1
|
Samal M, Srivastava V, Khan M, Insaf A, Penumallu NR, Alam A, Parveen B, Ansari SH, Ahmad S. Therapeutic Potential of Polyphenols in Cellular Reversal of Patho-Mechanisms of Alzheimer's Disease Using In Vitro and In Vivo Models: A Comprehensive Review. Phytother Res 2025; 39:25-50. [PMID: 39496498 DOI: 10.1002/ptr.8344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/28/2024] [Accepted: 08/31/2024] [Indexed: 11/06/2024]
Abstract
Alzheimer's disease (AD) is considered one of the most common neurological conditions associated with memory and cognitive impairment and mainly affects people aged 65 or above. Even with tremendous progress in modern neuroscience, a permanent remedy or cure for this crippling disease is still unattainable. Polyphenols are a group of naturally occurring potent compounds that can modulate the neurodegenerative processes typical of AD. The present comprehensive study has been conducted to find out the preclinical and clinical potential of polyphenols and elucidate their possible mechanisms in managing AD. Additionally, we have reviewed different clinical studies investigating polyphenols as single compounds or cotherapies, including those currently recruiting, completed, terminated, withdrawn, or suspended in AD treatment. Natural polyphenols were systematically screened and identified through electronic databases including Google Scholar, PubMed, and Scopus based on in vitro cell line studies and preclinical data demonstrating their potential for neuroprotection. A total of 63 significant polyphenols were identified. A multimechanistic pathway for polyphenol's mode of action has been proposed in the study. Out of 63, four potent polyphenols have been identified as promising potential candidates, based on their reported clinical efficacy. Polyphenols hold tremendous scope for the development of a future drug molecule as a phytopharmaceutical that may be incorporated as an adjuvant to the therapeutic regime. However, more high-quality studies with novel delivery methods and combinatorial approaches are required to overcome obstacles such as bioavailability and blood-brain barrier crossing to underscore the therapeutic potential of these compounds in AD management.
Collapse
Affiliation(s)
- Monalisha Samal
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Varsha Srivastava
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Muzayyana Khan
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Areeba Insaf
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Naveen Reddy Penumallu
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Aftab Alam
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Bushra Parveen
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shahid Hussain Ansari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sayeed Ahmad
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
2
|
Liang R, Song F, Liang Y, Fang Y, Wang J, Chen Y, Chen Z, Tan X, Dong J. A novel method for exploration and prediction of the bioactive target of rice bran-derived peptide (KF-8) by integrating computational methods and experiments. Food Funct 2024; 15:11875-11887. [PMID: 39529597 DOI: 10.1039/d4fo02493a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The investigation into the bioactive peptide's activity and target action poses a significant challenge in the field of food. An active peptide prepared from rice bran, KF-8, was confirmed to possess antioxidant activity in our previous study, but the specific target was unclear. This study used eight target prediction tools based on artificial intelligence and chemoinformatics to preliminarily screen potential antioxidant targets by integrating different computational methods. Then five different types of docking software were comparatively analyzed to further clarify their interaction sites and possible modes of action. The results showed that SIRT1 and CXCR4 are potential antioxidant targets of KF-8. Different docking software suggested that KF-8 interacts with SIRT1 and CXCR4 as major residues. Meanwhile, the results of Immunofluorescence co-localization experiments showed that the co-localization coefficients of KF-8 with SIRT1 and CXCR4 reached 0.5879 and 0.5684. This study provides new alternative means for the discovery of active peptide targets.
Collapse
Affiliation(s)
- Rui Liang
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China.
| | - Fangliang Song
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China.
| | - Ying Liang
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China.
| | - Yanpeng Fang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China
| | - Jianqiang Wang
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China.
| | - Yajuan Chen
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China.
| | - Zhongxu Chen
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China.
| | - Xiaorong Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China
| | - Jie Dong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China
| |
Collapse
|
3
|
Chauhan P, Wadhwa K, Mishra R, Gupta S, Ahmad F, Kamal M, Iqbal D, Alsaweed M, Nuli MV, Abomughaid MM, Almutary AG, Mishra PC, Jha SK, Ojha S, Nelson VK, Dargar A, Singh G, Jha NK. Investigating the Potential Therapeutic Mechanisms of Puerarin in Neurological Diseases. Mol Neurobiol 2024; 61:10747-10769. [PMID: 38780722 DOI: 10.1007/s12035-024-04222-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/18/2024] [Indexed: 05/25/2024]
Abstract
Plants and their derived phytochemicals have a long history of treating a wide range of illnesses for several decades. They are believed to be the origin of a diverse array of medicinal compounds. One of the compounds found in kudzu root is puerarin, a isoflavone glycoside commonly used as an alternative medicine to treat various diseases. From a biological perspective, puerarin can be described as a white needle crystal with the chemical name of 7-hydroxy-3-(4-hydroxyphenyl)-1-benzopyran-4-one-8-D-glucopyranoside. Besides, puerarin is sparingly soluble in water and produces no color or light yellow solution. Multiple experimental and clinical studies have confirmed the significant therapeutic effects of puerarin. These effects span a wide range of pharmacological effects, including neuroprotection, hepatoprotection, cardioprotection, immunomodulation, anticancer properties, anti-diabetic properties, anti-osteoporosis properties, and more. Puerarin achieves these effects by interacting with various cellular and molecular pathways, such as MAPK, AMPK, NF-κB, mTOR, β-catenin, and PKB/Akt, as well as different receptors, enzymes, and growth factors. The current review highlights the molecular mechanism of puerarin as a neuroprotective agent in the treatment of various neurodegenerative and neurological diseases. Extensive cellular, animal, and clinical research has provided valuable insights into its effectiveness in conditions such as Alzheimer's disease, Parkinson's disease, epilepsy, cerebral stroke, depression, and more.
Collapse
Affiliation(s)
- Payal Chauhan
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Karan Wadhwa
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Richa Mishra
- Department of Computer Engineering, Faculty of Engineering and Technology, Parul University, Gujrat, Vadodara, 391760, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh, 13713, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah, 51418, Saudi Arabia
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, 11952, Saudi Arabia
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box 59911, United Arab Emirates
| | - Prabhu Chandra Mishra
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, Delhi, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 15551, United Arab Emirates
| | - Vinod Kumar Nelson
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India.
| | - Abha Dargar
- Kalasalingam Academy of Research and Education, Anand Nagar, Krishnankoil, Virudhunagar, Tamilnadu, India
| | - Govind Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India.
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India.
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India.
| |
Collapse
|
4
|
Sun Z, Zhang X, Li M, Yang Q, Xiao X, Chen X, Liang W. Targeting ferroptosis in treating traumatic brain injury: Harnessing the power of traditional Chinese medicine. Biomed Pharmacother 2024; 180:117555. [PMID: 39413616 DOI: 10.1016/j.biopha.2024.117555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/20/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
Traumatic brain injury (TBI) exhibits high prevalence and mortality, but current treatments remain suboptimal. Traditional Chinese medicine (TCM) has long been effectively used for TBI intervention. Moreover, the recently discovered iron-dependent cell death pathway, known as ferroptosis, characterized by lipid peroxidation, as a key target in TCM-based treatments for TBI. This review provides a comprehensive overview of the latest advancements in TCM strategies targeting ferroptosis in TBI therapy, covering natural product monomers, classic formulas, and acupuncture/moxibustion. The review also addresses current challenges and outlines future research directions to further advance the development and application of TBI management strategies.
Collapse
Affiliation(s)
- Zhongjie Sun
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiao Zhang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, China
| | - Manrui Li
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Qiuyun Yang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiao Xiao
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University and the Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China.
| | - Xiameng Chen
- Department of Forensic Pathology and Forensic Clinical Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Zhao M, Hu M, Han R, Ye C, Li X, Wang T, Liu Y, Xue Z, Liu K. Dynamics design of a non-natural transcription factor responding to androst-4-ene-3,17-dione. Synth Syst Biotechnol 2024; 9:436-444. [PMID: 38616975 PMCID: PMC11015099 DOI: 10.1016/j.synbio.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/03/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024] Open
Abstract
The production of androst-4-ene-3,17-dione (AD) by the steroidal microbial cell factory requires transcription factors (TFs) to participate in metabolic regulation. However, microbial cell factory lacks effective TFs that can respond to AD in its metabolic pathway. Additionally, finding and obtaining natural TFs that specifically respond to AD is a complex and onerous task. In this study, we devised an artificial TF that responds to AD, termed AdT, based on structure-guided molecular dynamics (MD) simulation. According to MD analysis of the conformational changes of AdT after binding to AD, an LBD in which the N- and C-termini exhibited convergence tendencies was used as a microswitch to guide the assembly of a DNA-binding domain lexA, a linker (GGGGS)2, and a transcription activation domain B42 into an artificial TF. As a proof of design, a AD biosensor was designed and constructed in yeast on the basis of the ligand-binding domain (LBD) of hormone receptor. In addition, the transcription factor activity of AdT was increased by 1.44-fold for its variant F320Y. Overall, we created non-natural TF elements for AD microbial cell factory, and expected that the design TF strategy will be applied to running in parallel to the signaling machinery of the host cell.
Collapse
Affiliation(s)
| | | | - Rumeng Han
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Chao Ye
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Xiangfei Li
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Tianwen Wang
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Yan Liu
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Zhenglian Xue
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Kun Liu
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| |
Collapse
|
6
|
Hai Y, Ren K, Hou WQ, Cao HS, Zhang YR, Li ZM, Wang SQ, Yang W, Liu DL. Hypoglycemic TCM formulas (Huangqi-Gegen drug pair) have the potential as an Alzheimer's disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155723. [PMID: 38815405 DOI: 10.1016/j.phymed.2024.155723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/28/2023] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurological disorder. There is a considerable unmet medical need among those suffering from it. HYPOTHESIS AND PURPOSE Given the link between type-2 diabetes mellitus (T2DM) and AD, hypoglycemic traditional Chinese medicine formulas (TCMFs) may be a treatment for AD. We investigated the possibility of identifying anti-AD medicines in hypoglycemic TCMFs and presented another option for the screening of AD medications. STUDY DESIGN AND METHODS Paralysis of the transgenic Caenorhabditis elegans (C. elegans) strain CL4176 (caused by amyloid beta (Aβ)1-42 aggregates) was used to evaluate the anti-AD effect. The toxicity and neurodegeneration induced by neuronal expression of Aβ in the transgenic C. elegans strain CL2355 were determined using a 5-hydroxytryptamine (5-HT) assay. The transgenic Aβ-expressing strain CL 2006 and transgenic tau-expressing strain BR5270 were used to explore the effect of TCMFs on protein expression in C. elegans using ELISAs. Then, network pharmacology was used to determine the mechanism of action. The Traditional Chinese Medicine Inheritance Support System platform was used to investigate prescription patterns, core drugs, and optimum combinations of hypoglycemic TCMFs for AD. RESULTS Sixteen hypoglycemic TCMFs prolonged the PT50 (half paralysis time) of the CL4176 strain of C. elegans, reduced the percentage of worms paralyzed. The results of network pharmacology showed that prostaglandin-endoperoxide synthase 2 (PTGS2) and acetylcholine esterase (AChE) are main targets of hypoglycemic TCMFs. Enriched pathway analysis showed that the cholinergic receptor-related pathway was the core pathway of hypoglycemic TCMFs. According to the "four qi and five flavors" system of TCM theory, the main pharmacological qualities were "cold" and "sweet." Through the analysis by TCMISS, we found that Huangqi-Gegen drug pair as the significant Chinese herbs of hypoglycemic TCMFs. The Huangqi-Gegen pairing had the most robust therapeutic effect when delivered at a 2:1 (v/v) ratio. It reduced the paralysis caused by 5-HT, decreased protein expression of AChE and PTGS2, and reduced Aβ deposition in the brain of the CL2006 strain of C. elegans. CONCLUSIONS Huangqi-Gegen is a promising treatment of AD, and its mechanism may be induced by suppressing the protein production of AChE and PTGS2, reducing 5-HT intake, and then decreasing Aβ deposition.
Collapse
Affiliation(s)
- Yang Hai
- Scientific Research and Experimental Center, Gansu University of Chinese Medicine, Gansu Province, Lanzhou 730000, PR China; Key Laboratory of Dunhuang Medicine, Gansu University of Chinese Medicine, Gansu Province, Lanzhou 730000, PR China.
| | - Ke Ren
- School of Pharmacy, Gansu University of Chinese Medicine, Gansu Province, Lanzhou 730000, PR China
| | - Wen-Qian Hou
- School of Pharmacy, Gansu University of Chinese Medicine, Gansu Province, Lanzhou 730000, PR China
| | - Hao-Shi Cao
- School of Pharmacy, Gansu University of Chinese Medicine, Gansu Province, Lanzhou 730000, PR China
| | - Ya-Rong Zhang
- School of Pharmacy, Gansu University of Chinese Medicine, Gansu Province, Lanzhou 730000, PR China
| | - Zi-Mu Li
- School of Pharmacy, Gansu University of Chinese Medicine, Gansu Province, Lanzhou 730000, PR China
| | - Si-Qi Wang
- School of Pharmacy, Gansu University of Chinese Medicine, Gansu Province, Lanzhou 730000, PR China
| | - Wen Yang
- School of Pharmacy, Gansu University of Chinese Medicine, Gansu Province, Lanzhou 730000, PR China
| | - Dong-Ling Liu
- School of Pharmacy, Gansu University of Chinese Medicine, Gansu Province, Lanzhou 730000, PR China; Gansu Pharmaceutical Industry Innovation Research Institute, Gansu Province, Lanzhou 730000, PR China.
| |
Collapse
|
7
|
Xu SQ, Du YN, Zhang ZJ, Yan JN, Sun JJ, Zhang LC, Wang C, Lai B, Wu HT. Gel properties and interactions of hydrogels constructed with low acyl gellan gum and puerarin. Carbohydr Polym 2024; 326:121594. [PMID: 38142069 DOI: 10.1016/j.carbpol.2023.121594] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 12/25/2023]
Abstract
To develop composite hydrogels based on low acyl gellan gum (GG), the effect of puerarin (PUE) on the gel properties of GG was investigated. The results showed that the maximum storage modulus (G') of the 1.2 % GG/0.8 % PUE composite hydrogel was 377.4 Pa at 0.1 Hz, which was enhanced by 4.7-fold compared with that of 1.2 % GG. The melting temperature of this composite hydrogel increased from 74.1 °C to >80.0 °C. LF-NMR results showed that a significant amount of free water was present in the hydrogel matrix. The surface structure aggregation and the shrinkage of the honeycomb meshes in the composite hydrogel proved the cross-linking of PUE and GG. XRD, FTIR and molecular simulation results illustrated that hydrogen bonds were the most important factor controlling the interaction between GG and PUE. Thus, the GG/PUE composite hydrogel has good elasticity, thermal stability and water retention, which lays a good foundation for further application in the food industry.
Collapse
Affiliation(s)
- Shi-Qi Xu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yi-Nan Du
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Zhu-Jun Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jia-Nan Yan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jin-Jian Sun
- Dalian Center for Food and Drug Control and Certification, Dalian 116037, China
| | - Li-Chao Zhang
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Ce Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Bin Lai
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hai-Tao Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
8
|
Deng W, Zhang W, He Q. Study on the mechanism of puerarin against osteoarthritis from ferroptosis based on network pharmacology and bioinformatics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:959-968. [PMID: 37548663 PMCID: PMC10791713 DOI: 10.1007/s00210-023-02653-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023]
Abstract
Network pharmacology and bioinformatics were used to study puerarin's molecular mechanism in treating osteoarthritis from the perspective of ferroptosis, revealing a new treatment target. Ferroptosis-related targets were obtained from FerrDb. Puerarin action targets were retrieved from TCMSP, Pharmmappe, SwissTargetPrediction, and Targetnet databases, and supplemented with PubMed. The gene expression profiles of GSE12021, GSE55235, and GSE82107 were obtained using "Osteoarthritis" as the search term in the GEO database, and the differential expression gene screening analysis was performed for osteoarthritis. The intersection targets between puerarin, iron death, and osteoarthritis were obtained using Venn diagrams. GO and KEGG analyses were conducted with R software. Molecular docking and visualization of puerarin and core targets were performed using Autodock Vina and PyMol software. The effects of puerarin on the cell viability and the TNFα, IL6, and Ilβ levels of human inflammation articular chondrocytes were tested in vitro experiments. Puerarin, ferroptosis, and osteoarthritis share four targets: PLIN2, PTGS2, VEGFA, and IL6. GO enrichment analysis showed that puerarin maintained the blood-brain barrier, regulated peptide serine phosphorylation, and had anti-inflammatory effects. KEGG analysis showed that puerarin's anti-inflammatory effects were mainly through VEGF, IL-17, C-type lectin receptor, HIF-1, TNF, and other signaling pathways. Puerarin closely bound PLIN2, PTGS2, VEGFA, and IL6 targets in molecular docking. In vitro, puerarin prevented osteoarthritis. Network pharmacology and bioinformatics explained puerarin's multi-target and multi-pathway treatment of OA, which may be related to ferroptosis, and confirmed its anti-inflammatory effect.
Collapse
Affiliation(s)
- Wenxiang Deng
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Wenan Zhang
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Qinghu He
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
- Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, 418000, Hunan, China.
| |
Collapse
|
9
|
Wang D, Yan B, Wang A, Sun Q, Pang J, Cui Y, Tian G. Tu-Xian Decoction ameliorates diabetic cognitive impairment by inhibiting DAPK-1. Chin J Nat Med 2023; 21:950-960. [PMID: 38143108 DOI: 10.1016/s1875-5364(23)60428-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Indexed: 12/26/2023]
Abstract
Tu-Xian decoction (TXD), a traditional Chinese medicine (TCM) formula, has been frequently administered to manage diabetic cognitive impairment (DCI). Despite its widespread use, the mechanisms underlying TXD's protective effects on DCI have yet to be fully elucidated. As a significant regulator in neurodegenerative conditions, death-associated protein kinase-1 (DAPK-1) serves as a focus for understanding the action of TXD. This study was designed to whether TXD mediates its beneficial outcomes by inhibiting DAPK-1. To this end, a diabetic model was established using Sprague-Dawley (SD) rats through a high-fat, high-sugar (HFHS) diet regimen, followed by streptozotocin (STZ) injection. The experimental cohort was stratified into six groups: Control, Diabetic, TC-DAPK6, high-dose TXD, medium-dose TXD, and low-dose TXD groups. Following a 12-week treatment period, various assessments-including blood glucose levels, body weight measurements, Morris water maze (MWM) testing for cognitive function, brain magnetic resonance imaging (MRI), and histological analyses using hematoxylin-eosin (H&E), and Nissl staining-were conducted. Protein expression in the hippocampus was quantified through Western blotting analysis. The results revealed that TXD significantly improved spatial learning and memory abilities, and preserved hippocampal structure in diabetic rats. Importantly, TXD administration led to a down-regulation of proteins indicative of neurological damage and suppressed DAPK-1 activity within the hippocampal region. These results underscore TXD's potential in mitigating DCIvia DAPK-1 inhibition, positioning it as a viable therapeutic candidate for addressing this condition. Further investigation into TXD's molecular mechanisms may elucidate new pathways for the treatment of DCI.
Collapse
Affiliation(s)
- Danyang Wang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Beijing 100730, China; Chinese Academy of Mediucal Sciences & Peking Union Medical College, Beijing 100730, China
| | - Bin Yan
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Beijing 100730, China
| | - An Wang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Beijing 100730, China; Chinese Academy of Mediucal Sciences & Peking Union Medical College, Beijing 100730, China
| | - Qing Sun
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Beijing 100730, China
| | - Junyi Pang
- Department of Pathology, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Beijing 100730, China
| | - Yangming Cui
- Animal Research Laboratory Platform, Peking Union Medical College Hospital, the National Science and Technology Key Infrastructure on Translational Medicine, Beijing 100730, China
| | - Guoqing Tian
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Beijing 100730, China.
| |
Collapse
|
10
|
Wang L, Wang T, Wen S, Song R, Zou H, Gu J, Liu X, Bian J, Liu Z, Yuan Y. Puerarin Prevents Cadmium-Induced Neuronal Injury by Alleviating Autophagic Dysfunction in Rat Cerebral Cortical Neurons. Int J Mol Sci 2023; 24:ijms24098328. [PMID: 37176033 PMCID: PMC10179714 DOI: 10.3390/ijms24098328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/23/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Autophagic dysfunction is one of the main mechanisms of cadmium (Cd)-induced neurotoxicity. Puerarin (Pue) is a natural antioxidant extracted from the medicinal and edible homologous plant Pueraria lobata. Studies have shown that Pue has neuroprotective effects in a variety of brain injuries, including Cd-induced neuronal injury. However, the role of Pue in the regulation of autophagy to alleviate Cd-induced injury in rat cerebral cortical neurons remains unclear. This study aimed to elucidate the protective mechanism of Pue in alleviating Cd-induced injury in rat cerebral cortical neurons by targeting autophagy. Our results showed that Pue alleviated Cd-induced injury in rat cerebral cortical neurons in vitro and in vivo. Pue activates autophagy and alleviates Cd-induced autophagic blockade in rat cerebral cortical neurons. Further studies have shown that Pue alleviates the Cd-induced inhibition of autophagosome-lysosome fusion, as well as the inhibition of lysosomal degradation. The specific mechanism is related to Pue alleviating the inhibition of Cd on the expression levels of the key proteins Rab7, VPS41, and SNAP29, which regulate autophagosome-lysosome fusion, as well as the lysosome-related proteins LAMP2, CTSB, and CTSD. In summary, these results indicate that Pue alleviates Cd-induced autophagic dysfunction in rat cerebral cortical neurons by alleviating autophagosome-lysosome fusion dysfunction and lysosomal degradation dysfunction, thereby alleviating Cd-induced neuronal injury.
Collapse
Affiliation(s)
- Li Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Tao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Shuangquan Wen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
11
|
Tian S, Zhang J, Yuan S, Wang Q, Lv C, Wang J, Fang J, Fu L, Yang J, Zu X, Zhao J, Zhang W. Exploring pharmacological active ingredients of traditional Chinese medicine by pharmacotranscriptomic map in ITCM. Brief Bioinform 2023; 24:7017365. [PMID: 36719094 DOI: 10.1093/bib/bbad027] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/18/2022] [Accepted: 01/10/2023] [Indexed: 02/01/2023] Open
Abstract
With the emergence of high-throughput technologies, computational screening based on gene expression profiles has become one of the most effective methods for drug discovery. More importantly, profile-based approaches remarkably enhance novel drug-disease pair discovery without relying on drug- or disease-specific prior knowledge, which has been widely used in modern medicine. However, profile-based systematic screening of active ingredients of traditional Chinese medicine (TCM) has been scarcely performed due to inadequate pharmacotranscriptomic data. Here, we develop the largest-to-date online TCM active ingredients-based pharmacotranscriptomic platform integrated traditional Chinese medicine (ITCM) for the effective screening of active ingredients. First, we performed unified high-throughput experiments and constructed the largest data repository of 496 representative active ingredients, which was five times larger than the previous one built by our team. The transcriptome-based multi-scale analysis was also performed to elucidate their mechanism. Then, we developed six state-of-art signature search methods to screen active ingredients and determine the optimal signature size for all methods. Moreover, we integrated them into a screening strategy, TCM-Query, to identify the potential active ingredients for the special disease. In addition, we also comprehensively collected the TCM-related resource by literature mining. Finally, we applied ITCM to an active ingredient bavachinin, and two diseases, including prostate cancer and COVID-19, to demonstrate the power of drug discovery. ITCM was aimed to comprehensively explore the active ingredients of TCM and boost studies of pharmacological action and drug discovery. ITCM is available at http://itcm.biotcm.net.
Collapse
Affiliation(s)
- Saisai Tian
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Jinbo Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
- Department of Pharmacy, Tianjin Rehabilitation Center of Joint Logistics Support Force, Tianjin, 300110, China
| | - Shunling Yuan
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Qun Wang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosafety, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao Lv
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosafety, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinxing Wang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu Fu
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Jian Yang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Xianpeng Zu
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Jing Zhao
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosafety, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weidong Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosafety, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
12
|
Pharmacological Modulations of Nrf2 and Therapeutic Implications in Aneurysmal Subarachnoid Hemorrhage. Molecules 2023; 28:molecules28041747. [PMID: 36838735 PMCID: PMC9963186 DOI: 10.3390/molecules28041747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
An aneurysmal subarachnoid hemorrhage (aSAH) is a subtype of stroke with high morbidity and mortality. The main causes of a poor prognosis include early brain injury (EBI) and delayed vasospasm, both of which play a significant role in the pathophysiological process. As an important mechanism of EBI and delayed vasospasm, oxidative stress plays an important role in the pathogenesis of aSAH by producing reactive oxygen species (ROS) through the mitochondria, hemoglobin, or enzymatic pathways in the early stages of aSAH. As a result, antioxidant therapy, which primarily targets the Nrf2-related pathway, can be employed as a potential strategy for treating aSAH. In the early stages of aSAH development, increasing the expression of antioxidant enzymes and detoxifying enzymes can relieve oxidative stress, reduce brain damage, and improve prognosis. Herein, the regulatory mechanisms of Nrf2 and related pharmacological compounds are reviewed, and Nrf2-targeted drugs are proposed as potential treatments for aSAH.
Collapse
|
13
|
Punmiya A, Prabhu A. Structural fingerprinting of pleiotropic flavonoids for multifaceted Alzheimer's disease. Neurochem Int 2023; 163:105486. [PMID: 36641110 DOI: 10.1016/j.neuint.2023.105486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/13/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
Alzheimer's disease has emerged as one of the most challenging neurodegenerative diseases associated with dementia, loss of cognitive functioning and memory impairment. Despite enormous efforts to identify disease modifying technologies, the repertoire of currently approved drugs consists of a few symptomatic candidates that are not capable of halting disease progression. Moreover, these single mechanism drugs target only a small part of the pathological cascade and do not address most of the etiological basis of the disease. Development of therapies that are able to simultaneously tackle all the multiple interlinked causative factors such as amyloid protein aggregation, tau hyperphosphorylation, cholinergic deficit, oxidative stress, metal dyshomeostasis and neuro-inflammation has become the focus of intensive research in this domain. Flavonoids are natural phytochemicals that have demonstrated immense potential as medicinal agents due to their multiple beneficial therapeutic effects. The polypharmacological profile of flavonoids aligns well with the multifactorial pathological landscape of Alzheimer's disease, making them promising candidates to overcome the challenges of this neurodegenerative disorder. This review presents a detailed overview of the pleiotropic biology of flavonoids favourable for Alzheimer therapeutics and the structural basis for these effects. Structure activity trends for several flavonoid classes such as flavones, flavonols, flavanones, isoflavones, flavanols and anthocyanins are comprehensively analyzed in detail and presented.
Collapse
Affiliation(s)
- Amisha Punmiya
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Arati Prabhu
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India.
| |
Collapse
|
14
|
Shen ZJ, Fu YB, Hou JL, Lin LN, Wang XY, Li CY, Yang YX. Integrating network pharmacology, UPLC-Q-TOF-MS and molecular docking to investigate the effect and mechanism of Chuanxiong Renshen decoction against Alzheimer's disease. Chin Med 2022; 17:143. [PMID: 36566207 PMCID: PMC9789652 DOI: 10.1186/s13020-022-00698-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/08/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND AIM Chuanxiong Renshen decoction (CRD) is a traditional Chinese medicine compound used to treat Alzheimer's disease (AD). However, the effects and active ingredients of CRD and its mechanism have not been clarified. We aimed to determine the neuroprotective effects of CRD in a triple-transgenic mouse model of AD (3 × Tg-AD) and investigate the possible active ingredients and their mechanisms. METHODS Morris water maze (MWM) tests were used to determine the protective effect of CRD on learning and memory ability. Afterward, we used brain tissue staining, immunofluorescent staining and western blotting to detect the neuroprotective effects of CRD. Ultraperformance liquid-chromatography-quadrupole-time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS) was applied to determine the ingredients of CRD, and the potential AD targets were obtained from DisGeNET and the GeneCards database. The protein‒protein interaction (PPI) network was built with the additional use of STRING 11.0. Metascape was used in the pathway enrichment analysis. Discovery Studio 2016 (DS) software was used to analyze the binding ability of CRD and AD-related genes. Finally, we verified the regulatory effect of CRD on the predicted core targets EGFR and CASP3 by western blotting. RESULTS Our study indicated that CRD can significantly improve learning and memory, reduce the expression of Aβ and protect neurons. A total of 95 ingredients were identified in the CRD. Then, 25 ingredients were identified in serum, and 5 ingredients were identified in the brain tissue homogenate. PPI network analysis identified CASP3, EGFR, APP, CNR1, HIF1A, PTGS2 and MTOR as hub targets. KEGG and GO analyses revealed that the TNF signaling pathway and MAPK signaling pathway were enriched in multiple targets. The results of molecular docking proved that the binding of the ingredients with potential key targets was excellent. The western blotting results showed that CRD could significantly reduce the expression of CASP3 and EGFR in the hippocampus of 3 × Tg-AD mice. Combined with literature analysis, we assumed the neuroprotective effect of CRD on AD may occur through regulation of the MAPK signaling pathway. CONCLUSION CRD significantly alleviated injury in 3 × Tg-AD mice. The possible active ingredients are ferulic acid, rutin, ginsenoside Rg1 and panaxydol. The therapeutic effect of CRD on AD is achieved through the downregulation of CASP3 and EGFR. The neuroprotective effect of CRD on AD may occur through regulation of the MAPK signaling pathway.
Collapse
Affiliation(s)
- Zhuo Jun Shen
- grid.506977.a0000 0004 1757 7957School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Yun Bo Fu
- grid.268505.c0000 0000 8744 8924Department of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jin Ling Hou
- grid.506977.a0000 0004 1757 7957School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Lu Ning Lin
- grid.268505.c0000 0000 8744 8924Department of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiao Yan Wang
- grid.506977.a0000 0004 1757 7957School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Chang Yu Li
- grid.268505.c0000 0000 8744 8924Department of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuan Xiao Yang
- grid.506977.a0000 0004 1757 7957School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
15
|
Xiao R, Liang R, Cai YH, Dong J, Zhang L. Computational screening for new neuroprotective ingredients against Alzheimer's disease from bilberry by cheminformatics approaches. Front Nutr 2022; 9:1061552. [PMID: 36570129 PMCID: PMC9780678 DOI: 10.3389/fnut.2022.1061552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Bioactive ingredients from natural products have always been an important resource for the discovery of drugs for Alzheimer's disease (AD). Senile plaques, which are formed with amyloid-beta (Aβ) peptides and excess metal ions, are found in AD brains and have been suggested to play an important role in AD pathogenesis. Here, we attempted to design an effective and smart screening method based on cheminformatics approaches to find new ingredients against AD from Vaccinium myrtillus (bilberry) and verified the bioactivity of expected ingredients through experiments. This method integrated advanced artificial intelligence models and target prediction methods to realize the stepwise analysis and filtering of all ingredients. Finally, we obtained the expected new compound malvidin-3-O-galactoside (Ma-3-gal-Cl). The in vitro experiments showed that Ma-3-gal-Cl could reduce the OH· generation and intracellular ROS from the Aβ/Cu2+/AA mixture and maintain the mitochondrial membrane potential of SH-SY5Y cells. Molecular docking and Western blot results indicated that Ma-3-gal-Cl could reduce the amount of activated caspase-3 via binding with unactivated caspase-3 and reduce the expression of phosphorylated p38 via binding with mitogen-activated protein kinase kinases-6 (MKK6). Moreover, Ma-3-gal-Cl could inhibit the Aβ aggregation via binding with Aβ monomer and fibers. Thus, Ma-3-gal-Cl showed significant effects on protecting SH-SY5Y cells from Aβ/Cu2+/AA induced damage via antioxidation effect and inhibition effect to the Aβ aggregation.
Collapse
Affiliation(s)
- Ran Xiao
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, School of Food Science and Engineering, National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, China,Sinocare Inc., Changsha, China
| | - Rui Liang
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, School of Food Science and Engineering, National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, China
| | - Yun-hui Cai
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, School of Food Science and Engineering, National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, China
| | - Jie Dong
- Xiangya School of Pharmaceutical Science, Central South University, Changsha, China
| | - Lin Zhang
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, School of Food Science and Engineering, National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, China,*Correspondence: Lin Zhang
| |
Collapse
|
16
|
Wang D, Bu T, Li Y, He Y, Yang F, Zou L. Pharmacological Activity, Pharmacokinetics, and Clinical Research Progress of Puerarin. Antioxidants (Basel) 2022; 11:2121. [PMID: 36358493 PMCID: PMC9686758 DOI: 10.3390/antiox11112121] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 09/01/2023] Open
Abstract
As a kind of medicine and food homologous plant, kudzu root (Pueraria lobata (Willd.) Ohwi) is called an "official medicine" in Chinese folk medicine. Puerarin is the main active component extracted from kudzu root, and its structural formula is 8-β-D-grapes pyranose-4, 7-dihydroxy isoflavone, with a white needle crystal; it is slightly soluble in water, and its aqueous solution is colorless or light yellow. Puerarin is a natural antioxidant with high health value and has a series of biological activities such as antioxidation, anti-inflammation, anti-tumor effects, immunity improvement, and cardio-cerebrovascular and nerve cell protection. In particular, for the past few years, it has also been extensively used in clinical study. This review focuses on the antioxidant activity of puerarin, the therapy of diverse types of inflammatory diseases, various new drug delivery systems of puerarin, the "structure-activity relationship" of puerarin and its derivatives, and pharmacokinetic and clinical studies, which can provide a new perspective for the puerarin-related drug research and development, clinical application, and further development and utilization.
Collapse
Affiliation(s)
- Di Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tong Bu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yangqian Li
- Asset and Laboratory Management Department, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yueyue He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fan Yang
- Academic Affairs Office, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| |
Collapse
|
17
|
Wang Q, Shen ZN, Zhang SJ, Sun Y, Zheng FJ, Li YH. Protective effects and mechanism of puerarin targeting PI3K/Akt signal pathway on neurological diseases. Front Pharmacol 2022; 13:1022053. [PMID: 36353499 PMCID: PMC9637631 DOI: 10.3389/fphar.2022.1022053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/10/2022] [Indexed: 07/22/2023] Open
Abstract
Neurological diseases impose a tremendous and increasing burden on global health, and there is currently no curative agent. Puerarin, a natural isoflavone extracted from the dried root of Pueraria montana var. Lobata (Willd.) Sanjappa and Predeep, is an active ingredient with anti-inflammatory, antioxidant, anti-apoptotic, and autophagy-regulating effects. It has great potential in the treatment of neurological and other diseases. Phosphatidylinositol 3-kinases/protein kinase B (PI3K/Akt) signal pathway is a crucial signal transduction mechanism that regulates biological processes such as cell regeneration, apoptosis, and cognitive memory in the central nervous system, and is closely related to the pathogenesis of nervous system diseases. Accumulating evidence suggests that the excellent neuroprotective effect of puerarin may be related to the regulation of the PI3K/Akt signal pathway. Here, we summarized the main biological functions and neuroprotective effects of puerarin via activating PI3K/Akt signal pathway in neurological diseases. This paper illustrates that puerarin, as a neuroprotective agent, can protect nerve cells and delay the progression of neurological diseases through the PI3K/Akt signal pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Yu-Hang Li
- *Correspondence: Feng-Jie Zheng, ; Yu-Hang Li,
| |
Collapse
|
18
|
Zheng Y, Li R, Fan X. Targeting Oxidative Stress in Intracerebral Hemorrhage: Prospects of the Natural Products Approach. Antioxidants (Basel) 2022; 11:1811. [PMID: 36139885 PMCID: PMC9495708 DOI: 10.3390/antiox11091811] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Intracerebral hemorrhage (ICH), the second most common subtype of stroke, remains a significant cause of morbidity and mortality worldwide. The pathological mechanism of ICH is very complex, and it has been demonstrated that oxidative stress (OS) plays an important role in the pathogenesis of ICH. Previous studies have shown that OS is a therapeutic target after ICH, and antioxidants have also achieved some benefits in the treatment of ICH. This review aimed to explore the promise of natural products therapy to target OS in ICH. We searched PubMed using the keywords "oxidative stress in intracerebral hemorrhage" and "natural products in intracerebral hemorrhage". Numerous animal and cell studies on ICH have demonstrated the potent antioxidant properties of natural products, including polyphenols and phenolic compounds, terpenoids, alkaloids, etc. In summary, natural products such as antioxidants offer the possibility of treatment of OS after ICH. However, researchers still have a long way to go to apply these natural products for the treatment of ICH more widely in the clinic.
Collapse
Affiliation(s)
| | | | - Xiang Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
19
|
Li J, Sun M, Cui X, Li C. Protective Effects of Flavonoids against Alzheimer's Disease: Pathological Hypothesis, Potential Targets, and Structure-Activity Relationship. Int J Mol Sci 2022; 23:ijms231710020. [PMID: 36077418 PMCID: PMC9456554 DOI: 10.3390/ijms231710020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/20/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease with high morbidity and mortality, for which there is no available cure. Currently, it is generally believed that AD is a disease caused by multiple factors, such as amyloid-beta accumulation, tau protein hyperphosphorylation, oxidative stress, and inflammation. Multitarget prevention and treatment strategies for AD are recommended. Interestingly, naturally occurring dietary flavonoids, a class of polyphenols, have been reported to have multiple biological activities and anti-AD effects in several AD models owing to their antioxidative, anti-inflammatory, and anti-amyloidogenic properties. In this review, we summarize and discuss the existing multiple pathogenic factors of AD. Moreover, we further elaborate on the biological activities of natural flavonoids and their potential mode of action and targets in managing AD by presenting a wide range of experimental evidence. The gathered data indicate that flavonoids can be regarded as prophylactics to slow the advancement of AD or avert its onset. Different flavonoids have different activities and varying levels of activity. Further, this review summarizes the structure–activity relationship of flavonoids based on the existing literature and can provide guidance on the design and selection of flavonoids as anti-AD drugs.
Collapse
Affiliation(s)
- Jiao Li
- School of Life Science, Shanxi University, Taiyuan 030006, China
- Correspondence: (J.L.); (C.L.); Tel.: +86-351-701-9371 (J.L.); Fax: +86-351-701-1499 (J.L. & C.L.)
| | - Min Sun
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Xiaodong Cui
- Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Chen Li
- School of Life Science, Shanxi University, Taiyuan 030006, China
- Correspondence: (J.L.); (C.L.); Tel.: +86-351-701-9371 (J.L.); Fax: +86-351-701-1499 (J.L. & C.L.)
| |
Collapse
|
20
|
Jing GH, Liu YD, Liu JN, Jin YS, Yu SL, An RH. Puerarin prevents calcium oxalate crystal-induced renal epithelial cell autophagy by activating the SIRT1-mediated signaling pathway. Urolithiasis 2022; 50:545-556. [PMID: 35913552 DOI: 10.1007/s00240-022-01347-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
Abstract
Calcium oxalate (CaOx) crystals can activate autophagy, causing damage to renal tubular epithelial cells (TECs). Puerarin has been shown to have protective and therapeutic effects against a variety of diseases by inhibiting autophagy activation. However, the protective effect of puerarin against CaOx crystals and the underlying molecular mechanisms are unclear. Cell Counting Kit-8 (CCK-8) assays were used to evaluate the effects of puerarin on cell viability. Intracellular reactive oxygen species (ROS) levels were measured by the cell-permeable fluorogenic probe 2,7-dichlorofluorescein diacetate (DCFH-DA). Immunofluorescence, immunohistochemistry, and western blotting were used to examine the expression of SIRT1, Beclin1, p62, and LC3, and explore the underlying molecular mechanisms in vivo and in vitro. Puerarin treatment significantly attenuated CaOx crystal-induced autophagy of TECs and CaOx cytotoxicity to TECs by altering SIRT1 expression in vitro and in vivo, whereas the SIRT1-specific inhibitor EX527 exerted contrasting effects. In addition, we found that the protective effect of puerarin was related to the SIRT1/AKT/p38 signaling pathway. The findings suggest that puerarin regulates CaOx crystal-induced autophagy by activating the SIRT1-mediated signaling pathway, and they suggest a series of potential therapeutic targets and strategies for treating nephrolithiasis.
Collapse
Affiliation(s)
- Guan-Hua Jing
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ya-Dong Liu
- Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian-Nan Liu
- Department of Urology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Yin-Shan Jin
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shi-Liang Yu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Rui-Hua An
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
21
|
Zeng J, Zhao N, Yang J, Kuang W, Xia X, Chen X, Liu Z, Huang R. Puerarin Induces Molecular Details of Ferroptosis-Associated Anti-Inflammatory on RAW264.7 Macrophages. Metabolites 2022; 12:metabo12070653. [PMID: 35888777 PMCID: PMC9317776 DOI: 10.3390/metabo12070653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 12/12/2022] Open
Abstract
Puerarin is a natural flavonoid with significant anti-inflammatory effects. Recent studies have suggested that ferroptosis may involve puerarin countering inflammation. However, the mechanism of ferroptosis mediated by the anti-inflammatory process of puerarin has not been widely explored. Herein, puerarin at a concentration of 40 μM showed an anti-inflammatory effect on lipopolysaccharide (LPS)-induced macrophages RAW264.7. The analysis of network pharmacology indicated that 51 common targets were enriched in 136 pathways, and most of the pathways were associated with ferroptosis. Subsequently, the analysis of metabolomics obtained 61 differential metabolites that were enriched in 30 metabolic pathways. Furthermore, integrated network pharmacology and metabolomics revealed that puerarin exerted an excellent effect on anti-inflammatory in RAW264.7 via regulating ferroptosis-related arachidonic acid metabolism, tryptophan metabolism, and glutathione metabolism pathways, and metabolites such as 20-hydroxyeicosatetraenoic acid (20-HETE), serotonin, kynurenine, oxidized glutathione (GSSG), gamma-glutamylcysteine and cysteinylglycine were involved. In addition, the possible active binding sites of the potential targeted proteins such as acyl-CoA synthetase long-chain family member 4 (ACSL4), prostaglandin-endoperoxide synthase 2 (PTGS2), arachidonate 15-lipoxygenase (ALOX15) and glutathione peroxidase 4 (GPX4) with puerarin were further revealed by molecular docking. Thus, we suggested that ferroptosis mediated the anti-inflammatory effects of puerarin in macrophages RAW264.7 induced by LPS.
Collapse
Affiliation(s)
- Jinzi Zeng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (J.Y.); (W.K.); (X.X.); (X.C.); (Z.L.)
| | - Ning Zhao
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou 510006, China;
| | - Jiajia Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (J.Y.); (W.K.); (X.X.); (X.C.); (Z.L.)
| | - Weiyang Kuang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (J.Y.); (W.K.); (X.X.); (X.C.); (Z.L.)
| | - Xuewei Xia
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (J.Y.); (W.K.); (X.X.); (X.C.); (Z.L.)
| | - Xiaodan Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (J.Y.); (W.K.); (X.X.); (X.C.); (Z.L.)
| | - Zhiyuan Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (J.Y.); (W.K.); (X.X.); (X.C.); (Z.L.)
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (J.Y.); (W.K.); (X.X.); (X.C.); (Z.L.)
- Correspondence:
| |
Collapse
|
22
|
Huang Y, Wu H, Hu Y, Zhou C, Wu J, Wu Y, Wang H, Lenahan C, Huang L, Nie S, Gao X, Sun J. Puerarin Attenuates Oxidative Stress and Ferroptosis via AMPK/PGC1α/Nrf2 Pathway after Subarachnoid Hemorrhage in Rats. Antioxidants (Basel) 2022; 11:antiox11071259. [PMID: 35883750 PMCID: PMC9312059 DOI: 10.3390/antiox11071259] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 12/20/2022] Open
Abstract
Puerarin was shown to exert anti-oxidative and anti-ferroptosis effects in multiple diseases. The goal of this study was to explore the neuroprotective effect of puerarin on early brain injury (EBI) after subarachnoid hemorrhage (SAH) in rats. A total of 177 adult male Sprague Dawley rats were used. SAH was included via endovascular perforation. Intranasal puerarin or intracerebroventricular dorsomorphin (AMPK inhibitor) and SR18292 (PGC1α inhibitor) were administered. The protein levels of pAMPK, PGC1α, Nrf2, 4HNE, HO1, MDA, ACSL4, GSSG, and iron concentration in the ipsilateral hemisphere were significantly increased, whereas SOD, GPX4, and GSH were decreased at 24 h after SAH. Moreover, puerarin treatment significantly increased the protein levels of pAMPK, PGC1α, Nrf2, HO1, SOD, GPX4, and GSH, but decreased the levels of 4HNE, MDA, ACSL4, GSSG, and iron concentration in the ipsilateral hemisphere at 24 h after SAH. Dorsomorphin or SR18292 partially abolished the beneficial effects of puerarin exerted on neurological dysfunction, oxidative stress injury, and ferroptosis. In conclusion, puerarin improved neurobehavioral impairments and attenuated oxidative-stress-induced brain ferroptosis after SAH in rats. The neuroprotection acted through the activation of the AMPK/PGC1α/Nrf2-signaling pathway. Thus, puerarin may serve as new therapeutics against EBI in SAH patients.
Collapse
Affiliation(s)
- Yi Huang
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo 315010, China; (Y.H.); (C.Z.); (J.W.); (Y.W.); (H.W.); (S.N.)
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA; (H.W.); (Y.H.); (L.H.)
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo 315010, China
| | - Honggang Wu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA; (H.W.); (Y.H.); (L.H.)
- Department of Neurosurgery, People’s Hospital of Leshan, Leshan 614099, China
| | - Yongmei Hu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA; (H.W.); (Y.H.); (L.H.)
- Department of Nursing, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Chenhui Zhou
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo 315010, China; (Y.H.); (C.Z.); (J.W.); (Y.W.); (H.W.); (S.N.)
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo 315010, China
| | - Jiawei Wu
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo 315010, China; (Y.H.); (C.Z.); (J.W.); (Y.W.); (H.W.); (S.N.)
| | - Yiwen Wu
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo 315010, China; (Y.H.); (C.Z.); (J.W.); (Y.W.); (H.W.); (S.N.)
| | - Haifeng Wang
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo 315010, China; (Y.H.); (C.Z.); (J.W.); (Y.W.); (H.W.); (S.N.)
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, NM 88001, USA;
| | - Lei Huang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA; (H.W.); (Y.H.); (L.H.)
| | - Sheng Nie
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo 315010, China; (Y.H.); (C.Z.); (J.W.); (Y.W.); (H.W.); (S.N.)
| | - Xiang Gao
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo 315010, China; (Y.H.); (C.Z.); (J.W.); (Y.W.); (H.W.); (S.N.)
- Correspondence: (X.G.); (J.S.)
| | - Jie Sun
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo 315010, China; (Y.H.); (C.Z.); (J.W.); (Y.W.); (H.W.); (S.N.)
- Correspondence: (X.G.); (J.S.)
| |
Collapse
|
23
|
Wen S, Wang L, Wang T, Xu M, Zhang W, Song R, Zou H, Gu J, Bian J, Yuan Y, Liu Z. Puerarin alleviates cadmium-induced mitochondrial mass decrease by inhibiting PINK1-Parkin and Nix-mediated mitophagy in rat cortical neurons. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113127. [PMID: 34979308 DOI: 10.1016/j.ecoenv.2021.113127] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) has well-known central nervous system toxicity, and mitochondria are direct targets of Cd-induced neuronal toxicity. However, how Cd induces mitochondrial mass decrease in terms of its neurotoxic effects remains unknown. Puerarin, an isoflavone extracted from kudzu root, can cross the blood-brain barrier and exert protective effects in nervous system disease. The purpose of the study was to determine the mechanism of Cd-induced mitochondrial mass decrease and the protective role of puerarin in rat cortical neurons. The results indicated that Cd induced mitochondrial mass decrease by activating mitophagy mediated by the PTEN-induced putative kinase protein 1 (PINK1)-E3 ubiquitin ligase (Parkin) and Nip3-like protein X (Nix) pathways in rat cortical neurons. Puerarin improved the Cd-induced decrease in mitochondrial membrane potential (MMP) in vitro, and blocked PINK1-Parkin and Nix-mediated mitophagy, inhibiting Cd-induced mitochondrial mass decrease in rat cortical neurons in vitro and in vivo. In summary, our data clearly indicated that puerarin protects rat cortical neurons against Cd-induced neurotoxicity by ameliorating mitochondrial damage, inhibiting mitophagy-mediated mitochondrial mass decrease. Puerarin appears to have great potential as a neuroprotective agent.
Collapse
Affiliation(s)
- Shuangquan Wen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Li Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Tao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Mingchang Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Wenhua Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
24
|
Puerarin Attenuates Obesity-Induced Inflammation and Dyslipidemia by Regulating Macrophages and TNF-Alpha in Obese Mice. Biomedicines 2022; 10:biomedicines10010175. [PMID: 35052852 PMCID: PMC8773888 DOI: 10.3390/biomedicines10010175] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 01/27/2023] Open
Abstract
Obesity causes low-grade inflammation that results in dyslipidemia and insulin resistance. We evaluated the effect of puerarin on obesity and metabolic complications both in silico and in vivo and investigated the underlying immunological mechanisms. Twenty C57BL/6 mice were divided into four groups: normal chow, control (HFD), HFD + puerarin (PUE) 200 mg/kg, and HFD + atorvastatin (ATO) 10 mg/kg groups. We examined bodyweight, oral glucose tolerance test, serum insulin, oral fat tolerance test, serum lipids, and adipocyte size. We also analyzed the percentage of total, M1, and M2 adipose tissue macrophages (ATMs) and the expression of F4/80, tumor necrosis factor-α (TNF-α), C-C motif chemokine ligand 2 (CCL2), CCL4, CCL5, and C-X-C motif chemokine receptor 4. In silico, we identified the treatment-targeted genes of puerarin and simulated molecular docking with puerarin and TNF, M1, and M2 macrophages based on functionally enriched pathways. Puerarin did not significantly change bodyweight but significantly improved fat pad weight, adipocyte size, fat area in the liver, free fatty acids, triglycerides, total cholesterol, and HDL-cholesterol in vivo. In addition, puerarin significantly decreased the ATM population and TNF-α expression. Therefore, puerarin is a potential anti-obesity treatment based on its anti-inflammatory effects in adipose tissue.
Collapse
|
25
|
Gao LN, Yan M, Zhou L, Wang J, Sai C, Fu Y, Liu Y, Ding L. Puerarin Alleviates Depression-Like Behavior Induced by High-Fat Diet Combined With Chronic Unpredictable Mild Stress via Repairing TLR4-Induced Inflammatory Damages and Phospholipid Metabolism Disorders. Front Pharmacol 2022; 12:767333. [PMID: 34975477 PMCID: PMC8714847 DOI: 10.3389/fphar.2021.767333] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/23/2021] [Indexed: 01/01/2023] Open
Abstract
Puerarin has been reported as a potential agent for neuro-inflammatory disorders. However, there have been no reports of using puerarin for the treatment of depression based on Toll-like receptor 4 (TLR4)–mediated inflammatory injury. In this study, we evaluated the protective effects of puerarin on depression-like rats induced by a high-fat diet (HFD) combined with chronic unpredictable mild stress (CUMS). The mechanism was screened by lipidomics and molecular docking and confirmed by in vivo tests. Puerarin treatment significantly improved 1% sucrose preference and ameliorated depression-like behavior in the open-field test. The antidepressive effects of puerarin were associated with decreased pro-inflammatory cytokine production, including interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), and increased anti-inflammatory cytokine levels (IL-10) in rat hippocampal tissues and plasma. Hematoxylin–eosin (H&E), immunofluorescence staining, and Western blotting results displayed that puerarin alleviated inflammatory injury by suppressing TLR4 expression and by repairing the intestine mucus barrier via enhancing the expression of claudin-1 and occludin. Non-targeted lipidomics analysis showed that the most significantly different metabolites modified by puerarin were phospholipids. Puerarin treatment–altered biomarkers were identified as PC (15:1/20:1), PE (15:1/16:1), and PI (18:2/20:1) in comparison with the HFD/CUMS group. Molecular docking modeling revealed that puerarin could bind with cytosolic phospholipase A2 (cPLA2) and cyclooxygenase-2 (COX-2), which play central roles in TLR4-mediated phospholipid metabolism. In vivo, puerarin treatment decreased the enzyme activities of cPLA2 and COX-2, resulting in lower production of prostaglandin E2 (PGE2) in hippocampal and intestinal tissues. In conclusion, puerarin treatment reverses HFD/CUMS-induced depression-like behavior by inhibiting TLR4-mediated intestine mucus barrier dysfunction and neuro-inflammatory damages via the TLR4/cPLA2/COX-2 pathway.
Collapse
Affiliation(s)
- Li-Na Gao
- College of Pharmacy, Jining Medical University, Rizhao, China.,Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
| | - Maocai Yan
- College of Pharmacy, Jining Medical University, Rizhao, China
| | - Lirun Zhou
- College of Pharmacy, Jining Medical University, Rizhao, China.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jian'an Wang
- College of Pharmacy, Jining Medical University, Rizhao, China
| | - Chunmei Sai
- College of Pharmacy, Jining Medical University, Rizhao, China
| | - Yingjie Fu
- College of Pharmacy, Jining Medical University, Rizhao, China
| | - Yang Liu
- College of Pharmacy, Jining Medical University, Rizhao, China
| | - Lin Ding
- College of Pharmacy, Jining Medical University, Rizhao, China
| |
Collapse
|
26
|
Yu CC, Du YJ, Li J, Li Y, Wang L, Kong LH, Zhang YW. Neuroprotective Mechanisms of Puerarin in Central Nervous System Diseases: Update. Aging Dis 2022; 13:1092-1105. [PMID: 35855345 PMCID: PMC9286922 DOI: 10.14336/ad.2021.1205] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/05/2021] [Indexed: 12/15/2022] Open
Abstract
Due to global population aging and modern lifestyle changes, the incidence of central nervous system (CNS) disorders, such as neurodegenerative diseases, neuropsychiatric disorders, and cerebrovascular diseases, is increasing and has become a major public health challenge. Current medications commonly used in the clinic are far from satisfactory and may cause serious side effects. Therefore, the identification of novel drugs for the effective management of CNS diseases is very urgent. Puerarin, a highly bioactive ingredient isolated from Pueraria lobata, is known to possess a broad spectrum of pharmacological properties including anti-diabetic, anti-inflammatory, anti-antioxidant, neuroprotective, and cardioprotective features. However, its clinical application is limited due to its poor water solubility. Since puerarin has demonstrated a wide range of neuroprotective functions in various CNS diseases, such as Alzheimer’s disease, Parkinson’s disease, cerebral ischemia, depression, and spinal cord injury, it has been attracting increasingly intense attention worldwide. In this review, we intend to extensively summarize the research progress on neuroprotective mechanisms of puerarin in recent years and discuss the future directions of its application in CNS disease treatment.
Collapse
Affiliation(s)
- Chao-Chao Yu
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China.
| | - Yan-Jun Du
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China.
| | - Jin Li
- Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China.
| | - Yi Li
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China.
| | - Li Wang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China.
| | - Li-Hong Kong
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China.
| | - Ying-Wen Zhang
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China.
- Correspondence should be addressed to: Dr. Ying-Wen Zhang, Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China. E-mail:
| |
Collapse
|
27
|
Niu P, Sun Y, Wang S, Li G, Tang X, Sun J, Pan C, Sun J. Puerarin alleviates the ototoxicity of gentamicin by inhibiting the mitochondria‑dependent apoptosis pathway. Mol Med Rep 2021; 24:851. [PMID: 34651662 PMCID: PMC8532108 DOI: 10.3892/mmr.2021.12491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 09/22/2021] [Indexed: 11/24/2022] Open
Abstract
Gentamicin (GM) is a commonly used antibiotic, and ototoxicity is one of its side effects. Puerarin (PU) is an isoflavone in kudzu roots that exerts a number of pharmacological effects, including antioxidative and free radical scavenging effects. The present study investigated whether PU could protect against GM-induced ototoxicity in C57BL/6J mice and House Ear Institute-Organ of Corti 1 (HEI-OC1) cells. C57BL/6J mice and HEI-OC1 cells were used to establish models of GM-induced ototoxicity in this study. Auditory brainstem responses were measured to assess hearing thresholds, and microscopy was used to observe the morphology of cochlear hair cells after fluorescent staining. Cell viability was examined with Cell Counting Kit-8 assays. To evaluate cell apoptosis and reactive oxygen species (ROS) production, TUNEL assays, reverse transcription-quantitative PCR, DCFH-DA staining, JC-1 staining and western blotting were performed. PU protected against GM-induced hearing damage in C57BL/6J mice. PU ameliorated the morphological changes of mouse cochlear hair cells and reduced the apoptosis rate of HEI-OC1 cells after GM-mediated damage. GM-induced ototoxicity may be closely related to the upregulation of p53 expression and the activation of endogenous mitochondrial apoptosis pathways, and PU could protect cochlear hair cells from GM-mediated damage by reducing the production of ROS and inhibiting the mitochondria-dependent apoptosis pathway.
Collapse
Affiliation(s)
- Ping Niu
- Department of Otolaryngology‑Head and Neck Surgery, Anhui Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yuxuan Sun
- Department of Otolaryngology‑Head and Neck Surgery, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| | - Shiyi Wang
- Department of Otolaryngology‑Head and Neck Surgery, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Guang Li
- Department of Otolaryngology‑Head and Neck Surgery, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Xiaomin Tang
- Department of Otolaryngology‑Head and Neck Surgery, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| | - Jiaqiang Sun
- Department of Otolaryngology‑Head and Neck Surgery, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| | - Chunchen Pan
- Department of Otolaryngology‑Head and Neck Surgery, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| | - Jingwu Sun
- Department of Otolaryngology‑Head and Neck Surgery, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| |
Collapse
|
28
|
Zhang M, Hu G, Shao N, Qin Y, Chen Q, Wang Y, Zhou P, Cai B. Thioredoxin-interacting protein (TXNIP) as a target for Alzheimer's disease: flavonoids and phenols. Inflammopharmacology 2021; 29:1317-1329. [PMID: 34350508 DOI: 10.1007/s10787-021-00861-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by amyloid plaques and tangles that have become the fifth leading cause of death worldwide. Previous studies have found that thioredoxin interacting protein (TXNIP) expression was increased during the development of AD neurons. TXNIP separates from the TXNIP-thioredoxin complex, and the TXNIP-NLRP3 complex assembles ASC and pro-caspase-1 to form the NLRP3 inflammasome, which triggers AD inflammation and apoptosis. CB-dock was used to explore whether 21 natural flavonoids and phenols target TXNIP based on references. Docking results showed that rutin, puerarin, baicalin, luteolin and quercetin are the most potent TXNIP inhibitors, and among them, rutin as the most effective flavonoid. And rosmarinic acid is the most potent TXNIP inhibitor of phenols. These phytochemicals could be helpful to find the lead compounds in designing and developing novel agents for Alzheimer's disease.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Guanhua Hu
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Nan Shao
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Yunpeng Qin
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Qian Chen
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Yan Wang
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Peng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China. .,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China. .,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230012, China.
| | - Biao Cai
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China. .,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China. .,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230012, China.
| |
Collapse
|
29
|
Zhou T, Wang Z, Guo M, Zhang K, Geng L, Mao A, Yang Y, Yu F. Puerarin induces mouse mesenteric vasodilation and ameliorates hypertension involving endothelial TRPV4 channels. Food Funct 2021; 11:10137-10148. [PMID: 33155599 DOI: 10.1039/d0fo02356f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Puerarin (Pue) is an isoflavone derived from the root of Pueraria lobata, which has been widely used as food and a herb for treating cardiovascular and cerebrovascular diseases. Transient receptor potential vanilloid 4 (TRPV4), a Ca2+-permeable channel with multiple modes of activation, plays an important role in vascular endothelial function and vasodilation. However, no reports have shown the effects of Pue on TRPV4 channels and mouse small mesenteric arteries. In the present study, we performed a molecular docking assay by using Discovery Studio 3.5 software to predict the binding of Pue to TRPV4 protein. The activation of TRPV4 by Pue was determined by intracellular Ca2+ concentration ([Ca2+]i), live-cell fluorescent Ca2+ imaging and patch clamp assays. Molecular docking results indicated a high possibility of Pue-TPRV4 binding. [Ca2+]i and Ca2+ imaging assays showed that Pue activated TRPV4 channels and increased [Ca2+]i in TRPV4-overexpressing HEK293 (TRPV4-HEK293) cells and primary mouse mesenteric artery endothelial cells (MAECs). Patch clamp assay demonstrated that Pue stimulated the TRPV4-mediated cation currents. Additionally, Pue relaxed mouse mesenteric arteries involving the TRPV4-small-conductance Ca2+-activated K+ channel (SKCa)/intermediate-conductance Ca2+-activated K+ channel (IKCa) pathway, and reduced systolic blood pressure (SBP) in high-salt-induced hypertensive mice. Our study found for the first time that Pue acts as a TRPV4 agonist, induces endothelium-dependent vasodilation in mouse mesenteric arteries, and attenuates blood pressure in high-salt-induced hypertensive mice, highlighting the beneficial effect of Pue in treating endothelial dysfunction-related cardiovascular diseases.
Collapse
Affiliation(s)
- Tingting Zhou
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Wen S, Wang L, Zou H, Gu J, Song R, Bian J, Yuan Y, Liu Z. Puerarin Attenuates Cadmium-Induced Neuronal Injury via Stimulating Cadmium Excretion, Inhibiting Oxidative Stress and Apoptosis. Biomolecules 2021; 11:biom11070978. [PMID: 34356602 PMCID: PMC8301907 DOI: 10.3390/biom11070978] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/29/2022] Open
Abstract
Cadmium (Cd) is a potential pathogenic factor in the nervous system associated with various neurodegenerative disorders. Puerarin (Pur) is an isoflavone purified from the Chinese medical herb, kudzu root, and exhibits antioxidant and antiapoptotic properties in the brain. In this study, the detailed mechanisms underlying the neuroprotective potential of Pur against Cd-induced neuronal injury was evaluated for the first time in vivo in a rat model and in vitro using primary rat cerebral cortical neurons. The results of the in vivo experiments showed that Pur ameliorated Cd-induced neuronal injury, reduced Cd levels in the cerebral cortices, and stimulated Cd excretion in Cd-treated rats. We also observed that the administration of Pur rescued Cd-induced oxidative stress, and attenuated Cd-induced apoptosis by concomitantly suppressing both the Fas/FasL and mitochondrial pathways in the cerebral cortical neurons of rats both in vivo and in vitro. Our results demonstrate that Pur exerted its neuroprotective effects by stimulating Cd excretion, ameliorating Cd-induced oxidative stress and apoptosis in rat cerebral cortical neurons.
Collapse
Affiliation(s)
- Shuangquan Wen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.W.); (L.W.); (H.Z.); (J.G.); (R.S.); (J.B.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Li Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.W.); (L.W.); (H.Z.); (J.G.); (R.S.); (J.B.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.W.); (L.W.); (H.Z.); (J.G.); (R.S.); (J.B.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.W.); (L.W.); (H.Z.); (J.G.); (R.S.); (J.B.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.W.); (L.W.); (H.Z.); (J.G.); (R.S.); (J.B.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.W.); (L.W.); (H.Z.); (J.G.); (R.S.); (J.B.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.W.); (L.W.); (H.Z.); (J.G.); (R.S.); (J.B.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence: (Y.Y.); (Z.L.)
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.W.); (L.W.); (H.Z.); (J.G.); (R.S.); (J.B.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence: (Y.Y.); (Z.L.)
| |
Collapse
|
31
|
Zeng J, Zheng S, Chen Y, Qu Y, Xie J, Hong E, Lv H, Ding R, Feng L, Xie Z. Puerarin attenuates intracerebral hemorrhage-induced early brain injury possibly by PI3K/Akt signal activation-mediated suppression of NF-κB pathway. J Cell Mol Med 2021; 25:7809-7824. [PMID: 34180121 PMCID: PMC8358853 DOI: 10.1111/jcmm.16679] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 05/02/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
Intracerebral hemorrhage (ICH) can induce intensively oxidative stress, neuroinflammation, and brain cell apoptosis. However, currently, there is no highly effective treatment available. Puerarin (PUE) possesses excellent neuroprotective effects by suppressing the NF‐κB pathway and activating the PI3K/Akt signal, but its role and related mechanisms in ICH‐induced early brain injury (EBI) remain unclear. In this study, we intended to observe the effects of PUE and molecular mechanisms on ICH‐induced EBI. ICH was induced in rats by collagenase IV injection. PUE was intraperitoneally administrated alone or with simultaneously intracerebroventricular injection of LY294002 (a specific inhibitor of the PI3K/Akt signal). Neurological deficiency, histological impairment, brain edema, hematoma volume, blood–brain barrier destruction, and brain cell apoptosis were evaluated. Western blot, immunohistochemistry staining, reactive oxygen species (ROS) measurement, and enzyme‐linked immunosorbent assay were performed. PUE administration at 50 mg/kg and 100 mg/kg could significantly reduce ICH‐induced neurological deficits and EBI. Moreover, PUE could notably restrain ICH‐induced upregulation of the NF‐κB pathway, pro‐inflammatory cytokines, ROS level, and apoptotic pathway and activate the PI3K/Akt signal. However, LY294002 delivery could efficaciously weaken these neuroprotective effects of PUE. Overall, PUE could attenuate ICH‐induced behavioral defects and EBI possibly by PI3K/Akt signal stimulation‐mediated inhibition of the NF‐κB pathway, and this made PUE a potential candidate as a promising therapeutic option for ICH‐induced EBI.
Collapse
Affiliation(s)
- Jun Zeng
- Department of Neurosurgery, Zhujiang Hospital, The Engineering Technology Research Center of Education Ministry of China, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, Huashan Hospital, Institute of Neurosurgery, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shizhong Zheng
- Department of Neurosurgery, Zhujiang Hospital, The Engineering Technology Research Center of Education Ministry of China, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Yizhao Chen
- Department of Neurosurgery, Zhujiang Hospital, The Engineering Technology Research Center of Education Ministry of China, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yaoming Qu
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiayu Xie
- Department of Neurosurgery, Zhujiang Hospital, The Engineering Technology Research Center of Education Ministry of China, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China
| | - Enhui Hong
- Department of Neurosurgery, Zhujiang Hospital, The Engineering Technology Research Center of Education Ministry of China, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China
| | - Hongzhu Lv
- Department of Neurosurgery, Zhujiang Hospital, The Engineering Technology Research Center of Education Ministry of China, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China
| | - Rui Ding
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Liang Feng
- Department of Neurosurgery, Chenzhou No. 1 People's Hospital, Chenzhou, China
| | - Zhichong Xie
- Department of Neurosurgery, Zhujiang Hospital, The Engineering Technology Research Center of Education Ministry of China, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China
| |
Collapse
|
32
|
Liu S, Zhou T, Chen D, Liu R, Qin HH, Min ZL, Liu GQ, Cao XL. In silico-determined compound from the root of Pueraria lobate alleviates synaptic plasticity injury induced by Alzheimer's disease via the p38MAPK-CREB signaling pathway. Food Funct 2021; 12:1039-1050. [PMID: 33433542 DOI: 10.1039/d0fo02388d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pueraria lobata is utilized as a food source in China. The aim of this study is to combine virtual screening and molecular dynamics predictive model to screen out the potential synaptic plasticity-maintaining components from the root of P. lobate and to verify it by employing the amyloid β-injected rats' model. Eighteen compounds were identified by HPLC-MS/MS; puerarin manifested the most potential to form a stable complex with calcium/calmodulin kinase IIα (CaMK IIα), which is the key protein in synaptic plasticity by the in silico study. The further in vivo assay showed that puerarin could elevate the synaptic thickness, density, and length, relieve calcium overload, regulate the expression of CaMK IIα, and other p38MAPK-CREB signaling pathway-related biochemical criteria. The behavioral test also verified the results. Results have confirmed that the root of P. lobate can work anti-AD by maintaining the synaptic plasticity and proved the reliability of using the in silico predictive model to determine active ingredients from the natural product.
Collapse
Affiliation(s)
- Song Liu
- Department of Pharmacy, School of Medicine, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430080, PR China. and New Drugs Innovation and Development institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430080, PR China
| | - Tong Zhou
- Department of Pharmacy, School of Medicine, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430080, PR China. and New Drugs Innovation and Development institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430080, PR China
| | - Dan Chen
- Wuhan Institute for Food and Cosmetic Control, Wuhan, 430012, PR China
| | - Rong Liu
- Department of Orthopaedic Surgery, Puren Hospital of Wuhan, Wuhan University of Science and Technology, Wuhan, 430081, PR China
| | - Huan-Huan Qin
- Department of Pharmacy, School of Medicine, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430080, PR China. and New Drugs Innovation and Development institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430080, PR China
| | - Zhen-Li Min
- Department of Pharmacy, School of Medicine, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430080, PR China. and New Drugs Innovation and Development institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430080, PR China
| | - Guang-Qi Liu
- Department of Pharmacy, School of Medicine, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430080, PR China. and New Drugs Innovation and Development institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430080, PR China
| | - Xiao-Lu Cao
- Department of Pharmacy, School of Medicine, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430080, PR China.
| |
Collapse
|
33
|
Wang R, Tao M, Zhu Y, Fan D, Wang M, Zhao Y. Puerarin inhibited 3-chloropropane-1,2-diol fatty acid esters formation by reacting with glycidol and glycidyl esters. Food Chem 2021; 358:129843. [PMID: 33915425 DOI: 10.1016/j.foodchem.2021.129843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 11/30/2022]
Abstract
The inhibitory effects of seven polyphenols on 3-chloropropane-1,2-diol fatty acid esters (3-MCPDE) formation were investigated in palm oil models. Results showed that there was not a positive significant correlation between the free-radical scavenging activities of the tested compounds and their 3-MCPDE-formation inhibitory activities; puerarin, with weak antioxidant activity, showed the highest inhibitory capacity. Moreover, puerarin reduced the content of glycidol and glycidyl esters (GEs), two key intermediates of 3-MCPDE formation in the oil models; and a puerarin-adduct was discovered in the oil fortified with glycidol or GEs, with its structure elucidated by LC-MS/MS and comparison with newly synthesized ones. Based on its chemical structure, we proposed that puerarin, at least in part, reacted with glycidol and GEs to inhibit 3-MCPDE formation. In addition, the formed compound, puerarin-7-O-propanediol was identified in the potato chips frying system, further confirming reacting with glycidol/GEs as a key mechanism of puerarin to inhibit 3-MCPDE formation.
Collapse
Affiliation(s)
- Ru Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
| | - Mengru Tao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
| | - Yamin Zhu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
| | - Daming Fan
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Mingfu Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China; School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Yueliang Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China.
| |
Collapse
|
34
|
Chen X, Huang C, Sun H, Hong H, Jin J, Bei C, Lu Z, Zhang X. Puerarin suppresses inflammation and ECM degradation through Nrf2/HO-1 axis in chondrocytes and alleviates pain symptom in osteoarthritic mice. Food Funct 2021; 12:2075-2089. [PMID: 33543180 DOI: 10.1039/d0fo03076g] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Osteoarthritis (OA) is the most common degenerative joint disorder with no effective drugs. Puerarin is a dietary supplement that has wide-ranging pharmacological effects. This study aimed to investigate the effects of Puerarin on OA. The effects of Puerarin on apoptosis, extracellular matrix (ECM) metabolism, and inflammation-related factors were assessed; also, the nuclear factor-κB (NF-κB) signaling pathway and Nrf2/HO-1 (nuclear factor (erythroid-derived 2)-like 2/heme oxygenase-1) axis were evaluated to elucidate the working mechanism of Puerarin. Mice were fed with Puerarin to evaluate the therapeutic effect of Puerarin on Osteoarthritis in vivo. The results showed that Puerarin suppressed inflammatory mediators and apoptosis induced by IL-1β treatment in chondrocytes, it may also suppress ECM degradation in IL-1β treated chondrocytes. The mechanism study revealed that Nrf2/HO-1 pathway is involved in Puerarin induced inhibition of NF-κB signaling pathway. Finally, in vivo study demonstrated that Puerarin could postpone the progression of OA in mice and relieve the symptoms of pain. In conclusion, Puerarin may potentially alleviate OA progression, and the mechanism may relate to the Nrf2/HO-1 pathway regulation.
Collapse
Affiliation(s)
- Ximiao Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China. and Department of Orthopaedics, Affiliated Hospital of Guilin Medical College, Guilin, Guangxi Province, China. and Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| | - Chongan Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China. and Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China and The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Haiqiu Sun
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Haofeng Hong
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China. and The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jie Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China. and Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China and The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chaoyong Bei
- Department of Orthopaedics, Affiliated Hospital of Guilin Medical College, Guilin, Guangxi Province, China.
| | - Zhongqiu Lu
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China. and Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China and The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China and Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, Zhejiang Province, China
| |
Collapse
|
35
|
Xu DX, Guo XX, Zeng Z, Wang Y, Qiu J. Puerarin improves hepatic glucose and lipid homeostasis in vitro and in vivo by regulating the AMPK pathway. Food Funct 2021; 12:2726-2740. [PMID: 33681875 DOI: 10.1039/d0fo02761h] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Obesity is an increasingly concerning global health issue, which is accompanied by disruption of glucose and lipid metabolisms. The aim of this study was to uncover the potential and molecular actions of puerarin, a phytochemical, for alleviating metabolic dysfunctions of glucose and lipid metabolisms. A rat model fed a high fat and high fructose diet and a HepG2 cell model challenged with fructose combined with free fatty acid were utilized to identify the effects of puerarin on obesity-associated insulin resistance and hepatic steatosis. The molecular mechanisms underlying puerarin treatment effects were further investigated using qRT-PCR and western blotting. Results show that puerarin significantly ameliorated features of obesity in rats, including bodyweight, hyperlipidemia, hyperglycemia, glucose/insulin intolerance, insulin resistance, hepatic steatosis, and oxidative stress, which are related to the activation of AMPK and PI3K/Akt pathways in the liver. Puerarin reduced lipid accumulation and caused a reduction of the mRNA expression of lipogenic genes such as SREBP-1c, FAS, SCD-1, and HMGCR, and an increment in the phosphorylation of AMPK and ACC in HepG2 cells. Moreover, puerarin ameliorated insulin resistance by increasing GLUT4 mRNA expression and activating the PI3K/Akt pathway. Treatment with the AMPK inhibitor compound C partially abolished the beneficial effects of puerarin on lipid accumulation and insulin resistance in HepG2 cells, which indicated that the protective effects of puerarin partially depend on the AMPK pathway. The present study indicates that puerarin shows potential as a functional food therapeutic for the treatment of obesity.
Collapse
Affiliation(s)
- Dong-Xue Xu
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | | | | | | | | |
Collapse
|
36
|
Sun YX, Jiang XJ, Lu B, Gao Q, Chen YF, Wu DB, Zeng WY, Yang L, Li HH, Yu B. Roles of Gut Microbiota in Pathogenesis of Alzheimer's Disease and Therapeutic Effects of Chinese Medicine. Chin J Integr Med 2020; 28:1048-1056. [PMID: 32876860 DOI: 10.1007/s11655-020-3274-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2020] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by progressive cognitive impairment. The pathogenesis of AD is complex, and its susceptibility and development process are affected by age, genetic and epigenetic factors. Recent studies confirmed that gut microbiota (GM) might contribute to AD through a variety of pathways including hypothalamic pituitary adrenal axis and inflflammatory and immune processes. CM formula, herbs, and monomer enjoy unique advantages to treat and prevent AD. Hence, the purpose of this review is to outline the roles of GM and its core metabolites in the pathogenesis of AD. Research progress of CMs regarding the mechanisms of how they regulate GM to improve cognitive impairment of AD is also reviewed. The authors tried to explore new therapeutic strategies to AD based on the regulation of GM using CM.
Collapse
Affiliation(s)
- Ying-Xin Sun
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xi-Juan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Bin Lu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Qing Gao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ye-Fei Chen
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Dan-Bin Wu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wen-Yun Zeng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lin Yang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Hu-Hu Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Bin Yu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
37
|
Wang HX, Zeng MS, Ye Y, Liu JY, Xu PP. Antiviral activity of puerarin as potent inhibitor of influenza virus neuraminidase. Phytother Res 2020; 35:324-336. [PMID: 32757226 DOI: 10.1002/ptr.6803] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 06/08/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022]
Abstract
Puerarin is a major isofiavone compound isolated from the root of Pueraria lobata. It was reported that puerarin had antioxidant, antiinflammatory, antitumor, cholesterol lowering, liver protective, and neuroprotective properties. However, few studies have explored the antiviral effect of puerarin and its target mechanism related to influenza virus. Here, the antiinfluenza activity of puerarin in vitro and in vivo and its mode of action on the potential inhibition of neuraminidase (NA) were investigated. Puerarin displayed an inhibitory effect on A/FM/1/1947(H1N1) (EC50 = 52.06 μM). An indirect immunofluorescence assay indicated that puerarin blocked the nuclear export of viral NP. The inhibition of NA activity confirmed that puerarin can block the release of newly formed virus particles from infected cells. Puerarin (100 and 200 mg/kg/d) exhibited effective antiviral activity in mice, conferring 50% and 70% protection from death against H1N1, reducing virus titers, and effectively alleviating inflammation in the lungs. The molecular docking results showed that puerarin had a strong binding affinity with NA from H1N1. The results of the molecular dynamics simulation revealed that puerarin had higher stable binding at the 150-loop region of the NA protein. These results demonstrated that puerarin acts as a NA blocker to inhibit influenza A virus both in cellular and animal models. Thus, puerarin has potential utility for the treatment of the influenza virus infection.
Collapse
Affiliation(s)
- Hui-Xian Wang
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mao-Sen Zeng
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Ye
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jin-Yuan Liu
- Basic Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pei-Ping Xu
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
38
|
Su AS, Zhang JW, Zou J. The anxiolytic-like effects of puerarin on an animal model of PTSD. Biomed Pharmacother 2019; 115:108978. [PMID: 31102911 DOI: 10.1016/j.biopha.2019.108978] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 05/05/2019] [Accepted: 05/08/2019] [Indexed: 12/27/2022] Open
Abstract
Post traumatic stress disorder (PTSD) is a mental illness that affected numerous people. The anti-PTSD-like effects of puerarin is unknown, although the antidepressant- and anxiolytic- like effects of puerarin have been reported. The PTSD behavioral deficits in rats were induced by single prolonged stress (SPS), mainly including the reduced time/entries in the open arms and the elevated time/entries in the closed arms in elevated plus maze test, increased freezing duration in contextual fear paradigm and lowered time/entries in the central zone in open field test. However, the behavioral deficits were attenuated by puerarin (50 and 100 mg/kg) without affecting the locomotor activity. For the evaluation of mechanism, the decreased levels of progesterone, allopregnanolone, and the increased levels of corticosterone, corticotropin releasing hormone, and adrenocorticotropic hormone in the brain or serum were induced by SPS, which is blocked by puerarin. In summary, the anti-PTSD-like effects of puerarin were associated with biosynthesis of neurosteroids and normalized levels of stress hormones in HPA axis.
Collapse
Affiliation(s)
- Ai-Shan Su
- GCP Center, Nangfang Hospital of Southern Medical University, Guangzhou, 501515, China
| | - Jun-Wei Zhang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China
| | - Jing Zou
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, Sichuan, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China.
| |
Collapse
|