1
|
Ling Z, Ge X, Jin C, Song Z, Zhang H, Fu Y, Zheng K, Xu R, Jiang H. Copper doped bioactive glass promotes matrix vesicles-mediated biomineralization via osteoblast mitophagy and mitochondrial dynamics during bone regeneration. Bioact Mater 2025; 46:195-212. [PMID: 39760064 PMCID: PMC11699476 DOI: 10.1016/j.bioactmat.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/05/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025] Open
Abstract
Bone defect repair remains a great challenge in the field of orthopedics. Human body essential trace element such as copper is essential for bone regeneration, but how to use it in bone defects and the underlying its mechanisms of promoting bone formation need to be further explored. In this study, by doping copper into mesoporous bioactive glass nanoparticles (Cu-MBGNs), we unveil a previously unidentified role of copper in facilitating osteoblast mitophagy and mitochondrial dynamics, which enhance amorphous calcium phosphate (ACP) release and subsequent biomineralization, ultimately accelerating the process of bone regeneration. Specifically, by constructing conditional knockout mice lacking the autophagy gene Atg5 in osteogenic lineage cells, we first confirmed the role of Cu-MBGNs-promoted bone formation via mediating osteoblast autophagy pathway. Then, the in vitro studies revealed that Cu-MBGNs strengthened mitophagy by inducing ROS production and recruiting PINK1/Parkin, thereby facilitating the efficient release of ACP from mitochondria into matrix vesicles for biomineralization during bone regeneration. Moreover, we found that Cu-MBGNs promoted mitochondrion fission via activating dynamin related protein 1 (Drp1) to reinforce mitophagy pathway. Together, this study highlights the potential of Cu-MBGNs-mediated mitophagy and biomineralization for augmenting bone regeneration, offering a promising avenue for the development of advanced bioactive materials in orthopedic applications.
Collapse
Affiliation(s)
- Ziji Ling
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 210029, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 210029, Nanjing, China
| | - Xiao Ge
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 210029, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 210029, Nanjing, China
| | - Chengyu Jin
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 210029, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 210029, Nanjing, China
| | - Zesheng Song
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 210029, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 210029, Nanjing, China
| | - Hang Zhang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 210029, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 210029, Nanjing, China
| | - Yu Fu
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 210029, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 210029, Nanjing, China
| | - Kai Zheng
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 210029, Nanjing, China
| | - Rongyao Xu
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 210029, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 210029, Nanjing, China
| | - Hongbing Jiang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 210029, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 210029, Nanjing, China
| |
Collapse
|
2
|
Antoniadou C, Gavriilidis E, Ritis K, Tsilingiris D. Anemia in diabetes mellitus: Pathogenetic aspects and the value of early erythropoietin therapy. Metabol Open 2025; 25:100344. [PMID: 39886103 PMCID: PMC11780985 DOI: 10.1016/j.metop.2024.100344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 02/01/2025] Open
Abstract
Anemia is a frequent, yet increasingly recognized, comorbidity in diabetes mellitus (DM), with prevalence often driven by multifactorial mechanisms. Hematinic deficiencies, common in this population, may arise from associated comorbidities or medications, such as metformin, as well as other drugs commonly employed for DM-related conditions. Among contributing factors, diabetic kidney disease (DKD) plays a pivotal role, with anemia developing more frequently and being more pronounced in earlier stages, than in CKD of other causes. This enhanced susceptibility stems primarily from the combined impact of impaired renal oxygen sensing and deficient erythropoietin (EPO) production linked to tubulointerstitial fibrosis. Additional mechanisms comprise glomerular dysfunction, shortened erythrocyte lifespan, uremia-induced bone marrow suppression, and increased bleeding risk. DM is also recognized as a chronic low-grade inflammatory condition, with its inflammatory burden driving iron maldistribution, suppression of erythropoiesis, and resistance to EPO. The diagnostic approach of anemia in DM mirrors that in the general population. Addressing modifiable causes such as hematinic deficiencies, and other chronic conditions, such as DKD and bone marrow disorders, is paramount. In total, the underlying pathophysiology of anemia in DM primarily reflects a state of absolute or relative EPO deficiency and/or diminished bone marrow responsiveness, effectively corresponding to 'anemia of chronic disease. Early initiation of EPO therapy, even in DM patients without overt DKD, may mitigate disease progression and improve outcomes. Future research should focus on diabetes-specific strategies integrating optimal EPO use, potentially implementing targeted management of renal and inflammatory contributors to anemia.
Collapse
Affiliation(s)
- Christina Antoniadou
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
- Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Efstratios Gavriilidis
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
- Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Konstantinos Ritis
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
- Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
- Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
3
|
Lutsenko S, Roy S, Tsvetkov P. Mammalian copper homeostasis: physiological roles and molecular mechanisms. Physiol Rev 2025; 105:441-491. [PMID: 39172219 DOI: 10.1152/physrev.00011.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024] Open
Abstract
In the past decade, evidence for the numerous roles of copper (Cu) in mammalian physiology has grown exponentially. The discoveries of Cu involvement in cell signaling, autophagy, cell motility, differentiation, and regulated cell death (cuproptosis) have markedly extended the list of already known functions of Cu, such as a cofactor of essential metabolic enzymes, a protein structural component, and a regulator of protein trafficking. Novel and unexpected functions of Cu transporting proteins and enzymes have been identified, and new disorders of Cu homeostasis have been described. Significant progress has been made in the mechanistic studies of two classic disorders of Cu metabolism, Menkes disease and Wilson's disease, which paved the way for novel approaches to their treatment. The discovery of cuproptosis and the role of Cu in cell metastatic growth have markedly increased interest in targeting Cu homeostatic pathways to treat cancer. In this review, we summarize the established concepts in the field of mammalian Cu physiology and discuss how new discoveries of the past decade expand and modify these concepts. The roles of Cu in brain metabolism and in cell functional speciation and a recently discovered regulated cell death have attracted significant attention and are highlighted in this review.
Collapse
Affiliation(s)
- Svetlana Lutsenko
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, Maryland, United States
| | - Shubhrajit Roy
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, Maryland, United States
| | - Peter Tsvetkov
- Department of Pathology, Cancer Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States
| |
Collapse
|
4
|
Luo F, Bi J, Liu Q, Fan G, Fang Q, Qin X, Zhang X, Huang X, Li H, Guo W, Liu B, Yan L, Mei S, Wang Y, Song L. Association of exposure to multiple metals with hemoglobin levels in Chinese children and adolescents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173954. [PMID: 38876334 DOI: 10.1016/j.scitotenv.2024.173954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/06/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Previous studies have linked single metal to hemoglobin levels in children and adolescents; however, studies with regards to metal mixtures are still limited. OBJECTIVE We aimed to investigate the associations of single metal and metal mixtures with hemoglobin levels in children and adolescents. METHODS We conducted a cross-sectional study of 2064 children and adolescents aged 6 to 19 years in Liuzhou, China in 2018. The concentrations of 15 metals in urine were determined by inductively coupled plasma mass spectrometry. Generalized linear regression and weighted quantile sum (WQS) regression were used to estimate the associations of single metal and metal mixtures with hemoglobin levels, respectively. RESULTS The multivariable-adjusted β-values for the highest versus the first quartiles of urinary metal concentrations were - 1.57 (95 % confidence interval [CI]: -3.01, -0.13) for chromium, -2.47 (95 % CI: -3.90, -1.05) for nickel and 1.88 (95 % CI: 0.49, 3.28) for copper. In addition, we found a significant negative association between the WQS index and hemoglobin levels (adjusted β = -0.93, 95 % CI: -1.69, -0.19), with nickel contributing the most to the WQS index at 59.0 %. Subgroup analyses showed that exposure to urinary nickel or metal mixtures were associated with decreased hemoglobin levels in adolescents, but not in children (all Pinteration < 0.001). CONCLUSION Among children and adolescents, urinary chromium and nickel concentrations were associated with decreased hemoglobin levels, while copper showed a positive relationship. Moreover, a negative association was observed between exposure to metal mixtures and hemoglobin levels. These findings need to be further validated in prospective studies.
Collapse
Affiliation(s)
- Fei Luo
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jianing Bi
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Qing Liu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Gaojie Fan
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Qing Fang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xiya Qin
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xukuan Zhang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xiaofeng Huang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Heng Li
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Wenwen Guo
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Binghai Liu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Lianyan Yan
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Surong Mei
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Youjie Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Lulu Song
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
5
|
Menon V, Slavinsky M, Hermine O, Ghaffari S. Mitochondrial regulation of erythropoiesis in homeostasis and disease. Br J Haematol 2024; 205:429-439. [PMID: 38946206 PMCID: PMC11619715 DOI: 10.1111/bjh.19600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024]
Abstract
Erythroid cells undergo a highly complex maturation process, resulting in dynamic changes that generate red blood cells (RBCs) highly rich in haemoglobin. The end stages of the erythroid cell maturation process primarily include chromatin condensation and nuclear polarization, followed by nuclear expulsion called enucleation and clearance of mitochondria and other organelles to finally generate mature RBCs. While healthy RBCs are devoid of mitochondria, recent evidence suggests that mitochondria are actively implicated in the processes of erythroid cell maturation, erythroblast enucleation and RBC production. However, the extent of mitochondrial participation that occurs during these ultimate steps is not completely understood. This is specifically important since abnormal RBC retention of mitochondria or mitochondrial DNA contributes to the pathophysiology of sickle cell and other disorders. Here we review some of the key findings so far that elucidate the importance of this process in various aspects of erythroid maturation and RBC production under homeostasis and disease conditions.
Collapse
Affiliation(s)
- Vijay Menon
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Mary Slavinsky
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Olivier Hermine
- Department Hematology, Hôpital Necker, Assistance Publique Hôpitaux de Paris, University Paris Descartes
- INSERM U1163 and CNRS 8254, Imagine Institute, Université Sorbonne Paris Cité, Paris, France
| | - Saghi Ghaffari
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| |
Collapse
|
6
|
Abdolmaleki S, Aliabadi A, Khaksar S. Unveiling the promising anticancer effect of copper-based compounds: a comprehensive review. J Cancer Res Clin Oncol 2024; 150:213. [PMID: 38662225 PMCID: PMC11045632 DOI: 10.1007/s00432-024-05641-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/03/2024] [Indexed: 04/26/2024]
Abstract
Copper is a necessary micronutrient for maintaining the well-being of the human body. The biological activity of organic ligands, especially their anticancer activity, is often enhanced when they coordinate with copper(I) and (II) ions. Copper and its compounds are capable of inducing tumor cell death through various mechanisms of action, including activation of apoptosis signaling pathways by reactive oxygen species (ROS), inhibition of angiogenesis, induction of cuproptosis, and paraptosis. Some of the copper complexes are currently being evaluated in clinical trials for their ability to map tumor hypoxia in various cancers, including locally advanced rectal cancer and bulky tumors. Several studies have shown that copper nanoparticles can be used as effective agents in chemodynamic therapy, phototherapy, hyperthermia, and immunotherapy. Despite the promising anticancer activity of copper-based compounds, their use in clinical trials is subject to certain limitations. Elevated copper concentrations may promote tumor growth, angiogenesis, and metastasis by affecting cellular processes.
Collapse
Affiliation(s)
- Sara Abdolmaleki
- Department of Pharmaceutical Chemistry, School of Science and Technology, The University of Georgia, Tbilisi, Georgia.
| | - Alireza Aliabadi
- Pharmaceutical Sciences Research Center, Health Institute, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Samad Khaksar
- Department of Pharmaceutical Chemistry, School of Science and Technology, The University of Georgia, Tbilisi, Georgia.
| |
Collapse
|
7
|
Tian Z, Jiang S, Zhou J, Zhang W. Copper homeostasis and cuproptosis in mitochondria. Life Sci 2023; 334:122223. [PMID: 38084674 DOI: 10.1016/j.lfs.2023.122223] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/30/2023] [Accepted: 10/26/2023] [Indexed: 12/18/2023]
Abstract
Mitochondria serve as sites for energy production and are essential for regulating various forms of cell death induced by metal metabolism, targeted anticancer drugs, radiotherapy and immunotherapy. Cuproptosis is an autonomous form of cell death that depends on copper (Cu) and mitochondrial metabolism. Although the recent discovery of cuproptosis highlights the significance of Cu and mitochondria, there is still a lack of biological evidence and experimental verification for the underlying mechanism. We provide an overview of how Cu and cuproptosis affect mitochondrial morphology and function. Through comparison with ferroptosis, similarities and differences in mitochondrial metabolism between cuproptosis and ferroptosis have been identified. These findings provide implications for further exploration of cuproptotic mechanisms. Furthermore, we explore the correlation between cuproptosis and immunotherapy or radiosensitivity. Ultimately, we emphasize the therapeutic potential of targeting cuproptosis as a novel approach for disease treatment.
Collapse
Affiliation(s)
- Ziying Tian
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Su Jiang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Jieyu Zhou
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Wenling Zhang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
8
|
Sun Z, Shao Y, Yan K, Yao T, Liu L, Sun F, Wu J, Huang Y. The Link between Trace Metal Elements and Glucose Metabolism: Evidence from Zinc, Copper, Iron, and Manganese-Mediated Metabolic Regulation. Metabolites 2023; 13:1048. [PMID: 37887373 PMCID: PMC10608713 DOI: 10.3390/metabo13101048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Trace metal elements are of vital importance for fundamental biological processes. They function in various metabolic pathways after the long evolution of living organisms. Glucose is considered to be one of the main sources of biological energy that supports biological activities, and its metabolism is tightly regulated by trace metal elements such as iron, zinc, copper, and manganese. However, there is still a lack of understanding of the regulation of glucose metabolism by trace metal elements. In particular, the underlying mechanism of action remains to be elucidated. In this review, we summarize the current concepts and progress linking trace metal elements and glucose metabolism, particularly for the trace metal elements zinc, copper, manganese, and iron.
Collapse
Affiliation(s)
- Zhendong Sun
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yuzhuo Shao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Kunhao Yan
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Tianzhao Yao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Lulu Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Feifei Sun
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jiarui Wu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yunpeng Huang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
9
|
Bellia F, Lanza V, Naletova I, Tomasello B, Ciaffaglione V, Greco V, Sciuto S, Amico P, Inturri R, Vaccaro S, Campagna T, Attanasio F, Tabbì G, Rizzarelli E. Copper(II) Complexes with Carnosine Conjugates of Hyaluronic Acids at Different Dipeptide Loading Percentages Behave as Multiple SOD Mimics and Stimulate Nrf2 Translocation and Antioxidant Response in In Vitro Inflammatory Model. Antioxidants (Basel) 2023; 12:1632. [PMID: 37627627 PMCID: PMC10452038 DOI: 10.3390/antiox12081632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
A series of copper(II) complexes with the formula [Cu2+Hy(x)Car%] varying the molecular weight (MW) of Hyaluronic acid (Hy, x = 200 or 700 kDa) conjugated with carnosine (Car) present at different loading were synthesized and characterized via different spectroscopic techniques. The metal complexes behaved as Cu, Zn-superoxide dismutase (SOD1) mimics and showed some of the most efficient reaction rate values produced using a synthetic and water-soluble copper(II)-based SOD mimic reported to date. The increase in the percentage of Car moieties parallels the enhancement of the I50 value determined via the indirect method of Fridovich. The presence of the non-functionalized Hy OH groups favors the scavenger activity of the copper(II) complexes with HyCar, recalling similar behavior previously found for the copper(II) complexes with Car conjugated using β-cyclodextrin or trehalose. In keeping with the new abilities of SOD1 to activate protective agents against oxidative stress in rheumatoid arthritis and osteoarthritis diseases, Cu2+ interaction with HyCar promotes the nuclear translocation of erythroid 2-related factor that regulates the expressions of target genes, including Heme-Oxigenase-1, thus stimulating an antioxidant response in osteoblasts subjected to an inflammatory/oxidative insult.
Collapse
Affiliation(s)
- Francesco Bellia
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (F.B.); (V.L.); (I.N.); (V.C.); (T.C.); (F.A.); (E.R.)
| | - Valeria Lanza
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (F.B.); (V.L.); (I.N.); (V.C.); (T.C.); (F.A.); (E.R.)
| | - Irina Naletova
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (F.B.); (V.L.); (I.N.); (V.C.); (T.C.); (F.A.); (E.R.)
| | - Barbara Tomasello
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy;
| | - Valeria Ciaffaglione
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (F.B.); (V.L.); (I.N.); (V.C.); (T.C.); (F.A.); (E.R.)
| | - Valentina Greco
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (V.G.); (S.S.)
| | - Sebastiano Sciuto
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (V.G.); (S.S.)
| | - Pietro Amico
- Fidia Farmaceutici SpA, Contrada Pizzuta, 96017 Noto, Italy; (P.A.); (R.I.); (S.V.)
| | - Rosanna Inturri
- Fidia Farmaceutici SpA, Contrada Pizzuta, 96017 Noto, Italy; (P.A.); (R.I.); (S.V.)
| | - Susanna Vaccaro
- Fidia Farmaceutici SpA, Contrada Pizzuta, 96017 Noto, Italy; (P.A.); (R.I.); (S.V.)
| | - Tiziana Campagna
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (F.B.); (V.L.); (I.N.); (V.C.); (T.C.); (F.A.); (E.R.)
| | - Francesco Attanasio
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (F.B.); (V.L.); (I.N.); (V.C.); (T.C.); (F.A.); (E.R.)
| | - Giovanni Tabbì
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (F.B.); (V.L.); (I.N.); (V.C.); (T.C.); (F.A.); (E.R.)
| | - Enrico Rizzarelli
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (F.B.); (V.L.); (I.N.); (V.C.); (T.C.); (F.A.); (E.R.)
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (V.G.); (S.S.)
| |
Collapse
|
10
|
Gupta N, Carmichael MF. Zinc-Induced Copper Deficiency as a Rare Cause of Neurological Deficit and Anemia. Cureus 2023; 15:e43856. [PMID: 37736439 PMCID: PMC10510946 DOI: 10.7759/cureus.43856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2023] [Indexed: 09/23/2023] Open
Abstract
Upper respiratory infections (URIs) are common and carry a large economic burden due to missed work and school. This has prompted an increased interest in over-the-counter zinc supplementation to enhance immunity and reduce illness duration. Zinc's antiviral and anti-inflammatory effects have led to its inclusion in popular URI medications and a surge in supplement sales, particularly among the elderly. However, zinc over-supplementation in this population can lead to hypocupremia, causing various presentations such as anemia, paresthesia, and gait disturbances. Here, we present a case of a 76-year-old female who developed hypocupremia due to zinc supplementation. Her initial presentation involved an unsteady gait, and severe anemia was detected during the examination. The patient's condition required hospital admission, and subsequent investigations confirmed severe pancytopenia and low blood copper levels. Discontinuation of zinc supplementation and oral copper gluconate administration led to a full recovery of her anemia and cell count; however, her neurological deficits remain. This case highlights the importance of counseling patients on the potential adverse effects of zinc supplementation and brings to light a potentially overlooked diagnosis, particularly in the elderly population.
Collapse
Affiliation(s)
- Nithin Gupta
- Medicine, Campbell University School of Osteopathic Medicine, Lillington, USA
- Family Medicine, Conway Medical Center, Conway, USA
| | | |
Collapse
|
11
|
Xia Y, Wang WX. Bioimaging tools reveal copper processing in fish cells by mitophagy. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023:106633. [PMID: 37451870 DOI: 10.1016/j.aquatox.2023.106633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
As an essential trace metal, copper (Cu) regulation, distribution and detoxification among different cellular organelles remain much unknown. In the current study, bioimaging tool was used in visualizing the locations of Cu among different organelles in fish fin cells isolated from rabbitfish Siganus fuscescens. Exposure concentration of Cu directly affected the Cu bioaccumulation and toxicity. When the exposure dosage of Cu reached 100 µM, it began to damage the cells and affect the cell viability after 10 min of exposure. Remarkably, while various Cu concentrations (50∼150 µM) initially reduced the cell viability, they did not lead to a further loss in viability over extended exposure period. Upon entry to the cells, Cu was mainly targeted to the mitochondria whose number, size and network responded immediately to the incoming Cu. However, Cu toxicity did not increase time-dependently, strongly indicating that these mitochondria damaged by Cu could be removed and its cytotoxicity could be relieved. Bioimaging results showed that lysosomes interacted with the mitochondria, which were subsequently digested within a few minutes. Meanwhile the lysosomal number increased, and the size and pH of lysosomes decreased. These reactions were in line with the observed mitophagy, suggesting that mitochondrial Cu could be detoxified, and the damaged mitochondria were removed by lysosome via mitophagy. By further purifying the cellular organelles, the mitochondrial and lysosomal Cu amounts were quantified and found to be in line with the imaging results. The present study suggested that excessive mitochondrial Cu could be removed via mitophagy to relieve the Cu toxicity.
Collapse
Affiliation(s)
- Yiteng Xia
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
12
|
Tang X, Yan Z, Miao Y, Ha W, Li Z, Yang L, Mi D. Copper in cancer: from limiting nutrient to therapeutic target. Front Oncol 2023; 13:1209156. [PMID: 37427098 PMCID: PMC10327296 DOI: 10.3389/fonc.2023.1209156] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023] Open
Abstract
As an essential nutrient, copper's redox properties are both beneficial and toxic to cells. Therefore, leveraging the characteristics of copper-dependent diseases or using copper toxicity to treat copper-sensitive diseases may offer new strategies for specific disease treatments. In particular, copper concentration is typically higher in cancer cells, making copper a critical limiting nutrient for cancer cell growth and proliferation. Hence, intervening in copper metabolism specific to cancer cells may become a potential tumor treatment strategy, directly impacting tumor growth and metastasis. In this review, we discuss the metabolism of copper in the body and summarize research progress on the role of copper in promoting tumor cell growth or inducing programmed cell death in tumor cells. Additionally, we elucidate the role of copper-related drugs in cancer treatment, intending to provide new perspectives for cancer treatment.
Collapse
Affiliation(s)
- Xiaolong Tang
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- The Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Zaihua Yan
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- The Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yandong Miao
- Department of Oncology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| | - Wuhua Ha
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Zheng Li
- Division of Thoracic Tumor Multimodality Treatment and Department of Radiation Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Lixia Yang
- Gansu Academy of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Denghai Mi
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Gansu Academy of Traditional Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
13
|
Abrigo J, Olguín H, Tacchi F, Orozco-Aguilar J, Valero-Breton M, Soto J, Castro-Sepúlveda M, Elorza AA, Simon F, Cabello-Verrugio C. Cholic and deoxycholic acids induce mitochondrial dysfunction, impaired biogenesis and autophagic flux in skeletal muscle cells. Biol Res 2023; 56:30. [PMID: 37291645 DOI: 10.1186/s40659-023-00436-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 04/27/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND Skeletal muscle is sensitive to bile acids (BA) because it expresses the TGR5 receptor for BA. Cholic (CA) and deoxycholic (DCA) acids induce a sarcopenia-like phenotype through TGR5-dependent mechanisms. Besides, a mouse model of cholestasis-induced sarcopenia was characterised by increased levels of serum BA and muscle weakness, alterations that are dependent on TGR5 expression. Mitochondrial alterations, such as decreased mitochondrial potential and oxygen consumption rate (OCR), increased mitochondrial reactive oxygen species (mtROS) and unbalanced biogenesis and mitophagy, have not been studied in BA-induced sarcopenia. METHODS We evaluated the effects of DCA and CA on mitochondrial alterations in C2C12 myotubes and a mouse model of cholestasis-induced sarcopenia. We measured mitochondrial mass by TOM20 levels and mitochondrial DNA; ultrastructural alterations by transmission electronic microscopy; mitochondrial biogenesis by PGC-1α plasmid reporter activity and protein levels by western blot analysis; mitophagy by the co-localisation of the MitoTracker and LysoTracker fluorescent probes; mitochondrial potential by detecting the TMRE probe signal; protein levels of OXPHOS complexes and LC3B by western blot analysis; OCR by Seahorse measures; and mtROS by MitoSOX probe signals. RESULTS DCA and CA caused a reduction in mitochondrial mass and decreased mitochondrial biogenesis. Interestingly, DCA and CA increased LC3II/LC3I ratio and decreased autophagic flux concordant with raised mitophagosome-like structures. In addition, DCA and CA decreased mitochondrial potential and reduced protein levels in OXPHOS complexes I and II. The results also demonstrated that DCA and CA decreased basal, ATP-linked, FCCP-induced maximal respiration and spare OCR. DCA and CA also reduced the number of cristae. In addition, DCA and CA increased the mtROS. In mice with cholestasis-induced sarcopenia, TOM20, OXPHOS complexes I, II and III, and OCR were diminished. Interestingly, the OCR and OXPHOS complexes were correlated with muscle strength and bile acid levels. CONCLUSION Our results showed that DCA and CA decreased mitochondrial mass, possibly by reducing mitochondrial biogenesis, which affects mitochondrial function, thereby altering potential OCR and mtROS generation. Some mitochondrial alterations were also observed in a mouse model of cholestasis-induced sarcopenia characterised by increased levels of BA, such as DCA and CA.
Collapse
Affiliation(s)
- Johanna Abrigo
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Hugo Olguín
- Laboratory of Tissue Repair and Adult Stem Cells, Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Franco Tacchi
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Josué Orozco-Aguilar
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
- Laboratorio de Ensayos Biológicos (LEBi), Universidad de Costa Rica, San José, Costa Rica
- Facultad de Farmacia, Universidad de Costa Rica, San José, Costa Rica
| | - Mayalen Valero-Breton
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Jorge Soto
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mauricio Castro-Sepúlveda
- Exercise Physiology and Metabolism Laboratory, School of Kinesiology, Faculty of Medicine, Finis Terrae University, Santiago, Chile
| | - Alvaro A Elorza
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Institute of Biomedical Sciences, Faculty of Medicine, and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Felipe Simon
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago, Chile.
- Laboratory of Integrative Physiopathology, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
14
|
Wang S, Zheng C, Huang Y, He X. Betel quid may stimulate oral submucous fibrosis by inducing increased mitochondrial reactive oxygen species generation via copper overload. Med Hypotheses 2023. [DOI: 10.1016/j.mehy.2023.111067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
15
|
Gallego‐Murillo JS, Iacono G, van der Wielen LAM, van den Akker E, von Lindern M, Wahl SA. Expansion and differentiation of ex vivo cultured erythroblasts in scalable stirred bioreactors. Biotechnol Bioeng 2022; 119:3096-3116. [PMID: 35879812 PMCID: PMC9804173 DOI: 10.1002/bit.28193] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/14/2022] [Accepted: 07/23/2022] [Indexed: 01/05/2023]
Abstract
Transfusion of donor-derived red blood cells (RBCs) is the most common form of cell therapy. Production of transfusion-ready cultured RBCs (cRBCs) is a promising replacement for the current, fully donor-dependent therapy. A single transfusion unit, however, contains 2 × 1012 RBC, which requires large scale production. Here, we report on the scale-up of cRBC production from static cultures of erythroblasts to 3 L stirred tank bioreactors, and identify the effect of operating conditions on the efficiency of the process. Oxygen requirement of proliferating erythroblasts (0.55-2.01 pg/cell/h) required sparging of air to maintain the dissolved oxygen concentration at the tested setpoint (2.88 mg O2 /L). Erythroblasts could be cultured at dissolved oxygen concentrations as low as 0.7 O2 mg/ml without negative impact on proliferation, viability or differentiation dynamics. Stirring speeds of up to 600 rpm supported erythroblast proliferation, while 1800 rpm led to a transient halt in growth and accelerated differentiation followed by a recovery after 5 days of culture. Erythroblasts differentiated in bioreactors, with final enucleation levels and hemoglobin content similar to parallel cultures under static conditions.
Collapse
Affiliation(s)
- Joan Sebastián Gallego‐Murillo
- Sanquin Research and Landsteiner Laboratory, Department of HematopoiesisAmsterdam UMCAmsterdamThe Netherlands,Department of Biotechnology, Faculty of Applied SciencesDelft University of TechnologyDelftThe Netherlands,Present address:
MeatableAlexander Fleminglaan 1,2613AX,DelftThe Netherlands
| | - Giulia Iacono
- Sanquin Research and Landsteiner Laboratory, Department of HematopoiesisAmsterdam UMCAmsterdamThe Netherlands
| | - Luuk A. M. van der Wielen
- Department of Biotechnology, Faculty of Applied SciencesDelft University of TechnologyDelftThe Netherlands,Bernal Institute, Faculty of Science and EngineeringUniversity of LimerickLimerickRepublic of Ireland
| | - Emile van den Akker
- Sanquin Research and Landsteiner Laboratory, Department of HematopoiesisAmsterdam UMCAmsterdamThe Netherlands
| | - Marieke von Lindern
- Sanquin Research and Landsteiner Laboratory, Department of HematopoiesisAmsterdam UMCAmsterdamThe Netherlands
| | - Sebastian Aljoscha Wahl
- Department of Biotechnology, Faculty of Applied SciencesDelft University of TechnologyDelftThe Netherlands,Present address:
Lehrstuhl Für BioverfahrenstechnikFriedrich‐Alexander Universität Erlangen‐NürnbergPaul‐Gordan‐Str. 3,91052,ErlangenGermany
| |
Collapse
|
16
|
Tahir N, Ashraf A, Waqar SHB, Rafae A, Kantamneni L, Sheikh T, Khan R. Copper deficiency, a rare but correctable cause of pancytopenia: a review of literature. Expert Rev Hematol 2022; 15:999-1008. [PMID: 36314081 DOI: 10.1080/17474086.2022.2142113] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Copper is increasingly being recognized as a vital mineral required by both animals and humans. It plays a vital role in many metabolic processes such as cellular respiration, iron oxidation, and hemoglobin synthesis. Copper deficiency, which can be hereditary or acquired, can lead to a wide spectrum of disease processes such as ringed sideroblastic anemia, myelodysplasia, and pancytopenia. Timely identification and management of copper deficiency is necessary to prevent irreversible complications. AREAS COVERED Our study focuses on prevalence, etiology, pathophysiology, complications, and treatment of copper deficiency. EXPERT OPINION Copper deficiency is frequently underrecognized as the cause of anemia, neutropenia, and bone marrow dysplasia. As it is potentially treatable, it should always be kept in the differentials when patients present with neurological and hematological abnormalities.
Collapse
Affiliation(s)
- Nayha Tahir
- Department of Hematology and Oncology, Kaiser Permanente, San Francisco, CA, USA
| | - Aqsa Ashraf
- Department of Internal Medicine, Zucker School of Medicine, Hofstra/Northwell, Mather Hospital, Port Jefferson, NY, USA
| | - Syed Hamza Bin Waqar
- Department of Internal Medicine, State University of New York, Downstate Medical Center Brooklyn, Brooklyn, NY, USA
| | - Abdul Rafae
- Department of Hematology and Oncology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | - Leela Kantamneni
- Department of Internal Medicine, Huntsville Regional Medical Campus, University of Alabama, Birmingham, AL, USA
| | - Taha Sheikh
- Department of Hematology and Oncology, University of Toledo, Toledo, OH, USA
| | - Rafiullah Khan
- Division of Hematology Oncology, The Christ Hospital Network Physicians, Cincinnati, OH, USA
| |
Collapse
|
17
|
Abrigo J, Olguín H, Gutierrez D, Tacchi F, Arrese M, Cabrera D, Valero-Breton M, Elorza AA, Simon F, Cabello-Verrugio C. Bile Acids Induce Alterations in Mitochondrial Function in Skeletal Muscle Fibers. Antioxidants (Basel) 2022; 11:antiox11091706. [PMID: 36139784 PMCID: PMC9495846 DOI: 10.3390/antiox11091706] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Cholestatic chronic liver disease is characterized by developing sarcopenia and elevated serum levels of bile acids. Sarcopenia is a skeletal muscle disorder with the hallmarks of muscle weakness, muscle mass loss, and muscle strength decline. Our previous report demonstrated that deoxycholic acid (DCA) and cholic acid (CA), through the membrane receptor TGR5, induce a sarcopenia-like phenotype in myotubes and muscle fibers. The present study aimed to evaluate the impact of DCA and CA on mitochondrial mass and function in muscle fibers and the role of the TGR5 receptor. To this end, muscle fibers obtained from wild-type and TGR5−/− mice were incubated with DCA and CA. Our results indicated that DCA and CA decreased mitochondrial mass, DNA, and potential in a TGR5-dependent fashion. Furthermore, with TGR5 participation, DCA and CA also reduced the oxygen consumption rate and complexes I and II from the mitochondrial electron transport chain. In addition, DCA and CA generated more mitochondrial reactive oxygen species than the control, which were abolished in TGR5−/− mice muscle fibers. Our results indicate that DCA and CA induce mitochondrial dysfunction in muscle fibers through a TGR5-dependent mechanism.
Collapse
Affiliation(s)
- Johanna Abrigo
- Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 8350709, Chile
| | - Hugo Olguín
- Laboratory of Tissue Repair and Adult Stem Cells, Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - Danae Gutierrez
- Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 8350709, Chile
| | - Franco Tacchi
- Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 8350709, Chile
| | - Marco Arrese
- Departamento de Gastroenterología, Escuela de Medicina. Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - Daniel Cabrera
- Departamento de Gastroenterología, Escuela de Medicina. Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
- Facultad de Ciencias Médicas, Universidad Bernardo O Higgins, Santiago 8370993, Chile
| | - Mayalen Valero-Breton
- Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 8350709, Chile
| | - Alvaro A. Elorza
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile
- Institute of Biomedical Sciences, Faculty of Medicine and Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile
| | - Felipe Simon
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8370146, Chile
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile
- Correspondence: (F.S.); (C.C.-V.); Tel.: +56-227-703-665 (F.S. & C.C.-V.)
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 8350709, Chile
- Correspondence: (F.S.); (C.C.-V.); Tel.: +56-227-703-665 (F.S. & C.C.-V.)
| |
Collapse
|
18
|
Ruiz LM, Libedinsky A, Elorza AA. Role of Copper on Mitochondrial Function and Metabolism. Front Mol Biosci 2021; 8:711227. [PMID: 34504870 PMCID: PMC8421569 DOI: 10.3389/fmolb.2021.711227] [Citation(s) in RCA: 235] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022] Open
Abstract
Copper is essential for life processes like energy metabolism, reactive oxygen species detoxification, iron uptake, and signaling in eukaryotic organisms. Mitochondria gather copper for the assembly of cuproenzymes such as the respiratory complex IV, cytochrome c oxidase, and the antioxidant enzyme superoxide dismutase 1. In this regard, copper plays a role in mitochondrial function and signaling involving bioenergetics, dynamics, and mitophagy, which affect cell fate by means of metabolic reprogramming. In mammals, copper homeostasis is tightly regulated by the liver. However, cellular copper levels are tissue specific. Copper imbalances, either overload or deficiency, have been associated with many diseases, including anemia, neutropenia, and thrombocytopenia, as well as tumor development and cancer aggressivity. Consistently, new pharmacological developments have been addressed to reduce or exacerbate copper levels as potential cancer therapies. This review goes over the copper source, distribution, cellular uptake, and its role in mitochondrial function, metabolic reprograming, and cancer biology, linking copper metabolism with the field of regenerative medicine and cancer.
Collapse
Affiliation(s)
- Lina M Ruiz
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Allan Libedinsky
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Alvaro A Elorza
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
19
|
Decreased PGC1β expression results in disrupted human erythroid differentiation, impaired hemoglobinization and cell cycle exit. Sci Rep 2021; 11:17129. [PMID: 34429458 PMCID: PMC8385110 DOI: 10.1038/s41598-021-96585-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/10/2021] [Indexed: 11/08/2022] Open
Abstract
Production of red blood cells relies on proper mitochondrial function, both for their increased energy demands during differentiation and for proper heme and iron homeostasis. Mutations in genes regulating mitochondrial function have been reported in patients with anemia, yet their pathophysiological role often remains unclear. PGC1β is a critical coactivator of mitochondrial biogenesis, with increased expression during terminal erythroid differentiation. The role of PGC1β has however mainly been studied in skeletal muscle, adipose and hepatic tissues, and its function in erythropoiesis remains largely unknown. Here we show that perturbed PGC1β expression in human hematopoietic stem/progenitor cells from both bone marrow and cord blood results in impaired formation of early erythroid progenitors and delayed terminal erythroid differentiation in vitro, with accumulations of polychromatic erythroblasts, similar to MDS-related refractory anemia. Reduced levels of PGC1β resulted in deregulated expression of iron, heme and globin related genes in polychromatic erythroblasts, and reduced hemoglobin content in the more mature bone marrow derived reticulocytes. Furthermore, PGC1β knock-down resulted in disturbed cell cycle exit with accumulation of erythroblasts in S-phase and enhanced expression of G1-S regulating genes, with smaller reticulocytes as a result. Taken together, we demonstrate that PGC1β is directly involved in production of hemoglobin and regulation of G1-S transition and is ultimately required for proper terminal erythroid differentiation.
Collapse
|
20
|
Gonzalez-Ibanez AM, Ruiz LM, Jensen E, Echeverria CA, Romero V, Stiles L, Shirihai OS, Elorza AA. Erythroid Differentiation and Heme Biosynthesis Are Dependent on a Shift in the Balance of Mitochondrial Fusion and Fission Dynamics. Front Cell Dev Biol 2020; 8:592035. [PMID: 33330472 PMCID: PMC7719720 DOI: 10.3389/fcell.2020.592035] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
Erythropoiesis is the most robust cellular differentiation and proliferation system, with a production of ∼2 × 1011 cells per day. In this fine-tuned process, the hematopoietic stem cells (HSCs) generate erythroid progenitors, which proliferate and mature into erythrocytes. During erythropoiesis, mitochondria are reprogrammed to drive the differentiation process before finally being eliminated by mitophagy. In erythropoiesis, mitochondrial dynamics (MtDy) are expected to be a key regulatory point that has not been described previously. We described that a specific MtDy pattern occurs in human erythropoiesis from EPO-induced human CD34+ cells, characterized predominantly by mitochondrial fusion at early stages followed by fission at late stages. The fusion protein MFN1 and the fission protein FIS1 are shown to play a key role in the progression of erythropoiesis. Fragmentation of the mitochondrial web by the overexpression of FIS1 (gain of fission) resulted in both the inhibition of hemoglobin biosynthesis and the arrest of erythroid differentiation, keeping cells in immature differentiation stages. These cells showed specific mitochondrial features as compared with control cells, such as an increase in round and large mitochondrial morphology, low mitochondrial membrane potential, a drop in the expression of the respiratory complexes II and IV and increased ROS. Interestingly, treatment with the mitochondrial permeability transition pore (mPTP) inhibitor, cyclosporin A, rescued mitochondrial morphology, hemoglobin biosynthesis and erythropoiesis. Studies presented in this work reveal MtDy as a hot spot in the control of erythroid differentiation, which might signal downstream for metabolic reprogramming through regulation of the mPTP.
Collapse
Affiliation(s)
- Alvaro M Gonzalez-Ibanez
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Lina M Ruiz
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Erik Jensen
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | | | - Valentina Romero
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Linsey Stiles
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Orian S Shirihai
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Alvaro A Elorza
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
21
|
Serum trace metal association with response to erythropoiesis stimulating agents in incident and prevalent hemodialysis patients. Sci Rep 2020; 10:20202. [PMID: 33214633 PMCID: PMC7677396 DOI: 10.1038/s41598-020-77311-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 11/08/2020] [Indexed: 12/19/2022] Open
Abstract
Alterations in hemodialysis patients' serum trace metals have been documented. Early studies addressing associations levels of serum trace metals with erythropoietic responses and/or hematocrit generated mixed results. These studies were conducted prior to current approaches for erythropoiesis stimulating agent (ESA) drug dosing guidelines or without consideration of inflammation markers (e.g. hepcidin) important for regulation of iron availability. This study sought to determine if the serum trace metal concentrations of incident or chronic hemodialysis patients associated with the observed ESA response variability and with consideration to ESA dose response, hepcidin, and high sensitivity C-reactive protein levels. Inductively-coupled plasma-mass spectrometry was used to measure 14 serum trace metals in 29 incident and 79 prevalent dialysis patients recruited prospectively. We compared these data to three measures of ESA dose response, sex, and dialysis incidence versus dialysis prevalence. Hemoglobin was negatively associated with ESA dose and cadmium while positively associated with antimony, arsenic and lead. ESA dose was negatively associated with achieved hemoglobin and vanadium while positively associated with arsenic. ESA response was positively associated with arsenic. Vanadium, nickel, cadmium, and tin were increased in prevalent patients. Manganese was increased in incident patients. Vanadium, nickel, and arsenic increased with time on dialysis while manganese decreased. Changes in vanadium and manganese were largest and appeared to have some effect on anemia. Incident and prevalent patients' chromium and antimony levels exceeded established accepted upper limits of normal.
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Hematopoietic stem cells (HSCs) are characterized by a potent multilineage regenerative capability that is dependent on their quiescence property. In the past few decades, researchers have found many intrinsic and niche-derived factors that can regulate HSCs, whereas how to precisely control HSC behaviors remains elusive. Recently, mitochondrial metabolism has been shown to be involved in the regulation of HSC biology. The purpose of this review is to overview recent advances in the relationship between mitochondrial metabolism and maintenance of HSC quiescence. RECENT FINDINGS On the basis of fact that HSCs are heterogeneous populations that have their unique metabolic characteristics, increasing studies have demonstrated that the quiescence and function of HSCs are closely correlated with the mitochondrial mass and activity, as well as the levels of mitochondria-derived reactive oxygen species and metabolites. Apart from that, mitochondria have been reported to undergo internal protective programs, including mitochondrial unfolded protein response, autophagy and mitochondrial dynamics, which are beneficial to maintaining HSC homeostasis. SUMMARY The maintenance of HSC quiescence needs a metabolic balance in mitochondria, and unraveling the metabolic complexity may provide deep understanding of the functional heterogeneity of HSCs.
Collapse
|
23
|
Role of mitochondrial fission-related genes in mitochondrial morphology and energy metabolism in mouse embryonic stem cells. Redox Biol 2020; 36:101599. [PMID: 32521505 PMCID: PMC7286981 DOI: 10.1016/j.redox.2020.101599] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 01/04/2023] Open
Abstract
Mitochondria, the major organelles that produce energy for cell survival and function, dynamically change their morphology via fusion and fission, a process called mitochondrial dynamics. The details of the underlying mechanism of mitochondrial dynamics have not yet been elucidated. Here, we aimed to investigate the function of mitochondrial fission genes in embryonic stem cells (ESCs). To this end, we generated homozygous knockout ESC lines, namely, Fis1-/-, Mff-/-, and Dnm1l-/- ESCs, using the CRISPR-Cas9 system. Interestingly, the Fis1-/-, Mff-/-, and Dnm1l-/- ESCs showed normal morphology, self-renewal, and the ability to differentiate into all three germ layers in vitro. However, transmission electron microscopy showed a significant increase in the cytoplasm to nucleus ratio and mitochondrial elongation in Dnm1l-/- ESCs, which was due to incomplete fission. To assess the change in metabolic energy, we analyzed oxidative phosphorylation (OXPHOS), glycolysis, and the intracellular ATP concentration. The ESC knockout lines showed an increase in OXPHOS, decrease in glycolysis, and an increase in intracellular ATP concentration, which was related to mitochondrial elongation. In particular, the Dnm1l knockout most significantly affected mitochondrial morphology, energy metabolism, and ATP production in ESCs. Furthermore, RNA sequencing and gene ontology analysis showed that the differentially expressed genes in Mff-/- ESCs were distinct from those in Dnm1l-/- or Fis1-/- ESCs. In total, five metabolism-related genes, namely, Aass, Cdo1, Cyp2b23, Nt5e, and Pck2, were expressed in all three knockout ESC lines, and three of them were associated with regulation of ATP generation.
Collapse
|
24
|
Lin W, Xu L, Li G. Molecular Insights Into Lysyl Oxidases in Cartilage Regeneration and Rejuvenation. Front Bioeng Biotechnol 2020; 8:359. [PMID: 32426343 PMCID: PMC7204390 DOI: 10.3389/fbioe.2020.00359] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
Articular cartilage remains among the most difficult tissues to regenerate due to its poor self-repair capacity. The lysyl oxidase family (LOX; also termed as protein-lysine 6-oxidase), mainly consists of lysyl oxidase (LO) and lysyl oxidase-like 1-4 (LOXL1-LOXL4), has been traditionally defined as cuproenzymes that are essential for stabilization of extracellular matrix, particularly cross-linking of collagen and elastin. LOX is essential in the musculoskeletal system, particularly cartilage. LOXs-mediated collagen cross-links are essential for the functional integrity of articular cartilage. Appropriate modulation of the expression or activity of certain LOX members selectively may become potential promising strategy for cartilage repair. In the current review, we summarized the advances of LOX in cartilage homeostasis and functioning, as well as copper-mediated activation of LOX through hypoxia-responsive signaling axis during recent decades. Also, the molecular signaling network governing LOX expression has been summarized, indicating that appropriate modulation of hypoxia-responsive-signaling-directed LOX expression through manipulation of bioavailability of copper and oxygen is promising for further clinical implications of cartilage regeneration, which has emerged as a potential therapeutic approach for cartilage rejuvenation in tissue engineering and regenerative medicine. Therefore, targeted regulation of copper-mediated hypoxia-responsive signalling axis for selective modulation of LOX expression may become potential effective therapeutics for enhanced cartilage regeneration and rejuvenation in future clinical implications.
Collapse
Affiliation(s)
- Weiping Lin
- Department of Orthopaedics and Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Liangliang Xu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gang Li
- Department of Orthopaedics and Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China.,MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
25
|
Changes in the Expression of Mitochondrial Morphology-Related Genes during the Differentiation of Murine Embryonic Stem Cells. Stem Cells Int 2020; 2020:9369268. [PMID: 32399055 PMCID: PMC7204333 DOI: 10.1155/2020/9369268] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/17/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023] Open
Abstract
During embryonic development, cells undergo changes in gene expression, signaling pathway activation/inactivation, metabolism, and intracellular organelle structures, which are mediated by mitochondria. Mitochondria continuously switch their morphology between elongated tubular and fragmented globular via mitochondrial fusion and fission. Mitochondrial fusion is mediated by proteins encoded by Mfn1, Mfn2, and Opa1, whereas mitochondrial fission is mediated by proteins encoded by Fis1 and Dnm1L. Here, we investigated the expression patterns of mitochondria-related genes during the differentiation of mouse embryonic stem cells (ESCs). Pluripotent ESCs maintain stemness in the presence of leukemia inhibitory factor (LIF) via the JAK-STAT3 pathway but lose pluripotency and differentiate in response to the withdrawal of LIF. We analyzed the expression levels of mitochondrial fusion- and fission-related genes during the differentiation of ESCs. We hypothesized that mitochondrial fusion genes would be overexpressed while the fission genes would be downregulated during the differentiation of ESCs. Though the mitochondria exhibited an elongated morphology in ESCs differentiating in response to LIF withdrawal, only the expression of Mfn2 was increased and that of Dnm1L was decreased as expected, the other exceptions being Mfn1, Opa1, and Fis1. Next, by comparing gene expression and mitochondrial morphology, we proposed an index that could precisely represent mitochondrial changes during the differentiation of pluripotent stem cells by analyzing the expression ratios of three fusion- and two fission-related genes. Surprisingly, increased Mfn2/Dnm1L ratio was correlated with elongation of mitochondria during the differentiation of ESCs. Moreover, application of this index to other specialized cell types revealed that neural stems cells (NSCs) and mouse embryonic fibroblasts (MEFs) showed increased Mfn2/Dnm1L ratio compared to ESCs. Thus, we suggest that the Mfn2/Dnm1L ratio could reflect changes in mitochondrial morphology according to the extent of differentiation.
Collapse
|
26
|
Xu T, Huang J, Fang M, Sui M, Zhu Y, Shentu Y, Li C, Zhu W. A novel “turn-on” fluorescent probe based on naphthalimide for the tracking of lysosomal Cu2+ in living cells. NEW J CHEM 2020. [DOI: 10.1039/d0nj04416d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The lysosome-targeted probe CuNI exhibits highly effective fluorescence detection ability for Cu2+ in aqueous solution and cells. The fluorescent enhancement is due to the Cu2+-catalyzed hydrolysis of CuNI and the AIE effect of the hydrolysate MFNI.
Collapse
Affiliation(s)
- Tingting Xu
- School of Chemistry and Chemical Engineering, Anhui University
- Hefei 230601
- P. R. China
| | - Junjie Huang
- School of Chemistry and Chemical Engineering, Anhui University
- Hefei 230601
- P. R. China
| | - Min Fang
- School of Chemistry and Chemical Engineering, Anhui University
- Hefei 230601
- P. R. China
- Anhui Province Key Laboratory of Environment-friendly Polymer Materials, Anhui University
- Hefei 230601
| | - Mingshuai Sui
- School of Chemistry and Chemical Engineering, Anhui University
- Hefei 230601
- P. R. China
| | - Yujing Zhu
- School of Chemistry and Chemical Engineering, Anhui University
- Hefei 230601
- P. R. China
| | - Yupeng Shentu
- School of Chemistry and Chemical Engineering, Anhui University
- Hefei 230601
- P. R. China
| | - Cun Li
- School of Chemistry and Chemical Engineering, Anhui University
- Hefei 230601
- P. R. China
- Anhui Province Key Laboratory of Environment-friendly Polymer Materials, Anhui University
- Hefei 230601
| | - Weiju Zhu
- School of Chemistry and Chemical Engineering, Anhui University
- Hefei 230601
- P. R. China
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University
- Hefei 230601
| |
Collapse
|