoxide dismutase, catalase, and glutathione peroxidase in zebrafish embryos. In addition, the levels of lipid peroxidation, protein carbonyl and hydroperoxide content were also increased in the embryos exposed to this transformation product. However, the integrated biomarker response (IBR) analysis carried out in this study demonstrated that oxidative damage biomarkers got more influence over the embryos than antioxidant enzymes. Thus, we can conclude that guanylurea induces oxidative stress in zebrafish embryos, and that this transformation product impair the normal development of this freshwater organism.
Collapse
Affiliation(s)
- Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico.
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - María Dolores Hernández-Navarro
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP 07700, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| |
Collapse
|
11
|
Elizalde-Velázquez GA, Gómez-Oliván LM, García-Medina S, Islas-Flores H, Hernández-Navarro MD, Galar-Martínez M. Antidiabetic drug metformin disrupts the embryogenesis in zebrafish through an oxidative stress mechanism. CHEMOSPHERE 2021; 285:131213. [PMID: 34246938 DOI: 10.1016/j.chemosphere.2021.131213] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
In recent years, the consumption of metformin has increased not only due to the higher prevalence of type 2 diabetes, but also due to their usage for other indications such as cancer and polycystic ovary syndrome. Consequently, metformin is currently among the highest drug by weight released into the aquatic environments. Since the toxic effects of this drug on aquatic species has been scarcely explored, the aim of this work was to investigate the influence of metformin on the development and redox balance of zebrafish (Danio rerio) embryos. For this purpose, zebrafish embryos (4 hpf) were exposed to 1, 10, 20, 30, 40, 50, 75 and 100 μg/L metformin until 96 hpf. Metformin significantly accelerated the hatching process in all exposure groups. Moreover, this drug induced several morphological alterations on the embryos, affecting their integrity and consequently leading to their death. The most frequent malformations found on the embryos included malformation of tail, scoliosis, pericardial edema and yolk deformation. Regarding oxidative balance, metformin significantly induced the activity of antioxidant enzymes and the levels of oxidative damage biomarkers. However, our IBR analisis demonstrated that oxidative damage biomarkers got more influence over the embryos. Together these results demonstrated that metformin may affect the embryonic development of zebrafish and that oxidative stress may be involved in the generation of this embryotoxic process.
Collapse
Affiliation(s)
- Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de, Mexico.
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y Cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de, CP, 07700, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de, Mexico
| | - María Dolores Hernández-Navarro
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y Cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de, CP, 07700, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de, Mexico
| |
Collapse
|
12
|
Rutere C, Posselt M, Ho A, Horn MA. Biodegradation of metoprolol in oxic and anoxic hyporheic zone sediments: unexpected effects on microbial communities. Appl Microbiol Biotechnol 2021; 105:6103-6115. [PMID: 34338804 PMCID: PMC8390428 DOI: 10.1007/s00253-021-11466-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/29/2022]
Abstract
Abstract Metoprolol is widely used as a beta-blocker and considered an emerging contaminant of environmental concern due to pseudo persistence in wastewater effluents that poses a potential ecotoxicological threat to aquatic ecosystems. Microbial removal of metoprolol in the redox-delineated hyporheic zone (HZ) was investigated using streambed sediments supplemented with 15 or 150 μM metoprolol in a laboratory microcosm incubation under oxic and anoxic conditions. Metoprolol disappeared from the aqueous phase under oxic and anoxic conditions within 65 and 72 days, respectively. Metoprolol was refed twice after initial depletion resulting in accelerated disappearance under both conditions. Metoprolol disappearance was marginal in sterile control microcosms with autoclaved sediment. Metoprolol was transformed mainly to metoprolol acid in oxic microcosms, while metoprolol acid and α-hydroxymetoprolol were formed in anoxic microcosms. Transformation products were transient and disappeared within 30 days under both conditions. Effects of metoprolol on the HZ bacterial community were evaluated using DNA- and RNA-based time-resolved amplicon Illumina MiSeq sequencing targeting the 16S rRNA gene and 16S rRNA, respectively, and were prominent on 16S rRNA rather than 16S rRNA gene level suggesting moderate metoprolol-induced activity-level changes. A positive impact of metoprolol on Sphingomonadaceae and Enterobacteriaceae under oxic and anoxic conditions, respectively, was observed. Nitrifiers were impaired by metoprolol under oxic and anoxic conditions. Collectively, our findings revealed high metoprolol biodegradation potentials in the hyporheic zone under contrasting redox conditions associated with changes in the active microbial communities, thus contributing to the attenuation of micropollutants. Key points • High biotic oxic and anoxic metoprolol degradation potentials in the hyporheic zone. • Key metoprolol-associated taxa included Sphingomonadaceae, Enterobacteraceae, and Promicromonosporaceae. • Negative impact of metoprolol on nitrifiers. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11466-w.
Collapse
Affiliation(s)
- Cyrus Rutere
- Department of Ecological Microbiology, University of Bayreuth, Bayreuth, Germany.,Institute of Microbiology, Leibniz University Hannover, Herrenhäuser Straße 2, Hannover, Germany
| | - Malte Posselt
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Adrian Ho
- Institute of Microbiology, Leibniz University Hannover, Herrenhäuser Straße 2, Hannover, Germany
| | - Marcus A Horn
- Department of Ecological Microbiology, University of Bayreuth, Bayreuth, Germany. .,Institute of Microbiology, Leibniz University Hannover, Herrenhäuser Straße 2, Hannover, Germany.
| |
Collapse
|
13
|
Jaeger A, Posselt M, Schaper JL, Betterle A, Rutere C, Coll C, Mechelke J, Raza M, Meinikmann K, Portmann A, Blaen PJ, Horn MA, Krause S, Lewandowski J. Transformation of organic micropollutants along hyporheic flow in bedforms of river-simulating flumes. Sci Rep 2021; 11:13034. [PMID: 34158517 PMCID: PMC8219703 DOI: 10.1038/s41598-021-91519-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 05/21/2021] [Indexed: 11/15/2022] Open
Abstract
Urban streams receive increasing loads of organic micropollutants from treated wastewaters. A comprehensive understanding of the in-stream fate of micropollutants is thus of high interest for water quality management. Bedforms induce pumping effects considerably contributing to whole stream hyporheic exchange and are hotspots of biogeochemical turnover processes. However, little is known about the transformation of micropollutants in such structures. In the present study, we set up recirculating flumes to examine the transformation of a set of micropollutants along single flowpaths in two triangular bedforms. We sampled porewater from four locations in the bedforms over 78 days and analysed the resulting concentration curves using the results of a hydrodynamic model in combination with a reactive transport model accounting for advection, dispersion, first-order removal and retardation. The four porewater sampling locations were positioned on individual flowpaths with median solute travel times ranging from 11.5 to 43.3 h as shown in a hydrodynamic model previously. Highest stability was estimated for hydrochlorothiazide on all flowpaths. Lowest detectable half-lives were estimated for sotalol (0.7 h) and sitagliptin (0.2 h) along the shortest flowpath. Also, venlafaxine, acesulfame, bezafibrate, irbesartan, valsartan, ibuprofen and naproxen displayed lower half-lives at shorter flowpaths in the first bedform. However, the behavior of many compounds in the second bedform deviated from expectations, where particularly transformation products, e.g. valsartan acid, showed high concentrations. Flowpath-specific behavior as observed for metformin or flume-specific behavior as observed for metoprolol acid, for instance, was attributed to potential small-scale or flume-scale heterogeneity of microbial community compositions, respectively. The results of the study indicate that the shallow hyporheic flow field and the small-scale heterogeneity of the microbial community are major controlling factors for the transformation of relevant micropollutants in river sediments.
Collapse
Affiliation(s)
- Anna Jaeger
- Department Ecohydrology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany. .,Geography Department, Humboldt University Berlin, Berlin, Germany.
| | - Malte Posselt
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Jonas L Schaper
- Center for Applied Geoscience, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Andrea Betterle
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
| | - Cyrus Rutere
- Department of Ecological Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Claudia Coll
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Jonas Mechelke
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
| | - Muhammad Raza
- Institute of Applied Geosciences, Technical University of Darmstadt, Darmstadt, Germany.,IWW Water Centre, Mülheim an der Ruhr, Germany
| | - Karin Meinikmann
- Julius Kühn Institute - Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Agricultural Crops, Berlin, Germany
| | - Andrea Portmann
- Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA
| | - Phillip J Blaen
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK.,Yorkshire Water, Leeds, UK
| | - Marcus A Horn
- Department of Ecological Microbiology, University of Bayreuth, Bayreuth, Germany.,Institute of Microbiology, Leibniz University of Hannover, Hannover, Germany
| | - Stefan Krause
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK.,Université Claude Bernard Lyon 1, Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), Villeurbanne, France
| | - Jörg Lewandowski
- Department Ecohydrology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Geography Department, Humboldt University Berlin, Berlin, Germany
| |
Collapse
|
14
|
Castro G, Ramil M, Cela R, Rodríguez I. Assessment of UV combined with free chlorine for removal of valsartan acid from water samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143173. [PMID: 33139010 DOI: 10.1016/j.scitotenv.2020.143173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
Valsartan acid (VALA) is a persistent and mobile pollutant, ubiquitously distributed in the aquatic environment. Herein, we assessed the efficiency of UV/free chlorine for the removal of this pollutant. Degradation experiments were performed using different water samples, considering several pH values and concentrations of inorganic anions. Time-course of VALA was measured by injection of different reaction time aliquots in a liquid chromatography (LC) triple quadrupole (QqQ) mass spectrometry (MS) system, whilst the study of potential transformation products (TPs) was evaluated by LC combined with a hybrid quadrupole time-of-flight (QTOF) MS system. Formation of volatile disinfection by-products (DBPs) was investigated by gas chromatography (GC) with TOF-MS detection. Compared to free chlorine treatment and UV photolysis, the combination of both parameters significantly enhanced the degradability of VALA. At neutral pH, UV/free chlorine was also more effective than UV/H2O2 to remove VALA from spiked water solutions. Three TPs of VALA were tentatively identified by LC-QTOF-MS, although only one was stable in the UV/free chlorine media. As regards volatile DBPs, the formation of chloroform, dichloroacetonitrile, di- and trichloroacetic acid was noticed. The mass yield of DBPs formation from VALA varied from 0.3% (dichloroacetonitrile) to 1.1% (chloroform). The efficiency of UV/free chlorine was first investigated in spiked solutions with increasing complexities: ultrapure, river and treated wastewater. Thereafter, the feasibility of reducing VALA levels in polluted river water was demonstrated.
Collapse
Affiliation(s)
- G Castro
- Department of Analytical Chemistry, Nutrition and Food Sciences, Research Institute on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - M Ramil
- Department of Analytical Chemistry, Nutrition and Food Sciences, Research Institute on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - R Cela
- Department of Analytical Chemistry, Nutrition and Food Sciences, Research Institute on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - I Rodríguez
- Department of Analytical Chemistry, Nutrition and Food Sciences, Research Institute on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
15
|
Ribbenstedt A, Benskin JP. Rapid in-plate screening of biotransformation products in single zebrafish embryos. RSC Adv 2021; 11:27812-27819. [PMID: 35480773 PMCID: PMC9038038 DOI: 10.1039/d1ra01111a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
A procedure was developed for rapid screening of xenobiotic biotransformation products (bioTPs) in single zebrafish (ZF; Danio rerio) embryos. Exposure was carried out from 0–120 hours post fertilization (hpf) to 6 different concentrations of the model compound propranolol (PPL). Following in-plate extraction and non-target instrumental analysis by high resolution mass spectrometry, suspected bioTPs were identified using custom data filtration scripts and matching to in silico structural predictions. A total of eight PPL bioTPs were identified (five at a level 1 confidence and one at a level 2–3 confidence). These findings supplement previously generated toxicometabolomic models derived from the same dataset, and were obtained without conducting additional exposure experiments. In addition to facilitating assessments of inter-individual variability in bioTP production in ZF embryos, we demonstrate that bioTPs can be elucidated using extremely small quantities of biomass (i.e. ∼200 μg). To the best of our knowledge, this is the first time bioTP elucidation has been carried out in single ZF embryos. A procedure was developed for rapid screening of xenobiotic biotransformation products (bioTPs) in single zebrafish (ZF; Danio rerio) embryos.![]()
Collapse
|
16
|
Fate of Trace Organic Compounds in Hyporheic Zone Sediments of Contrasting Organic Carbon Content and Impact on the Microbiome. WATER 2020. [DOI: 10.3390/w12123518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The organic carbon in streambed sediments drives multiple biogeochemical reactions, including the attenuation of organic micropollutants. An attenuation assay using sediment microcosms differing in the initial total organic carbon (TOC) revealed higher microbiome and sorption associated removal efficiencies of trace organic compounds (TrOCs) in the high-TOC compared to the low-TOC sediments. Overall, the combined microbial and sorption associated removal efficiencies of the micropollutants were generally higher than by sorption alone for all compounds tested except propranolol whose removal efficiency was similar via both mechanisms. Quantitative real-time PCR and time-resolved 16S rRNA gene amplicon sequencing revealed that higher bacterial abundance and diversity in the high-TOC sediments correlated with higher microbial removal efficiencies of most TrOCs. The bacterial community in the high-TOC sediment samples remained relatively stable against the stressor effects of TrOC amendment compared to the low-TOC sediment community that was characterized by a decline in the relative abundance of most phyla except Proteobacteria. Bacterial genera that were significantly more abundant in amended relative to unamended sediment samples and thus associated with biodegradation of the TrOCs included Xanthobacter, Hyphomicrobium, Novosphingobium, Reyranella and Terrimonas. The collective results indicated that the TOC content influences the microbial community dynamics and associated biotransformation of TrOCs as well as the sorption potential of the hyporheic zone sediments.
Collapse
|
17
|
Rutere C, Knoop K, Posselt M, Ho A, Horn MA. Ibuprofen Degradation and Associated Bacterial Communities in Hyporheic Zone Sediments. Microorganisms 2020; 8:E1245. [PMID: 32824323 PMCID: PMC7464344 DOI: 10.3390/microorganisms8081245] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 01/29/2023] Open
Abstract
Ibuprofen, a non-steroidal anti-inflammatory pain reliever, is among pharmaceutical residues of environmental concern ubiquitously detected in wastewater effluents and receiving rivers. Thus, ibuprofen removal potentials and associated bacteria in the hyporheic zone sediments of an impacted river were investigated. Microbially mediated ibuprofen degradation was determined in oxic sediment microcosms amended with ibuprofen (5, 40, 200, and 400 µM), or ibuprofen and acetate, relative to an un-amended control. Ibuprofen was removed by the original sediment microbial community as well as in ibuprofen-enrichments obtained by re-feeding of ibuprofen. Here, 1-, 2-, 3-hydroxy- and carboxy-ibuprofen were the primary transformation products. Quantitative real-time PCR analysis revealed a significantly higher 16S rRNA abundance in ibuprofen-amended relative to un-amended incubations. Time-resolved microbial community dynamics evaluated by 16S rRNA gene and 16S rRNA analyses revealed many new ibuprofen responsive taxa of the Acidobacteria, Actinobacteria, Bacteroidetes, Gemmatimonadetes, Latescibacteria, and Proteobacteria. Two ibuprofen-degrading strains belonging to the genera Novosphingobium and Pseudomonas were isolated from the ibuprofen-enriched sediments, consuming 400 and 300 µM ibuprofen within three and eight days, respectively. The collective results indicated that the hyporheic zone sediments sustain an efficient biotic (micro-)pollutant degradation potential, and hitherto unknown microbial diversity associated with such (micro)pollutant removal.
Collapse
Affiliation(s)
- Cyrus Rutere
- Department of Ecological Microbiology, University of Bayreuth, 95448 Bayreuth, Germany;
| | - Kirsten Knoop
- Institute of Microbiology, Leibniz University Hannover, 30419 Hannover, Germany; (K.K.); (A.H.)
| | - Malte Posselt
- Department of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden;
| | - Adrian Ho
- Institute of Microbiology, Leibniz University Hannover, 30419 Hannover, Germany; (K.K.); (A.H.)
| | - Marcus A. Horn
- Department of Ecological Microbiology, University of Bayreuth, 95448 Bayreuth, Germany;
- Institute of Microbiology, Leibniz University Hannover, 30419 Hannover, Germany; (K.K.); (A.H.)
| |
Collapse
|
18
|
Mechelke J, Rust D, Jaeger A, Hollender J. Enantiomeric Fractionation during Biotransformation of Chiral Pharmaceuticals in Recirculating Water-Sediment Test Flumes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7291-7301. [PMID: 32388979 DOI: 10.1021/acs.est.0c00767] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Many organic contaminants entering the aquatic environment feature stereogenic structural elements that give rise to enantiomerism. While abiotic processes usually act identical on enantiomers, biotic processes, such as biodegradation often result in enantiomeric fractionation (EFr), i.e., the change of the relative abundance of enantiomers. Therefore, EFr offers the opportunity to differentiate biodegradation in complex environmental systems from abiotic processes. In this study, an achiral-chiral two-dimensional liquid chromatographic method for the enantioseparation of selected pharmaceuticals was developed. This method was then applied to determine the enantiomeric compositions of eight chiral pharmaceuticals in 20 water-sediment test flumes and test EFr as an indicator of biodegradation. While all eight substances were attenuated by at least 60%, five (atenolol, metoprolol, celiprolol, propranolol, and flecainide) displayed EFr. No EFr was observed for citalopram, fluoxetine, and venlafaxine despite almost complete attenuation (80 to 100%). Celiprolol, a barely studied β-blocker, revealed the most distinct EFr among all investigated substances; however, EFr varied considerably with biodiversity. Celiprolol-H2 was identified as a biological transformation product possibly formed by reduction of the celiprolol keto group through a highly regio- and enantioselective carbonyl reductase. While celiprolol-H2 was observed across all flumes, as expected, its formation was faster in flumes with high bacterial diversity where also EFr was highest. Overall, EFr and transformation product formation together served as good indicators of biological processes; however, the strong dependence of EFr on biodiversity limits its usefulness in complex environmental systems.
Collapse
Affiliation(s)
- Jonas Mechelke
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zürich, Switzerland
| | - Dominique Rust
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Department of Chemistry, University of Zurich, 8057 Zürich, Switzerland
| | - Anna Jaeger
- Department Ecohydrology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany
- Geography Department, Humboldt University of Berlin, 12489 Berlin, Germany
| | - Juliane Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zürich, Switzerland
| |
Collapse
|
19
|
Posselt M, Mechelke J, Rutere C, Coll C, Jaeger A, Raza M, Meinikmann K, Krause S, Sobek A, Lewandowski J, Horn MA, Hollender J, Benskin JP. Bacterial Diversity Controls Transformation of Wastewater-Derived Organic Contaminants in River-Simulating Flumes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5467-5479. [PMID: 32251587 PMCID: PMC7304871 DOI: 10.1021/acs.est.9b06928] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/21/2020] [Accepted: 04/06/2020] [Indexed: 05/22/2023]
Abstract
Hyporheic zones are the water-saturated flow-through subsurfaces of rivers which are characterized by the simultaneous occurrence of multiple physical, biological, and chemical processes. Two factors playing a role in the hyporheic attenuation of organic contaminants are sediment bedforms (a major driver of hyporheic exchange) and the composition of the sediment microbial community. How these factors act on the diverse range of organic contaminants encountered downstream from wastewater treatment plants is not well understood. To address this knowledge gap, we investigated dissipation half-lives (DT50s) of 31 substances (mainly pharmaceuticals) under different combinations of bacterial diversity and bedform-induced hyporheic flow using 20 recirculating flumes in a central composite face factorial design. By combining small-volume pore water sampling, targeted analysis, and suspect screening, along with quantitative real-time PCR and time-resolved amplicon Illumina MiSeq sequencing, we determined a comprehensive set of DT50s, associated bacterial communities, and microbial transformation products. The resulting DT50s of parent compounds ranged from 0.5 (fluoxetine) to 306 days (carbamazepine), with 20 substances responding significantly to bacterial diversity and four to both diversity and hyporheic flow. Bacterial taxa that were associated with biodegradation included Acidobacteria (groups 6, 17, and 22), Actinobacteria (Nocardioides and Illumatobacter), Bacteroidetes (Terrimonas and Flavobacterium) and diverse Proteobacteria (Pseudomonadaceae, Sphingomonadaceae, and Xanthomonadaceae). Notable were the formation of valsartan acid from irbesartan and valsartan, the persistence of N-desmethylvenlafaxine across all treatments, and the identification of biuret as a novel transformation product of metformin. Twelve additional target transformation products were identified, which were persistent in either pore or surface water of at least one treatment, indicating their environmental relevance.
Collapse
Affiliation(s)
- Malte Posselt
- Department
of Environmental Science (ACES), Stockholm
University, Svante Arrhenius väg 8, SE-11418 Stockholm, Sweden
| | - Jonas Mechelke
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, Überlandstr. 133, CH 8600 Dübendorf, Switzerland
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zürich, Switzerland
| | - Cyrus Rutere
- Department
of Ecological Microbiology, University of
Bayreuth, Bayreuth, Germany
| | - Claudia Coll
- Department
of Environmental Science (ACES), Stockholm
University, Svante Arrhenius väg 8, SE-11418 Stockholm, Sweden
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, Überlandstr. 133, CH 8600 Dübendorf, Switzerland
| | - Anna Jaeger
- Department
Ecohydrology, Leibniz-Institute of Freshwater
Ecology and Inland Fisheries, Berlin, Germany
- Geography
Department, Humboldt University Berlin, Berlin, Germany
| | - Muhammad Raza
- Technical
University of Darmstadt, Institute of Applied
Geosciences, Darmstadt, Germany
- IWW
Water Centre, Mülheim an
der Ruhr, Germany
| | - Karin Meinikmann
- Department
Ecohydrology, Leibniz-Institute of Freshwater
Ecology and Inland Fisheries, Berlin, Germany
- Julius
Kühn-Institute, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Berlin, Germany
| | - Stefan Krause
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, U.K.
| | - Anna Sobek
- Department
of Environmental Science (ACES), Stockholm
University, Svante Arrhenius väg 8, SE-11418 Stockholm, Sweden
| | - Jörg Lewandowski
- Department
Ecohydrology, Leibniz-Institute of Freshwater
Ecology and Inland Fisheries, Berlin, Germany
- Geography
Department, Humboldt University Berlin, Berlin, Germany
| | - Marcus A. Horn
- Department
of Ecological Microbiology, University of
Bayreuth, Bayreuth, Germany
- Institute
of Microbiology, Leibniz University of Hannover, Herrenhäuser Str. 2, DE-30167 Hannover, Germany
| | - Juliane Hollender
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, Überlandstr. 133, CH 8600 Dübendorf, Switzerland
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zürich, Switzerland
| | - Jonathan P. Benskin
- Department
of Environmental Science (ACES), Stockholm
University, Svante Arrhenius väg 8, SE-11418 Stockholm, Sweden
| |
Collapse
|
20
|
Elizalde-Velázquez GA, Gómez-Oliván LM. Occurrence, toxic effects and removal of metformin in the aquatic environments in the world: Recent trends and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 702:134924. [PMID: 31726346 DOI: 10.1016/j.scitotenv.2019.134924] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 05/20/2023]
Abstract
Metformin (MET) is the most common drug used to treat type 2 diabetes, but also it is used as an anticancer agent and as a treatment for polycystic ovary syndrome. This drug is not metabolized in the human body, and may enter into the environment through different pathways. In wastewater treatments plants (WWTPs), this contaminant is mainly transformed to guanylurea (GUA). However, three further transformation products (TPs): (a) 2,4- diamino-1,3,5-triazine, 4-DAT; (b) 2-amino-4-methylamino-1,3,5-triazine, 2,4-AMT; and (c) methylbiguanide, MBG; have also been associated with its metabolism. MET, GUA and MBG have been found in WWTPs influents, effluents and surface waters. Furthermore, MET and GUA bioaccumulate in edible plants species, fish and mussels potentially contaminating the human food web. MET is also a potential endocrine disruptor in fish. Phytoremediation, adsorption and biodegradation have shown a high removal efficiency of MET, in laboratory. Nonetheless, these removal methods had less efficiency when tried in WWTPs. Therefore, MET and its TPs are a threat to the human being as well as to our environment. This review comprehensively discuss the (1) pathways of MET to the environment and its life-cycle, (2) occurrence of MET and its transformation products (3) removal, (4) toxic effects and (5) future trends and perspectives of possible methods of elimination in water in order to provide potential options for managing these contaminants.
Collapse
Affiliation(s)
- Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico.
| |
Collapse
|
21
|
Mapping Micro-Pollutants and Their Impacts on the Size Structure of Streambed Communities. WATER 2019. [DOI: 10.3390/w11122610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recently there has been increasing concern over the vast array of emerging organic contaminants (EOCs) detected in streams and rivers worldwide. Understanding of the ecological implications of these compounds is limited to local scale case studies, partly as a result of technical limitations and a lack of integrative analyses. Here, we apply state-of-the-art instrumentation to analyze a complex suite of EOCs in the streambed of 30 UK streams and their effect on streambed communities. We apply the abundance–body mass (N–M) relationship approach as an integrative metric of the deviation of natural communities from reference status as a result of EOC pollution. Our analysis includes information regarding the N and M for individual prokaryotes, unicellular flagellates and ciliates, meiofauna, and macroinvertebrates. We detect a strong significant dependence of the N–M relationship coefficients with the presence of EOCs in the system, to the point of shielding the effect of other important environmental factors such as temperature, pH, and productivity. However, contrary to other stressors, EOC pollution showed a positive effect on the N–M coefficient in our work. This phenomenon can be largely explained by the increase in large-size tolerant taxa under polluted conditions. We discuss the potential implications of these results in relation to bioaccumulation and biomagnification processes. Our findings shed light on the impact of EOCs on the organization and ecology of the whole streambed community for the first time.
Collapse
|
22
|
Mechelke J, Vermeirssen ELM, Hollender J. Passive sampling of organic contaminants across the water-sediment interface of an urban stream. WATER RESEARCH 2019; 165:114966. [PMID: 31437634 DOI: 10.1016/j.watres.2019.114966] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
Passive sampling is a well-established tool for monitoring time-weighted average concentrations of polar and semi-polar organic contaminants in streams at flow velocities between 0.1 and 0.4 m s-1. However, its application under low-flow conditions (10-5 to 0.01 m s-1) - as encountered in hyporheic zones - has been scarcely reported. In this study, 3 novel passive sampler configurations were developed for the monitoring of (semi-)polar organic pollutants and related transformation products across the water-sediment interface and thus across varying hydrodynamic conditions. Their design was inspired by Chemcatcher and diffusive gradients in thin films for organics. To determine the most optimal sampler design, an uptake experiment was completed involving the 3 novel passive sampler configurations and a reference Chemcatcher in polar configuration. The experiments consisted of a circular flume that simulated the main channel of a stream and an aquarium with stagnant water that represented the underlying hyporheic zone. The systems were exposed to 192 organic pollutants at environmental concentrations, and the samplers were then collected, extracted and analyzed using liquid chromatography high-resolution mass spectrometry after 2, 6 and 14 days. The configuration that was most insensitive to different hydrodynamic conditions consisted of a reversed-phase sulfonated styrenedivinylbenzene disk as the receiving phase that was covered by an agarose diffusion gel and topped with a polyethersulfone membrane filter. To further evaluate its environmental application, samplers were installed downstream of a sewage treatment plant located at an urban stream in Berlin, Germany (Erpe). The samplers were mounted on custom-made holders which were subsequently embedded in the stream bed to position samplers above (0.30 m) and within the sediment (-0.15/-0.30/-0.45 m) for 11 days. Target and suspect screening workflows were then applied to identify common concentration patterns and link parent attenuation to transformation product formation. A total of 104 concentration profiles were determined, suggesting the efficiency of the proposed sampling strategy in the water-sediment interface. Valsartan acid was the only known transformation product indicative of hyporheic zone-driven attenuation as its concentration in porewater by far exceeded its concentration in surface water. Similar patterns were observed for a larger list of suspected transformation products, of which a sotalol transformation product was tentatively identified. Overall, the established sampling methodology can be effectively used to quantify organic contaminants during low-flow conditions and is suitable for the characterization of attenuation patterns of organic pollutants in hyporheic zones.
Collapse
Affiliation(s)
- Jonas Mechelke
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092, Zürich, Switzerland
| | | | - Juliane Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092, Zürich, Switzerland.
| |
Collapse
|
23
|
Abstract
Rivers are important ecosystems under continuous anthropogenic stresses. The hyporheic zone is a ubiquitous, reactive interface between the main channel and its surrounding sediments along the river network. We elaborate on the main physical, biological, and biogeochemical drivers and processes within the hyporheic zone that have been studied by multiple scientific disciplines for almost half a century. These previous efforts have shown that the hyporheic zone is a modulator for most metabolic stream processes and serves as a refuge and habitat for a diverse range of aquatic organisms. It also exerts a major control on river water quality by increasing the contact time with reactive environments, which in turn results in retention and transformation of nutrients, trace organic compounds, fine suspended particles, and microplastics, among others. The paper showcases the critical importance of hyporheic zones, both from a scientific and an applied perspective, and their role in ecosystem services to answer the question of the manuscript title. It identifies major research gaps in our understanding of hyporheic processes. In conclusion, we highlight the potential of hyporheic restoration to efficiently manage and reactivate ecosystem functions and services in river corridors.
Collapse
|
24
|
Schaper JL, Posselt M, Bouchez C, Jaeger A, Nuetzmann G, Putschew A, Singer G, Lewandowski J. Fate of Trace Organic Compounds in the Hyporheic Zone: Influence of Retardation, the Benthic Biolayer, and Organic Carbon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4224-4234. [PMID: 30905154 DOI: 10.1021/acs.est.8b06231] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The fate of 28 trace organic compounds (TrOCs) was investigated in the hyporheic zone (HZ) of an urban lowland river in Berlin, Germany. Water samples were collected hourly over 17 h in the river and in three depths in the HZ using minipoint samplers. The four relatively variable time series were subsequently used to calculate first-order removal rates and retardation coefficients via a one-dimensional reactive transport model. Reversible sorption processes led to substantial retardation of many TrOCs along the investigated hyporheic flow path. Some TrOCs, such as dihydroxy-carbamazepine, O-desmethylvenlafaxine, and venlafaxine, were found to be stable in the HZ. Others were readily removed with half-lives in the first 10 cm of the HZ ranging from 0.1 ± 0.01 h for iopromide to 3.3 ± 0.3 h for tramadol. Removal rate constants of the majority of reactive TrOCs were highest in the first 10 cm of the HZ, where removal of biodegradable dissolved organic matter was also the highest. Because conditions were oxic along the top 30 cm of the investigated flow path, we attribute this finding to the high microbial activity typically associated with the shallow HZ. Frequent and short vertical hyporheic exchange flows could therefore be more important for reach-scale TrOC removal than long, lateral hyporheic flow paths.
Collapse
Affiliation(s)
- Jonas L Schaper
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries , Department Ecohydrology , Müggelseedamm 310 , 12587 Berlin , Germany
- Chair of Water Quality Engineering , Technische Universität Berlin , Strasse des 17. Juni 135 , 10623 Berlin , Germany
| | - Malte Posselt
- Department of Environmental Science and Analytical Chemistry (ACES) , Stockholm University , 114 19 Stockholm , Sweden
| | - Camille Bouchez
- CNRS , Univ Rennes , Géosciences Rennes, UMR 6118 , 35000 Rennes , France
| | - Anna Jaeger
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries , Department Ecohydrology , Müggelseedamm 310 , 12587 Berlin , Germany
- Geography Department , Humboldt University Berlin , Rudower Chaussee 16 , 12489 Berlin , Germany
| | - Gunnar Nuetzmann
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries , Department Ecohydrology , Müggelseedamm 310 , 12587 Berlin , Germany
- Geography Department , Humboldt University Berlin , Rudower Chaussee 16 , 12489 Berlin , Germany
| | - Anke Putschew
- Chair of Water Quality Engineering , Technische Universität Berlin , Strasse des 17. Juni 135 , 10623 Berlin , Germany
| | - Gabriel Singer
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries , Department Ecohydrology , Müggelseedamm 310 , 12587 Berlin , Germany
| | - Joerg Lewandowski
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries , Department Ecohydrology , Müggelseedamm 310 , 12587 Berlin , Germany
- Geography Department , Humboldt University Berlin , Rudower Chaussee 16 , 12489 Berlin , Germany
| |
Collapse
|
25
|
Jaeger A, Posselt M, Betterle A, Schaper J, Mechelke J, Coll C, Lewandowski J. Spatial and Temporal Variability in Attenuation of Polar Organic Micropollutants in an Urban Lowland Stream. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2383-2395. [PMID: 30754970 DOI: 10.1021/acs.est.8b05488] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Contamination of rivers by trace organic compounds (TrOCs) poses a risk for aquatic ecosystems and drinking water quality. Spatially- and temporally varying environmental conditions are expected to play a major role in controlling in-stream attenuation of TrOCs. This variability is rarely captured by in situ studies of TrOC attenuation. Instead, snap-shots or time-weighted average conditions and corresponding attenuation rates are reported. The present work sought to investigate this variability and factors controlling it by analysis of 24 TrOCs over a 4.7 km reach of the River Erpe (Berlin, Germany). The factors investigated included sunlight and water temperature as well as the presence of macrophytes. Attenuation rate constants in 48 consecutive hourly water parcels were tracked along two contiguous river sections of different characteristics. Section 1 was less shaded and more densely covered with submerged macrophytes compared to section 2. The sampling campaign was repeated after macrophyte removal from section 1. The findings show, that section 1 generally provided more favorable conditions for both photo- and biodegradation. Macrophyte removal enhanced photolysis of some compounds (e.g., hydrochlorothiazide and diclofenac) while reducing the biodegradation of metoprolol. The transformation products metoprolol acid and valsartan acid were formed along the reach under all conditions.
Collapse
Affiliation(s)
- Anna Jaeger
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries , Department Ecohydrology , Berlin , Germany
- Humboldt University Berlin , Geography Department , Berlin , Germany
| | - Malte Posselt
- Stockholm University , Department of Environmental Science and Analytical Chemistry , Stockholm , Sweden
| | - Andrea Betterle
- Eawag , Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water , Dübendorf , Switzerland
- University of Neuchâtel , Centre of Hydrogeology and Geothermics , Neuchâtel , Switzerland
- University of Padova , Department of ICEA and International Center for Hydrology , Padua , Italy
| | - Jonas Schaper
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries , Department Ecohydrology , Berlin , Germany
- Technical University of Berlin , Chair of Water Quality Engineering , Berlin , Germany
| | - Jonas Mechelke
- Eawag , Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water , Dübendorf , Switzerland
- ETH Zürich , Institute of Biogeochemistry and Pollutant Dynamics , Zürich , Switzerland
| | - Claudia Coll
- Stockholm University , Department of Environmental Science and Analytical Chemistry , Stockholm , Sweden
| | - Joerg Lewandowski
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries , Department Ecohydrology , Berlin , Germany
- Humboldt University Berlin , Geography Department , Berlin , Germany
| |
Collapse
|
26
|
Peter KT, Herzog S, Tian Z, Wu C, McCray JE, Lynch K, Kolodziej EP. Evaluating emerging organic contaminant removal in an engineered hyporheic zone using high resolution mass spectrometry. WATER RESEARCH 2019; 150:140-152. [PMID: 30508711 DOI: 10.1016/j.watres.2018.11.050] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/16/2018] [Accepted: 11/17/2018] [Indexed: 06/09/2023]
Abstract
The hyporheic zone (HZ), located at the interface of surface and groundwater, is a natural bioreactor for attenuation of chemical contaminants. Engineered HZs can be incorporated into stream restoration projects to enhance hyporheic exchange, with flowpaths optimized to promote biological habitat, water quantity, and water quality improvements. Designing HZs for in-stream treatment of stormwater, a significant source of flow and contaminant loads to urban creeks, requires assessment of both the hydrology and biogeochemical capacity for water quality improvement. Here, we applied tracer tests and high resolution mass spectrometry (HRMS) to characterize an engineered hyporheic zone unit process, called a hyporheic design element (HDE), in the Thornton Creek Watershed in Seattle, WA. Dye, NaCl, and bromide were used to hydrologically link downwelling and upwelling zones and estimate the hydraulic retention time (HRT) of hyporheic flowpaths. We then compared water quality improvements across hydrologically-linked surface and hyporheic flowpaths (3-5 m length; ∼30 min to >3 h) during baseflow and stormflow conditions. We evaluated fate outcomes for 83 identified contaminants during stormflow, including those correlated with an urban runoff mortality syndrome in coho salmon. Non-target HRMS analysis was used to assess holistic water quality improvements and evaluate attenuation mechanisms. The data indicated substantial water quality improvement in hyporheic flowpaths relative to surface flow and improved contaminant removal with longer hyporheic HRT (for ∼1900 non-target compounds detected during stormflow, <17% were attenuated >50% via surface flow vs. 59% and 78% via short and long hyporheic residence times, respectively), and strong contributions of hydrophobic sorption towards observed contaminant attenuation.
Collapse
Affiliation(s)
- Katherine T Peter
- Interdisciplinary Arts and Science, University of Washington Tacoma, Tacoma, WA, 98421, USA; Center for Urban Waters, Tacoma, WA, 98421, USA.
| | - Skuyler Herzog
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, 80401, USA
| | - Zhenyu Tian
- Interdisciplinary Arts and Science, University of Washington Tacoma, Tacoma, WA, 98421, USA; Center for Urban Waters, Tacoma, WA, 98421, USA
| | - Christopher Wu
- Interdisciplinary Arts and Science, University of Washington Tacoma, Tacoma, WA, 98421, USA; Center for Urban Waters, Tacoma, WA, 98421, USA
| | - John E McCray
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, 80401, USA
| | | | - Edward P Kolodziej
- Interdisciplinary Arts and Science, University of Washington Tacoma, Tacoma, WA, 98421, USA; Center for Urban Waters, Tacoma, WA, 98421, USA; Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
27
|
Schaper JL, Posselt M, McCallum JL, Banks EW, Hoehne A, Meinikmann K, Shanafield MA, Batelaan O, Lewandowski J. Hyporheic Exchange Controls Fate of Trace Organic Compounds in an Urban Stream. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12285-12294. [PMID: 30293423 DOI: 10.1021/acs.est.8b03117] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
First-order half-lives for 26 trace organic compounds (TrOCs) were determined in the hyporheic zone (HZ) and along a 3 km reach of a first-order stream in South Australia during both dry and wet seasons. Two salt tracer experiments were conducted and evaluated using a transient storage model to characterize seasonal differences in stream residence time and transient storage. Lagrangian and time-integrated surface water sampling were conducted to calculate half-lives in the surface water. Half-lives in the HZ were calculated using porewater samples obtained from a modified mini-point sampler and hyporheic residence times measured via active heat-pulse sensing. Half of the investigated TrOCs (e.g., oxazepam, olmesartan, candesartan) were not significantly removed along both the investigated river stretch and the sampled hyporheic flow paths. The remaining TrOCs (e.g., metformin, guanylurea, valsartan) were found to be significantly removed in the HZ and along the river stretch with relative removals in the HZ correlating to reach-scale relative removals. Using the modeled transport parameters, it was estimated that wet season reach-scale removal of TrOCs was predominately caused by removal in the HZ when the intensity of hyporheic exchange was also higher. Factors that increase HZ exchange are thus likely to promote in-stream reactivity of TrOCs.
Collapse
Affiliation(s)
- Jonas L Schaper
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries , Department Ecohydrology , Müggelseedamm 310 , 12587 Berlin , Germany
- Technical University of Berlin , Chair of Water Quality Engineering , Strasse des 17. Juni 135 , 10623 Berlin , Germany
| | - Malte Posselt
- Department of Environmental Science and Analytical Chemistry (ACES) , Stockholm University , Stockholm 114 18 , Sweden
| | - James L McCallum
- National Centre for Groundwater Research and Training, College of Science and Engineering , Flinders University , GPO Box 2100, Adelaide 5001 , South Australia , Australia
| | - Eddie W Banks
- National Centre for Groundwater Research and Training, College of Science and Engineering , Flinders University , GPO Box 2100, Adelaide 5001 , South Australia , Australia
| | - Anja Hoehne
- Technical University of Berlin , Chair of Water Quality Engineering , Strasse des 17. Juni 135 , 10623 Berlin , Germany
| | - Karin Meinikmann
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries , Department Ecohydrology , Müggelseedamm 310 , 12587 Berlin , Germany
| | - Margaret A Shanafield
- National Centre for Groundwater Research and Training, College of Science and Engineering , Flinders University , GPO Box 2100, Adelaide 5001 , South Australia , Australia
| | - Okke Batelaan
- National Centre for Groundwater Research and Training, College of Science and Engineering , Flinders University , GPO Box 2100, Adelaide 5001 , South Australia , Australia
| | - Joerg Lewandowski
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries , Department Ecohydrology , Müggelseedamm 310 , 12587 Berlin , Germany
- Humboldt University Berlin , Geography Department , Rudower Chaussee 16 , 12489 Berlin , Germany
| |
Collapse
|