1
|
Telek A, Molnár Z, Takács K, Varga B, Grolmusz V, Tasnádi G, Vértessy BG. Discovery and biocatalytic characterization of opine dehydrogenases by metagenome mining. Appl Microbiol Biotechnol 2024; 108:101. [PMID: 38229296 DOI: 10.1007/s00253-023-12871-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 01/18/2024]
Abstract
Enzymatic processes play an increasing role in synthetic organic chemistry which requires the access to a broad and diverse set of enzymes. Metagenome mining is a valuable and efficient way to discover novel enzymes with unique properties for biotechnological applications. Here, we report the discovery and biocatalytic characterization of six novel metagenomic opine dehydrogenases from a hot spring environment (mODHs) (EC 1.5.1.X). These enzymes catalyze the asymmetric reductive amination between an amino acid and a keto acid resulting in opines which have defined biochemical roles and represent promising building blocks for pharmaceutical applications. The newly identified enzymes exhibit unique substrate specificity and higher thermostability compared to known examples. The feature that they preferably utilize negatively charged polar amino acids is so far unprecedented for opine dehydrogenases. We have identified two spatially correlated positions in their active sites that govern this substrate specificity and demonstrated a switch of substrate preference by site-directed mutagenesis. While they still suffer from a relatively narrow substrate scope, their enhanced thermostability and the orthogonality of their substrate preference make them a valuable addition to the toolbox of enzymes for reductive aminations. Importantly, enzymatic reductive aminations with highly polar amines are very rare in the literature. Thus, the preparative-scale enzymatic production, purification, and characterization of three highly functionalized chiral secondary amines lend a special significance to our work in filling this gap. KEY POINTS: • Six new opine dehydrogenases have been discovered from a hot spring metagenome • The newly identified enzymes display a unique substrate scope • Substrate specificity is governed by two correlated active-site residues.
Collapse
Grants
- K119493 National Research, Development and Innovation Office
- K135231 National Research, Development and Innovation Office
- VEKOP-2.3.2-16-2017-00013 National Research, Development and Innovation Office
- NKP-2018-1.2.1-NKP-2018-00005 National Research, Development and Innovation Office
- TKP2021-EGA-02 National Research, Development and Innovation Office
- ÚNKP-22-4-II-BME-158 National Research, Development and Innovation Office
- RRF-2.3.1-21-2022-000 15 National Research, Development and Innovation Office
- C1580174 Nemzeti Kutatási, Fejlesztési és Innovaciós Alap
- ELTE TKP 2021-NKTA-62 Nemzeti Kutatási, Fejlesztési és Innovaciós Alap
- 2022-1.2.2-TÉT-IPARI-UZ-2022-00003 Nemzeti Kutatási, Fejlesztési és Innovaciós Alap
Collapse
Affiliation(s)
- András Telek
- Department of Applied Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
- Servier Research Institute of Medicinal Chemistry, Budapest, Hungary
| | - Zsófia Molnár
- Institute of Molecular Life Sciences, Research Centre for Natural Sciences, HUN-REN, Budapest, Hungary
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Kristóf Takács
- PIT Bioinformatics Group, Institute of Mathematics, Eötvös University, Budapest, Hungary
| | - Bálint Varga
- PIT Bioinformatics Group, Institute of Mathematics, Eötvös University, Budapest, Hungary
| | - Vince Grolmusz
- PIT Bioinformatics Group, Institute of Mathematics, Eötvös University, Budapest, Hungary
| | - Gábor Tasnádi
- Servier Research Institute of Medicinal Chemistry, Budapest, Hungary.
| | - Beáta G Vértessy
- Department of Applied Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary.
- Institute of Molecular Life Sciences, Research Centre for Natural Sciences, HUN-REN, Budapest, Hungary.
| |
Collapse
|
2
|
Rizzo A, Aranda C, Galman J, Alcasabas A, Pandya A, Bornadel A, Costa B, Hailes HC, Ward JM, Jeffries JWE, Dominguez B. Broadening The Substrate Scope of Aldolases Through Metagenomic Enzyme Discovery. Chembiochem 2024; 25:e202400278. [PMID: 38953596 DOI: 10.1002/cbic.202400278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Bio-processes based on enzymatic catalysis play a major role in the development of green, sustainable processes, and the discovery of new enzymes is key to this approach. In this work, we analysed ten metagenomes and retrieved 48 genes coding for deoxyribose-5-phosphate aldolases (DERAs, EC 4.1.2.4) using a sequence-based approach. These sequences were recombinantly expressed in Escherichia coli and screened for activity towards a range of aldol additions. Among these, one enzyme, DERA-61, proved to be particularly interesting and catalysed the aldol addition of furfural or benzaldehyde with acetone, butanone and cyclobutanone with unprecedented activity. The product of these reactions, aldols, can find applications as building blocks in the synthesis of biologically active compounds. Screening was carried out to identify optimized reaction conditions targeting temperature, pH, and salt concentrations. Lastly, the kinetics and the stereochemistry of the products were investigated, revealing that DERA-61 and other metagenomic DERAs have superior activity and stereoselectivity when they are provided with non-natural substrates, compared to well-known DERAs.
Collapse
Affiliation(s)
- Andrea Rizzo
- Johnson Matthey, Unit 260, Cambridge Science Park, Cambridge, CB4 0PZ
| | - Carmen Aranda
- Johnson Matthey, Unit 260, Cambridge Science Park, Cambridge, CB4 0PZ
| | - James Galman
- Johnson Matthey, Unit 260, Cambridge Science Park, Cambridge, CB4 0PZ
| | - Annette Alcasabas
- Johnson Matthey, Unit 260, Cambridge Science Park, Cambridge, CB4 0PZ
| | - Akash Pandya
- Johnson Matthey, Unit 260, Cambridge Science Park, Cambridge, CB4 0PZ
| | - Amin Bornadel
- Johnson Matthey, Unit 260, Cambridge Science Park, Cambridge, CB4 0PZ
| | - Bruna Costa
- Johnson Matthey, Unit 260, Cambridge Science Park, Cambridge, CB4 0PZ
| | - Helen C Hailes
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AK, UK
| | - John M Ward
- Department of Biochemical Engineering, University College London, Gower Street, Bernard Katz Building, London, WC1E 6BT, UK
| | - Jack W E Jeffries
- Department of Biochemical Engineering, University College London, Gower Street, Bernard Katz Building, London, WC1E 6BT, UK
| | - Beatriz Dominguez
- Johnson Matthey, Unit 260, Cambridge Science Park, Cambridge, CB4 0PZ
| |
Collapse
|
3
|
Gao W, Jing Z, Meng Y, Liu Q, Wang H, Wei D. Inside-Out Rational Design of Ornithine Cyclodeaminase RlOCD from Rhizobium leguminosarum by a Multiregion Synergy Strategy for Efficient Synthesis of l-Pipecolic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39387484 DOI: 10.1021/acs.jafc.4c06331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Lysine cyclodeaminase (LCD)-mediated synthesis of l-pipecolic acid (l-PA) from l-lysine (l-Lys) is a promising approach. However, only one LCD has been reported, and its inadequate activity limits industrial applications. To address this problem, a substrate analogue-guided enzyme mining strategy was employed. A novel ornithine cyclodeaminase (OCD) from Rhizobium leguminosarum (RlOCD) was identified in combination with directed macrogenomic approaches. RlOCD displayed a conversion rate of 28% at a substrate loading as high as 1000 mM. A multiregion synergy strategy consisting of pocket reshaping, dynamical cross-correlation matrix-guided coevolutionary design, and surface modification was used to design RlOCD from the inside-out. A quadruple mutant (V93C/L119C/I170T/R90L) designated Mu4 with significantly increased activity was obtained, which showed a 28.46-fold increase in the catalytic efficiency. The conversion of Mu4 was 91% within 10 h at 1000 mM (146.19 g L-1) loading. The space-time yield of 282.1 g L-1 d-1 is the highest level ever reported. Molecular dynamics simulations and interaction analyses revealed that efficient pocket expansion and unique conformational rearrangements increased the affinity for the substrate, resulting in a more catalytically active conformation. This study expands the toolbox for the production of l-PA and demonstrates the effectiveness and potential of Mu4 for its production.
Collapse
Affiliation(s)
- Weijie Gao
- State Key Laboratory of Bioreactor Engineering New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Zijian Jing
- State Key Laboratory of Bioreactor Engineering New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Yifang Meng
- State Key Laboratory of Bioreactor Engineering New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Qinghai Liu
- State Key Laboratory of Bioreactor Engineering New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Hualei Wang
- State Key Laboratory of Bioreactor Engineering New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
4
|
Wang Z, Xu M, Xie Y, Xu M, Liu H, Wei D, Wang H. One-Pot Two-Stage Biocatalytic Cascade to Produce l-Phosphinothricin by Two Enantioselective Complementary Aminotransferases at High Substrate Loading via a Deracemization Process. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38836289 DOI: 10.1021/acs.jafc.4c02822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The bioderacemization of racemic phosphinothricin (D, L-PPT) is a promising route for the synthesis of l-phosphinothricin (L-PPT). However, the low activity and tolerance of wild-type enzymes restrict their industrial applications. Two stereocomplementary aminotransferases with high activity and substrate tolerance were identified in a metagenomic library, and a one-pot, two-stage artificial cascade biocatalytic system was developed to produce L-PPT through kinetic resolution and asymmetric amination. We observed that 500 mM D, L-PPT (100 g/L) could be converted into L-PPT with 94% final conversion and >99.9% enantiomeric excess (e.e.) within 24 h, with only 0.02 eq amino acceptor pyruvate and 1.2 eq amino donor l-aspartate required. The process could be scaled up to 10 L under sufficient oxygen and stirring. The superior catalytic performance of this system provides an eco-friendly and sustainable approach to the industrial deracemization of D, L-PPT to L-PPT.
Collapse
Affiliation(s)
- Zhicai Wang
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology, Shanghai 200237, China
| | - Minglu Xu
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology, Shanghai 200237, China
| | - Youyu Xie
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology, Shanghai 200237, China
| | - Meng Xu
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology, Shanghai 200237, China
| | - He Liu
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology, Shanghai 200237, China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology, Shanghai 200237, China
| | - Hualei Wang
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
5
|
Hogg BN, Schnepel C, Finnigan JD, Charnock SJ, Hayes MA, Turner NJ. The Impact of Metagenomics on Biocatalysis. Angew Chem Int Ed Engl 2024; 63:e202402316. [PMID: 38494442 PMCID: PMC11497237 DOI: 10.1002/anie.202402316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
In the ever-growing demand for sustainable ways to produce high-value small molecules, biocatalysis has come to the forefront of greener routes to these chemicals. As such, the need to constantly find and optimise suitable biocatalysts for specific transformations has never been greater. Metagenome mining has been shown to rapidly expand the toolkit of promiscuous enzymes needed for new transformations, without requiring protein engineering steps. If protein engineering is needed, the metagenomic candidate can often provide a better starting point for engineering than a previously discovered enzyme on the open database or from literature, for instance. In this review, we highlight where metagenomics has made substantial impact on the area of biocatalysis in recent years. We review the discovery of enzymes in previously unexplored or 'hidden' sequence space, leading to the characterisation of enzymes with enhanced properties that originate from natural selection pressures in native environments.
Collapse
Affiliation(s)
- Bethany N. Hogg
- Department of ChemistryUniversity of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUK
| | - Christian Schnepel
- School of Engineering Sciences in Chemistry, Biotechnology and HealthDepartment of Industrial BiotechnologyKTH Royal Institute of TechnologyAlbaNova University Center11421StockholmSE
| | | | | | - Martin A. Hayes
- Compound Synthesis and ManagementDiscovery SciencesBiopharmaceuticals R&D AstraZenecaMölndal 431 50GothenburgSE
| | - Nicholas J. Turner
- Department of ChemistryUniversity of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUK
| |
Collapse
|
6
|
Prout L, Hailes HC, Ward JM. Natural transaminase fusions for biocatalysis. RSC Adv 2024; 14:4264-4273. [PMID: 38298934 PMCID: PMC10829540 DOI: 10.1039/d3ra07081f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024] Open
Abstract
Biocatalytic approaches are used widely for the synthesis of amines from abundant or low cost starting materials. This is a fast-developing field where novel enzymes and enzyme combinations emerge quickly to enable the production of new and complex compounds. Natural multifunctional enzymes represent a part of multi-step biosynthetic pathways that ensure a one-way flux of reactants. In vivo, they confer a selective advantage via increased reaction rates and chemical stability or prevention of toxicity from reactive intermediates. Here we report the identification and analysis of a natural transaminase fusion, PP_2782, from Pseudomonas putida KT2440, as well as three of its thermophilic homologs from Thermaerobacter marianensis, Thermaerobacter subterraneus, and Thermincola ferriacetica. Both the fusions and their truncated transaminase-only derivatives showed good activity with unsubstituted aliphatic and aromatic aldehydes and amines, as well as with a range of α-keto acids, and l-alanine, l-glutamate, and l-glutamine. Through structural similarity, the fused domain was recognised as the acyl-[acyl-carrier-protein] reductase that affects reductive chain release. These natural transaminase fusions could have a great potential for industrial applications.
Collapse
Affiliation(s)
- Luba Prout
- Department of Biochemical Engineering, University College London London WC1E 6BT UK
| | - Helen C Hailes
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - John M Ward
- Department of Biochemical Engineering, University College London London WC1E 6BT UK
| |
Collapse
|
7
|
Li Q, Gao R, Li Y, Fan B, Ma C, He YC. Improved biotransformation of lignin-valorized vanillin into vanillylamine in a sustainable bioreaction medium. BIORESOURCE TECHNOLOGY 2023; 384:129292. [PMID: 37295479 DOI: 10.1016/j.biortech.2023.129292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Lignin is a critical biopolymer for creating a large number of highly valuable biobased compounds. Vanillin, one of lignin-derived aromatics, can be used to synthesize vanillylamine that is a key fine chemical and pharmaceutical intermediate. To produce vanillylamine, a productive whole-cell-catalyzed biotransformation of vanillin was developed in deep eutectic solvent - surfactant - H2O media. One newly created recombinant E. coli 30CA cells expressing ω-transaminase and L-alanine dehydrogenase was employed to transform 50 mM and 60 mM vanillin into vanillylamine in the yield of 82.2% and 8.5% under 40 °C, respectively. The biotransamination efficiency was enhanced by introducing surfactant PEG-2000 (40 mM) and deep eutectic solvent ChCl:LA (5.0 wt%, pH 8.0), and the highest vanillylamine yield reached 90.0% from 60 mM vanillin. Building an effective bioprocess was utilized for transamination of lignin-derived vanillin to vanillylamine with newly created bacteria in an eco-friendly medium, which had potential application for valorization of lignin to value-added compounds.
Collapse
Affiliation(s)
- Qi Li
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Lifes, Hubei University, Wuhan 430062, Hubei Province, PR China
| | - Ruiying Gao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Lifes, Hubei University, Wuhan 430062, Hubei Province, PR China
| | - Yucheng Li
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, PR China
| | - Bo Fan
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, PR China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Lifes, Hubei University, Wuhan 430062, Hubei Province, PR China
| | - Yu-Cai He
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Lifes, Hubei University, Wuhan 430062, Hubei Province, PR China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
8
|
Finnigan W, Lubberink M, Hepworth LJ, Citoler J, Mattey AP, Ford GJ, Sangster J, Cosgrove SC, da Costa BZ, Heath RS, Thorpe TW, Yu Y, Flitsch SL, Turner NJ. RetroBioCat Database: A Platform for Collaborative Curation and Automated Meta-Analysis of Biocatalysis Data. ACS Catal 2023; 13:11771-11780. [PMID: 37671181 PMCID: PMC10476152 DOI: 10.1021/acscatal.3c01418] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/26/2023] [Indexed: 09/07/2023]
Abstract
Despite the increasing use of biocatalysis for organic synthesis, there are currently no databases that adequately capture synthetic biotransformations. The lack of a biocatalysis database prevents accelerating biocatalyst characterization efforts from being leveraged to quickly identify candidate enzymes for reactions or cascades, slowing their development. The RetroBioCat Database (available at retrobiocat.com) addresses this gap by capturing information on synthetic biotransformations and providing an analysis platform that allows biocatalysis data to be searched and explored through a range of highly interactive data visualization tools. This database makes it simple to explore available enzymes, their substrate scopes, and how characterized enzymes are related to each other and the wider sequence space. Data entry is facilitated through an openly accessible curation platform, featuring automated tools to accelerate the process. The RetroBioCat Database democratizes biocatalysis knowledge and has the potential to accelerate biocatalytic reaction development, making it a valuable resource for the community.
Collapse
Affiliation(s)
- William Finnigan
- Department of Chemistry, Manchester Institute of Biotechnology, University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | | | - Lorna J. Hepworth
- Department of Chemistry, Manchester Institute of Biotechnology, University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Joan Citoler
- Department of Chemistry, Manchester Institute of Biotechnology, University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Ashley P. Mattey
- Department of Chemistry, Manchester Institute of Biotechnology, University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Grayson J. Ford
- Department of Chemistry, Manchester Institute of Biotechnology, University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Jack Sangster
- Department of Chemistry, Manchester Institute of Biotechnology, University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | | | - Bruna Zucoloto da Costa
- Department of Chemistry, Manchester Institute of Biotechnology, University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Rachel S. Heath
- Department of Chemistry, Manchester Institute of Biotechnology, University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | | | - Yuqi Yu
- Department of Chemistry, Manchester Institute of Biotechnology, University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Sabine L. Flitsch
- Department of Chemistry, Manchester Institute of Biotechnology, University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Nicholas J. Turner
- Department of Chemistry, Manchester Institute of Biotechnology, University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| |
Collapse
|
9
|
Liu Y, Zhong X, Luo Z, Meng X, Li R, Zhong W, Yang L, Wang H, Wei D. The identification of a robust leucine dehydrogenase from a directed soil metagenome for efficient synthesis of L-2-aminobutyric acid. Biotechnol J 2023; 18:e2200590. [PMID: 37149736 DOI: 10.1002/biot.202200590] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/29/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
L-2-aminobutyric acid (L-2-ABA) is a chiral precursor for the synthesis of anti-epileptic drug levetiracetam and anti-tuberculosis drug ethambutol. Asymmetric synthesis of L-2-ABA by leucine dehydrogenases has been widely developed. However, the limitations of natural enzymes, such as poor stability, low catalytic efficiency, and inhibition of high-concentration substrates, limit large-scale applications. Herein, by directed screening of a metagenomic library from unnatural amino acid-enriched environments, a robust leucine dehydrogenase, TvLeuDH, was identified, which exhibited high substrate tolerance and excellent enzymatic activity towards 2-oxobutyric acid. In addition, TvLeuDH has strong affinity for NADH. Subsequently, a three-enzyme co-expression system containing L-threonine deaminase, TvLeuDH, and glucose dehydrogenase was established. By optimizing reaction conditions, 1.5 M L-threonine could be converted to L-2-ABA with a 99% molar conversion rate and a space-time yield of 51.5 g·L-1 ·h-1 . In this process, no external coenzyme was added. The robustness of TvLeuDH allowed the reaction to be performed without the addition of extra salt as the buffer, demonstrating the simplest reaction system currently reported. These unique properties for the efficient and environmentally friendly production of chiral amino acids make TvLeuDH a particularly promising candidate for industrial applications, which reveals the great potential of directed metagenomics for industrial biotechnology.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Xuezhao Zhong
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Zi Luo
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Xiangqi Meng
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Rui Li
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Wa Zhong
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Lin Yang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Hualei Wang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
10
|
Zhu F, Zhang J, Ma Y, Yang L, Gao Q, Gao S, Cui C. Semi-rational design of an imine reductase for asymmetric synthesis of alkylated S-4-azepanamines. Org Biomol Chem 2023; 21:4181-4184. [PMID: 37129863 DOI: 10.1039/d3ob00442b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Although imine reductase (IRED)-catalyzed reductive amination is promising for the synthesis of alkylated chiral amines, precisely regulating the stereoselectivity of IRED remains a great challenge. Herein, focusing on the residues directly in contact with the ketone moiety, we applied structure-guided semi-rational design to obtain the triple-mutant I149Y/L200H/W234K. This mutant showed high stereoselectivity, of up to >99% (S), toward reductive amination of N-Boc-4-oxo-azepane and different amines, and to the best of our knowledge is the first biocatalyst developed for asymmetric synthesis of chiral azepane-4-amines.
Collapse
Affiliation(s)
- Fangfang Zhu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Jun Zhang
- School of Life Science, Hebei University, Baoding 071002, China.
| | - Yaqing Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Lujia Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Qiang Gao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Shushan Gao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Chengsen Cui
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
11
|
Visible spectrophotometric assay for characterization of ω-transaminases. Anal Biochem 2022; 658:114933. [DOI: 10.1016/j.ab.2022.114933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/15/2022] [Accepted: 09/24/2022] [Indexed: 11/20/2022]
|
12
|
Characterization of proteins from the 3N5M family reveals an operationally stable amine transaminase. Appl Microbiol Biotechnol 2022; 106:5563-5574. [PMID: 35932295 PMCID: PMC9418295 DOI: 10.1007/s00253-022-12071-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 01/24/2023]
Abstract
Abstract Amine transaminases (ATA) convert ketones into optically active amines and are used to prepare active pharmaceutical ingredients and building blocks. Novel ATA can be identified in protein databases due to the extensive knowledge of sequence-function relationships. However, predicting thermo- and operational stability from the amino acid sequence is a persisting challenge and a vital step towards identifying efficient ATA biocatalysts for industrial applications. In this study, we performed a database mining and characterized selected putative enzymes of the β-alanine:pyruvate transaminase cluster (3N5M) — a subfamily with so far only a few described members, whose tetrameric structure was suggested to positively affect operational stability. Four putative transaminases (TA-1: Bilophilia wadsworthia, TA-5: Halomonas elongata, TA-9: Burkholderia cepacia, and TA-10: Burkholderia multivorans) were obtained in a soluble form as tetramers in E. coli. During comparison of these tetrameric with known dimeric transaminases we found that indeed novel ATA with high operational stabilities can be identified in this protein subfamily, but we also found exceptions to the hypothesized correlation that a tetrameric assembly leads to increased stability. The discovered ATA from Burkholderia multivorans features a broad substrate specificity, including isopropylamine acceptance, is highly active (6 U/mg) in the conversion of 1-phenylethylamine with pyruvate and shows a thermostability of up to 70 °C under both, storage and operating conditions. In addition, 50% (v/v) of isopropanol or DMSO can be employed as co-solvents without a destabilizing effect on the enzyme during an incubation time of 16 h at 30 °C. Key points • Database mining identified a thermostable amine transaminase in the β-alanine:pyruvate transaminase subfamily. • The tetrameric transaminase tolerates 50% DMSO and isopropanol under operating conditions at 30 °C. • A tetrameric structure is not necessarily associated with a higher operational stability Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-12071-1.
Collapse
|
13
|
Sheludko YV, Slagman S, Gittings S, Charnock SJ, Land H, Berglund P, Fessner WD. Enantioselective Synthesis of Pharmaceutically Relevant Bulky Arylbutylamines Using Engineered Transaminases. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | | | - Samantha Gittings
- Prozomix Limited UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Simon J. Charnock
- Prozomix Limited UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | | | | | | |
Collapse
|
14
|
Xie YY, Wang J, Yang L, Wang W, Liu QH, Wang H, Wei D. The identification and application of a robust ω-transaminase with high tolerance of substrate and isopropylamine from a directed soil metagenome. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02032c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ω-transaminase-mediated asymmetric amination of a ketone substrate has gained significant attention for its immense potential to synthesize chiral amine pharmaceuticals and precursors. However, few of these have been authentically...
Collapse
|
15
|
Carter EM, Subrizi F, Ward JM, Sheppard TD, Hailes HC. Direct Conversion of Hydrazones to Amines using Transaminases. ChemCatChem 2021; 13:4520-4523. [PMID: 35874927 PMCID: PMC9292518 DOI: 10.1002/cctc.202101008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/31/2021] [Indexed: 11/09/2022]
Abstract
Transaminase enzymes (TAms) have been widely used for the amination of aldehydes and ketones, often resulting in optically pure products. In this work, transaminases were directly reacted with hydrazones in a novel approach to form amine products. Several substrates were investigated, including those with furan and phenyl moieties. It was determined that the amine yields increased when an additional electrophile was added to the reaction mixture, suggesting that they can sequester the hydrazine released in the reaction. Pyridoxal 5'-phosphate (PLP), a cofactor for transaminases, and polyethylene glycol (PEG)-aldehydes were both found to increase the yield of amine formed. Notably, the amination of (S)-(-)-1-amino-2-(methoxymethyl)pyrrolidine (SAMP) hydrazones gave promising results as a method to form chiral β-substituted amines in good yield.
Collapse
Affiliation(s)
- Eve M Carter
- Department of Chemistry University College London 20 Gordon Street London WC1H 0AJ UK
| | - Fabiana Subrizi
- Department of Chemistry University College London 20 Gordon Street London WC1H 0AJ UK
| | - John M Ward
- Department of Biochemical Engineering University College London Gower Street, Bernard Katz Building London WC1E 6BT UK
| | - Tom D Sheppard
- Department of Chemistry University College London 20 Gordon Street London WC1H 0AJ UK
| | - Helen C Hailes
- Department of Chemistry University College London 20 Gordon Street London WC1H 0AJ UK
| |
Collapse
|
16
|
Cárdenas-Fernández M, Sinclair O, Ward JM. Novel transaminases from thermophiles: from discovery to application. Microb Biotechnol 2021; 15:305-317. [PMID: 34713952 PMCID: PMC8719814 DOI: 10.1111/1751-7915.13940] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 01/26/2023] Open
Abstract
Transaminases (TAs) are promising biocatalysts for chiral amine synthesis; however, only few thermophilic TAs have been described to date. In this work, a genome mining approach was taken to seek novel TAs from nine thermophilic microorganisms. TA sequences were identified from their respective genome sequences and their Pfam were predicted confirming that TAs class I–II are the most abundant (50%), followed by class III (26%), V (16%), IV (8%) and VI (1%). The percentage of open reading frames (ORFs) that are TAs ranges from 0.689% in Thermococcus litoralis to 0.424% in Sulfolobus solfataricus. A total of 94 putative TAs were successfully cloned and expressed into E. coli, showing mostly good expression levels when using a chemical chaperone media containing d‐sorbitol. Kinetic and end‐point colorimetric assays with different amino donors–acceptors confirmed TAs activity allowing for initial exploration of the substrate scope. Stereoselective and non‐stereoselective serine‐TAs were selected for the synthesis of hydroxypyruvate (HPA). Low HPA reaction yields were observed with four non‐stereoselective serine‐TAs, whilst two stereoselective serine‐TAs showed significantly higher yields. Coupling serine‐TA reactions to a transketolase to yield l‐erythrulose (Ery) substantially increased serine conversion into HPA. Combining both stereoselective serine‐TAs and transketolase using the inexpensive racemic D/L‐serine led to high Ery yield (82%). Thermal characterization of stereoselective serine‐TAs confirmed they have excellent thermostability up to 60°C and high optimum temperatures.
Collapse
Affiliation(s)
- Max Cárdenas-Fernández
- Department of Biochemical Engineering, University College London, Gower St, WC1E 6BT, London, UK.,School of Biosciences, University of Kent, CT2 7NJ, Kent, UK
| | - Oliver Sinclair
- Department of Biochemical Engineering, University College London, Gower St, WC1E 6BT, London, UK
| | - John M Ward
- Department of Biochemical Engineering, University College London, Gower St, WC1E 6BT, London, UK
| |
Collapse
|
17
|
Newgas SA, Jeffries JWE, Moody TS, Ward JM, Hailes HC. Discovery of New Carbonyl Reductases Using Functional Metagenomics and Applications in Biocatalysis. Adv Synth Catal 2021; 363:3044-3052. [PMID: 34413714 PMCID: PMC8360200 DOI: 10.1002/adsc.202100199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/22/2021] [Indexed: 12/20/2022]
Abstract
Enzyme discovery for use in the manufacture of chemicals, requiring high stereoselectivities, continues to be an important avenue of research. Here, a sequence directed metagenomics approach is described to identify short chain carbonyl reductases. PCR from a metagenomic template generated 37 enzymes, with an average 25% sequence identity, twelve of which showed interesting activities in initial screens. Six of the most productive enzymes were then tested against a panel of 21 substrates, including bulkier substrates that have been noted as challenging in biocatalytic reductions. Two enzymes were selected for further studies with the Wieland Miescher ketone. Notably, enzyme SDR-17, when co-expressed with a co-factor recycling system produced the anti-(4aR,5S) isomer in excellent isolated yields of 89% and 99% e.e. These results demonstrate the viability of a sequence directed metagenomics approach for the identification of multiple homologous sequences with low similarity, that can yield highly stereoselective enzymes with applicability in industrial biocatalysis.
Collapse
Affiliation(s)
- Sophie A. Newgas
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJU.K.
| | - Jack W. E. Jeffries
- Department of Biochemical EngineeringBernard Katz BuildingUniversity College LondonLondonWC1E 6BTU.K.
| | - Thomas S. Moody
- Almac SciencesDepartment of Biocatalysis and Isotope ChemistryAlmac House, 20 Seagoe Industrial EstateCraigavonBT63 5QDNorthern IrelandU.K.
- Arran Chemical CompanyUnit1 Monksland Industrial EstateAthloneN37 DN24Co. RoscommonIreland.
| | - John M. Ward
- Department of Biochemical EngineeringBernard Katz BuildingUniversity College LondonLondonWC1E 6BTU.K.
| | - Helen C. Hailes
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJU.K.
| |
Collapse
|
18
|
Romero-Fernandez M, Paradisi F. Biocatalytic access to betazole using a one-pot multienzymatic system in continuous flow. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2021; 23:4594-4603. [PMID: 34220333 PMCID: PMC8215649 DOI: 10.1039/d1gc01095f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/24/2021] [Indexed: 06/02/2023]
Abstract
As an alternative to classical synthetic approaches for the production of betazole drug, a one-pot biocatalytic system for this pharmaceutical molecule from its alcohol precursor has been developed. An ω-transaminase, an alcohol dehydrogenase and a water-forming NADH oxidase for in situ cofactor recycling have been combined to catalyse this reaction, yielding 75% molar conversion in batch reactions with soluble enzymes. This multienzyme system was then co-immobilised through a newly established protocol for sequential functionalization of a methacrylate-based porous carrier to enable tailored immobilisation chemistries for each enzyme. This pluri-catalytic system has been set up in a continuous flow packed-bed reactor, generating a space-time yield of up to 2.59 g L-1 h-1 with 15 min residence and a constant supply of oxygen for in situ cofactor recycling through a segmented air-liquid flow. The addition of an in-line catch-and-release column afforded >80% product recovery.
Collapse
Affiliation(s)
| | - Francesca Paradisi
- School of Chemistry, University of Nottingham, University Park NG7 2RD Nottingham UK
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 Bern Switzerland
| |
Collapse
|
19
|
Efficient Amino Donor Recycling in Amination Reactions: Development of a New Alanine Dehydrogenase in Continuous Flow and Dialysis Membrane Reactors. Catalysts 2021. [DOI: 10.3390/catal11040520] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transaminases have arisen as one of the main biocatalysts for amine production but despite their many advantages, their stability is still a concern for widespread application. One of the reasons for their instability is the need to use an excess of the amino donor when trying to synthesise amines with unfavourable equilibria. To circumvent this, recycling systems for the amino donor, such as amino acid dehydrogenases or aldolases, have proved useful to push the equilibria while avoiding high amino donor concentrations. In this work, we report the use of a new alanine dehydrogenase from the halotolerant bacteria Halomonas elongata which exhibits excellent stability to different cosolvents, combined with the well characterised CbFDH as a recycling system of L-alanine for the amination of three model substrates with unfavourable equilibria. In a step forward, the amino donor recycling system has been co-immobilised and used in flow with success as well as re-used as a dialysis enclosed system for the amination of an aromatic aldehyde.
Collapse
|
20
|
Marshall JR, Yao P, Montgomery SL, Finnigan JD, Thorpe TW, Palmer RB, Mangas-Sanchez J, Duncan RAM, Heath RS, Graham KM, Cook DJ, Charnock SJ, Turner NJ. Screening and characterization of a diverse panel of metagenomic imine reductases for biocatalytic reductive amination. Nat Chem 2021; 13:140-148. [PMID: 33380742 PMCID: PMC7116802 DOI: 10.1038/s41557-020-00606-w] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/10/2020] [Indexed: 01/30/2023]
Abstract
Finding faster and simpler ways to screen protein sequence space to enable the identification of new biocatalysts for asymmetric synthesis remains both a challenge and a rate-limiting step in enzyme discovery. Biocatalytic strategies for the synthesis of chiral amines are increasingly attractive and include enzymatic asymmetric reductive amination, which offers an efficient route to many of these high-value compounds. Here we report the discovery of over 300 new imine reductases and the production of a large (384 enzymes) and sequence-diverse panel of imine reductases available for screening. We also report the development of a facile high-throughput screen to interrogate their activity. Through this approach we identified imine reductase biocatalysts capable of accepting structurally demanding ketones and amines, which include the preparative synthesis of N-substituted β-amino ester derivatives via a dynamic kinetic resolution process, with excellent yields and stereochemical purities.
Collapse
Affiliation(s)
- James R. Marshall
- Department of Chemistry, University of Manchester, Manchester Institute of Biotechnology, Manchester, UK
| | - Peiyuan Yao
- Department of Chemistry, University of Manchester, Manchester Institute of Biotechnology, Manchester, UK
- National Engineering Laboratory for Industrial Enzymes, Tianjin Engineering Research Centre of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Park, Tianjin, People’s Republic of China
| | - Sarah L. Montgomery
- Department of Chemistry, University of Manchester, Manchester Institute of Biotechnology, Manchester, UK
| | | | - Thomas W. Thorpe
- Department of Chemistry, University of Manchester, Manchester Institute of Biotechnology, Manchester, UK
| | - Ryan B. Palmer
- Department of Chemistry, University of Manchester, Manchester Institute of Biotechnology, Manchester, UK
| | - Juan Mangas-Sanchez
- Department of Chemistry, University of Manchester, Manchester Institute of Biotechnology, Manchester, UK
| | | | - Rachel S. Heath
- Department of Chemistry, University of Manchester, Manchester Institute of Biotechnology, Manchester, UK
| | | | - Darren J. Cook
- Prozomix, Building 4, West End Ind. Estate, Haltwhistle, UK
| | | | - Nicholas J. Turner
- Department of Chemistry, University of Manchester, Manchester Institute of Biotechnology, Manchester, UK
| |
Collapse
|
21
|
Abstract
Here we present a modification of the widely used pET29 expression vector for use in rapid and straightforward parallel cloning via a gene replacement and Golden Gate strategy. The modification can be applied to other expression vectors for Gram-negative bacteria. We have used the modified vectors to clone large numbers of bacterial natural enzyme variants from genomic and metagenomic sources for applications in biocatalysis.
Collapse
|
22
|
Han H, Xu B, Zeng W, Zhou J. Regulating the biosynthesis of pyridoxal 5'-phosphate with riboswitch to enhance L-DOPA production by Escherichia coli whole-cell biotransformation. J Biotechnol 2020; 321:68-77. [DOI: 10.1016/j.jbiotec.2020.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
|
23
|
Stojanovski G, Dobrijevic D, Hailes HC, Ward JM. Identification and catalytic properties of new epoxide hydrolases from the genomic data of soil bacteria. Enzyme Microb Technol 2020; 139:109592. [PMID: 32732040 PMCID: PMC7429986 DOI: 10.1016/j.enzmictec.2020.109592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/07/2020] [Accepted: 05/07/2020] [Indexed: 11/25/2022]
Abstract
Epoxide hydrolases (EHs) catalyse the conversion of epoxides into vicinal diols. These enzymes have extensive value in biocatalysis as they can generate enantiopure epoxides and diols which are important and versatile synthetic intermediates for the fine chemical and pharmaceutical industries. Despite these benefits, they have seen limited use in the bioindustry and novel EHs continue to be reported in the literature. We identified twenty-nine putative EHs within the genomes of soil bacteria. Eight of these EHs were explored in terms of their activity. Two limonene epoxide hydrolases (LEHs) and one ⍺/β EH were active on a model compound styrene oxide and its ring-substituted derivatives, with low to good percentage conversions of 18-86%. Further exploration of the substrate scope with enantiopure (R)-styrene oxide and (S)-styrene oxide, showed different epoxide ring opening regioselectivities. Two enzymes, expressed from plasmids pQR1984 and pQR1990 de-symmetrised the meso-epoxide cyclohexene oxide, forming the (R,R)-diol with high enantioselectivity. Two LEHs, from plasmids pQR1980 and pQR1982 catalysed the hydrolysis of (+) and (-) limonene oxide, with diastereomeric preference for the (1S,2S,4R)- and (1R,2R,4S)-diol products, respectively. The enzyme from plasmid pQR1982 had a good substrate scope for a LEH, being active towards styrene oxide, its analogues, cyclohexene oxide and 1,2-epoxyhexane in addition to (±)-limonene oxide. The enzymes from plasmids pQR1982 and pQR1984 had good substrate scopes and their enzymatic properties were characterised with respect to styrene oxide. They had comparable temperature optima and pQR1984 had 70% activity in the presence of 40% of the green solvent MeOH, a useful property for bio-industrial applications. Overall, this study has provided novel EHs with potential value in industrial biocatalysis.
Collapse
Affiliation(s)
- Gorjan Stojanovski
- Department of Biochemical Engineering, University College London, Bernard Katz, London WC1E 6BT, UK.
| | - Dragana Dobrijevic
- Department of Biochemical Engineering, University College London, Bernard Katz, London WC1E 6BT, UK.
| | - Helen C Hailes
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| | - John M Ward
- Department of Biochemical Engineering, University College London, Bernard Katz, London WC1E 6BT, UK.
| |
Collapse
|
24
|
Prayogo FA, Budiharjo A, Kusumaningrum HP, Wijanarka W, Suprihadi A, Nurhayati N. Metagenomic applications in exploration and development of novel enzymes from nature: a review. J Genet Eng Biotechnol 2020; 18:39. [PMID: 32749574 PMCID: PMC7403272 DOI: 10.1186/s43141-020-00043-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Microbial community has an essential role in various fields, especially the industrial sector. Microbes produce metabolites in the form of enzymes, which are one of the essential compounds for industrial processes. Unfortunately, there are still numerous microbes that cannot be identified and cultivated because of the limitations of the culture-based method. The metagenomic approach is a solution for researchers to overcome these problems. Metagenomics is a strategy used to analyze the genomes of microbial communities in the environment directly. Metagenomics application used to explore novel enzymes is essential because it allows researchers to obtain data on microbial diversity, reaching of 99% and various types of genes encoding an enzyme that has not yet been identified. Basic methods in metagenomics have been developed and are commonly used in various studies. A basic understanding of metagenomics for researchers is needed, especially young researchers to support the success of the research. SHORT CONCLUSION Therefore, this review was done in order to provide a deep understanding of metagenomics. It also discussed the application and basic methods of metagenomics in the exploration of novel enzymes, especially in the latest research. Several types of enzymes, such as cellulases, proteases, and lipases, which have been explored using metagenomics, were reviewed in this article.
Collapse
Affiliation(s)
- Fitra Adi Prayogo
- Department of Biology, Faculty of Science and Mathematics, Diponegoro University, Semarang City, 50275 Indonesia
| | - Anto Budiharjo
- Biotechnology Study Program, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Sudharto SH, Semarang, 50275 Indonesia
- Molecular and Applied Microbiology Laboratory, Center Central Laboratory of Research and Service - Diponegoro University, Jl. Prof. Sudharto SH, Semarang, 50275 Indonesia
| | | | - Wijanarka Wijanarka
- Biotechnology Study Program, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Sudharto SH, Semarang, 50275 Indonesia
| | - Agung Suprihadi
- Biotechnology Study Program, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Sudharto SH, Semarang, 50275 Indonesia
| | - Nurhayati Nurhayati
- Biotechnology Study Program, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Sudharto SH, Semarang, 50275 Indonesia
| |
Collapse
|
25
|
Zhang C, Dong S, Chen C, Zhang Q, Zhou D. Co-substrate addition accelerated amoxicillin degradation and detoxification by up-regulating degradation related enzymes and promoting cell resistance. JOURNAL OF HAZARDOUS MATERIALS 2020; 394:122574. [PMID: 32278124 DOI: 10.1016/j.jhazmat.2020.122574] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/06/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
β-Lactam antibiotics are the most commonly used antibiotics, and are difficult to remove by conventional biological treatments because of their persistent and toxic nature. The addition of co-substrates has been successfully employed to improve the removal of refractory pollutants. So, we hypothesized that the co-substrate strategy would increase antibiotic degradation and benefit microbial survival. In this work, we reported that co-substrate (acetate) addition up-regulated key degrading enzymes and resistance related genes in a model bacteria strain (L. aquatilis) when being treated with 0.055 mM amoxicillin (AMO). β-Lactamase, amidases, transaminase, and amide C-N hydrolase showed increased activation. As a result, AMO removal reached ∼95 %, a ∼60 % increase over the control. Furthermore, the addition of acetate drove the down-stream TCA cycle, which accelerated the detoxification of the intermediates and reduced the microbial inhibition by the antibiotic products to as low as ∼15 %. Besides, the expression levels of genes encoding the efflux pump, penicillin binding proteins, and β-Lactamase were up-regulated, and the inhibition of peptidoglycan biosynthesis was down-regulated. The cell density was enhanced by ∼170 % and showed improved DNA replication. In conclusion, the addition of the co-substrate accelerated AMO degradation and detoxification by up-regulating degrading enzymes and promoting cell resistance.
Collapse
Affiliation(s)
- Chongjun Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, China; Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Shuangshi Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Congli Chen
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Qifeng Zhang
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China.
| |
Collapse
|
26
|
Kelly SA, Mix S, Moody TS, Gilmore BF. Transaminases for industrial biocatalysis: novel enzyme discovery. Appl Microbiol Biotechnol 2020; 104:4781-4794. [PMID: 32300853 PMCID: PMC7228992 DOI: 10.1007/s00253-020-10585-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 12/04/2022]
Abstract
Transaminases (TAms) are important enzymes for the production of chiral amines for the pharmaceutical and fine chemical industries. Novel TAms for use in these industries have been discovered using a range of approaches, including activity-guided methods and homologous sequence searches from cultured microorganisms to searches using key motifs and metagenomic mining of environmental DNA libraries. This mini-review focuses on the methods used for TAm discovery over the past two decades, analyzing the changing trends in the field and highlighting the advantages and drawbacks of the respective approaches used. This review will also discuss the role of protein engineering in the development of novel TAms and explore possible directions for future TAm discovery for application in industrial biocatalysis. KEY POINTS: • The past two decades of TAm enzyme discovery approaches are explored. • TAm sequences are phylogenetically analyzed and compared to other discovery methods. • Benefits and drawbacks of discovery approaches for novel biocatalysts are discussed. • The role of protein engineering and future discovery directions is highlighted.
Collapse
Affiliation(s)
- Stephen A Kelly
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Stefan Mix
- Department of Biocatalysis & Isotope Chemistry, Almac, 20 Seagoe Industrial Estate, Craigavon, UK
| | - Thomas S Moody
- Department of Biocatalysis & Isotope Chemistry, Almac, 20 Seagoe Industrial Estate, Craigavon, UK
- Arran Chemical Company Limited, Unit 1 Monksland Industrial Estate, Athlone, Co. Roscommon, Ireland
| | - Brendan F Gilmore
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland.
| |
Collapse
|
27
|
Caparco AA, Pelletier E, Petit JL, Jouenne A, Bommarius BR, Berardinis V, Zaparucha A, Champion JA, Bommarius AS, Vergne‐Vaxelaire C. Metagenomic Mining for Amine Dehydrogenase Discovery. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000094] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Adam A. Caparco
- School of Chemical & Biomolecular EngineeringGeorgia Institute of Technology Atlanta, GA USA
| | - Eric Pelletier
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ EvryUniversité Paris-Saclay 91057 Evry France
| | - Jean Louis Petit
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ EvryUniversité Paris-Saclay 91057 Evry France
| | - Aurélie Jouenne
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ EvryUniversité Paris-Saclay 91057 Evry France
| | - Bettina R. Bommarius
- School of Chemical & Biomolecular EngineeringGeorgia Institute of Technology Atlanta, GA USA
| | - Véronique Berardinis
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ EvryUniversité Paris-Saclay 91057 Evry France
| | - Anne Zaparucha
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ EvryUniversité Paris-Saclay 91057 Evry France
| | - Julie A. Champion
- School of Chemical & Biomolecular EngineeringGeorgia Institute of Technology Atlanta, GA USA
| | - Andreas S. Bommarius
- School of Chemical & Biomolecular EngineeringGeorgia Institute of Technology Atlanta, GA USA
| | - Carine Vergne‐Vaxelaire
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ EvryUniversité Paris-Saclay 91057 Evry France
| |
Collapse
|
28
|
Assessing biocatalysis using dihydrolevoglucosenone (Cyrene™) as versatile bio-based (co)solvent. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110813] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Sheldon RA, Brady D, Bode ML. The Hitchhiker's guide to biocatalysis: recent advances in the use of enzymes in organic synthesis. Chem Sci 2020; 11:2587-2605. [PMID: 32206264 PMCID: PMC7069372 DOI: 10.1039/c9sc05746c] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
Enzymes are excellent catalysts that are increasingly being used in industry and academia. This perspective is primarily aimed at synthetic organic chemists with limited experience using enzymes and provides a general and practical guide to enzymes and their synthetic potential, with particular focus on recent applications.
Collapse
Affiliation(s)
- Roger A Sheldon
- Molecular Sciences Institute , School of Chemistry , University of the Witwatersrand , Johannesburg , South Africa .
- Department of Biotechnology , Delft University of Technology , Delft , The Netherlands
| | - Dean Brady
- Molecular Sciences Institute , School of Chemistry , University of the Witwatersrand , Johannesburg , South Africa .
| | - Moira L Bode
- Molecular Sciences Institute , School of Chemistry , University of the Witwatersrand , Johannesburg , South Africa .
| |
Collapse
|
30
|
Kinetic Analysis of R-Selective ω-Transaminases for Determination of Intrinsic Kinetic Parameters and Computational Modeling of Kinetic Resolution of Chiral Amine. Appl Biochem Biotechnol 2020; 191:92-103. [PMID: 31997135 DOI: 10.1007/s12010-020-03240-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/08/2020] [Indexed: 12/15/2022]
Abstract
Reliable kinetic parameters of enzymes are of paramount importance for a precise understanding of catalytic performance, which is essential for enzyme engineering and process optimization. Here, we developed a simple and convenient method to determine intrinsic kinetic parameters of R-selective ω-transaminases (ω-TAs) with a minimal set of kinetic data. Using (R)-α-methylbenzylamine ((R)-α-MBA) and pyruvate as a substrate pair, two R-selective ω-TAs from Arthrobacter sp. and Aspergillus fumigatus were subjected to kinetic measurements. In contrast to S-selective ω-TAs, both R-selective ω-TAs were observed to be devoid of substrate inhibition by pyruvate. Double reciprocal plot analysis was carried out with two sets of kinetic data obtained at varying concentrations of (R)-α-MBA under a fixed concentration of pyruvate and vice versa, leading to the determination of three intrinsic kinetic parameters, i.e., one kcat and two KM values, using three regression constants. The validity of the kinetic parameters was verified by a self-consistency test using a regression constant left out in the kinetic parameter determination, showing that deviations of calculated regression constants from the experimental ones were less than 15%. Because the kinetic parameters for (R)-α-MBA and pyruvate are not apparent but intrinsic, a cosubstrate substitution method enabled rapid determination of intrinsic parameters for a new substrate pair using just one set of kinetic data. Eventually, computational modeling of kinetic resolution of rac-α-MBA was carried out and showed a good agreement with experimental reaction progresses.
Collapse
|
31
|
Screening and Comparative Characterization of Microorganisms from Iranian Soil Samples Showing ω-Transaminase Activity toward a Plethora of Substrates. Catalysts 2019. [DOI: 10.3390/catal9100874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In this study, soil microorganisms from Iran were screened for ω-transaminase (ω-TA) activity based on growth on minimal media containing (rac)-α-methylbenzylamine (rac-α-MBA) as a sole nitrogen source. Then, for the selection of strains with high enzyme activity, a colorimetric o-xylylendiamine assay was conducted. The most promising strains were identified by 16S rDNA sequencing. Five microorganisms showing high ω-TA activity were subjected to determine optimal conditions for ω-TA activity, including pH, temperature, co-solvent, and the specificity of the ω-TA toward different amine donors and acceptors. Among the five screened microorganisms, Bacillus halotolerans turned out to be the most promising strain: Its cell-free extract showed a highly versatile amino donor spectrum toward aliphatic, aromatic chiral amines and a broad range of pH activity. Transaminase activity also exhibited excellent solvent tolerance, with maximum turnover in the presence of 30% (v/v) DMSO.
Collapse
|
32
|
Sheldon RA, Brady D. Broadening the Scope of Biocatalysis in Sustainable Organic Synthesis. CHEMSUSCHEM 2019; 12:2859-2881. [PMID: 30938093 DOI: 10.1002/cssc.201900351] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/05/2019] [Accepted: 03/04/2019] [Indexed: 05/21/2023]
Abstract
This Review is aimed at synthetic organic chemists who may be familiar with organometallic catalysis but have no experience with biocatalysis, and seeks to provide an answer to the perennial question: if it is so attractive, why wasn't it extensively used in the past? The development of biocatalysis in industrial organic synthesis is traced from the middle of the last century. Advances in molecular biology in the last two decades, in particular genome sequencing, gene synthesis and directed evolution of proteins, have enabled remarkable improvements in scope and substantially reduced biocatalyst development times and cost contributions. Additionally, improvements in biocatalyst recovery and reuse have been facilitated by developments in enzyme immobilization technologies. Biocatalysis has become eminently competitive with chemocatalysis and the biocatalytic production of important pharmaceutical intermediates, such as enantiopure alcohols and amines, has become mainstream organic synthesis. The synthetic space of biocatalysis has significantly expanded and is currently being extended even further to include new-to-nature biocatalytic reactions.
Collapse
Affiliation(s)
- Roger A Sheldon
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa
- Department of Biotechnology, Delft University of Technology, Section BOC, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Dean Brady
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa
| |
Collapse
|
33
|
Han S, Shin J. Rapid and Quantitative Profiling of Substrate Specificity of ω‐Transaminases for Ketones. ChemCatChem 2019. [DOI: 10.1002/cctc.201900399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sang‐Woo Han
- Department of BiotechnologyYonsei University Yonsei-Ro 50, Seodaemun-Gu Seoul 03722 South Korea
| | - Jong‐Shik Shin
- Department of BiotechnologyYonsei University Yonsei-Ro 50, Seodaemun-Gu Seoul 03722 South Korea
| |
Collapse
|
34
|
de Gonzalo G, Alcántara AR, Domínguez de María P. Cyclopentyl Methyl Ether (CPME): A Versatile Eco-Friendly Solvent for Applications in Biotechnology and Biorefineries. CHEMSUSCHEM 2019; 12:2083-2097. [PMID: 30735610 DOI: 10.1002/cssc.201900079] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/04/2019] [Indexed: 05/14/2023]
Abstract
The quest for sustainable solvents is currently a matter of intense research and development, as solvents significantly contribute heavily to the waste generated by chemical industries. Cyclopentyl methyl ether (CPME) is a promising eco-friendly solvent with valuable properties such as low peroxide formation rate, stability under basic and acidic conditions, and relatively high boiling point. This Review discusses the potential use of CPME for applications in biotechnology (e.g., biotransformations, as solvent or cosolvent), biorefineries, and bioeconomy (e.g., for furan synthesis or as an extractive agent in liquid-liquid separations), as well as for other purposes, such as chromatography or peptide synthesis. Although CPME is currently produced by petrochemical means with a remarkably high atom economy, its biogenic production can be envisaged from substrates such as cyclopentanol or cyclopentanone, which can be derived from furfural or from (bio-based) adipic acid, respectively. The combination of the promising properties of CPME as a (co)solvent with a future (economic) biogenic origin would be advantageous for setting strategies aligned with the sustainable chemistry principles.
Collapse
Affiliation(s)
- Gonzalo de Gonzalo
- Departamento de Química Orgánica, Universidad de Sevilla, c/ Profesor García González 2, 41012, Sevilla, Spain
| | - Andrés R Alcántara
- Department of Chemistry in Pharmaceutical Sciences, Section of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, Complutense University of Madrid, Plaza de Ramón y Cajal, s/n., E-28040, Madrid, Spain
| | - Pablo Domínguez de María
- Sustainable Momentum, SL, Av. Ansite 3, 4-6, Las Palmas Gran Canaria, E-35011, Canary Islands, Spain
| |
Collapse
|
35
|
Matassa C, Ormerod D, Bornscheuer UT, Höhne M, Satyawali Y. Application of novel High Molecular Weight amine donors in chiral amine synthesis facilitates integrated downstream processing and provides in situ product recovery opportunities. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
36
|
Subrizi F, Benhamou L, Ward JM, Sheppard TD, Hailes HC. Aminopolyols from Carbohydrates: Amination of Sugars and Sugar‐Derived Tetrahydrofurans with Transaminases. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fabiana Subrizi
- Department of ChemistryUniversity College London 20 Gordon Street London WC1H 0AJ UK
| | - Laure Benhamou
- Department of ChemistryUniversity College London 20 Gordon Street London WC1H 0AJ UK
| | - John M. Ward
- Department of Biochemical EngineeringUniversity College London Bernard Katz Building London WC1E 6BT UK
| | - Tom D. Sheppard
- Department of ChemistryUniversity College London 20 Gordon Street London WC1H 0AJ UK
| | - Helen C. Hailes
- Department of ChemistryUniversity College London 20 Gordon Street London WC1H 0AJ UK
| |
Collapse
|
37
|
Subrizi F, Benhamou L, Ward JM, Sheppard TD, Hailes HC. Aminopolyols from Carbohydrates: Amination of Sugars and Sugar-Derived Tetrahydrofurans with Transaminases. Angew Chem Int Ed Engl 2019; 58:3854-3858. [PMID: 30690839 PMCID: PMC6492202 DOI: 10.1002/anie.201813712] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Indexed: 01/09/2023]
Abstract
Carbohydrates are the major component of biomass and have unique potential as a sustainable source of building blocks for chemicals, materials, and biofuels because of their low cost, ready availability, and stereochemical diversity. With a view to upgrading carbohydrates to access valuable nitrogen-containing sugar-like compounds such as aminopolyols, biocatalytic aminations using transaminase enzymes (TAms) have been investigated as a sustainable alternative to traditional synthetic strategies. Demonstrated here is the reaction of TAms with sugar-derived tetrahydrofuran (THF) aldehydes, obtained from the regioselective dehydration of biomass-derived sugars, to provide access to cyclic aminodiols in high yields. In a preliminary study we have also established the direct transamination of sugars to give acyclic aminopolyols. Notably, the reaction of the ketose d-fructose proceeds with complete stereoselectivity to yield valuable aminosugars in high purity.
Collapse
Affiliation(s)
- Fabiana Subrizi
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Laure Benhamou
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - John M. Ward
- Department of Biochemical EngineeringUniversity College LondonBernard Katz BuildingLondonWC1E 6BTUK
| | - Tom D. Sheppard
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Helen C. Hailes
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| |
Collapse
|
38
|
Dobrijevic D, Benhamou L, Aliev AE, Méndez-Sánchez D, Dawson N, Baud D, Tappertzhofen N, Moody TS, Orengo CA, Hailes HC, Ward JM. Metagenomic ene-reductases for the bioreduction of sterically challenging enones. RSC Adv 2019; 9:36608-36614. [PMID: 35539044 PMCID: PMC9075147 DOI: 10.1039/c9ra06088j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/02/2019] [Indexed: 11/21/2022] Open
Abstract
Ene-reductases (ERs) of the Old Yellow Enzyme family catalyse asymmetric reduction of activated alkenes providing chiral products. They have become an important method in the synthetic chemists' toolbox offering a sustainable alternative to metal-catalysed asymmetric reduction. Development of new biocatalytic alkene reduction routes, however needs easy access to novel biocatalysts. A sequence-based functional metagenomic approach was used to identify novel ERs from a drain metagenome. From the ten putative ER enzymes initially identified, eight exhibited activities towards widely accepted mono-cyclic substrates with several of the ERs giving high reaction yields and stereoselectivities. Two highly performing enzymes that displayed excellent co-solvent tolerance were used for the stereoselective reduction of sterically challenging bicyclic enones where the reactions proceeded in high yields, which is unprecedented to date with wild-type ERs. On a preparative enzymatic scale, reductions of Hajos–Parish, Wieland–Miescher derivatives and a tricyclic ketone proceeded with good to excellent yields. Exceptional organic solvent tolerant ene-reductases mined from a drain metagenome library are highly versatile catalysts for difficult enones.![]()
Collapse
Affiliation(s)
- Dragana Dobrijevic
- Department of Biochemical Engineering
- University College London
- London WC1H 6BT
- UK
| | - Laure Benhamou
- Department of Chemistry
- University College London
- London
- UK
| | - Abil E. Aliev
- Department of Chemistry
- University College London
- London
- UK
| | | | - Natalie Dawson
- Structural and Molecular Biology
- University College London
- London
- UK
| | - Damien Baud
- Department of Chemistry
- University College London
- London
- UK
| | | | - Thomas S. Moody
- Almac
- Department of Biocatalysis & Isotope Chemistry
- Craigavon
- UK
| | | | | | - John M. Ward
- Department of Biochemical Engineering
- University College London
- London WC1H 6BT
- UK
| |
Collapse
|
39
|
Galman JL, Gahloth D, Parmeggiani F, Slabu I, Leys D, Turner NJ. Characterization of a Putrescine Transaminase From Pseudomonas putida and its Application to the Synthesis of Benzylamine Derivatives. Front Bioeng Biotechnol 2018; 6:205. [PMID: 30622946 PMCID: PMC6308316 DOI: 10.3389/fbioe.2018.00205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/12/2018] [Indexed: 01/08/2023] Open
Abstract
The reductive amination of prochiral ketones using biocatalysts has been of great interest to the pharmaceutical industry in the last decade for integrating novel strategies in the production of chiral building blocks with the intent of minimizing impact on the environment. Amongst the enzymes able to catalyze the direct amination of prochiral ketones, pyridoxal 5'-phosphate (PLP) dependent ω-transaminases have shown great promise as versatile industrial biocatalysts with high selectivity, regioselectivity, and broad substrate scope. Herein the biochemical characterization of a putrescine transaminase from Pseudomonas putida (Pp-SpuC) was performed, which showed an optimum pH and temperature of 8.0 and 60°C, respectively. To gain further structural insight of this enzyme, we crystallized the protein in the apo form and determined the structure to 2.1 Å resolution which revealed a dimer that adopts a class I transaminase fold comparable to other class III transaminases. Furthermore we exploited its dual substrate recognition for biogenic diamines (i.e., cadaverine) and readily available monoamines (i.e., isopropylamine) for the synthesis of benzylamine derivatives with excellent product conversions and extremely broad substrate tolerance.
Collapse
Affiliation(s)
| | | | | | | | | | - Nicholas J. Turner
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|