1
|
Zhang Y, Wu X, Li R, Sui M, Li G, Fan S, Yang M, Liu Q, Liu X, Wu C, Li L. Sodium danshensu modulates skeletal muscle fiber type formation and metabolism by inhibiting pyruvate kinase M1. Front Pharmacol 2024; 15:1467620. [PMID: 39502528 PMCID: PMC11534700 DOI: 10.3389/fphar.2024.1467620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
Sodium Danshensu (SDSS) is extracted from Salvia miltiorrhiza and has many pharmacological effects. However, little is known about its effects on muscle fiber formation and metabolism. Here, we aimed to investigated the role and molecular mechanisms of SDSS in modulating the formation of skeletal muscle fiber. C2C12 cells were incubated in differentiation medium with or without SDSS for 4 days. C57BL/6 mice were orally administered SDSS by gavage once a day for 8 weeks. Grip strength, treadmill, muscle weight, western blotting, qPCR, immunofluorescence staining and H&E staining were performed. SDSS target proteins were searched through drug affinity responsive target stability (DARTS) and mass spectrometry analysis. Furthermore, molecular docking was carried out for Pyruvate kinase M1 (PKM1). The effect of PKM1 on myosin heavy chain (MyHCs) gene expression was verified by knockdown of PKM1 experiment. SDSS induced oxidative muscle fiber-related gene expression, and inhibited glycolytic fiber-related gene expression in C2C12 cells. Muscle mass, the percentage of slow oxidative fibers, succinic dehydrogenase activity, muscle endurance, glucose tolerance, and the expression of the MyHC1 and MyHC2a genes increased while MyHC2b expression, lactate dehydrogenase activity, and the percentage of glycolytic muscle fibers decreased in SDSS-treated mice. Mechanistically, SDSS bound to the pyruvate kinase PKM1 and significantly repressed its activity. PKM1 inhibited MyHC1 and MyHC2a expression but promoted MyHC2b expression. SDSS also significantly attenuated the effects of PKM1 on muscle fiber-related gene expression in C2C12 cells. Our findings indicate that SDSS promotes muscle fiber transformation from the glycolytic type to the oxidative type by inhibiting PKM1 activity, which provide a new idea for treating muscle atrophy, muscle metabolism diseases and improving animal meat production.
Collapse
Affiliation(s)
- Yunxia Zhang
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Xiaoxiao Wu
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Ruoqi Li
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Mengru Sui
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Guoyin Li
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Shuhua Fan
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Mingsheng Yang
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
- Dancheng Green Agriculture Observation and Research Station of Henan Province, Zhoukou Normal University, Zhoukou, China
| | - Qiuping Liu
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Xiaomeng Liu
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
- College of Public Health, Xinxiang Medical University, Xinxiang, Henan, China
| | - Changjing Wu
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Lili Li
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| |
Collapse
|
2
|
Liu Y, Xu Y, Ji H, Gao F, Ge R, Zhou D, Fu H, Liu X, Ma S. AdipoRon Alleviates Liver Injury by Protecting Hepatocytes from Mitochondrial Damage Caused by Ionizing Radiation. Int J Mol Sci 2024; 25:11277. [PMID: 39457060 PMCID: PMC11508598 DOI: 10.3390/ijms252011277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Radiation liver injury is a common complication of hepatocellular carcinoma radiotherapy. It is mainly caused by irreversible damage to the DNA of hepatocellular cells directly by radiation, which seriously interferes with metabolism and causes cell death. AdipoRon can maintain lipid metabolism and stabilize blood sugar by activating adiponectin receptor 1 (AdipoR1). However, the role of AdipoRon/AdipoR1 in the regulation of ionizing radiation (IR)-induced mitochondrial damage remains unclear. In this study, we aimed to elucidate the roles of AdipoRon/AdipoR1 in IR-induced mitochondrial damage in normal hepatocyte cells. We found that AdipoRon treatment rescued IR-induced liver damage in mice and mitochondrial damage in normal hepatocytes in vivo and in vitro. AdipoR1 deficiency exacerbated IR-induced oxidative stress, mitochondrial dynamics, and biogenesis disorder. Mechanistically, the absence of AdipoR1 inhibits the activity of adenosine monophosphate-activated protein kinase α (AMPKα), subsequently leading to disrupted mitochondrial dynamics by decreasing mitofusin (MFN) and increasing dynamin-related protein 1 (DRP1) protein expression. It also controls mitochondrial biogenesis by suppressing the peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC1α) and transcription factor A (TFAM) signaling pathway, ultimately resulting in impaired mitochondrial function. To sum up, AdipoRon/AdipoR1 maintain mitochondrial function by regulating mitochondrial dynamics and biogenesis through the AdipoR1-AMPKα signaling pathway. This study reveals the significant role of AdipoR1 in regulating IR-induced mitochondrial damage in hepatocytes and offers a novel approach to protecting against damage caused by IR.
Collapse
Affiliation(s)
- Yi Liu
- School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; (Y.L.); (Y.X.); (H.J.); (F.G.); (R.G.); (D.Z.); (H.F.)
| | - Yinfen Xu
- School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; (Y.L.); (Y.X.); (H.J.); (F.G.); (R.G.); (D.Z.); (H.F.)
| | - Huilin Ji
- School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; (Y.L.); (Y.X.); (H.J.); (F.G.); (R.G.); (D.Z.); (H.F.)
| | - Fenfen Gao
- School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; (Y.L.); (Y.X.); (H.J.); (F.G.); (R.G.); (D.Z.); (H.F.)
| | - Ruoting Ge
- School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; (Y.L.); (Y.X.); (H.J.); (F.G.); (R.G.); (D.Z.); (H.F.)
| | - Dan Zhou
- School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; (Y.L.); (Y.X.); (H.J.); (F.G.); (R.G.); (D.Z.); (H.F.)
| | - Hengyi Fu
- School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; (Y.L.); (Y.X.); (H.J.); (F.G.); (R.G.); (D.Z.); (H.F.)
| | - Xiaodong Liu
- School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; (Y.L.); (Y.X.); (H.J.); (F.G.); (R.G.); (D.Z.); (H.F.)
- South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou 325035, China
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Shumei Ma
- School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; (Y.L.); (Y.X.); (H.J.); (F.G.); (R.G.); (D.Z.); (H.F.)
- South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou 325035, China
| |
Collapse
|
3
|
Zhang Y, Luo C, Huang P, Cheng Y, Ma Y, Gao J, Ding H. Luteolin alleviates muscle atrophy, mitochondrial dysfunction and abnormal FNDC5 expression in high fat diet-induced obese rats and palmitic acid-treated C2C12 myotubes. J Nutr Biochem 2024; 135:109780. [PMID: 39395694 DOI: 10.1016/j.jnutbio.2024.109780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/22/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024]
Abstract
Obesity is associated with a series of skeletal muscle impairments and dysfunctions, which are characterized by metabolic disturbances and muscle atrophy. Luteolin is a phenolic phytochemical with broad pharmacological activities. The present study aimed to evaluate the protective effects of Luteolin on muscle function and explore the potential mechanisms in high-fat diet (HFD)-induced obese rats and palmitic acid (PA)-treated C2C12 myotubes. Male Sprague-Dawley (SD) rats were fed with a control diet or HFD and orally administrated 0.5% sodium carboxymethyl cellulose (vehicle) or Luteolin (25, 50, and 100 mg/kg, respectively) for 12 weeks. The results showed that Luteolin ameliorated HFD-induced body weight gain, glucose intolerance and hyperlipidemia. Luteolin also alleviated muscle atrophy, decreased ectopic lipid deposition and prompted muscle-fiber-type conversion in the skeletal muscle. Meanwhile, we observed an evident improvement in mitochondrial quality control and respiratory capacity, accompanied by reduced oxidative stress. Mechanistic studies indicated that AMPK/SIRT1/PGC-1α signaling pathway plays a key role in the protective effects of Luteolin on skeletal muscle in the obese states, which was further verified by using specific inhibitors of AMPK and SIRT1. Moreover, the mRNA expression levels of markers in brown adipocyte formation were significantly up-regulated post Luteolin supplementation in different adipose depots. Taken together, these results revealed that Luteolin supplementation might be a promising strategy to prevent obesity-induced loss of mass and biological dysfunctions of skeletal muscle.
Collapse
Affiliation(s)
- Yiyuan Zhang
- Department of Pharmaceutical Science, Wuhan University, Wuhan 430000, China
| | - Chunyun Luo
- Department of Pharmaceutical Science, Wuhan University, Wuhan 430000, China
| | - Puxin Huang
- Department of Pharmaceutical Science, Wuhan University, Wuhan 430000, China
| | - Yahong Cheng
- Department of Pharmaceutical Science, Wuhan University, Wuhan 430000, China
| | - Yufang Ma
- Department of Pharmaceutical Science, Wuhan University, Wuhan 430000, China
| | - Jiefang Gao
- Department of Pharmaceutical Science, Wuhan University, Wuhan 430000, China
| | - Hong Ding
- Department of Pharmaceutical Science, Wuhan University, Wuhan 430000, China.
| |
Collapse
|
4
|
Yang B, Wang Q, Li Y, Zhang S, Sun Y, Wei Y, Jiang Q, Huang Y. Resveratrol inhibits white adipose deposition by the ESR1-mediated PI3K/AKT signaling pathway. Cell Signal 2024; 124:111448. [PMID: 39369759 DOI: 10.1016/j.cellsig.2024.111448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
Excessive adipose accumulation is the primary cause of obesity. Resveratrol (RES), a natural polyphenolic compound, has garnered significant attention for its anti-obesity properties. However, the precise mechanisms by which RES influences fat deposition have not yet been explored. In this study, the aim was to identify the target proteins and associated pathways of RES in order to elucidate the mechanisms by which RES reduces fat deposition. In this study, mice were administered 400 mg/kg of RES via gavage for 12 weeks. We found that while 400 mg/kg RES had no impact on the growth of the mice, it significantly reduced the weight of various white adipose tissues, as well as the serum and liver concentrations of total cholesterol and triglycerides. Network pharmacology identified 15 potential targets of RES and highlighted the PI3K/AKT signaling pathway as a key pathway. Molecular docking and dynamic simulations suggested that ESR1 might be the target protein through which RES exerts its anti-fat deposition effects. In vitro experiments revealed that ESR1 promotes the proliferation and inhibits the differentiation of 3 T3-L1 adipocytes, and suppresses the PI3K/AKT signaling pathway. Silencing the ESR1 gene altered the ability of RES to inhibit cell differentiation via the PI3K/AKT pathway. Gene expression results in subcutaneous adipose tissue, epididymal fat tissue, and liver tissue of mice were consistent with observations in cells. In summary, RES reduces white fat deposition by directly targeting the ESR1 protein and inhibiting the PI3K/AKT signaling pathway. Our findings provide new insights into the potential use of RES in the prevention and treatment of obesity.
Collapse
Affiliation(s)
- Bao Yang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Qian Wang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Yin Li
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Sanbao Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning 530004, Guangxi, China
| | - Yanjie Sun
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Yangyang Wei
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Qinyang Jiang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning 530004, Guangxi, China.
| | - Yanna Huang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning 530004, Guangxi, China.
| |
Collapse
|
5
|
Peng Z, Zeng Y, Zeng X, Tan Q, He Q, Wang S, Wang J. 6-Gingerol improves lipid metabolism disorders in skeletal muscle by regulating AdipoR1/AMPK signaling pathway. Biomed Pharmacother 2024; 180:117462. [PMID: 39316973 DOI: 10.1016/j.biopha.2024.117462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/08/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND To delve into the precise mechanisms by which 6-gingerol ameliorates lipid metabolism disorders in skeletal muscle. METHODS The level of triglycerides (TG) was used to evaluate lipid deposition. In skeletal muscle, transmission electron microscopy (TEM) was employed to observe mitochondrial morphology. Additionally, PCR was applied to detect mitochondrial biogenesis, and levels of malondialdehyde (MDA), catalase (CAT), glutathione, r-glutamyl cysteingl+glycine (GSH) and nicotinamide adenine dinucleotide (NADH) were measured to assess mitochondrial oxidative stress levels. In vivo, flow cytometry and immunofluorescence assays were conducted to quantify reactive oxygen species (ROS) and mitochondrial membrane potential (MMP). Furthermore, the Seahorse XF assays was utilized to assess mitochondrial respiratory capacity. Fluorescence confocal microscopy and molecular docking were applied to analyze the binding of 6-gingerol and adiponectin receptor 1 (AdipoR1). The expression of AdipoR1, AMPK, PGC-1α and SIRT1 were detected by Western Blot. RESULTS In vivo, 6-gingerol could reduce body weight in mice induced by a high-fat diet, enhance metabolic profiles in plasma, decrease lipid accumulation in skeletal muscle and liver, and elevate adiponectin levels. In skeletal muscle, it could restore mitochondrial morphology, boost mitochondrial copy number and biogenesis, and mitigate oxidative stress. In vitro, 6-gingerol may directly interact with AdipoR1 to upregulate the expression of downstream proteins p-AMPK, SIRT1, and PGC-1α, leading to a reduction in lipid deposition, a decrease in ROS production, an increase in mitochondrial membrane potential, and an enhancement of mitochondrial respiratory capacity in C2C12 myotubes. CONCLUSION 6-Gingerol ameliorated lipid metabolism in skeletal muscle by regulating the AdipoR1/AMPK signaling pathway.
Collapse
Affiliation(s)
- Ze Peng
- Chongqing University of Chinese Medicine, Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China; Chongqing Medical University, Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China
| | - Yan Zeng
- Chongqing Medical University, Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China
| | - Xin Zeng
- Chongqing University of Chinese Medicine, Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China; Chongqing Medical University, Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China
| | - Qi Tan
- Chongqing Medical University, Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China
| | - Qifeng He
- Chongqing Medical University, Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China
| | - Shang Wang
- Chongqing University of Chinese Medicine, Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China; Chongqing Medical University, Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China.
| | - Jianwei Wang
- Chongqing University of Chinese Medicine, Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China; Chongqing Medical University, Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China.
| |
Collapse
|
6
|
Li J, Li J, Ullah A, Shi X, Zhang X, Cui Z, Lyu Q, Kou G. Tangeretin Enhances Muscle Endurance and Aerobic Metabolism in Mice via Targeting AdipoR1 to Increase Oxidative Myofibers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16687-16699. [PMID: 38990695 DOI: 10.1021/acs.jafc.3c09386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Slow oxidative myofibers play an important role in improving muscle endurance performance and maintaining body energy homeostasis. However, the targets and means to regulate slow oxidative myofibers proportion remain unknown. Here, we show that tangeretin (TG), a natural polymethoxylated flavone, significantly activates slow oxidative myofibers-related gene expression and increases type I myofibers proportion, resulting in improved endurance performance and aerobic metabolism in mice. Proteomics, molecular dynamics, cellular thermal shift assay (CETSA) and drug affinity responsive target stability (DARTS) investigations revealed that TG can directly bind to adiponectin receptor 1 (AdipoR1). Using AdipoR1-knockdown C2C12 cells and muscle-specific AdipoR1-knockout mice, we found that the positive effect of TG on regulating slow oxidative myofiber related markers expression is mediated by AdipoR1 and its downstream AMPK/PGC-1α pathway. Together, our data uncover TG as a natural compound that regulates the identity of slow oxidative myofibers via targeting the AdipoR1 signaling pathway. These findings further unveil the new function of TG in increasing the proportion of slow oxidative myofibers and enhancing skeletal muscle performance.
Collapse
Affiliation(s)
- Jinjie Li
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Jiangtao Li
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Amin Ullah
- Department of Nutrition and Food Hygiene, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoyang Shi
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Xinyuan Zhang
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenwei Cui
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Quanjun Lyu
- Department of Nutrition and Food Hygiene, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Guangning Kou
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
- Department of Nutrition and Food Hygiene, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
7
|
Song P, Zhao J, Li F, Zhao X, Feng J, Su Y, Wang B, Zhao J. Vitamin A regulates mitochondrial biogenesis and function through p38 MAPK-PGC-1α signaling pathway and alters the muscle fiber composition of sheep. J Anim Sci Biotechnol 2024; 15:18. [PMID: 38310300 PMCID: PMC10838450 DOI: 10.1186/s40104-023-00968-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/04/2023] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Vitamin A (VA) and its metabolite, retinoic acid (RA), are of great interest for their wide range of physiological functions. However, the regulatory contribution of VA to mitochondrial and muscle fiber composition in sheep has not been reported. METHOD Lambs were injected with 0 (control) or 7,500 IU VA palmitate into the biceps femoris muscle on d 2 after birth. At the age of 3 and 32 weeks, longissimus dorsi (LD) muscle samples were obtained to explore the effect of VA on myofiber type composition. In vitro, we investigated the effects of RA on myofiber type composition and intrinsic mechanisms. RESULTS The proportion of type I myofiber was greatly increased in VA-treated sheep in LD muscle at harvest. VA greatly promoted mitochondrial biogenesis and function in LD muscle of sheep. Further exploration revealed that VA elevated PGC-1α mRNA and protein contents, and enhanced the level of p38 MAPK phosphorylation in LD muscle of sheep. In addition, the number of type I myofibers with RA treatment was significantly increased, and type IIx myofibers was significantly decreased in primary myoblasts. Consistent with in vivo experiment, RA significantly improved mitochondrial biogenesis and function in primary myoblasts of sheep. We then used si-PGC-1α to inhibit PGC-1α expression and found that si-PGC-1α significantly abrogated RA-induced the formation of type I myofibers, mitochondrial biogenesis, MitoTracker staining intensity, UQCRC1 and ATP5A1 expression, SDH activity, and enhanced the level of type IIx muscle fibers. These data suggested that RA improved mitochondrial biogenesis and function by promoting PGC-1α expression, and increased type I myofibers. In order to prove that the effect of RA on the level of PGC-1α is caused by p38 MAPK signaling, we inhibited the p38 MAPK signaling using a p38 MAPK inhibitor, which significantly reduced RA-induced PGC-1α and MyHC I levels. CONCLUSION VA promoted PGC-1α expression through the p38 MAPK signaling pathway, improved mitochondrial biogenesis, and altered the composition of muscle fiber type.
Collapse
Affiliation(s)
- Pengkang Song
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Jiamin Zhao
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Fanqinyu Li
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Xiaoyi Zhao
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Jinxin Feng
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Yuan Su
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Bo Wang
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Junxing Zhao
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China.
| |
Collapse
|
8
|
Komiya Y, Iseki S, Ochiai M, Takahashi Y, Yokoyama I, Suzuki T, Tatsumi R, Sawano S, Mizunoya W, Arihara K. Dietary oleic acid intake increases the proportion of type 1 and 2X muscle fibers in mice. Sci Rep 2024; 14:755. [PMID: 38191891 PMCID: PMC10774392 DOI: 10.1038/s41598-023-50464-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024] Open
Abstract
Skeletal muscle is one of the largest metabolic tissues in mammals and is composed of four different types of muscle fibers (types 1, 2A, 2X, and 2B); however, type 2B is absent in humans. Given that slow-twitch fibers are superior to fast-twitch fibers in terms of oxidative metabolism and are rich in mitochondria, shift of muscle fiber types in direction towards slower fiber types improves metabolic disorders and endurance capacity. We previously had reported that oleic acid supplementation increases type 1 fiber formation in C2C12 myotubes; however, its function still remains unclear. This study aimed to determine the effect of oleic acid on the muscle fiber types and endurance capacity. An in vivo mouse model was used, and mice were fed a 10% oleic acid diet for 4 weeks. Two different skeletal muscles, slow soleus muscle with the predominance of slow-twitch fibers and fast extensor digitorum longus (EDL) muscle with the predominance of fast-twitch fibers, were used. We found that dietary oleic acid intake improved running endurance and altered fiber type composition of muscles, the proportion of type 1 and 2X fibers increased in the soleus muscle and type 2X increased in the EDL muscle. The fiber type shift in the EDL muscle was accompanied by an increased muscle TAG content. In addition, blood triacylglycerol (TAG) and non-esterified fatty acid levels decreased during exercise. These changes suggested that lipid utilization as an energy substrate was enhanced by oleic acid. Increased proliferator-activated receptor γ coactivator-1β protein levels were observed in the EDL muscle, which potentially enhanced the fiber type transitions towards type 2X and muscle TAG content. In conclusion, dietary oleic acid intake improved running endurance with the changes of muscle fiber type shares in mice. This study elucidated a novel functionality of oleic acid in skeletal muscle fiber types. Further studies are required to elucidate the underlying mechanisms. Our findings have the potential to contribute to the field of health and sports science through nutritional approaches, such as the development of supplements aimed at improving muscle function.
Collapse
Affiliation(s)
- Yusuke Komiya
- Laboratory of Food Function and Safety, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan.
| | - Shugo Iseki
- Laboratory of Food Function and Safety, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Masaru Ochiai
- Laboratory of Animal and Human Nutritional Physiology, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Yume Takahashi
- Laboratory of Food Function and Safety, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Issei Yokoyama
- Laboratory of Food Function and Safety, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Takahiro Suzuki
- Laboratory of Muscle and Meat Science, Department of Animal and Marine Bioresource Sciences, Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Ryuichi Tatsumi
- Laboratory of Muscle and Meat Science, Department of Animal and Marine Bioresource Sciences, Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Shoko Sawano
- Laboratory of Food Health Science, Department of Food and Life Science, School of Life and Environmental Science, Azabu University, Sagamihara, Japan
| | - Wataru Mizunoya
- Laboratory of Food Science, Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Keizo Arihara
- Laboratory of Food Function and Safety, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| |
Collapse
|
9
|
Ospina-Romero MA, Medrano-Vázquez LS, Pinelli-Saavedra A, Sánchez-Villalba E, Valenzuela-Melendres M, Martínez-Téllez MÁ, Barrera-Silva MÁ, González-Ríos H. Productive Performance, Physiological Variables, and Carcass Quality of Finishing Pigs Supplemented with Ferulic Acid and Grape Pomace under Heat Stress Conditions. Animals (Basel) 2023; 13:2396. [PMID: 37508174 PMCID: PMC10376859 DOI: 10.3390/ani13142396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/15/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023] Open
Abstract
The effect of individual and combined supplementation of FA and GPM on physiological variables, productive performance, and carcass characteristics of finishing pigs under heat stress conditions were investigated. Forty Yorkshire × Duroc pigs (80.23 kg) were individually housed and randomly distributed into 4 groups under a 2 × 2 factorial arrangement (n = 10): Control (basal diet, BD); FA, BD + 25 mg FA; GPM, BD with 2.5% GPM; and MIX, BD with 25 mg FA and 2.5% GPM. Additives were supplemented for 31 days. The inclusion of FA or GPM did not modify rectal temperature and respiratory rate. There was an effect of the interaction on FI, which increased when only GPM was supplemented, with respect to Control and MIX (p < 0.05). Average daily gain (ADG) and feed conversion (FC) were not affected by treatments (p > 0.05). The inclusion of FA improved hot and cold carcass weight, while the addition of GPM decreased the marbling (p < 0.05) and tended to increase loin area (p < 0.10). GPM increased liver weight (p < 0.05). The addition of GPM and FA can improve some carcass characteristics under heat stress conditions. It is necessary to continue investigating different levels of inclusion of GPM and FA in finishing pigs' diets.
Collapse
Affiliation(s)
- María A Ospina-Romero
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo 83304, Mexico
| | - Leslie S Medrano-Vázquez
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo 83304, Mexico
| | - Araceli Pinelli-Saavedra
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo 83304, Mexico
| | - Esther Sánchez-Villalba
- Departamento de Agricultura y Ganadería, Universidad de Sonora, Carretera a Bahía de Kino km 21, Hermosillo 83000, Mexico
| | - Martín Valenzuela-Melendres
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo 83304, Mexico
| | - Miguel Ángel Martínez-Téllez
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo 83304, Mexico
| | - Miguel Ángel Barrera-Silva
- Departamento de Agricultura y Ganadería, Universidad de Sonora, Carretera a Bahía de Kino km 21, Hermosillo 83000, Mexico
| | - Humberto González-Ríos
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo 83304, Mexico
| |
Collapse
|
10
|
Yao W, Guo B, Jin T, Bao Z, Wang T, Wen S, Huang F. Garcinol Promotes the Formation of Slow-Twitch Muscle Fibers by Inhibiting p300-Dependent Acetylation of PGC-1α. Int J Mol Sci 2023; 24:ijms24032702. [PMID: 36769025 PMCID: PMC9916769 DOI: 10.3390/ijms24032702] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 02/04/2023] Open
Abstract
The conversion of skeletal muscle fiber from fast-twitch to slow-twitch is crucial for sustained contractile and stretchable events, energy homeostasis, and anti-fatigue ability. The purpose of our study was to explore the mechanism and effects of garcinol on the regulation of skeletal muscle fiber type transformation. Forty 21-day-old male C57/BL6J mice (n = 10/diet) were fed a control diet or a control diet plus garcinol at 100 mg/kg (Low Gar), 300 mg/kg (Mid Gar), or 500 mg/kg (High Gar) for 12 weeks. The tibialis anterior (TA) and soleus muscles were collected for protein and immunoprecipitation analyses. Dietary garcinol significantly downregulated (p < 0.05) fast myosin heavy chain (MyHC) expression and upregulated (p < 0.05) slow MyHC expression in the TA and soleus muscles. Garcinol significantly increased (p < 0.05) the activity of peroxisome proliferator-activated receptor gamma co-activator 1α (PGC-1α) and markedly decreased (p < 0.05) the acetylation of PGC-1α. In vitro and in vivo experiments showed that garcinol decreased (p < 0.05) lactate dehydrogenase activity and increased (p < 0.05) the activities of malate dehydrogenase and succinic dehydrogenase. In addition, the results of C2C12 myotubes showed that garcinol treatment increased (p < 0.05) the transformation of glycolytic muscle fiber to oxidative muscle fiber by 45.9%. Garcinol treatment and p300 interference reduced (p < 0.05) the expression of fast MyHC but increased (p < 0.05) the expression of slow MyHC in vitro. Moreover, the acetylation of PGC-1α was significantly decreased (p < 0.05). Garcinol promotes the transformation of skeletal muscle fibers from the fast-glycolytic type to the slow-oxidative type through the p300/PGC-1α signaling pathway in C2C12 myotubes.
Collapse
Affiliation(s)
- Weilei Yao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Baoyin Guo
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Taimin Jin
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Zhengxi Bao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Tongxin Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shu Wen
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Feiruo Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Correspondence: ; Tel.: +86-10-87286912; Fax: +86-10-87280408
| |
Collapse
|
11
|
Metformin Attenuates Slow-to-Fast Fiber Shift and Proteolysis Markers Increase in Rat Soleus after 7 Days of Rat Hindlimb Unloading. Int J Mol Sci 2022; 24:ijms24010503. [PMID: 36613942 PMCID: PMC9820761 DOI: 10.3390/ijms24010503] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Muscle unloading leads to signaling alterations that cause muscle atrophy and weakness. The cellular energy sensor AMPK can regulate myofiber-type shift, calcium-dependent signaling and ubiquitin-proteasome system markers. We hypothesized that the prevention of p-AMPK downregulation during the first week of muscle unloading would impede atrophy development and the slow-to-fast shift of soleus muscle fibers, and the aim of the study was to test this hypothesis. Thirty-two male Wistar rats were randomly assigned to four groups: placebo control (C), control rats treated with metformin (C + M), 7 days of hindlimb suspension (HS) + placebo (7HS), and 7 days of HS + metformin administration (7HS + M). In the soleus of the 7HS rats, we detected a slow-to-fast fiber-type shift as well as a significant downregulation of MEF-2D and p300 in the nuclei. In the 7HS group, we also found decreases in p-ACC (AMPK target) protein level and in the expression of E3 ubiquitin ligases and p-CaMK II protein level vs. the C group. The 7-day metformin treatment for soleus muscle unloading (1) prevented slow-to-fast fiber-type shift; (2) counteracted changes in the p-ACC protein level; (3) hindered changes in the nuclear protein level of the slow myosin expression activators MEF-2D and p300, but did not affect NFATc1 signaling; and (4) attenuated the unloading-induced upregulation of MuRF-1, atrogin-1, ubiquitin and myostatin mRNA expression, but did not prevent soleus muscle atrophy. Thus, metformin treatment during muscle disuse could be useful to prevent the decrease in the percentage of slow-type fatigue-resistant muscle fibers.
Collapse
|
12
|
Li XL, Wang L, He MC, Li WX, Zhang JL, Fu YF, Zhang Y. A clinical herbal prescription Gu-Shu-Kang capsule exerted beneficial effects on the musculoskeletal system of dexamethasone-treated mice by acting on tissue IGF-1 signalling pathway. PHARMACEUTICAL BIOLOGY 2022; 60:2098-2109. [PMID: 36269032 PMCID: PMC9590446 DOI: 10.1080/13880209.2022.2132029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/11/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Gu-Shu-Kang (GSK) is a clinical traditional Chinese medicine prescription for the treatment of primary osteoporosis. OBJECTIVE This study investigates the protection of GSK against dexamethasone (Dex)-induced disturbance of musculoskeletal system in male mice and to identify the underlying mechanism. MATERIALS AND METHODS Male C57BL/6 mice in Dex-treated groups were orally administered (i.g.) with vehicle, low dose (0.38 g/kg), middle dose (0.76 g/kg), or high dose (1.52 g/kg) of GSK for 8 weeks. A control group was designed without any treatment. The quadriceps femoris, tibialis anterior and gastrocnemius were harvested. Molecular expression was determined by RT-PCR and immunoblotting. RESULTS Treatment with GSK enhanced weight-loaded swimming time (from 411.7 ± 58.4 s in Dex group to 771.4 ± 87.3 s in GSK-M) and grip strength (from 357.8 ± 23.9 g in Dex group to 880.3 ± 47.6 g in GSK-M). GSK produced a rise in cross-sectional area of myofibers and promoted a switching of glycolytic-to-oxidative myofiber. The administration with GSK affected expression of muscle regulatory factors shown by the down-regulation in MuRF-1 and atrogin-1 and the up-regulation in myogenic differentiation factor (MyoD) and myosin heavy chain (MHC). GSK stimulated tissue IGF-1 signalling pathway (IGF-1R/PI3K/Akt), not only in skeletal muscle but also in bone associated with the amelioration of trabecular bone mineral density and the improvement of osteogenesis. CONCLUSIONS These findings revealed the potential mechanisms involved in the beneficial effects of Gu-Shu-Kang on musculoskeletal system in mice with challenging to dexamethasone, and this prescription may have applications in management for muscle atrophy and osteoporosis triggered by glucocorticoid.
Collapse
Affiliation(s)
- Xiao-Li Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Liang Wang
- Department of Geriatric, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Ming-Chao He
- Spine Disease Research Institute, Longhua Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen-Xiong Li
- Spine Disease Research Institute, Longhua Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Trauma, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jia-Li Zhang
- Spine Disease Research Institute, Longhua Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Fang Fu
- Spine Disease Research Institute, Longhua Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Zhang
- Spine Disease Research Institute, Longhua Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Ministry of Education, Key Laboratory of Theory and Therapy of Muscles and Bones, Shanghai, China
| |
Collapse
|
13
|
Li J, Liang R, Mao Y, Yang X, Luo X, Qian Z, Zhang Y, Zhu L. Effect of dietary resveratrol supplementation on muscle fiber types and meat quality in beef cattle. Meat Sci 2022; 194:108986. [PMID: 36152602 DOI: 10.1016/j.meatsci.2022.108986] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022]
Abstract
In order to investigate the effect of dietary resveratrol supplementation on muscle fiber types and meat quality in beef cattle, a feeding experiment was undertaken. Longissimus lumborum, Psoas major and Semitendinosus muscles were collected 24 h post-mortem from two groups of cattle, which were fed with a total mixed ration (Control - CON) or supplemented with resveratrol (5 g/animal/day, RES) for 120 d before slaughter. The results showed that dietary resveratrol increased the gene expression of MyHC I and enhanced the proportion of type I fibers in three muscles. The cooking loss and Warner-Bratzler shear force of all muscles during aging for 21 days were decreased. However, the increased proportion of type I fibers resulted in a darker initial color, but did improve color stability, as the a* value of RES samples was lower initially but higher in the later stage of aging. This study indicates the supplementation potential of resveratrol for beef cattle for tenderness and color stability.
Collapse
Affiliation(s)
- Jiqiang Li
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Rongrong Liang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| | - Yanwei Mao
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| | - Xiaoyin Yang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| | - Xin Luo
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| | - Zhanyu Qian
- Shangdu Hengchang Co., Ltd., Caoxian, Shandong 274400, PR China
| | - Yimin Zhang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| | - Lixian Zhu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
14
|
Bioactive Components in Whole Grains for the Regulation of Skeletal Muscle Function. Foods 2022; 11:foods11182752. [PMID: 36140879 PMCID: PMC9498156 DOI: 10.3390/foods11182752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 12/03/2022] Open
Abstract
Skeletal muscle plays a primary role in metabolic health and physical performance. Conversely, skeletal muscle dysfunctions such as muscular dystrophy, atrophy and aging-related sarcopenia could lead to frailty, decreased independence and increased risk of hospitalization. Dietary intervention has become an effective approach to improving muscle health and function. Evidence shows that whole grains possess multiple health benefits compared with refined grains. Importantly, there is growing evidence demonstrating that bioactive substances derived from whole grains such as polyphenols, γ-oryzanol, β-sitosterol, betaine, octacosanol, alkylresorcinols and β-glucan could contribute to enhancing myogenesis, muscle mass and metabolic function. In this review, we discuss the potential role of whole-grain-derived bioactive components in the regulation of muscle function, emphasizing the underlying mechanisms by which these compounds regulate muscle biology. This work will contribute toward increasing awareness of nutraceutical supplementation of whole grain functional ingredients for the prevention and treatment of muscle dysfunctions.
Collapse
|
15
|
Resveratrol Inhibits Proliferation and Differentiation of Porcine Preadipocytes by a Novel LincRNA-ROFM/miR-133b/AdipoQ Pathway. Foods 2022; 11:foods11172690. [PMID: 36076875 PMCID: PMC9455634 DOI: 10.3390/foods11172690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/25/2022] Open
Abstract
Resveratrol (RES) has a wide range of biological and pharmacological activities with various health benefits for humans as a food additive. In animal production, RES has been considered a potential functional feed additive for producing high-quality pork. Long noncoding RNAs (lncRNAs) have emerged as essential regulators of fat metabolism, and phytochemicals can regulate fat metabolism through lncRNA. However, it is unclear whether RES can improve back-fat thickness by regulating lncRNA. In this study, we identified a novel lncRNA, which was named a long intergenic non-protein coding RNA, a regulator of fat metabolism (LincRNA-ROFM), from our previous lncRNA sequencing data. LincRNA-ROFM can inhibit adipocyte proliferation and differentiation. In-depth analyses showed that LincRNA-ROFM acts as a molecular sponge for miR-133b, and adiponectin (AdipoQ) is a direct target of miR-133b in porcine preadipocytes. In addition, the expression of LincRNA-ROFM was positively correlated with AdipoQ. RES can promote the expression of LincRNA-ROFM by PPARα and C/EBPα. Altogether, our research showed that LincRNA-ROFM acts as a ceRNA to sequester miR-133b and is upregulated by RES, leading to heightened AdipoQ expression, and thus decreased adipocyte proliferation and differentiation, which reduces back-fat thickness of pigs. Taken together, the RES/LincRNA-ROFM/miR-133b/AdipoQ regulatory network preliminarily explains the mechanism of action of RES in inhibiting fat deposition, which provides new insight into the downstream mechanism of RES inhibition of fat deposits by regulating the lncRNA.
Collapse
|
16
|
Li H, Chen X, Chen D, Yu B, He J, Zheng P, Luo Y, Yan H, Chen H, Huang Z. Ellagic Acid Alters Muscle Fiber-Type Composition and Promotes Mitochondrial Biogenesis through the AMPK Signaling Pathway in Healthy Pigs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9779-9789. [PMID: 35916165 DOI: 10.1021/acs.jafc.2c04108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ellagic acid (EA), because of its remarkable health-promoting ability, has aroused widespread interest in the fields of nutrition and medicine. However, no reports showed that EA regulates mitochondrial biogenesis as well as muscle fiber-type composition in pigs. Our study found that dietary 75 and 150 mg/kg EA obviously augmented the slow myosin heavy chain (MyHC) protein level, the number of slow-twitch muscle fibers, and the activity of malate dehydrogenase (MDH) in the longissimus thoracis (LT) muscle of growing-finishing pigs. In contrast, dietary 75 and 150 mg/kg EA decreased the fast MyHC level, the number of fast-twitch muscle fibers, and the activity of lactate dehydrogenase (LDH) in the LT muscle. In addition, our further study found that dietary 75 and 150 mg/kg EA promoted the mitochondrial DNA (mtDNA) content, the mRNA expressions of ATP synthase (ATP5G), mtDNA transcription factor A (TFAM), AMP-activated protein kinase α1 (AMPKα1), peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) and sirtuin 1 (Sirt1), and the level of phospho-LKB1 (P-LKB1), phospho-AMPK (P-AMPK), Sirt1, and PGC-1α in the LT muscle. In vitro, 5, 10, and 20 μmol/L EA treatment upregulated the level of slow MyHC, but only 10 μmol/L EA treatment decreased fast MyHC protein expression in porcine skeletal muscle satellite cells (PSCs). In addition, our data again found that 10 μmol/L EA treatment promoted the mtDNA content, the mRNA levels of ATP5G, mitochondrial transcription factor b1 (TFB1M), citrate synthase (Cs), AMPKα1, PGC-1α, and Sirt1, and the protein expressions of P-AMPK, P-LKB1, PGC-1α, and Sirt1 in PSCs. What is more, inhibition of the AMPK signaling pathway by AMPKα1 siRNA significantly eliminated the improvement of EA on muscle fiber-type composition as well as the mtDNA content in PSCs. In conclusion, EA altered muscle fiber-type composition and promoted mitochondrial biogenesis through the AMPK signaling pathway.
Collapse
Affiliation(s)
- Huawei Li
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Hui Yan
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, P. R. China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| |
Collapse
|
17
|
Xiang J, Du M, Wang H. Dietary Plant Extracts in Improving Skeletal Muscle Development and Metabolic Function. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2087669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Jinzhu Xiang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | - Hanning Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
18
|
Yadav A, Yadav SS, Singh S, Dabur R. Natural products: Potential therapeutic agents to prevent skeletal muscle atrophy. Eur J Pharmacol 2022; 925:174995. [PMID: 35523319 DOI: 10.1016/j.ejphar.2022.174995] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 12/16/2022]
Abstract
The skeletal muscle (SkM) is the largest organ, which plays a vital role in controlling musculature, locomotion, body heat regulation, physical strength, and metabolism of the body. A sedentary lifestyle, aging, cachexia, denervation, immobilization, etc. Can lead to an imbalance between protein synthesis and degradation, which is further responsible for SkM atrophy (SmA). To date, the understanding of the mechanism of SkM mass loss is limited which also restricted the number of drugs to treat SmA. Thus, there is an urgent need to develop novel approaches to regulate muscle homeostasis. Presently, some natural products attained immense attraction to regulate SkM homeostasis. The natural products, i.e., polyphenols (resveratrol, curcumin), terpenoids (ursolic acid, tanshinone IIA, celastrol), flavonoids, alkaloids (tomatidine, magnoflorine), vitamin D, etc. exhibit strong potential against SmA. Some of these natural products have been reported to have equivalent potential to standard treatments to prevent body lean mass loss. Indeed, owing to the large complexity, diversity, and slow absorption rate of bioactive compounds made their usage quite challenging. Moreover, the use of natural products is controversial due to their partially known or elusive mechanism of action. Therefore, the present review summarizes various experimental and clinical evidence of some important bioactive compounds that shall help in the development of novel strategies to counteract SmA elicited by various causes.
Collapse
Affiliation(s)
- Aarti Yadav
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Surender Singh Yadav
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Sandeep Singh
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Rajesh Dabur
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
19
|
Hu MM, Zheng WY, Cheng MH, Song ZY, Shaukat H, Atta M, Qin H. Sesamol Reverses Myofiber-Type Conversion in Obese States via Activating the SIRT1/AMPK Signal Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2253-2264. [PMID: 35166533 DOI: 10.1021/acs.jafc.1c08036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Obesity can evoke changes of skeletal muscle structure and function, which are characterized by the conversion of myofiber from type I to type II, leading to a vicious cycle of metabolic disorders. Reversing the muscle fiber-type conversion in obese states is a novel strategy for treating those with obesity. Sesamol, a food ingredient compound isolated from sesame seeds, exerted potential antiobesity effects. The present research aimed to explore the therapeutic effects of sesamol on obesity-related skeletal muscle-fiber-type conversion and elucidate the underlying molecular mechanisms through utilizing a high-fat-diet-induced obese C57BL/6J mice model and palmitic acid-exposed C2C12 myotubes. The results showed that sesamol attenuated obesity-related metabolic disturbances, elevated exercise endurance of obese mice, and decreased lipid accumulation and insulin resistance in skeletal muscle. After the treatment with sesamol, the muscular mitochondrial content and biogenesis were increased, accompanied by the enzyme activities and myosin heavy-chain isoform changed from type II fiber to type I fiber. Mechanistic studies revealed that the effects of sesamol on reversing skeletal muscle-fiber-type conversion in obese states were associated with the stimulation of the muscular sirtuin 1 (SIRT1)/AMP-activated protein kinase (AMPK) signal pathway, and these effects could be inhibited by a specific inhibitor of SIRT1, EX-527. In conclusion, our research provided novel evidence that sesamol could regulate myofiber-type conversion to treat obesity and obesity-related metabolic disorders by stimulating the muscular SIRT1/AMPK signal pathway.
Collapse
Affiliation(s)
- Min-Min Hu
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha 410078, Hunan Province China
| | - Wen-Ya Zheng
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha 410078, Hunan Province China
| | - Ming-Hui Cheng
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha 410078, Hunan Province China
| | - Zi-Yu Song
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha 410078, Hunan Province China
| | - Horia Shaukat
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha 410078, Hunan Province China
| | - Mahnoor Atta
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha 410078, Hunan Province China
| | - Hong Qin
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha 410078, Hunan Province China
| |
Collapse
|
20
|
Hao D, Wang X, Yang Y, Thomsen B, Holm LE, Qu K, Huang B, Chen H. Integrated Analysis of mRNA and MicroRNA Co-expressed Network for the Differentiation of Bovine Skeletal Muscle Cells After Polyphenol Resveratrol Treatment. Front Vet Sci 2022; 8:777477. [PMID: 35036414 PMCID: PMC8759604 DOI: 10.3389/fvets.2021.777477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/15/2021] [Indexed: 01/01/2023] Open
Abstract
Resveratrol (RSV) has been confirmed to benefit human health. Resveratrol supplemented in the feeds of animals improved pork, chicken, and duck meat qualities. In this study, we identified differentially expressed (DE) messenger RNAs (mRNAs) (n = 3,856) and microRNAs (miRNAs) (n = 93) for the weighted gene co-expression network analysis (WGCNA) to investigate the co-expressed DE mRNAs and DE miRNAs in the primary bovine myoblasts after RSV treatment. The mRNA results indicated that RSV treatments had high correlations with turquoise module (0.91, P-value = 0.01) and blue module (0.93, P-value < 0.01), while only the turquoise module (0.96, P-value < 0.01) was highly correlated with the treatment status using miRNA data. After biological enrichment analysis, the 2,579 DE genes in the turquoise module were significantly enriched in the Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The top two GO terms were actin filament-based process (GO:0030029) and actin cytoskeleton organization (GO:0030036). The top two KEGG pathways were regulation of actin cytoskeleton (bta04810) and tight junction (bta04530). Then, we constructed the DE mRNA co-expression and DE miRNA co-expression networks in the turquoise module and the mRNA–miRNA targeting networks based on their co-expressions in the key module. In summary, the RSV-induced miRNAs participated in the co-expression networks that could affect mRNA expressions to regulate the primary myoblast differentiation. Our study provided a better understanding of the roles of RSV in inducing miRNA and of the characteristics of DE miRNAs in the key co-expressed module in regulation of mRNAs and revealed new candidate regulatory miRNAs and genes for the beef quality traits.
Collapse
Affiliation(s)
- Dan Hao
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, China.,Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Xiao Wang
- Konge Larsen ApS, Kongens Lyngby, Denmark
| | - Yu Yang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, China
| | - Bo Thomsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Lars-Erik Holm
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Kaixing Qu
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong, China
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, China.,College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
21
|
Li P, Xu R, Shi Y, Shi X, Zhang X, Li J, Kou G. Luteolin increases slow muscle fibers via FLCN-AMPK-PGC-1α signaling pathway. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
22
|
Abstract
Physical exercise can be effective in preventing or ameliorating various diseases, including diabetes, cardiovascular diseases, neurodegenerative diseases, and cancer. However, not everyone may be able to participate in exercise due to illnesses, age-related frailty, or difficulty in long-term behavior change. An alternative option is to utilize pharmacological interventions that mimic the positive effects of exercise training. Recent studies have identified signaling pathways associated with the benefits of physical activity and discovered exercise mimetics that can partially simulate the systemic impact of exercise. This review describes the molecular targets for exercise mimetics and their effect on skeletal muscle and other tissues. We will also discuss the potential advantages of using natural products as a multi-targeting agent for mimicking the health-promoting effects of exercise.
Collapse
Affiliation(s)
- Young Jin Jang
- Major of Food Science & Technology, Seoul Women’s University, Seoul 01797, Korea
| | - Sanguine Byun
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
23
|
Li P, Zhang S, Song H, Traore SS, Li J, Raubenheimer D, Cui Z, Kou G. Naringin Promotes Skeletal Muscle Fiber Remodeling by the AdipoR1-APPL1-AMPK Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11890-11899. [PMID: 34586803 DOI: 10.1021/acs.jafc.1c04481] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Naringin, a natural flavonoid mainly found in citrus fruit, has been reported to exert a positive effect on improving skeletal muscle health. However, the effects and potential mechanisms of naringin on skeletal muscle fiber switching is still unclear. Here, we discovered that oral administration of naringin increased the low-speed running time, four-limb hanging time, body oxygen consumption in mice, enhanced aerobic enzyme activity, MyHC I expression, and slow-twitch fiber percentage in mice skeletal muscle. By contrast, naringin decreased α-GPDH enzyme activity, MyHC IIb expression, and fast-twitch fiber percentage. Moreover, naringin increased the concentration of serum adiponectin and activated the expression of AdipoR1, APPL1, AMPK, and PGC-1α. Furthermore, by the in vitro experiment and AdipoR1 knockdown, we found that inhibition of the AdipoR1 signaling pathway significantly reduced the effect of naringin on slow-twitch fiber-/fast-twitch fiber-related gene and protein expression. In conclusion, our results indicated that naringin could induce skeletal muscle fiber transition from fast twitch to slow twitch via the AdipoR1 signaling pathway. This study may provide new strategy for improving exercise endurance and slow muscle fiber deficiency-related diseases.
Collapse
Affiliation(s)
- Peiyuan Li
- Centre of Sport Nutrition and Health, School of Physical Education, Zhengzhou University, Zhengzhou 450001, China
- Department of Nutrition and Food Hygiene, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Sha Zhang
- Medical School of Chinese PLA, Beijing 100853, China
| | - Hui Song
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
| | - Stanislav Seydou Traore
- Department of Nutrition and Food Hygiene, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Jiangtao Li
- Centre of Sport Nutrition and Health, School of Physical Education, Zhengzhou University, Zhengzhou 450001, China
| | - David Raubenheimer
- Centre of Sport Nutrition and Health, School of Physical Education, Zhengzhou University, Zhengzhou 450001, China
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zhenwei Cui
- Centre of Sport Nutrition and Health, School of Physical Education, Zhengzhou University, Zhengzhou 450001, China
| | - Guangning Kou
- Centre of Sport Nutrition and Health, School of Physical Education, Zhengzhou University, Zhengzhou 450001, China
- Department of Nutrition and Food Hygiene, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
24
|
Zhuang Y, Huang H, Liu S, Liu F, Tu Q, Yin Y, He S. Resveratrol Improves Growth Performance, Intestinal Morphology, and Microbiota Composition and Metabolism in Mice. Front Microbiol 2021; 12:726878. [PMID: 34539617 PMCID: PMC8446547 DOI: 10.3389/fmicb.2021.726878] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
Background Resveratrol (RSV) plays a vital role in alleviating various stresses and improving intestinal health. The current study was conducted to explore whether RSV alleviates weaning stress through improving gut health in a weaning mouse model. Forty 21-day-old weaned mice were randomly assigned to a control group without RSV treatment and three treatment groups with 10, 20, and 50 mg/kg RSV for 28 days. Results The results showed that RSV at a dose of 20 mg/kg improved total body weight, intestinal morphology (villus length and the ratio of villus length to crypt depth), and the levels of intestinal barrier proteins (claudin-1 and occludin), but had little effect on the food intake, crypt depth, and serum free amino acids of mice. Compared with the control group, mice supplemented with RSV had decreased mRNA expression of genes related to inflammatory cytokines (IL-6 and IL-1β), but increased mRNA expression of genes related to host defense peptides (Defa3, Defa5, Defa20, and Lyz) and short-chain fatty acids (SCFAs) production (propionic acid, isobutyric acid, butyric acid, and isovaleric acid). In addition, 16S rRNA sequencing results showed that RSV supplementation increased the richness indices of intestinal microbiota (Chao, ACE) and shaped the composition of intestinal microbiota (e.g., increased β-diversity of intestinal microbiota community). Meanwhile, RSV supplementation increased genes of Butyricicoccus, Ruminococcus_1, and Roseburia, which are producers of SCFAs. Furthermore, RSV supplementation significantly influenced the metabolism of intestinal microbiota, namely, amino acids metabolism, lipid metabolism, and defense mechanisms. Conclusion RSV can improve growth performance and intestinal morphology in weaning mice, possibly through improving gut immune response and microbiota function.
Collapse
Affiliation(s)
- Yu Zhuang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan Normal University, Changsha, China.,Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Huijun Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan Normal University, Changsha, China
| | - Shuang Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan Normal University, Changsha, China
| | - Feng Liu
- Yucheng Baolikang Biological Feed Co., Ltd., Dezhou, China
| | - Qiang Tu
- Yucheng Baolikang Biological Feed Co., Ltd., Dezhou, China
| | - Yulong Yin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan Normal University, Changsha, China
| | - Shanping He
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan Normal University, Changsha, China
| |
Collapse
|
25
|
Chen X, Xiang L, Huang Z, Jia G, Liu G, Zhao H. Effect of dietary leucine supplementation on skeletal muscle fiber type transformation in weaning piglets. Anim Biotechnol 2021; 33:546-554. [PMID: 34543141 DOI: 10.1080/10495398.2021.1977309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
To investigate the effects of dietary leucine supplementation on muscle fiber type transformation in weaning piglets, 54 21-day-old male DLY (Duroc × Landrace × Yorkshire) weaned piglets were randomly divided into control, 0.25% and 0.5% leucine groups. The experiment lasted for 42 d. The results showed that dietary supplementation of 0.25% leucine significantly increased the protein expressions of slow MyHC, myoglobin and Troponin I-SS and the mRNA expressions of MyHC I, MyHC IIa, Tnni1, Tnnc1, Tnnt1 and myoglobin, while decreased the protein level of fast MyHC and the mRNA level of MyHC IIb in longissimus dorsi (LD) muscle. Furthermore, 0.25% leucine significantly increased succinic dehydrogenase (SDH) activity and decreased lactate dehydrogenase (LDH) activity. In addition, our data found that 0.25% leucine significantly increased serum adiponectin (AdipoQ) concentration, and the protein levels of AdipoQ, adiponectin receptor 1 (AdipoR1), phosphorylated AMP-activated protein kinase (p-AMPK) and PPAR-γ coactivator-1α (PGC-1α) and the mRNA levels of AdipoQ, AdipoR1 and AMPKα2. Together, our findings indicate that leucine promotes porcine skeletal muscle fiber type transformation from fast-twitch to slow-twitch, and the effect may be mediated by AdipoQ-AMPK-PGC-1α signaling pathway.
Collapse
Affiliation(s)
- Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, People's Republic of China.,Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Lu Xiang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, People's Republic of China.,Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, People's Republic of China.,Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, People's Republic of China.,Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, People's Republic of China.,Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, People's Republic of China.,Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, People's Republic of China
| |
Collapse
|
26
|
Mañas-García L, Denhard C, Mateu J, Duran X, Gea J, Barreiro E. Beneficial Effects of Resveratrol in Mouse Gastrocnemius: A Hint to Muscle Phenotype and Proteolysis. Cells 2021; 10:cells10092436. [PMID: 34572085 PMCID: PMC8469306 DOI: 10.3390/cells10092436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 12/16/2022] Open
Abstract
We hypothesized that the phenolic compound resveratrol mitigates muscle protein degradation and loss and improves muscle fiber cross-sectional area (CSA) in gastrocnemius of mice exposed to unloading (7dI). In gastrocnemius of mice (female C57BL/6J, 10 weeks) exposed to a seven-day period of hindlimb immobilization with/without resveratrol treatment, markers of muscle proteolysis (tyrosine release, systemic troponin-I), atrophy signaling pathways, and muscle phenotypic features and function were analyzed. In gastrocnemius of unloaded mice treated with resveratrol, body and muscle weight and function were attenuated, whereas muscle proteolysis (tyrosine release), proteolytic and apoptotic markers, atrophy signaling pathways, and myofiber CSA significantly improved. Resveratrol treatment of mice exposed to a seven-day period of unloading prevented body and muscle weight and limb strength loss, while an improvement in muscle proteolysis, proteolytic markers, atrophy signaling pathways, apoptosis, and muscle fiber CSA was observed in the gastrocnemius muscle. These findings may have potential therapeutic implications in the management of disuse muscle atrophy in clinical settings.
Collapse
Affiliation(s)
- Laura Mañas-García
- Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Pulmonology Department, IMIM—Hospital del Mar, Parc de Salut Mar, 08003 Barcelona, Spain; (L.M.-G.); (C.D.); (J.G.)
- Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Charlotte Denhard
- Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Pulmonology Department, IMIM—Hospital del Mar, Parc de Salut Mar, 08003 Barcelona, Spain; (L.M.-G.); (C.D.); (J.G.)
- Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Javier Mateu
- Department of Pharmacy, Hospital del Mar, Parc de Salut Mar, 08003 Barcelona, Spain;
| | - Xavier Duran
- Scientific and Technical Department, Hospital del Mar-IMIM, 08003 Barcelona, Spain;
| | - Joaquim Gea
- Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Pulmonology Department, IMIM—Hospital del Mar, Parc de Salut Mar, 08003 Barcelona, Spain; (L.M.-G.); (C.D.); (J.G.)
- Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Esther Barreiro
- Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Pulmonology Department, IMIM—Hospital del Mar, Parc de Salut Mar, 08003 Barcelona, Spain; (L.M.-G.); (C.D.); (J.G.)
- Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-316-0385; Fax: +34-93-316-0410
| |
Collapse
|
27
|
Penedo-Vázquez A, Duran X, Mateu J, López-Postigo A, Barreiro E. Curcumin and Resveratrol Improve Muscle Function and Structure through Attenuation of Proteolytic Markers in Experimental Cancer-Induced Cachexia. Molecules 2021; 26:4904. [PMID: 34443492 PMCID: PMC8402048 DOI: 10.3390/molecules26164904] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Muscle wasting and cachexia are prominent comorbidities in cancer. Treatment with polyphenolic compounds may partly revert muscle wasting. We hypothesized that treatment with curcumin or resveratrol in cancer cachectic mice may improve muscle phenotype and total body weight through attenuation of several proteolytic and signaling mechanisms in limb muscles. In gastrocnemius and soleus muscles of cancer cachectic mice (LP07 adenocarcinoma cells, N = 10/group): (1) LC-induced cachexia, (2) LC-cachexia+curcumin, and (3) LC-cachexia + resveratrol, muscle structure and damage (including blood troponin I), sirtuin-1, proteolytic markers, and signaling pathways (NF-κB and FoxO3) were explored (immunohistochemistry and immunoblotting). Compared to nontreated cachectic mice, in LC-cachexia + curcumin and LC-cachexia + resveratrol groups, body and muscle weights (gastrocnemius), limb muscle strength, muscle damage, and myofiber cross-sectional area improved, and in both muscles, sirtuin-1 increased, while proteolysis (troponin I), proteolytic markers, and signaling pathways were attenuated. Curcumin and resveratrol elicited beneficial effects on fast- and slow-twitch limb muscle phenotypes in cachectic mice through sirtuin-1 activation, attenuation of atrophy signaling pathways, and proteolysis in cancer cachectic mice. These findings have future therapeutic implications as these natural compounds, separately or in combination, may be used in clinical settings of muscle mass loss and dysfunction including cancer cachexia.
Collapse
Affiliation(s)
- Antonio Penedo-Vázquez
- Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain; (A.P.-V.); (A.L.-P.)
| | - Xavier Duran
- Scientific and Technical Department, Hospital del Mar-IMIM, 08003 Barcelona, Spain;
| | - Javier Mateu
- Department of Pharmacy, Hospital del Mar, Parc de Salut Mar, 08003 Barcelona, Spain;
| | - Adrián López-Postigo
- Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain; (A.P.-V.); (A.L.-P.)
| | - Esther Barreiro
- Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain; (A.P.-V.); (A.L.-P.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| |
Collapse
|
28
|
Xue Y, Huang Z, Chen X, Jia G, Zhao H, Liu G. Naringin induces skeletal muscle fiber type transformation via AMPK/PGC-1α signaling pathway in mice and C2C12 myotubes. Nutr Res 2021; 92:99-108. [PMID: 34284270 DOI: 10.1016/j.nutres.2021.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 01/14/2023]
Abstract
A large number of studies have shown that polyphenols can regulate skeletal muscle fiber type transformation through AMPK signal. However, the effects and mechanism of naringin (a natural polyphenol) on muscle fiber type transformation still remains unclear. Thus, we hypothesized that naringin would induce the transformation of skeletal muscle fibers from type II to type I by AMPK signaling. C2C12 myotubes and BALB/c mice models were used to test this hypothesis. We found that naringin significantly increased the protein expression of slow myosin heavy chain (MyHC), myoglobin and troponin I type I slow skeletal (Troponin I-SS) and the activities of succinate dehydrogenase (SDH) and malate dehydrogenase (MDH), and significantly decreased fast MyHC protein expression and lactate dehydrogenase (LDH) activity, accompanied by the activation of AMPK and the activity of peroxisome proliferator activated receptor-γ coactivator-1α (PGC-1α) in mice and C2C12 myotubes. Further inhibition of AMPK activity by compound C showed that the above effects were significantly inhibited in C2C12 myotubes. In conclusion, naringin promotes the transformation of skeletal muscle fibers from type II to type I through AMPK/PGC-1α signaling pathway, which not only enriches the nutritional and physiological functions of naringin, but also provides a theoretical basis for the regulation of muscle fiber type transformation by nutritional approaches.
Collapse
Affiliation(s)
- Yonghong Xue
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| |
Collapse
|
29
|
Zhang N, Zhuang L, Gai S, Shan Y, Wang S, Li F, Chen L, Zhao D, Liu X. Beneficial phytoestrogenic effects of resveratrol on polycystic ovary syndromein rat model. Gynecol Endocrinol 2021; 37:337-341. [PMID: 32851887 DOI: 10.1080/09513590.2020.1812569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIMS The effective treatment of polycystic ovary syndrome (PCOS)-related hormonal disorders necessitates the development of novel treatment strategies. Resveratrol is found in certain food products, and is known to exhibit phytoestrogen properties. The present study was to assess whether resveratrol exhibits beneficial phytoestrogenic effects and associated hormonal modulation in a rat model of PCOS. MATERIALS AND METHODS This model was established by administering oral letrozole to female Sprague-Dawley (SD) rats prior to randomizing them into control, model and resveratrol treatment groups (40, 80, or 160 mg/kg). Animals were treated for 30 days, after which time ovarian tissues were collected and evaluated via hematoxylin and eosin staining. In addition, serum levels of estradiol and adiponectin were assessed via ELISA, and ovarian expression of nesfatin-1 and aromatase was assessed through RT-PCR and western blotting. RESULTS We found that resveratrol administration was associated with increased levels of plasma adiponectin and estradiol levels and restoration of normal ovarian morphology in PCOS model animals. In addition, this treatment was linked to the increased ovarian expression of nesfatin-1 and aromatase at the RNA and protein levels. CONCLUSIONS Together things findings suggest that resveratrol may represent an effective tool for treating PCOS owing to its phytoestrogenic properties.
Collapse
Affiliation(s)
- Ning Zhang
- Reproductive Medicine Center, Yantai Yuhuangding Hospital, Yantai, China
| | - Lili Zhuang
- Reproductive Medicine Center, Yantai Yuhuangding Hospital, Yantai, China
| | - Shukun Gai
- Reproductive Medicine Center, Yantai Yuhuangding Hospital, Yantai, China
| | - Yinghua Shan
- Reproductive Medicine Center, Yantai Yuhuangding Hospital, Yantai, China
| | - Shuang Wang
- Reproductive Medicine Center, Yantai Yuhuangding Hospital, Yantai, China
| | - Fenghua Li
- Reproductive Medicine Center, Yantai Yuhuangding Hospital, Yantai, China
| | - Lili Chen
- Reproductive Medicine Center, Yantai Yuhuangding Hospital, Yantai, China
| | - Dongmei Zhao
- Reproductive Medicine Center, Yantai Yuhuangding Hospital, Yantai, China
| | - Xiaoyan Liu
- Reproductive Medicine Center, Yantai Yuhuangding Hospital, Yantai, China
| |
Collapse
|
30
|
Chen X, Liang D, Huang Z, Jia G, Zhao H, Liu G. Quercetin regulates skeletal muscle fiber type switching via adiponectin signaling. Food Funct 2021; 12:2693-2702. [PMID: 33667291 DOI: 10.1039/d1fo00031d] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This study aimed to investigate the role and underlying molecular mechanism of quercetin in regulating skeletal muscle fiber type transition. We found that dietary quercetin supplementation in mice significantly increased oxidative fiber-related gene expression, slow-twitch fiber percentage and succinic dehydrogenase (SDH) activity. By contrast, quercetin decreased lactate dehydrogenase (LDH) activity, fast MyHC protein expression, fast-twitch fiber percentage, and MyHC IIb mRNA expression. Furthermore, quercetin significantly increased serum adiponectin (AdipoQ) concentration, and the expression levels of AdipoQ and AdipoR1. However, inhibition of adiponectin signaling by AdipoR1 siRNA significantly attenuated the effects of quercetin on muscle fiber type-related gene expression, the percentages of slow MyHC-positive and fast MyHC-positive fibers, and metabolic enzyme activity in C2C12 myotubes. Together, our data indicated that quercetin could promote skeletal fiber switching from glycolytic type II to oxidative type I through AdipoQ signaling.
Collapse
Affiliation(s)
- Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
| | | | | | | | | | | |
Collapse
|
31
|
Xiang L, Huang Z, Chen X, Jia G, Liu G, Zhao H. Leucine regulates porcine muscle fiber type transformation via adiponectin signaling pathway. Anim Biotechnol 2021; 33:330-338. [PMID: 33703997 DOI: 10.1080/10495398.2021.1892709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Leucine can promote slow-twitch muscle fibers formation, and this effect may be mediated by AMPK signaling pathway. In addition, adiponectin (AdipoQ) plays an important role in regulation of muscle fiber type transformation. AdipoQ is located in the upstream of AMPK and its secretion can be regulated by leucine. Therefore, the aim of this study was to explore whether leucine affects muscle fiber type transformation through AdipoQ signaling pathway. Our data showed that 4 mM leucine significantly increased protein expression levels of slow MyHC, Myoglobin, Troponin I-SS, AdipoQ, AdipoR1, phospho-AMPK (p-AMPK) and PGC-1α and mRNA expression levels of AMPKα2, PGC-1α, AdipoQ and AdipoR1, and significantly decreased fast MyHC protein expression. In addition, 4 mM leucine significantly increased the SDH activity while significantly decreased the LDH activity. However, knockdown of AdipoR1 expression by AdipoR1-siRNA abolished leucine-induced upregulation of protein expressions of slow MyHC, AdipoR1, p-AMPK, PGC-1α and NRF1, mRNA expressions of MyHC I, MyHC IIa, AdipoR1, AMPKα2 and PGC-1α, ATP5G, TFAM and NRF1, and mtDNA level, as well as downregulation of protein expression of fast MyHC and mRNA expression of MyHC IIb. Together, our data revealed that leucine promotes muscle fiber type transformation from fast-twitch to slow-twitch through AdipoQ signaling pathway.
Collapse
Affiliation(s)
- Lu Xiang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
32
|
Giacometti J, Muhvić D, Grubić-Kezele T, Nikolić M, Šoić-Vranić T, Bajek S. Olive Leaf Polyphenols (OLPs) Stimulate GLUT4 Expression and Translocation in the Skeletal Muscle of Diabetic Rats. Int J Mol Sci 2020; 21:ijms21238981. [PMID: 33256066 PMCID: PMC7729747 DOI: 10.3390/ijms21238981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022] Open
Abstract
Skeletal muscles are high-insulin tissues responsible for disposing of glucose via the highly regulated process of facilitated glucose transporter 4 (GLUT4). Impaired insulin action in diabetes, as well as disorders of GLUT4 vesicle trafficking in the muscle, are involved in defects in insulin-stimulated GLUT4 translocation. Since the Rab GTPases are the main regulators of vesicular membrane transport in exo- and endo-cytosis, in the present work, we studied the effect of olive leaf polyphenols (OLPs) on Rab8A, Rab13, and Rab14 proteins of the rat soleus muscle in a model of streptozotocin (SZT)-induced diabetes (DM) in a dose-dependent manner. Glucose, cholesterol, and triglyceride levels were determined in the blood, morphological changes of the muscle tissue were captured by hematoxylin and eosin histological staining, and expression of GLUT4, Rab8A, Rab13, and Rab14 proteins were analyzed in the rat soleus muscle by the immunofluorescence staining and immunoblotting. OLPs significantly reduced blood glucose level in all treated groups. Furthermore, significantly reduced blood triglycerides were found in the groups with the lowest and highest OLPs treatment. The dynamics of activation of Rab8A, Rab13, and Rab14 was OLPs dose-dependent and more effective at higher OLP doses. Thus, these results indicate a beneficial role of phenolic compounds from the olive leaf in the regulation of glucose homeostasis in the skeletal muscle.
Collapse
Affiliation(s)
- Jasminka Giacometti
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia
- Correspondence: ; Tel.: +385-51-584-557
| | - Damir Muhvić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (D.M.); (T.G.-K.)
| | - Tanja Grubić-Kezele
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (D.M.); (T.G.-K.)
- Clinical Department for Clinical Microbiology, Clinical Hospital Center Rijeka, Krešimirova 42, 51000 Rijeka, Croatia
| | - Marina Nikolić
- Department of Anatomy, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (M.N.); (T.Š.-V.); (S.B.)
| | - Tamara Šoić-Vranić
- Department of Anatomy, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (M.N.); (T.Š.-V.); (S.B.)
| | - Snježana Bajek
- Department of Anatomy, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (M.N.); (T.Š.-V.); (S.B.)
| |
Collapse
|
33
|
Petrocelli JJ, Drummond MJ. PGC-1α-Targeted Therapeutic Approaches to Enhance Muscle Recovery in Aging. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17228650. [PMID: 33233350 PMCID: PMC7700690 DOI: 10.3390/ijerph17228650] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022]
Abstract
Impaired muscle recovery (size and strength) following a disuse period commonly occurs in older adults. Many of these individuals are not able to adequately exercise due to pain and logistic barriers. Thus, nutritional and pharmacological therapeutics, that are translatable, are needed to promote muscle recovery following disuse in older individuals. Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) may be a suitable therapeutic target due to pleiotropic regulation of skeletal muscle. This review focuses on nutritional and pharmacological interventions that target PGC-1α and related Sirtuin 1 (SIRT1) and 5' AMP-activated protein kinase (AMPKα) signaling in muscle and thus may be rapidly translated to prevent muscle disuse atrophy and promote recovery. In this review, we present several therapeutics that target PGC-1α in skeletal muscle such as leucine, β-hydroxy-β-methylbuyrate (HMB), arginine, resveratrol, metformin and combination therapies that may have future application to conditions of disuse and recovery in humans.
Collapse
|
34
|
Wang L, Xu Z, Ling D, Li J, Wang Y, Shan T. The regulatory role of dietary factors in skeletal muscle development, regeneration and function. Crit Rev Food Sci Nutr 2020; 62:764-782. [PMID: 33021403 DOI: 10.1080/10408398.2020.1828812] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Skeletal muscle plays a crucial role in motor function, respiration, and whole-body energy homeostasis. How to regulate the development and function of skeletal muscle has become a hot research topic for improving lifestyle and extending life span. Numerous transcription factors and nutritional factors have been clarified are closely associated with the regulation of skeletal muscle development, regeneration and function. In this article, the roles of different dietary factors including green tea, quercetin, curcumin (CUR), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and resveratrol (RES) in regulating skeletal muscle development, muscle mass, muscle function, and muscle recovery have been summarized and discussed. We also reviewed the potential regulatory molecular mechanism of these factors. Based on the current findings, dietary factors may be used as a potential therapeutic agent to treat skeletal muscle dysfunction as well as its related diseases.
Collapse
Affiliation(s)
- Liyi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Ziye Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Defeng Ling
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Jie Li
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| |
Collapse
|
35
|
Resveratrol increase the proportion of oxidative muscle fiber through the AdipoR1-AMPK-PGC-1α pathway in pigs. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
36
|
Rothschild JA, Bishop DJ. Effects of Dietary Supplements on Adaptations to Endurance Training. Sports Med 2020; 50:25-53. [PMID: 31531769 DOI: 10.1007/s40279-019-01185-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Endurance training leads to a variety of adaptations at the cellular and systemic levels that serve to minimise disruptions in whole-body homeostasis caused by exercise. These adaptations are differentially affected by training volume, training intensity, and training status, as well as by nutritional choices that can enhance or impair the response to training. A variety of supplements have been studied in the context of acute performance enhancement, but the effects of continued supplementation concurrent to endurance training programs are less well characterised. For example, supplements such as sodium bicarbonate and beta-alanine can improve endurance performance and possibly training adaptations during endurance training by affecting buffering capacity and/or allowing an increased training intensity, while antioxidants such as vitamin C and vitamin E may impair training adaptations by blunting cellular signalling but appear to have little effect on performance outcomes. Additionally, limited data suggest the potential for dietary nitrate (in the form of beetroot juice), creatine, and possibly caffeine, to further enhance endurance training adaptation. Therefore, the objective of this review is to examine the impact of dietary supplements on metabolic and physiological adaptations to endurance training.
Collapse
Affiliation(s)
- Jeffrey A Rothschild
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand. .,TriFit Performance Center, Santa Monica, CA, USA.
| | - David J Bishop
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
37
|
Cheng K, Yu C, Li Z, Li S, Yan E, Song Z, Zhang H, Zhang L, Wang T. Resveratrol improves meat quality, muscular antioxidant capacity, lipid metabolism and fiber type composition of intrauterine growth retarded pigs. Meat Sci 2020; 170:108237. [PMID: 32739758 DOI: 10.1016/j.meatsci.2020.108237] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/20/2020] [Accepted: 07/05/2020] [Indexed: 12/13/2022]
Abstract
This study investigated whether resveratrol could improve meat quality, muscular antioxidant capacity, lipid metabolism and fiber type composition of intrauterine growth retarded pigs. Thirty-six pairs of male normal birth weight and intrauterine growth retardation (IUGR) piglets were orally fed with 80 mg resveratrol/kg body weight/d or vehicle during the sucking period (7-21 d). Then the offspring were fed with a basal diet containing 300 mg resveratrol/kg or a basal diet from weaning to slaughter (150 d). The IUGR-impaired meat quality (luminance and yellowness) was associated with muscular oxidative stress via increased Keap1 protein level, fat accumulation, and higher MyHC IIb gene expression. Expectedly, resveratrol increased glutathione peroxidase activity and MyHC I gene expression, reduced protein carbonyl and malondialdehyde contents, enhanced fatty acid oxidation via upregulated PPARα and targeted genes expression, and thereby improving drip loss and yellowness. Results indicate that resveratrol improved meat quality of IUGR pigs through enhancing antioxidant capacity, increasing oxidative fiber composition, and suppressing lipid accumulation.
Collapse
Affiliation(s)
- Kang Cheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Caiyun Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhihua Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Simian Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Enfa Yan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhihua Song
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hao Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
38
|
Zeng Z, Chen X, Huang Z, Chen D, He J, Chen H, Yu J, Luo Y, Luo J, Zheng P, Yu B. Effects of dietary resveratrol supplementation on growth performance and muscle fiber type transformation in weaned piglets. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114499] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Mañas-García L, Guitart M, Duran X, Barreiro E. Satellite Cells and Markers of Muscle Regeneration during Unloading and Reloading: Effects of Treatment with Resveratrol and Curcumin. Nutrients 2020; 12:nu12061870. [PMID: 32585875 PMCID: PMC7353305 DOI: 10.3390/nu12061870] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/04/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022] Open
Abstract
We hypothesized that treatment with pharmacological agents known to increase sirtuin-1 activity (resveratrol and curcumin) may enhance muscle regeneration. In limb muscles of mice (C57BL/6J, 10 weeks) exposed to reloading for seven days following a seven-day period of hindlimb immobilization with/without curcumin or resveratrol treatment, progenitor muscle cell numbers (FACS), satellite cell subtypes (histology), early and late muscle regeneration markers, phenotype and morphometry, sirtuin-1 activity and content, and muscle function were assessed. Treatment with either resveratrol or curcumin in immobilized muscles elicited a significant improvement in numbers of progenitor, activated, quiescent, and total counts of muscle satellite cells, compared to non-treated animals. Treatment with either resveratrol or curcumin in reloaded muscles compared to non-treated mice induced a significant improvement in the CSA of both hybrid (curcumin) and fast-twitch fibers (resveratrol), sirtuin-1 activity (curcumin), sirtuin-1 content (resveratrol), and counts of progenitor muscle cells (resveratrol). Treatment with the pharmacological agents resveratrol and curcumin enhanced the numbers of satellite cells (muscle progenitor, quiescent, activated, and total satellite cells) in the unloaded limb muscles but not in the reloaded muscles. These findings have potential clinical implications as treatment with these phenolic compounds would predominantly be indicated during disuse muscle atrophy to enhance the muscle regeneration process.
Collapse
Affiliation(s)
- Laura Mañas-García
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain; (L.M.-G.); (M.G.)
| | - Maria Guitart
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain; (L.M.-G.); (M.G.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Xavier Duran
- Scientific and Technical Department, Hospital del Mar-IMIM, 08003 Barcelona, Spain;
| | - Esther Barreiro
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain; (L.M.-G.); (M.G.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-316-0385; Fax: +34-93-316-0410
| |
Collapse
|
40
|
Ahn J, Ha TY, Ahn J, Jung CH, Seo HD, Kim MJ, Kim YS, Jang YJ. Undaria pinnatifida extract feeding increases exercise endurance and skeletal muscle mass by promoting oxidative muscle remodeling in mice. FASEB J 2020; 34:8068-8081. [PMID: 32293073 DOI: 10.1096/fj.201902399rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/25/2020] [Accepted: 03/31/2020] [Indexed: 01/10/2024]
Abstract
Dietary habits can alter the skeletal muscle performance and mass, and Undaria pinnatifida extracts are considered a potent candidate for improving the muscle mass and function. Therefore, in this study, we aimed to assess the effect of U pinnatifida extracts on exercise endurance and skeletal muscle mass. C57BL/6 mice were fed a 0.25% U pinnatifida extract-containing diet for 8 weeks. U pinnatifida extract-fed mice showed increased running distance, total running time, and extensor digitorum longus and gastrocnemius muscle weights. U pinnatifida extract supplementation upregulated the expression of myocyte enhancer factor 2C, oxidative muscle fiber markers such as myosin heavy chain 1 (MHC1), and oxidative biomarkers in the gastrocnemius muscles. Compared to the controls, U pinnatifida extract-fed mice showed larger mitochondria and increased gene and protein expression of molecules involved in mitochondrial biogenesis and oxidative phosphorylation, including nuclear respiratory factor 2 and mitochondrial transcription factor A. U pinnatifida extract supplementation also increased the mRNA expression of angiogenesis markers, including VEGFa, VEGFb, FGF1, angiopoietin 1, and angiopoietin 2, in the gastrocnemius muscles. Importantly, U pinnatifida extracts upregulated the estrogen-related receptor γ and peroxisome proliferator-activated receptor gamma co-activator 1-alpha (PGC-1α)/AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1) networks, which are partially increased by fucoxanthin, hesperetin, and caffeic acid treatments. Collectively, U pinnatifida extracts enhance mitochondrial biogenesis, increase oxidative muscle fiber, and promote angiogenesis in skeletal muscles, resulting in improved exercise capacity and skeletal muscle mass. These effects are attributable to fucoxanthin, hesperetin, and caffeic acid, bioactive components of U pinnatifida extracts.
Collapse
Affiliation(s)
- Jisong Ahn
- Natural Materials and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Republic of Korea
- Department of Food Science and Technology, Chonbuk National University, Jeonju-si, Republic of Korea
| | - Tae Youl Ha
- Natural Materials and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Republic of Korea
- Division of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Jiyun Ahn
- Natural Materials and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Republic of Korea
- Division of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Chang Hwa Jung
- Natural Materials and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Republic of Korea
- Division of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Hyo Deok Seo
- Natural Materials and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Min Jung Kim
- Healthcare Research Group, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Young-Soo Kim
- Department of Food Science and Technology, Chonbuk National University, Jeonju-si, Republic of Korea
| | - Young Jin Jang
- Natural Materials and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Republic of Korea
| |
Collapse
|
41
|
Chen X, Jia G, Liu G, Zhao H, Huang Z. Effects of apple polyphenols on myofiber-type transformation in longissimus dorsi muscle of finishing pigs. Anim Biotechnol 2020; 32:246-253. [PMID: 32134354 DOI: 10.1080/10495398.2020.1735405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study aimed to investigate effects of apple polyphenols (APPs) on myofiber-type transformation in longissimus dorsi muscle of finishing pigs and its mechanism. In this study, 36 healthy castrated Duroc × Landrace × Yorkshire pigs with an average body weight of 71.25 ± 2.40 kg were randomly divided into three treatment groups (control, 0.04% APPs, 0.08% APPs). The experiment lasted for 49 days. Results showed that dietary APP supplementation increased the protein expression of MyHC I and the activities of succinic dehydrogenase and malate dehydrogenase, as well as decreased the protein expression of MyHC IIb and the activity of lactate dehydrogenase, suggesting that APPs promoted muscle fiber-type transformation from fast-twitch to slow-twitch in finishing pigs. We also showed that dietary 0.08% APP supplementation increased the expressions of mitochondrial biogenesis and function-related proteins PGC-1α, Sirt1 and Cytc. In addition, dietary supplementation with 0.08% APPs increased the activities of T-SOD, GSH-PX and CAT and decreased the MDA content. Together, we provided the first evidence that APP promotes muscle fiber-type transformation from fast-twitch to slow-twitch in finishing pigs, which may be achieved by improving the mitochondrial biogenesis and function and increasing the antioxidant capacity of skeletal muscle.
Collapse
Affiliation(s)
- Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| |
Collapse
|
42
|
Xu M, Chen X, Huang Z, Chen D, Chen H, Luo Y, Zheng P, He J, Yu J, Yu B. Procyanidin B2 Promotes Skeletal Slow-Twitch Myofiber Gene Expression through the AMPK Signaling Pathway in C2C12 Myotubes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1306-1314. [PMID: 31957433 DOI: 10.1021/acs.jafc.9b07489] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dimer procyanidin B2 [epicatechin-(4β-8)-epicatechin] (PB2) has attracted a lot of interest in nutrition and medicine because of its significant health-promoting abilities. However, the function of PB2 on different types of skeletal myofiber is still unclear. Here, we have found that PB2 significantly increased protein expression of the slow myosin heavy chain (MyHC) and decreased fast MyHC protein in C2C12 myotubes, accompanied by upregulation of mRNA expression of MyHC I, MyHC IIa, and Tnni1 and downregulation of MyHC IIx and MyHC IIb. We have also found that PB2 enhanced the activities of malate dehydrogenase and succinic dehydrogenase and reduced lactate dehydrogenase activity. PB2 promoted phosphorylation of AMPK and significantly increased mRNA expression of AMPKα1. The upstream factors of AMPK, such as phospho-LKB1, NRF1, and CaMKKβ, and the downstream factors of AMPK, including Sirt1 and PGC-1α, were also increased by PB2. Specific suppression of AMPK signaling by AMPKα1 siRNA or by AMPK inhibitor compound C significantly attenuated the PB2-induced upregulation of phospho-AMPK, PGC-1α, and slow MyHC and downregulation of fast MyHC. Our findings suggested that PB2 promotes skeletal slow-twitch myofiber gene expression through the AMPK signaling pathway in C2C12 myotubes.
Collapse
Affiliation(s)
- Meng Xu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition , Sichuan Agricultural University , Chengdu , Sichuan 611130 , P. R. China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition , Sichuan Agricultural University , Chengdu , Sichuan 611130 , P. R. China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition , Sichuan Agricultural University , Chengdu , Sichuan 611130 , P. R. China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition , Sichuan Agricultural University , Chengdu , Sichuan 611130 , P. R. China
| | - Hong Chen
- College of Food Science , Sichuan Agricultural University , Yaan , Sichuan 625014 , P. R. China
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition , Sichuan Agricultural University , Chengdu , Sichuan 611130 , P. R. China
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition , Sichuan Agricultural University , Chengdu , Sichuan 611130 , P. R. China
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition , Sichuan Agricultural University , Chengdu , Sichuan 611130 , P. R. China
| | - Jie Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition , Sichuan Agricultural University , Chengdu , Sichuan 611130 , P. R. China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition , Sichuan Agricultural University , Chengdu , Sichuan 611130 , P. R. China
| |
Collapse
|
43
|
Shen S, Yu H, Gan L, Ye Y, Lin L. Natural constituents from food sources: potential therapeutic agents against muscle wasting. Food Funct 2019; 10:6967-6986. [PMID: 31599912 DOI: 10.1039/c9fo00912d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Skeletal muscle wasting is highly correlated with not only reduced quality of life but also higher morbidity and mortality. Although an increasing number of patients are suffering from various kinds of muscle atrophy and weakness, there is still no effective therapy available, and skeletal muscle is considered as an under-medicated organ. Food provided not only essential macronutrients but also functional substances involved in the modulation of the physiological systems of our body. Natural constituents from commonly consumed dietary plants, either extracts or compounds, have attracted more and more attention to be developed as agents for preventing and treating muscle wasting due to their safety and effectiveness, as well as structural diversity. This review provides an overview of the mechanistic aspects of muscle wasting, and summarizes the extracts and compounds from food sources as potential therapeutic agents against muscle wasting.
Collapse
Affiliation(s)
- Shengnan Shen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Hua Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Lishe Gan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yang Ye
- State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|