1
|
Taskozhina G, Batyrova G, Umarova G, Issanguzhina Z, Kereyeva N. The Manganese-Bone Connection: Investigating the Role of Manganese in Bone Health. J Clin Med 2024; 13:4679. [PMID: 39200820 PMCID: PMC11355939 DOI: 10.3390/jcm13164679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/17/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
The complex relationship between trace elements and skeletal health has received increasing attention in the scientific community. Among these minerals, manganese (Mn) has emerged as a key element affecting bone metabolism and integrity. This review examines the multifaceted role of Mn in bone health, including its effects on bone regeneration, mineralization, and overall skeletal strength. This review article is based on a synthesis of experimental models, epidemiologic studies, and clinical trials of the mechanisms of the effect of Mn on bone metabolism. Current research data show that Mn is actively involved in the processes of bone remodeling by modulating the activity of osteoblasts and osteoclasts, as well as the main cells that regulate bone formation and resorption. Mn ions have a profound effect on bone mineralization and density by intricately regulating signaling pathways and enzymatic reactions in these cells. Additionally, Mn superoxide dismutase (MnSOD), located in bone mitochondria, plays a crucial role in osteoclast differentiation and function, protecting osteoclasts from oxidative damage. Understanding the nuances of Mn's interaction with bone is essential for optimizing bone strategies, potentially preventing and managing skeletal diseases. Key findings include the stimulation of osteoblast proliferation and differentiation, the inhibition of osteoclastogenesis, and the preservation of bone mass through the RANK/RANKL/OPG pathway. These results underscore the importance of Mn in maintaining bone health and highlight the need for further research into its therapeutic potential.
Collapse
Affiliation(s)
- Gulaim Taskozhina
- Department of Laboratory Diagnostics, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Street, Aktobe 030019, Kazakhstan
| | - Gulnara Batyrova
- Department of Laboratory Diagnostics, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Street, Aktobe 030019, Kazakhstan
| | - Gulmira Umarova
- Department of Evidence-Based Medicine and Scientific Management, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Street, Aktobe 030019, Kazakhstan;
| | - Zhamilya Issanguzhina
- Department of Children Disease No. 2, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Street, Aktobe 030019, Kazakhstan;
| | - Nurgul Kereyeva
- Department of Oncology, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Street, Aktobe 030019, Kazakhstan;
| |
Collapse
|
2
|
Acevedo S, Segovia MF, de la Fuente-Ortega E. Emerging Perspectives in Zinc Transporter Research in Prostate Cancer: An Updated Review. Nutrients 2024; 16:2026. [PMID: 38999774 PMCID: PMC11243615 DOI: 10.3390/nu16132026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Dysregulation of zinc and zinc transporters families has been associated with the genesis and progression of prostate cancer. The prostate epithelium utilizes two types of zinc transporters, the ZIP (Zrt-, Irt-related Protein) and the ZnTs (Zinc Transporter), to transport zinc from the blood plasma to the gland lumen. ZIP transporters uptake zinc from extracellular space and organelle lumen, while ZnT transporters release zinc outside the cells or to organelle lumen. In prostate cancer, a commonly observed low zinc concentration in prostate tissue has been correlated with downregulations of certain ZIPs (e.g., ZIP1, ZIP2, ZIP3, ZIP14) and upregulations of specific ZnTs (e.g., ZnT1, ZnT9, ZnT10). These alterations may enable cancer cells to adapt to toxic high zinc levels. While zinc supplementation has been suggested as a potential therapy for this type of cancer, studies have yielded inconsistent results because some trials have indicated that zinc supplementation could exacerbate cancer risk. The reason for this discrepancy remains unclear, but given the high molecular and genetic variability present in prostate tumors, it is plausible that some zinc transporters-comprising 14 ZIP and 10 ZnT members-could be dysregulated in others patterns that promote cancer. From this perspective, this review highlights novel dysregulation, such as ZIP-Up/ZnT-Down, observed in prostate cancer cell lines for ZIP4, ZIP8, ZnT2, ZnT4, ZnT5, etc. Additionally, an in silico analysis of an available microarray from mouse models of prostate cancer (Nkx3.1;Pten) predicts similar dysregulation pattern for ZIP4, ZIP8, and ZnT2, which appear in early stages of prostate cancer progression. Furthermore, similar dysregulation patterns are supported by an in silico analysis of RNA-seq data from human cancer tumors available in cBioPortal. We discuss how these dysregulations of zinc transporters could impact zinc supplementation trials, particularly focusing on how the ZIP-Up/ZnT-Down dysregulation through various mechanisms might promote prostate cancer progression.
Collapse
Affiliation(s)
- Samantha Acevedo
- Laboratorio Estrés Celular y Enfermedades Crónicas No Transmisibles, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Larrondo 1281, Coquimbo 1781421, Chile
| | - María Fernanda Segovia
- Laboratorio Estrés Celular y Enfermedades Crónicas No Transmisibles, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Larrondo 1281, Coquimbo 1781421, Chile
| | - Erwin de la Fuente-Ortega
- Laboratorio Estrés Celular y Enfermedades Crónicas No Transmisibles, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Larrondo 1281, Coquimbo 1781421, Chile
- Centro de Investigación y Desarrollo Tecnológico en Algas y Otros Recursos Biológicos (CIDTA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo 1781421, Chile
- Núcleo de Investigación en Prevención y Tratamiento de Enfermedades Crónicas no Transmisibles (NiPTEC), Universidad Católica del Norte, Coquimbo 1781421, Chile
| |
Collapse
|
3
|
Alam S, Doherty E, Ortega-Prieto P, Arizanova J, Fets L. Membrane transporters in cell physiology, cancer metabolism and drug response. Dis Model Mech 2023; 16:dmm050404. [PMID: 38037877 PMCID: PMC10695176 DOI: 10.1242/dmm.050404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
By controlling the passage of small molecules across lipid bilayers, membrane transporters influence not only the uptake and efflux of nutrients, but also the metabolic state of the cell. With more than 450 members, the Solute Carriers (SLCs) are the largest transporter super-family, clustering into families with different substrate specificities and regulatory properties. Cells of different types are, therefore, able to tailor their transporter expression signatures depending on their metabolic requirements, and the physiological importance of these proteins is illustrated by their mis-regulation in a number of disease states. In cancer, transporter expression is heterogeneous, and the SLC family has been shown to facilitate the accumulation of biomass, influence redox homeostasis, and also mediate metabolic crosstalk with other cell types within the tumour microenvironment. This Review explores the roles of membrane transporters in physiological and malignant settings, and how these roles can affect drug response, through either indirect modulation of sensitivity or the direct transport of small-molecule therapeutic compounds into cells.
Collapse
Affiliation(s)
- Sara Alam
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Emily Doherty
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Paula Ortega-Prieto
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Julia Arizanova
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Louise Fets
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
4
|
Zhao F, Chen Y, Xie Y, Kong S, Song L, Li H, Guo C, Yin Y, Zhang W, Zhu T. Identification of Zip8-correlated hub genes in pulmonary hypertension by informatic analysis. PeerJ 2023; 11:e15939. [PMID: 37663293 PMCID: PMC10470448 DOI: 10.7717/peerj.15939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Background Pulmonary hypertension (PH) is a syndrome characterized by marked remodeling of the pulmonary vasculature and increased pulmonary vascular resistance, ultimately leading to right heart failure and even death. The localization of Zrt/Irt-like Protein 8 (ZIP8, a metal ion transporter, encoded by SLC39A8) was abundantly in microvasculature endothelium and its pivotal role in the lung has been demonstrated. However, the role of Zip8 in PH remains unclear. Methods Bioinformatics analysis was employed to identify SLC39A8 expression patterns and differentially expressed genes (DEGs) between PH patients and normal controls (NC), based on four datasets (GSE24988, GSE113439, GSE117261, and GSE15197) from the Biotechnology Gene Expression Omnibus (NCBI GEO) database. Gene set enrichment analysis (GSEA) was performed to analyze signaling pathways enriched for DEGs. Hub genes were identified by cytoHubba analysis in Cytoscape. Reverse transcriptase-polymerase chain reaction was used to validate SLC39A8 and its correlated metabolic DEGs expression in PH (SU5416/Hypoxia) mice. Results SLC39A8 expression was downregulated in PH patients, and this expression pattern was validated in PH (SU5416/Hypoxia) mouse lung tissue. SLC39A8-correlated genes were mainly enriched in the metabolic pathways. Within these SLC39A8-correlated genes, 202 SLC39A8-correlated metabolic genes were screened out, and seven genes were identified as SLC39A8-correlated metabolic hub genes. The expression patterns of hub genes were analyzed between PH patients and controls and further validated in PH mice. Finally, four genes (Fasn, Nsdhl, Acat2, and Acly) were downregulated in PH mice. However, there were no significant differences in the expression of the other three hub genes between PH mice and controls. Of the four genes, Fasn and Acly are key enzymes in fatty acids synthesis, Nsdhl is involved in cholesterol synthesis, and Acat2 is implicated in cholesterol metabolic transformation. Taken together, these results provide novel insight into the role of Zip8 in PH.
Collapse
Affiliation(s)
- FanRong Zhao
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China
| | - Yujing Chen
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China
| | - Yuliang Xie
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China
| | - Shuang Kong
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China
| | - LiaoFan Song
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China
| | - Hanfei Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China
| | - Chao Guo
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China
| | - Yanyan Yin
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Weifang Zhang
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
- Departments of Pharmacy, The Second Affiliated Hospital, Nanchang, China
| | - Tiantian Zhu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China
| |
Collapse
|
5
|
Verma R, Aggarwal P, Bischoff ME, Reigle J, Secic D, Wetzel C, VandenHeuvel K, Biesiada J, Ehmer B, Landero Figueroa JA, Plas DR, Medvedovic M, Meller J, Czyzyk-Krzeska MF. Microtubule-associated protein MAP1LC3C regulates lysosomal exocytosis and induces zinc reprogramming in renal cancer cells. J Biol Chem 2023; 299:104663. [PMID: 37003503 PMCID: PMC10173779 DOI: 10.1016/j.jbc.2023.104663] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Microtubule-associated protein 1 light chain 3 gamma (MAP1LC3C or LC3C) is a member of the microtubule-associated family of proteins that are essential in the formation of autophagosomes and lysosomal degradation of cargo. LC3C has tumor-suppressing activity, and its expression is dependent on kidney cancer tumor suppressors, such as von Hippel-Lindau protein and folliculin. Recently, we demonstrated that LC3C autophagy is regulated by noncanonical upstream regulatory complexes and targets for degradation postdivision midbody rings associated with cancer cell stemness. Here, we show that loss of LC3C leads to peripheral positioning of the lysosomes and lysosomal exocytosis (LE). This process is independent of the autophagic activity of LC3C. Analysis of isogenic cells with low and high LE shows substantial transcriptomic reprogramming with altered expression of zinc (Zn)-related genes and activity of polycomb repressor complex 2, accompanied by a robust decrease in intracellular Zn. In addition, metabolomic analysis revealed alterations in amino acid steady-state levels. Cells with augmented LE show increased tumor initiation properties and form aggressive tumors in xenograft models. Immunocytochemistry identified high levels of lysosomal-associated membrane protein 1 on the plasma membrane of cancer cells in human clear cell renal cell carcinoma and reduced levels of Zn, suggesting that LE occurs in clear cell renal cell carcinoma, potentially contributing to the loss of Zn. These data indicate that the reprogramming of lysosomal localization and Zn metabolism with implication for epigenetic remodeling in a subpopulation of tumor-propagating cancer cells is an important aspect of tumor-suppressing activity of LC3C.
Collapse
Affiliation(s)
- Rita Verma
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Parul Aggarwal
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Megan E Bischoff
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - James Reigle
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Dina Secic
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Collin Wetzel
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Katherine VandenHeuvel
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jacek Biesiada
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Birgit Ehmer
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Julio A Landero Figueroa
- Department of Chemistry, Agilent Metallomics Center of the Americas, University of Cincinnati College of Arts and Science, Cincinnati, Ohio, USA; Department of Pharmacology and System Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - David R Plas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Mario Medvedovic
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jarek Meller
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Department of Pharmacology and System Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Department of Electrical Engineering and Computer Science, University of Cincinnati College of Engineering and Applied Sciences, Cincinnati, Ohio, USA
| | - Maria F Czyzyk-Krzeska
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Department of Pharmacology and System Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Department of Veterans Affairss, Veteran Affairs Medical Center, Cincinnati, Ohio, USA.
| |
Collapse
|
6
|
Wang Y, Wang C, Chen H, Zhang Y, Gao N, Yu Y, Xing Y, Xie L, Wang Z, Cai Y. Protective effects of ZIP8 on Toxoplasma gondii-induced acute hepatocyte injury in mice. Acta Trop 2022; 234:106629. [DOI: 10.1016/j.actatropica.2022.106629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/30/2022]
|
7
|
Qu YY, Guo RY, Luo ML, Zhou Q. Pan-Cancer Analysis of the Solute Carrier Family 39 Genes in Relation to Oncogenic, Immune Infiltrating, and Therapeutic Targets. Front Genet 2021; 12:757582. [PMID: 34925450 PMCID: PMC8675640 DOI: 10.3389/fgene.2021.757582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/12/2021] [Indexed: 12/28/2022] Open
Abstract
Background: Emerging pieces of evidence demonstrated that the solute carrier family 39 (SLC39A) members are critical for the oncogenic and immune infiltrating targets in multiple types of tumors. However, the precise relationship between the SLC39A family genes and clinical prognosis as well as the pan-cancer tumor cell infiltration has not been fully elucidated. Methods: In this study, the pan-cancer expression profile, genetic mutation, prognostic effect, functional enrichment, immune infiltrating, and potential therapeutic targets of the SLC39A family members were investigated by analyzing multiple public databases such as the Oncomine, TIMER, GEPIA, cBioPortal, KM-plotter, PrognoScan, GeneMANIA, STRING, DAVID, TIMER 2.0, and CellMiner databases. Results: The expression levels of most SLC39 family genes in the tumor tissues were found to be significantly upregulated compared to the normal group. In mutation analysis, the mutation frequencies of SLC39A4 and SLC39A1 were found to be higher among all the members (6 and 4%, respectively). Moreover, the overall mutation frequency of the SLC39A family genes ranged from 0.8 to 6% pan-cancer. Also, the function of the SLC39A highly related genes was found to be enriched in functions such as zinc II ion transport across the membrane, steroid hormone biosynthesis, and chemical carcinogenesis. In immune infiltration analysis, the expression level of the SLC39A family genes was found to be notably related to the immune infiltration levels of six types of immune cells in specific types of tumors. In addition, the SLC39A family genes were significantly related to the sensitivity or resistance of 63 antitumor drugs in a variety of tumor cell lines. Conclusion: These results indicate that the SLC39 family genes are significant for determining cancer progression, immune infiltration, and drug sensitivity in multiple cancers. This study, therefore, provides novel insights into the pan-cancer potential targets of the SLC39 family genes.
Collapse
Affiliation(s)
- Yi-Yuan Qu
- Department of Gynecology and Obstetrics, the People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, Yichang, China
| | - Rong-Yan Guo
- Emergency Services Department, HanYang Hospital Affiliated of Wuhan University of Science and Technology, Wuhan, China
| | - Meng-Ling Luo
- Department of Gynecology and Obstetrics, the People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, Yichang, China
| | - Quan Zhou
- Department of Gynecology and Obstetrics, the People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, Yichang, China
| |
Collapse
|
8
|
Feng J, Wang H, Jing Z, Wang Y, Wang W, Jiang Y, Sun W. Relationships of the Trace Elements Zinc and Magnesium With Diabetic Nephropathy-Associated Renal Functional Damage in Patients With Type 2 Diabetes Mellitus. Front Med (Lausanne) 2021; 8:626909. [PMID: 33859989 PMCID: PMC8042293 DOI: 10.3389/fmed.2021.626909] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/09/2021] [Indexed: 11/25/2022] Open
Abstract
Zinc (Zn) and magnesium (Mg) are essential trace elements in humans. Their deficiency may be associated with inflammation and oxidative stress (OS) in patients with diabetic nephropathy (DN), but the mechanisms involved have not been fully characterized. We aimed to investigate the relationships between circulating concentrations of Zn and Mg and pro-inflammatory factors with DN-associated renal functional damage in patients with type 2 diabetes mellitus (T2DM). To this end, we studied 20 healthy people, 24 patients with T2DM, and 59 patients with T2DM and T2DN. Serum and urine Zn and Mg concentrations were measured using the 2-(5-nitro-2-pyridylazo)-5-(N-propyl-N-sulfopropylamine) phenol (nitro-PAPS) chromogenic method and the xylidyl blue method, respectively, and the circulating concentrations of pro-inflammatory cytokines [interleukin (IL)-1β, IL-6, IL-8, IL-10, IL-12, and tumor necrosis factor-α (TNF-α)] were measured using flow cytometry. The serum concentrations of Zn and Mg were significantly lower in patients with T2DM and DN than in healthy controls. Serum Zn, urine Zn, and urine Mg concentrations decreased, while those of IL-6 and IL-8 increased with the progression of DN-associated renal functional damage. Furthermore, the serum and urine Zn concentrations negatively correlated with the serum IL-6 and IL-8 concentrations. Notably, the serum Zn concentration was found to independently protect against DN in patients with T2DM. Hypozincemia may be associated with the T2DN-associated renal functional damage because it exacerbates inflammation.
Collapse
Affiliation(s)
- Jianan Feng
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China.,Department of Blood Purification, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Heyuan Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Zhe Jing
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yue Wang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Wanning Wang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Yanfang Jiang
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Weixia Sun
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Nebert DW, Liu Z. SLC39A8 gene encoding a metal ion transporter: discovery and bench to bedside. Hum Genomics 2019; 13:51. [PMID: 31521203 PMCID: PMC6744627 DOI: 10.1186/s40246-019-0233-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/14/2019] [Indexed: 01/08/2023] Open
Abstract
SLC39A8 is an evolutionarily highly conserved gene that encodes the ZIP8 metal cation transporter in all vertebrates. SLC39A8 is ubiquitously expressed, including pluripotent embryonic stem cells; SLC39A8 expression occurs in every cell type examined. Uptake of ZIP8-mediated Mn2+, Zn2+, Fe2+, Se4+, and Co2+ represents endogenous functions-moving these cations into the cell. By way of mouse genetic differences, the phenotype of "subcutaneous cadmium-induced testicular necrosis" was assigned to the Cdm locus in the 1970s. This led to identification of the mouse Slc39a8 gene, its most closely related Slc39a14 gene, and creation of Slc39a8-overexpressing, Slc39a8(neo/neo) knockdown, and cell type-specific conditional knockout mouse lines; the Slc39a8(-/-) global knockout mouse is early-embryolethal. Slc39a8(neo/neo) hypomorphs die between gestational day 16.5 and postnatal day 1-exhibiting severe anemia, dysregulated hematopoiesis, hypoplastic spleen, dysorganogenesis, stunted growth, and hypomorphic limbs. Not surprisingly, genome-wide association studies subsequently revealed human SLC39A8-deficiency variants exhibiting striking pleiotropy-defects correlated with clinical disorders in virtually every organ, tissue, and cell-type: numerous developmental and congenital disorders, the immune system, cardiovascular system, kidney, lung, liver, coagulation system, central nervous system, musculoskeletal system, eye, and gastrointestinal tract. Traits with which SLC39A8-deficiency variants are currently associated include Mn2+-deficient hypoglycosylation; numerous birth defects; Leigh syndrome-like mitochondrial redox deficiency; decreased serum high-density lipoprotein-cholesterol levels; increased body mass index; greater risk of coronary artery disease, hypotension, cardiovascular death, allergy, ischemic stroke, schizophrenia, Parkinson disease, inflammatory bowel disease, Crohn disease, myopia, and adolescent idiopathic scoliosis; systemic lupus erythematosus with primary Sjögren syndrome; decreased height; and inadvertent participation in the inflammatory progression of osteoarthritis.
Collapse
Affiliation(s)
- Daniel W Nebert
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH, 45267-0056, USA.
- Division of Human Genetics, Department of Pediatrics & Molecular Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, 45229-2899, USA.
| | - Zijuan Liu
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA
| |
Collapse
|
10
|
Role of ZIP8 in regulation of cisplatin sensitivity through Bcl-2. Toxicol Appl Pharmacol 2018; 362:52-58. [PMID: 30342059 DOI: 10.1016/j.taap.2018.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/12/2018] [Accepted: 10/16/2018] [Indexed: 02/06/2023]
Abstract
ZIP8 is a membrane transporter that facilitates the uptake of divalent metals (e.g., Zn, Mn, Fe, Cd) and the mineral selenite in anionic form. ZIP8 functionality has been recently reported to regulate cell proliferation, migration and cytoskeleton arrangement, exhibiting an essential role for normal physiology. In this study, we report a ZIP8 role in chemotherapy response. We show ZIP8 regulates cell sensitivity to the anti-cancer drug cisplatin. Overexpression of ZIP8 in mouse embryonic fibroblast (MEF) cells induces cisplatin sensitivity, while knockout of ZIP8 in leukemia HAP1 cells leads to cisplatin resistance. In ZIP8 altered cells and transgenic mice, we show cisplatin is not a direct ZIP8 substrate. Further studies demonstrate that ZIP8 regulates anti-apoptotic protein Bcl-2. ZIP8 overexpression decreases Bcl-2 levels in cultured cells, mice lung and liver tissue while loss of ZIP8 elevates Bcl-2 expression in HAP1 cells and liver tissue. We also observe that ZIP8 overexpression modulates cisplatin-induced cell apoptosis, manifested by the increased protein level of cleaved Caspase-3. Since Bcl-2 elevation was previously discovered to induce cisplatin drug resistance, our results suggest ZIP8 may modulate cisplatin drug responses as well as apoptosis through Bcl-2. We therefore conclude ZIP8 is a new molecule to be involved in cisplatin drug responses and is predicted as a genetic factor to be considered in cisplatin therapy.
Collapse
|