1
|
Jawed R, Bhatti H, Khan A. Genetic profile of ferroptosis in non-small cell lung carcinoma and pharmaceutical options for ferroptosis induction. Clin Transl Oncol 2024:10.1007/s12094-024-03754-4. [PMID: 39460894 DOI: 10.1007/s12094-024-03754-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024]
Abstract
Lung cancer (LC) is the leading cause of cancer-related deaths and the second most commonly diagnosed malignancy worldwide. Lung adenocarcinoma (LUAD) and lung squamous cell LC (LUSCC) are the most common subtypes of non-small cell LC (NSCLC). Early diagnosis of LC can be challenging due to a lack of biomarkers. The overall survival (OS) of patients with NSCLC is still poor despite the enormous efforts that have been made to develop novel treatments. Understanding fundamental molecular and genetic mechanisms is necessary to develop new therapeutic approaches for NSCLC. A recently identified type of programmed cell death known as ferroptosis is one potential approach. Ferroptosis causes oxidative damage and the death of cancerous cells by peroxidizing unsaturated phospholipids and accumulating reactive oxygen species (ROS) in an iron-dependent manner. Ferroptosis-related gene (FRG) signatures have recently been evaluated for their ability to predict patient OS and prognosis. These analyses show FRGs are involved in cancer progression, and may serve as promising biomarkers for tumor diagnosis and therapy. Moreover, we summarize the current pharmaceutical options of ferroptosis induction and their underlying molecular mechanism in LC. Therefore, this review aims to provide a comprehensive summary of FRG-based prognostic models, their associated metabolic and signaling pathways, and promising therapeutic options for ferroptosis induction in NSCLC.
Collapse
Affiliation(s)
- Rohil Jawed
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China.
| | - Huma Bhatti
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Adnan Khan
- Clinical and Molecular Labs, Karachi Institute of Radiotherapy and Nuclear Medicine (KIRAN), KDA Scheme 33 Near Safoora Chowk, Karachi, Pakistan
| |
Collapse
|
2
|
Mokhtarpour K, Razi S, Rezaei N. Ferroptosis as a promising targeted therapy for triple negative breast cancer. Breast Cancer Res Treat 2024:10.1007/s10549-024-07387-7. [PMID: 38874688 DOI: 10.1007/s10549-024-07387-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/22/2024] [Indexed: 06/15/2024]
Abstract
PURPOSE Triple negative breast cancer (TNBC) is a challenging subtype characterized by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. Standard treatment options are limited, and approximately 45% of patients develop distant metastasis. Ferroptosis, a regulated form of cell death triggered by iron-dependent lipid peroxidation and oxidative stress, has emerged as a potential targeted therapy for TNBC. METHODS This study utilizes a multifaceted approach to investigate the induction of ferroptosis as a therapeutic strategy for TNBC. It explores metabolic alterations, redox imbalance, and oncogenic signaling pathways to understand their roles in inducing ferroptosis, characterized by lipid peroxidation, reactive oxygen species (ROS) generation, and altered cellular morphology. Critical pathways such as Xc-/GSH/GPX4, ACSL4/LPCAT3, and nuclear factor erythroid 2-related factor 2 (NRF2) are examined for their regulatory roles in ferroptosis and their potential dysregulation contributing to cancer cell survival and resistance. RESULTS Inducing ferroptosis has been shown to inhibit tumor growth, enhance the efficacy of conventional therapies, and overcome drug resistance in TNBC. Lipophilic antioxidants, GPX4 inhibitors, and inhibitors of the Xc- system have been demonstrated to be potential ferroptosis inducers. Additionally, targeting the NRF2 pathway and exploring other ferroptosis regulators, such as ferroptosis suppressor protein 1 (FSP1), and the PERK-eIF2α-ATF4-CHOP pathway, may offer novel therapeutic avenues. CONCLUSION Further research is needed to understand the mechanisms, optimize therapeutic strategies, and evaluate the safety and efficacy of ferroptosis-targeted therapies in TNBC treatment. Overall, targeting ferroptosis represents a promising approach to improving treatment outcomes and overcoming the challenges posed by TNBC.
Collapse
Affiliation(s)
- Kasra Mokhtarpour
- Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Imunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
| | - Nima Rezaei
- Research Center for Imunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
3
|
Gu J, Guo C, Ruan J, Li K, Zhou Y, Gong X, Shi H. From ferroptosis to cuproptosis, and calcicoptosis, to find more novel metals-mediated distinct form of regulated cell death. Apoptosis 2024; 29:586-604. [PMID: 38324163 DOI: 10.1007/s10495-023-01927-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 02/08/2024]
Abstract
Regulated cell death (RCD), also known as programmed cell death (PCD), plays a critical role in various biological processes, such as tissue injury/repair, development, and homeostasis. Dysregulation of RCD pathways can lead to the development of many human diseases, such as cancer, neurodegenerative disorders, and cardiovascular diseases. Maintaining proper metal ion homeostasis is critical for human health. However, imbalances in metal levels within cells can result in cytotoxicity and cell death, leading to a variety of diseases and health problems. In recent years, new types of metal overload-induced cell death have been identified, including ferroptosis, cuproptosis, and calcicoptosis. This has prompted us to examine the three defined metal-dependent cell death types, and discuss other metals-induced ferroptosis, cuproptosis, and disrupted Ca2+ homeostasis, as well as the roles of Zn2+ in metals' homeostasis and related RCD. We have reviewed the connection between metals-induced RCD and various diseases, as well as the underlying mechanisms. We believe that further research in this area will lead to the discovery of novel types of metal-dependent RCD, a better understanding of the underlying mechanisms, and the development of new therapeutic strategies for human diseases.
Collapse
Affiliation(s)
- Jie Gu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Chuanzhi Guo
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Jiacheng Ruan
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Kongdong Li
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Yang Zhou
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Xun Gong
- Department of Rheumatology & Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212013, China.
| | - Haifeng Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
4
|
Li Q, Song Q, Pei H, Chen Y. Emerging mechanisms of ferroptosis and its implications in lung cancer. Chin Med J (Engl) 2024; 137:818-829. [PMID: 38494343 PMCID: PMC10997236 DOI: 10.1097/cm9.0000000000003048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Indexed: 03/19/2024] Open
Abstract
ABSTRACT Lung cancer is one of the most common malignancies and has the highest number of deaths among all cancers. Despite continuous advances in medical strategies, the overall survival of lung cancer patients is still low, probably due to disease progression or drug resistance. Ferroptosis is an iron-dependent form of regulated cell death triggered by the lethal accumulation of lipid peroxides, and its dysregulation is implicated in cancer development. Preclinical evidence has shown that targeting the ferroptosis pathway could be a potential strategy for improving lung cancer treatment outcomes. In this review, we summarize the underlying mechanisms and regulatory networks of ferroptosis in lung cancer and highlight ferroptosis-targeting preclinical attempts to provide new insights for lung cancer treatment.
Collapse
Affiliation(s)
- Qian Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Huadong Pei
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington D.C. 20057, USA
| | - Yali Chen
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| |
Collapse
|
5
|
Schepp F, Schubert U, Schmid J, Lehmann S, Latunde-Dada GO, Kose T, Steenblock C, Bornstein SR, Linkermann A, Ludwig B. Mechanistic Insights into Ferroptotic Cell Death in Pancreatic Islets. Horm Metab Res 2024; 56:279-285. [PMID: 37956864 DOI: 10.1055/a-2190-2803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Ferroptosis was recently identified as a non-apoptotic, iron-dependent cell death mechanism that is involved in various pathologic conditions. There is first evidence for its significance also in the context of islet isolation and transplantation. Transplantation of pancreatic human islets is a viable treatment strategy for patients with complicated diabetes mellitus type 1 (T1D) that suffer from severe hypoglycemia. A major determinant for functional outcome is the initial islet mass transplanted. Efficient islet isolation procedures and measures to minimize islet loss are therefore of high relevance. To this end, better understanding and subsequent targeted inhibition of cell death during islet isolation and transplantation is an effective approach. In this study, we aimed to elucidate the mechanism of ferroptosis in pancreatic islets. Using a rodent model, isolated islets were characterized relating to the effects of experimental induction (RSL3) and inhibition (Fer1) of ferroptotic pathways. Besides viability, survival, and function, the study focused on characteristic ferroptosis-associated intracellular changes such as MDA level, iron concentration and the expression of ACSL4. The study demonstrates that pharmaceutical induction of ferroptosis by RSL3 causes enhancement of oxidative stress and leads to an increase of intracellular iron, zinc and MDA concentration, as well as the expression of ACSL4 protein. Consequently, a massive reduction of islet function, viability, and survival was found. Fer1 has the potential to inhibit and attenuate these cellular changes and thereby protect the islets from cell death.
Collapse
Affiliation(s)
- Florian Schepp
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Undine Schubert
- Department of Medicine III, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the Technische Universität Dresden, Dresden, Germany
- Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Janine Schmid
- Department of Medicine III, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the Technische Universität Dresden, Dresden, Germany
- Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Susann Lehmann
- Department of Medicine III, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the Technische Universität Dresden, Dresden, Germany
- Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Gladys Oluyemisi Latunde-Dada
- Division of Diabetes & Endocrinology, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, Kings College London, London, United Kingdom of Great Britain and Northern Ireland
| | - Tugba Kose
- Division of Diabetes & Endocrinology, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, Kings College London, London, United Kingdom of Great Britain and Northern Ireland
| | - Charlotte Steenblock
- Department of Medicine III, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Stefan R Bornstein
- Department of Medicine III, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the Technische Universität Dresden, Dresden, Germany
- Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Division of Diabetes & Endocrinology, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, Kings College London, London, United Kingdom of Great Britain and Northern Ireland
- CRTD, DFG-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Andreas Linkermann
- Division of Nephrology, Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Barbara Ludwig
- Department of Medicine III, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the Technische Universität Dresden, Dresden, Germany
- Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- CRTD, DFG-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
6
|
Li Y, Li X, Li J. Ferroptosis in lung cancer: dual role, multi-level regulation, and new therapeutic strategies. Front Oncol 2024; 14:1360638. [PMID: 38515565 PMCID: PMC10955378 DOI: 10.3389/fonc.2024.1360638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
Lung cancer is a highly prevalent malignant tumor worldwide, with high incidence and death rates. Recently, there has been increasing recognition of the role of ferroptosis, a unique cell death mechanism, in lung cancer. This review aims to summarize the current research progress on the relationship between ferroptosis and lung cancer. It also provides a comprehensive analysis of the regulatory processes of ferroptosis in various stages, including epigenetics, transcription, post-transcription, translation, and post-translation. Additionally, the review explores the dual nature of ferroptosis in lung cancer progression, which presents interesting therapeutic possibilities. On one hand, ferroptosis can promote the escape of immune surveillance and reduce the efficacy of treatment in the early stages of tumors. On the other hand, it can counter drug resistance, enhance radiosensitivity, and promote immunotherapy. The article also discusses various combination treatment strategies based on the mechanism of ferroptosis. Overall, this review offers a holistic perspective on the role of ferroptosis in the onset, progression, and treatment of lung cancer. It aims to contribute to future research and clinical interventions in this field.
Collapse
Affiliation(s)
| | | | - Jian Li
- Department of Thoracic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
7
|
Zhang T, Wang S, Hua D, Shi X, Deng H, Jin S, Lv X. Identification of ZIP8-induced ferroptosis as a major type of cell death in monocytes under sepsis conditions. Redox Biol 2024; 69:102985. [PMID: 38103342 PMCID: PMC10764267 DOI: 10.1016/j.redox.2023.102985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/19/2023] Open
Abstract
Sepsis is a heterogenous syndrome with concurrent hyperinflammation and immune suppression. A prominent feature of immunosuppression during sepsis is the dysfunction and loss of monocytes; however, the major type of cell death contributing to this depletion, as well as its underlying molecular mechanisms, are yet to be identified. In this study, we confirmed the monocyte loss in septic patients based on a pooled gene expression data of periphery leukocytes. Using the collected reference gene sets from databases and published studies, we identified ferroptosis with a greater capacity to distinguish between sepsis and control samples than other cell death types. Further investigation on the molecular drivers, by a genetic algorithm-based feature selection and a weighted gene co-expression network analysis, revealed that zrt-/irt-like protein 8 (ZIP8), encoded by SLC39A8, was closely associated with ferroptosis of monocytes during sepsis. We validated the increase of ZIP8 of monocytes with in vivo and in vitro experiments. The in vitro studies also showed that downregulation of ZIP8 alleviated the lipopolysaccharide-induced lipid peroxidation, as well as restoring the reduction of GPX4, FTH1 and xCT. These findings suggest that ferroptosis might be a key factor in the loss of monocytes during sepsis, and that the heightened expression of ZIP8 may facilitate this progression.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Sheng Wang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Dongsheng Hua
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xuan Shi
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Huimin Deng
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shuqing Jin
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
8
|
Chen Q, Liu Y, Bi L, Jin L, Peng R. Understanding the mechanistic roles of microplastics combined with heavy metals in regulating ferroptosis: Adding new paradigms regarding the links with diseases. ENVIRONMENTAL RESEARCH 2024; 242:117732. [PMID: 37996004 DOI: 10.1016/j.envres.2023.117732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
As a new type of pollutant, microplastics (MPs) commonly exist in today's ecosystems, causing damage to the ecological environment and the health of biological organisms, including human beings. MPs can function as carriers of heavy metals (HMs) to aggravate the enrichment of HMs in important organs of organisms, posing a great threat to health. Ferroptosis, a novel process for the regulation of nonapoptotic cell death, has been shown to be closely related to the occurrence and processes of MPs and HMs in diseases. In recent years, some HMs, such as cadmium (Cd), iron (Fe), arsenic (As) and copper (Cu), have been proven to induce ferroptosis. MPs can function as carriers of HMs to aggravate damage to the body. This damage involves oxidative stress, mitochondrial dysfunction, lipid peroxidation (LPO), inflammation, endoplasmic reticulum stress (ERS) and so on. Therefore, ferroptosis has great potential as a therapeutic target for diseases induced by MPs combined with HMs. This paper systematically reviews the potential effects and regulatory mechanisms of MPs and HMs in the process of ferroptosis, focusing on the mitochondrial damage, Fe accumulation, LPO, ERS and inflammation caused by MPs and HMs that affect the regulatory mechanism of ferroptosis, providing new insights for research on regulating drugs and for the development of ferroptosis-targeting therapy for Alzheimer's disease, Parkinson's disease, cancer and cardiovascular disease.
Collapse
Affiliation(s)
- Qianqian Chen
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yinai Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Liuliu Bi
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Libo Jin
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
9
|
Claudio-Ares O, Luciano-Rodríguez J, Del Valle-González YL, Schiavone-Chamorro SL, Pastor AJ, Rivera-Reyes JO, Metzler CL, Domínguez-Orona LM, Vargas-Pérez BL, Skouta R, Tinoco AD. Exploring the Use of Intracellular Chelation and Non-Iron Metals to Program Ferroptosis for Anticancer Application. INORGANICS 2024; 12:26. [PMID: 39380574 PMCID: PMC11460773 DOI: 10.3390/inorganics12010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
The discovery of regulated cell death (RCD) revolutionized chemotherapy. With caspase-dependent apoptosis initially being thought to be the only form of RCD, many drug development strategies aimed to synthesize compounds that turn on this kind of cell death. While yielding a variety of drugs, this approach is limited, given the acquired resistance of cancers to these drugs and the lack of specificity of the drugs for targeting cancer cells alone. The discovery of non-apoptotic forms of RCD is leading to new avenues for drug design. Evidence shows that ferroptosis, a relatively recently discovered iron-based cell death pathway, has therapeutic potential for anticancer application. Recent studies point to the interrelationship between iron and other essential metals, copper and zinc, and the disturbance of their respective homeostasis as critical to the onset of ferroptosis. Other studies reveal that several coordination complexes of non-iron metals have the capacity to induce ferroptosis. This collective knowledge will be assessed to determine how chelation approaches and coordination chemistry can be engineered to program ferroptosis in chemotherapy.
Collapse
Affiliation(s)
- Oscar Claudio-Ares
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, PR 00925, USA
| | | | | | | | - Alex J. Pastor
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, PR 00925, USA
| | - Javier O. Rivera-Reyes
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, PR 00925, USA
| | - Carmen L. Metzler
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, PR 00925, USA
| | | | - Brenda Lee Vargas-Pérez
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, PR 00925, USA
| | - Rachid Skouta
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003-9248, USA
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003-9248, USA
| | - Arthur D. Tinoco
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, PR 00925, USA
| |
Collapse
|
10
|
Bi F, Qiu Y, Wu Z, Liu S, Zuo D, Huang Z, Li B, Yuan Y, Niu Y, Qiu J. METTL9-SLC7A11 axis promotes hepatocellular carcinoma progression through ferroptosis inhibition. Cell Death Discov 2023; 9:428. [PMID: 38017014 PMCID: PMC10684523 DOI: 10.1038/s41420-023-01723-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023] Open
Abstract
Methytransferase-like proteins 9 (METTL9) has been characterized as an oncogene in several cancers, however, its role in hepatocellular carcinoma (HCC) remains unknown. Here, we investigated the function and molecular mechanism of METTL9 in HCC. We showed that METTL9 expression was elevated in HCC, and its high expression was associated with poor survival outcomes. Knockdown of METTL9 observed a significant inhibition of HCC cell viability, migration, and invasion both in vitro and in vivo. By contrast, METTL9 overexpression HCC cells obtained stronger abilities in cell proliferation and migration. Mechanistically, we discovered that METTL9 knockdown led to a reduction in the expression level of SLC7A11, a key suppressor of ferroptosis, in turn, promoted ferroptosis in HCC cells, impeding the progression of HCC. Moreover, we have proved that targeting METTL9 could significantly restrain the growth of HCC patient-derived xenograft (PDX). Our study established METTL9 as a critical role in promoting HCC development and provides a foundation for further investigation and potential therapeutic interventions targeting ferroptosis in HCC.
Collapse
Affiliation(s)
- Fangfang Bi
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuxiong Qiu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zongfeng Wu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shaoru Liu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dinglan Zuo
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhenkun Huang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Binkui Li
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yunfei Yuan
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yi Niu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Jiliang Qiu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
11
|
Ibáñez-Moragues M, Fernández-Barahona I, Santacruz R, Oteo M, Luján-Rodríguez VM, Muñoz-Hernando M, Magro N, Lagares JI, Romero E, España S, Espinosa-Rodríguez A, García-Díez M, Martínez-Nouvilas V, Sánchez-Tembleque V, Udías JM, Valladolid-Onecha V, Martín-Rey MÁ, Almeida-Cordon EI, Viñals i Onsès S, Pérez JM, Fraile LM, Herranz F, Morcillo MÁ. Zinc-Doped Iron Oxide Nanoparticles as a Proton-Activatable Agent for Dose Range Verification in Proton Therapy. Molecules 2023; 28:6874. [PMID: 37836718 PMCID: PMC10574368 DOI: 10.3390/molecules28196874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Proton therapy allows the treatment of specific areas and avoids the surrounding tissues. However, this technique has uncertainties in terms of the distal dose fall-off. A promising approach to studying the proton range is the use of nanoparticles as proton-activatable agents that produce detectable signals. For this, we developed an iron oxide nanoparticle doped with Zn (IONP@Zn-cit) with a hydrodynamic size of 10 nm and stability in serum. Cytotoxicity, defined as half of the surveillance, was 100 μg Zn/mL in the U251 cell line. The effect on clonogenic cell death was tested after X-ray irradiation, which suggested a radioprotective effect of these nanoparticles at low concentrations (1-10 μg Zn/mL). To evaluate the production of positron emitters and prompt-gamma signals, IONP@Zn-cit was irradiated with protons, obtaining prompt-gamma signals at the lowest measured concentration (10 mg Zn/mL). Finally, 67Ga-IONP@Zn-cit showed accumulation in the liver and spleen and an accumulation in the tumor tissue of 0.95% ID/g in a mouse model of U251 cells. These results suggest the possibility of using Zn nanoparticles as proton-activatable agents to verify the range by prompt gamma detection and face the challenges of prompt gamma detection in a specific biological situation, opening different avenues to go forward in this field.
Collapse
Affiliation(s)
- Marta Ibáñez-Moragues
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT, Medical Applications of Ionizing Radiation Unit, 28040 Madrid, Spain; (R.S.); (M.O.); (V.M.L.-R.); (N.M.); (J.I.L.); (E.R.); (J.M.P.)
| | - Irene Fernández-Barahona
- Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- Instituto de Química Médica—Consejo Superior de Investigaciones Científicas IQM-CSIC, Nanomedicine and Molecular Imaging Group, 28006 Madrid, Spain; (M.M.-H.)
| | - Rocío Santacruz
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT, Medical Applications of Ionizing Radiation Unit, 28040 Madrid, Spain; (R.S.); (M.O.); (V.M.L.-R.); (N.M.); (J.I.L.); (E.R.); (J.M.P.)
| | - Marta Oteo
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT, Medical Applications of Ionizing Radiation Unit, 28040 Madrid, Spain; (R.S.); (M.O.); (V.M.L.-R.); (N.M.); (J.I.L.); (E.R.); (J.M.P.)
| | - Víctor M. Luján-Rodríguez
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT, Medical Applications of Ionizing Radiation Unit, 28040 Madrid, Spain; (R.S.); (M.O.); (V.M.L.-R.); (N.M.); (J.I.L.); (E.R.); (J.M.P.)
| | - María Muñoz-Hernando
- Instituto de Química Médica—Consejo Superior de Investigaciones Científicas IQM-CSIC, Nanomedicine and Molecular Imaging Group, 28006 Madrid, Spain; (M.M.-H.)
| | - Natalia Magro
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT, Medical Applications of Ionizing Radiation Unit, 28040 Madrid, Spain; (R.S.); (M.O.); (V.M.L.-R.); (N.M.); (J.I.L.); (E.R.); (J.M.P.)
| | - Juan I. Lagares
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT, Medical Applications of Ionizing Radiation Unit, 28040 Madrid, Spain; (R.S.); (M.O.); (V.M.L.-R.); (N.M.); (J.I.L.); (E.R.); (J.M.P.)
| | - Eduardo Romero
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT, Medical Applications of Ionizing Radiation Unit, 28040 Madrid, Spain; (R.S.); (M.O.); (V.M.L.-R.); (N.M.); (J.I.L.); (E.R.); (J.M.P.)
| | - Samuel España
- Nuclear Physics Group, Universidad Complutense de Madrid, IPARCOS &EMFTEL, CEI Moncloa, 28040 Madrid, Spain; (S.E.); (A.E.-R.); (M.G.-D.); (V.M.-N.); (V.S.-T.); (J.M.U.); (V.V.-O.); (L.M.F.)
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| | - Andrea Espinosa-Rodríguez
- Nuclear Physics Group, Universidad Complutense de Madrid, IPARCOS &EMFTEL, CEI Moncloa, 28040 Madrid, Spain; (S.E.); (A.E.-R.); (M.G.-D.); (V.M.-N.); (V.S.-T.); (J.M.U.); (V.V.-O.); (L.M.F.)
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| | - Miguel García-Díez
- Nuclear Physics Group, Universidad Complutense de Madrid, IPARCOS &EMFTEL, CEI Moncloa, 28040 Madrid, Spain; (S.E.); (A.E.-R.); (M.G.-D.); (V.M.-N.); (V.S.-T.); (J.M.U.); (V.V.-O.); (L.M.F.)
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| | - Víctor Martínez-Nouvilas
- Nuclear Physics Group, Universidad Complutense de Madrid, IPARCOS &EMFTEL, CEI Moncloa, 28040 Madrid, Spain; (S.E.); (A.E.-R.); (M.G.-D.); (V.M.-N.); (V.S.-T.); (J.M.U.); (V.V.-O.); (L.M.F.)
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| | - Víctor Sánchez-Tembleque
- Nuclear Physics Group, Universidad Complutense de Madrid, IPARCOS &EMFTEL, CEI Moncloa, 28040 Madrid, Spain; (S.E.); (A.E.-R.); (M.G.-D.); (V.M.-N.); (V.S.-T.); (J.M.U.); (V.V.-O.); (L.M.F.)
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| | - José Manuel Udías
- Nuclear Physics Group, Universidad Complutense de Madrid, IPARCOS &EMFTEL, CEI Moncloa, 28040 Madrid, Spain; (S.E.); (A.E.-R.); (M.G.-D.); (V.M.-N.); (V.S.-T.); (J.M.U.); (V.V.-O.); (L.M.F.)
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| | - Víctor Valladolid-Onecha
- Nuclear Physics Group, Universidad Complutense de Madrid, IPARCOS &EMFTEL, CEI Moncloa, 28040 Madrid, Spain; (S.E.); (A.E.-R.); (M.G.-D.); (V.M.-N.); (V.S.-T.); (J.M.U.); (V.V.-O.); (L.M.F.)
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| | - Miguel Á. Martín-Rey
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT, Hematopoietic Innovative Therapies Unit, 28040 Madrid, Spain;
| | - Edilia I. Almeida-Cordon
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT, Animal Facility Unit, 28040 Madrid, Spain;
| | - Sílvia Viñals i Onsès
- Center for Microanalysis of Materials (CMAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - José Manuel Pérez
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT, Medical Applications of Ionizing Radiation Unit, 28040 Madrid, Spain; (R.S.); (M.O.); (V.M.L.-R.); (N.M.); (J.I.L.); (E.R.); (J.M.P.)
| | - Luis Mario Fraile
- Nuclear Physics Group, Universidad Complutense de Madrid, IPARCOS &EMFTEL, CEI Moncloa, 28040 Madrid, Spain; (S.E.); (A.E.-R.); (M.G.-D.); (V.M.-N.); (V.S.-T.); (J.M.U.); (V.V.-O.); (L.M.F.)
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| | - Fernando Herranz
- Instituto de Química Médica—Consejo Superior de Investigaciones Científicas IQM-CSIC, Nanomedicine and Molecular Imaging Group, 28006 Madrid, Spain; (M.M.-H.)
| | - Miguel Ángel Morcillo
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT, Medical Applications of Ionizing Radiation Unit, 28040 Madrid, Spain; (R.S.); (M.O.); (V.M.L.-R.); (N.M.); (J.I.L.); (E.R.); (J.M.P.)
| |
Collapse
|
12
|
Li Q, Yang Q, Guo P, Feng Y, Wang S, Guo J, Tang Z, Yu W, Liao J. Mitophagy contributes to zinc-induced ferroptosis in porcine testis cells. Food Chem Toxicol 2023; 179:113950. [PMID: 37481227 DOI: 10.1016/j.fct.2023.113950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Zinc (Zn) is a critical microelement for physiological process, but excess exposure can cause testicular dysfunction. However, the underlying mechanism of Zn-induced ferroptosis via regulating mitophagy is unknown. In this study, a total of 60 male weaned pigs were randomly divided into three groups and the content of Zn were 75 mg/kg (control), 750 mg/kg (Zn-I), 1500 mg/kg (Zn-II). Meanwhile, testicular cells were treated with ZnSO4 (0, 50 and 100 μM), and in combination of ZnSO4 (100 μM) and ferrostation-1, ML-210, or 3-methyladenine for 24 h. Our results verified that Zn could cause ferroptosis and lipid peroxidation, which were characterized by down-regulating level of SLC7A11, GPX4, and ferritin, and up-regulating levels of MDA, CD71, TF, and HMGB1 by Western blot, immunohistochemistry, immunofluorescence, peroxidase assay, et.ac. The opposite effect was shown after treatment with ferrostation-1 or ML-210. Meanwhile, the mitophagy-related proteins (PINK, Parkin, ATG5, LC3-II/LC3-I) were significantly upregulated in vivo and in vitro. Most importantly, 3-methyladenine observably relieved ferroptosis under Zn treatment through inhibiting mitophagy. Collectively, we demonstrated that mitophagy contributes to Zn-induced ferroptosis in porcine testis cells, providing a new insight into Zn toxicology.
Collapse
Affiliation(s)
- Quanwei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Qingwen Yang
- Laboratory of Veterinary Pharmacology, Department of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing, PR China
| | - Pan Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Yuanhong Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Shaofeng Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Wenlan Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China.
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China.
| |
Collapse
|
13
|
Yang Q, Zuo Z, Zeng Y, Ouyang Y, Cui H, Deng H, Zhu Y, Deng J, Geng Y, Ouyang P, Lai W, Du Z, Ni X, Yin H, Fang J, Guo H. Autophagy-mediated ferroptosis involved in nickel-induced nephrotoxicity in the mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115049. [PMID: 37235900 DOI: 10.1016/j.ecoenv.2023.115049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/25/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Nickel, as a widely polluted metal, has been shown nephrotoxicity. Ferroptosis is a new type of cell death driven by iron-dependent lipid peroxidation. Our study found that nickel chloride (NiCl2) induced ferroptosis in mouse kidney and TCMK-1 cells. The iron content was significantly increased in the kidney and TCMK-1 cells after NiCl2 treatment. Lipid peroxidation and MDA content were significantly increased, and GSH content and T-SOD activity were significantly decreased after exposure to NiCl2. Moreover, NiCl2 increased COX-2 protein levels, decreased SLC7A11 and GPX4 protein levels, and elevated Ptgs2 mRNA levels. Next, the mechanism of Ni-induced ferroptosis was investigated. The results showed that NiCl2 induced autophagy in TCMK-1 cells, which promoted ferroptosis induced by NiCl2. Furthermore, the data of autophagy activation or inhibition experiment showed that autophagy facilitated ferroptosis through the degradation of the iron regulation protein NCOA4 and FTH1. Otherwise, iron chelator DFOM treatment inhibited ferroptosis induced by NiCl2. Finally, ferroptosis inhibitor Fer-1 treatment significantly alleviated cytotoxicity induced by NiCl2. To sum up, our above results showed that ferroptosis is involved in NiCl2-induced nephrotoxicity, and NiCl2 induces autophagy-dependent ferritin degradation, releases iron ions, leads to iron overload, and induces ferroptosis. This study supplies a new theoretical foundation for the study of nickel and renal toxicity.
Collapse
Affiliation(s)
- Qing Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Yuxin Zeng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Yujuan Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Yanqiu Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Weiming Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Zongjun Du
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Xueqin Ni
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Heng Yin
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China.
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China.
| |
Collapse
|
14
|
Sahoo K, Sharma A. Understanding the mechanistic roles of environmental heavy metal stressors in regulating ferroptosis: adding new paradigms to the links with diseases. Apoptosis 2023; 28:277-292. [PMID: 36611106 DOI: 10.1007/s10495-022-01806-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2022] [Indexed: 01/09/2023]
Abstract
Ferroptosis is a new type of iron-dependent cell death induced by a failure of the lipid repair protein GPX4 or the Xc- antiporter, which is essential for glutathione production. Some heavy metals such as arsenic (As), cobalt (Co), cadmium (Cd), iron (Fe), magnesium (Mg), manganese (Mn), nickel (Ni), mercury (Hg) as well as zinc (Zn) are shown to induce ferroptotic cell death involving the generation of oxidative stress, mitochondrial dysfunctioning, lipid peroxidation, and several other cellular etiologies. However, selenium (Se) treatment has been shown to enhance adaptive transcription responses to protect cells from ferroptosis. Heavy metals like Cadmium exposure activated ALK4/5 signaling via Smad3 and Akt signaling which leads to cell death mechanism. Continuous exposure to a small dose of mercury can damage tissues, and methylmercury bind to sulfhydryl proteins and GSH, this elevates oxidative stress, free radical accumulation, glutathione depletion, mitochondrial damage, and inhibited the nuclear factor-κB pathway which leads to ferroptotic cell death. Animals exposed to nickel and cobalt may have increased lipid peroxidation which can induce ferroptosis. Glutathione depletion is caused by Zn intoxication and exposure to manganese. These metals are systemic toxins that have been shown adverse effects on humans. Ferroptosis has recently been related to several pathological disorders, including, Alzheimer's disease, Parkinson's disease, Huntington's disease, as well as cardiovascular disease, and any type of cancer. For these disorders and some heavy metal toxicity, ferroptosis suppression needs to be looked upon as a promising therapeutic choice.
Collapse
Affiliation(s)
- Kumudini Sahoo
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Bijnor-Sisendi Road, Post Office Mati, Lucknow, 226002, India.,School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India
| | - Ankita Sharma
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Bijnor-Sisendi Road, Post Office Mati, Lucknow, 226002, India.
| |
Collapse
|
15
|
Pino JC, Lubbock AL, Harris LA, Gutierrez DB, Farrow MA, Muszynski N, Tsui T, Sherrod SD, Norris JL, McLean JA, Caprioli RM, Wikswo JP, Lopez CF. Processes in DNA damage response from a whole-cell multi-omics perspective. iScience 2022; 25:105341. [PMID: 36339253 PMCID: PMC9633746 DOI: 10.1016/j.isci.2022.105341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 08/10/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022] Open
Abstract
Technological advances have made it feasible to collect multi-condition multi-omic time courses of cellular response to perturbation, but the complexity of these datasets impedes discovery due to challenges in data management, analysis, visualization, and interpretation. Here, we report a whole-cell mechanistic analysis of HL-60 cellular response to bendamustine. We integrate both enrichment and network analysis to show the progression of DNA damage and programmed cell death over time in molecular, pathway, and process-level detail using an interactive analysis framework for multi-omics data. Our framework, Mechanism of Action Generator Involving Network analysis (MAGINE), automates network construction and enrichment analysis across multiple samples and platforms, which can be integrated into our annotated gene-set network to combine the strengths of networks and ontology-driven analysis. Taken together, our work demonstrates how multi-omics integration can be used to explore signaling processes at various resolutions and demonstrates multi-pathway involvement beyond the canonical bendamustine mechanism.
Collapse
Affiliation(s)
- James C. Pino
- Chemical and Physical Biology Graduate Program, Vanderbilt University, Nashville, TN, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
- Pacific Northwest National Laboratory, Seattle, WA, USA
| | - Alexander L.R. Lubbock
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Leonard A. Harris
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
- Interdisciplinary Graduate Program in Cell & Molecular Biology, University of Arkansas, Fayetteville, AR, USA
- Cancer Biology Program, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Danielle B. Gutierrez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Melissa A. Farrow
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Nicole Muszynski
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Tina Tsui
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Stacy D. Sherrod
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Center for Innovative Technology (CIT), Vanderbilt University, Nashville, TN, USA
| | - Jeremy L. Norris
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - John A. McLean
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Center for Innovative Technology (CIT), Vanderbilt University, Nashville, TN, USA
| | - Richard M. Caprioli
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - John P. Wikswo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, USA
| | - Carlos F. Lopez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
- Pacific Northwest National Laboratory, Seattle, WA, USA
| |
Collapse
|
16
|
Guo J, Zhou Y, Liu D, Wang M, Wu Y, Tang D, Liu X. Mitochondria as multifaceted regulators of ferroptosis. LIFE METABOLISM 2022; 1:134-148. [PMID: 39872359 PMCID: PMC11749789 DOI: 10.1093/lifemeta/loac035] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 01/30/2025]
Abstract
Mitochondria are well known to be "energy factories" of the cell as they provide intracellular ATP via oxidative phosphorylation. Interestingly, they also function as a "cellular suicidal weapon store" by acting as a key mediator of various forms of regulated cell death, including apoptosis, pyroptosis, necroptosis, and ferroptosis. Ferroptosis, distinct from the other types of regulated cell death, is characterized by iron-dependent lipid peroxidation and subsequent plasma membrane rupture. Growing evidence suggests that an impaired ferroptotic response is implicated in various diseases and pathological conditions, and this impaired response is associated with dramatic changes in mitochondrial morphology and function. Mitochondria are the center of iron metabolism and energy production, leading to altered lipid peroxidation sensitivity. Although a growing number of studies have explored the inextricable link between mitochondria and ferroptosis, the role of this organelle in regulating ferroptosis remains unclear. Here, we review recent advances in our understanding of the role of mitochondria in ferroptosis and summarize the characteristics of this novel iron-based cellular suicide weapon and its arsenal. We also discuss the importance of ferroptosis in pathophysiology, including the need for further understanding of the relationship between mitochondria and ferroptosis to identify combinatorial targets that are essential for the development of successful drug discovery.
Collapse
Affiliation(s)
- Jingyi Guo
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, Guangdong 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Yunhao Zhou
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, Guangdong 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
- University of Chinese Academy of Sciences, Beijing 100093, China
| | - Dingfei Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, Guangdong 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
- University of Chinese Academy of Sciences, Beijing 100093, China
| | - Mengfei Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, Guangdong 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
- University of Chinese Academy of Sciences, Beijing 100093, China
| | - Yi Wu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, Guangdong 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, Guangdong 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China
| |
Collapse
|
17
|
Zhang L, Liu J, Dai Z, Wang J, Wu M, Su R, Zhang D. Crosstalk between regulated necrosis and micronutrition, bridged by reactive oxygen species. Front Nutr 2022; 9:1003340. [PMID: 36211509 PMCID: PMC9543034 DOI: 10.3389/fnut.2022.1003340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/26/2022] [Indexed: 11/15/2022] Open
Abstract
The discovery of regulated necrosis revitalizes the understanding of necrosis from a passive and accidental cell death to a highly coordinated and genetically regulated cell death routine. Since the emergence of RIPK1 (receptor-interacting protein kinase 1)-RIPK3-MLKL (mixed lineage kinase domain-like) axis-mediated necroptosis, various other forms of regulated necrosis, including ferroptosis and pyroptosis, have been described, which enrich the understanding of pathophysiological nature of diseases and provide novel therapeutics. Micronutrients, vitamins, and minerals, position centrally in metabolism, which are required to maintain cellular homeostasis and functions. A steady supply of micronutrients benefits health, whereas either deficiency or excessive amounts of micronutrients are considered harmful and clinically associated with certain diseases, such as cardiovascular disease and neurodegenerative disease. Recent advance reveals that micronutrients are actively involved in the signaling pathways of regulated necrosis. For example, iron-mediated oxidative stress leads to lipid peroxidation, which triggers ferroptotic cell death in cancer cells. In this review, we illustrate the crosstalk between micronutrients and regulated necrosis, and unravel the important roles of micronutrients in the process of regulated necrosis. Meanwhile, we analyze the perspective mechanism of each micronutrient in regulated necrosis, with a particular focus on reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Lei Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Jinting Liu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Ziyan Dai
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Jia Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Mengyang Wu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Ruicong Su
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Di Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- *Correspondence: Di Zhang,
| |
Collapse
|
18
|
Ke K, Li L, Lu C, Zhu Q, Wang Y, Mou Y, Wang H, Jin W. The crosstalk effect between ferrous and other ions metabolism in ferroptosis for therapy of cancer. Front Oncol 2022; 12:916082. [PMID: 36033459 PMCID: PMC9413412 DOI: 10.3389/fonc.2022.916082] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/19/2022] [Indexed: 11/15/2022] Open
Abstract
Ferroptosis is an iron-dependent cell death process characterized by excessive accumulation of reactive oxygen species and lipid peroxidation. The elucidation of ferroptosis pathways may lead to novel cancer therapies. Current evidence suggests that the mechanism of ferroptosis can be summarized as oxidative stress and antioxidant defense mechanisms. During this process, ferrous ions play a crucial role in cellular oxidation, plasma membrane damage, reactive oxygen species removal imbalance and lipid peroxidation. Although, disregulation of intracellular cations (Fe2+, Ca2+, Zn2+, etc.) and anions (Cl-, etc.) have been widely reported to be involved in ferroptosis, their specific regulatory mechanisms have not been established. To further understand the crosstalk effect between ferrous and other ions in ferroptosis, we reviewed the ferroptosis process from the perspective of ions metabolism. In addition, the role of ferrous and other ions in tumor therapy is briefly summarized.
Collapse
Affiliation(s)
- Kun Ke
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Li Li
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Chao Lu
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Qicong Zhu
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yuanyu Wang
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yiping Mou
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Huiju Wang
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
- *Correspondence: Weiwei Jin, ; Huiju Wang,
| | - Weiwei Jin
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
- *Correspondence: Weiwei Jin, ; Huiju Wang,
| |
Collapse
|
19
|
Ferroptosis as a mechanism of non-ferrous metal toxicity. Arch Toxicol 2022; 96:2391-2417. [PMID: 35727353 DOI: 10.1007/s00204-022-03317-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/11/2022] [Indexed: 11/02/2022]
Abstract
Ferroptosis is a recently discovered form of regulated cell death, implicated in multiple pathologies. Given that the toxicity elicited by some metals is linked to alterations in iron metabolism and induction of oxidative stress and lipid peroxidation, ferroptosis might be involved in such toxicity. Although direct evidence is insufficient, certain pioneering studies have demonstrated a crosstalk between metal toxicity and ferroptosis. Specifically, the mechanisms underlying metal-induced ferroptosis include induction of ferritinophagy, increased DMT-1 and TfR cellular iron uptake, mitochondrial dysfunction and mitochondrial reactive oxygen species (mitoROS) generation, inhibition of Xc-system and glutathione peroxidase 4 (GPX4) activity, altogether resulting in oxidative stress and lipid peroxidation. In addition, there is direct evidence of the role of ferroptosis in the toxicity of arsenic, cadmium, zinc, manganese, copper, and aluminum exposure. In contrast, findings on the impact of cobalt and nickel on ferroptosis are scant and nearly lacking altogether for mercury and especially lead. Other gaps in the field include limited studies on the role of metal speciation in ferroptosis and the critical cellular targets. Although further detailed studies are required, it seems reasonable to propose even at this early stage that ferroptosis may play a significant role in metal toxicity, and its modulation may be considered as a potential therapeutic tool for the amelioration of metal toxicity.
Collapse
|
20
|
Dong L, Yang B, Zhang Y, Wang S, Li F, Xing G, Farina M, Zhang Y, Appiah-Kubi K, Tinkov AA, Aschner M, Shi H, Liu T, Lu R. Ferroptosis contributes to methylmercury-induced cytotoxicity in rat primary astrocytes and Buffalo rat liver cells. Neurotoxicology 2022; 90:228-236. [DOI: 10.1016/j.neuro.2022.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/27/2022] [Accepted: 04/14/2022] [Indexed: 01/18/2023]
|
21
|
Hamidian M, Maharjan RP, Farrugia DN, Delgado NN, Dinh H, Short FL, Kostoulias X, Peleg AY, Paulsen IT, Cain AK. Genomic and phenotypic analyses of diverse non-clinical Acinetobacter baumannii strains reveals strain-specific virulence and resistance capacity. Microb Genom 2022; 8:000765. [PMID: 35166651 PMCID: PMC8942024 DOI: 10.1099/mgen.0.000765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/15/2021] [Indexed: 12/03/2022] Open
Abstract
Acinetobacter baumannii is a critically important pathogen known for its widespread antibiotic resistance and ability to persist in hospital-associated environments. Whilst the majority of A. baumannii infections are hospital-acquired, infections from outside the hospital have been reported with high mortality. Despite this, little is known about the natural environmental reservoir(s) of A. baumannii and the virulence potential underlying non-clinical strains. Here, we report the complete genome sequences of six diverse strains isolated from environments such as river, soil, and industrial sites around the world. Phylogenetic analyses showed that four of these strains were unrelated to representative nosocomial strains and do not share a monophyletic origin, whereas two had sequence types belonging to the global clone lineages GC1 and GC2. Further, the majority of these strains harboured genes linked to virulence and stress protection in nosocomial strains. These genotypic properties correlated well with in vitro virulence phenotypic assays testing resistance to abiotic stresses, serum survival, and capsule formation. Virulence potential was confirmed in vivo, with most environmental strains able to effectively kill Galleria mellonella greater wax moth larvae. Using phenomic arrays and antibiotic resistance profiling, environmental and nosocomial strains were shown to have similar substrate utilisation patterns although environmental strains were distinctly more sensitive to antibiotics. Taken together, these features of environmental A. baumannii strains suggest the existence of a strain-specific distinct gene pools for niche specific adaptation. Furthermore, environmental strains appear to be equally virulent as contemporary nosocomial strains but remain largely antibiotic sensitive.
Collapse
Affiliation(s)
- Mohammad Hamidian
- The iThree institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ram P. Maharjan
- ARC Centre of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Daniel N. Farrugia
- ARC Centre of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Natasha N. Delgado
- ARC Centre of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Hue Dinh
- ARC Centre of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Francesca L. Short
- Infection & Immunity Program Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Xenia Kostoulias
- Infection & Immunity Program Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Anton Y. Peleg
- Infection & Immunity Program Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Ian T. Paulsen
- ARC Centre of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Amy K. Cain
- ARC Centre of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
22
|
Tabnak P, HajiEsmailPoor Z, Soraneh S. Ferroptosis in Lung Cancer: From Molecular Mechanisms to Prognostic and Therapeutic Opportunities. Front Oncol 2021; 11:792827. [PMID: 34926310 PMCID: PMC8674733 DOI: 10.3389/fonc.2021.792827] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022] Open
Abstract
Lung cancer is the second commonly diagnosed malignancy worldwide and has the highest mortality rate among all cancers. Tremendous efforts have been made to develop novel strategies against lung cancer; however, the overall survival of patients still is low. Uncovering underlying molecular mechanisms of this disease can open up new horizons for its treatment. Ferroptosis is a newly discovered type of programmed cell death that, in an iron-dependent manner, peroxidizes unsaturated phospholipids and results in the accumulation of radical oxygen species. Subsequent oxidative damage caused by ferroptosis contributes to cell death in tumor cells. Therefore, understanding its molecular mechanisms in lung cancer appears as a promising strategy to induce ferroptosis selectively. According to evidence published up to now, significant numbers of research have been done to identify ferroptosis regulators in lung cancer. Therefore, this review aims to provide a comprehensive standpoint of molecular mechanisms of ferroptosis in lung cancer and address these molecules’ prognostic and therapeutic values, hoping that the road for future studies in this field will be paved more efficiently.
Collapse
Affiliation(s)
- Peyman Tabnak
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Soroush Soraneh
- Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
23
|
Ferroptosis in Non-Small Cell Lung Cancer: Progression and Therapeutic Potential on It. Int J Mol Sci 2021; 22:ijms222413335. [PMID: 34948133 PMCID: PMC8704137 DOI: 10.3390/ijms222413335] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/28/2021] [Accepted: 12/09/2021] [Indexed: 12/16/2022] Open
Abstract
As a main subtype of lung cancer, the current situation of non-small cell lung cancer (NSCLC) remains severe worldwide with a 19% survival rate at 5 years. As the conventional therapy approaches, such as chemotherapy, radiotherapy, targeted therapy, and immunotherapy, gradually develop into therapy resistance, searching for a novel therapeutic strategy for NSCLC is urgent. Ferroptosis, an iron-dependent programmed necrosis, has now been widely considered as a key factor affecting the tumorigenesis and progression in various cancers. Focusing on its effect in NSCLC, in different situations, ferroptosis can be triggered or restrained. When ferroptosis was induced in NSCLC, it was available to inhibit the tumor progression both in vitro and in vivo. The dominating mechanism was due to a regulation of the classic ferroptosis-repressed GSH-dependent GPX4 signaling pathway instead of other fractional regulating signal axes that regulated ferroptosis via impacting on the ROS, cellular iron levels, etc. In terms of the prevention of ferroptosis in NSCLC, an GSH-independent mechanism was also discovered, interestingly exhibiting the same upstream as the GPX4 signaling. In addition, this review summarizes the progression of ferroptosis in NSCLC and elaborates their association and specific mechanisms through bioinformatics analysis with multiple experimental evidence from different cascades. Finally, this review also points out the possibility of ferroptosis working as a novel strategy for therapy resistance in NSCLC, emphasizing its therapeutic potential.
Collapse
|
24
|
Wu S, Zhu C, Tang D, Dou QP, Shen J, Chen X. The role of ferroptosis in lung cancer. Biomark Res 2021; 9:82. [PMID: 34742351 PMCID: PMC8572460 DOI: 10.1186/s40364-021-00338-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/20/2021] [Indexed: 12/19/2022] Open
Abstract
Lung cancer is one of the most common cancers in the world. Although medical treatment has made impressive progress in recent years, it is still one of the leading causes of cancer-related deaths in men and women. Ferroptosis is a type of non-apoptotic cell death modality, usually characterized by iron-dependent lipid peroxidation, rather than caspase-induced protein cleavage. Excessive or lack of ferroptosis is associated with a variety of diseases, including cancer and ischaemia-reperfusion injury. Recent preclinical evidence suggests that targeting ferroptotic pathway is a potential strategy for the treatment of lung cancer. In this review, we summarize the core mechanism and regulatory network of ferroptosis in lung cancer cells, and highlight ferroptosis induction-related tumor therapies. The reviewed information may provide new insights for targeted lung cancer therapy.
Collapse
Affiliation(s)
- Sikai Wu
- Department of Thoracic Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China
| | - Chengchu Zhu
- Department of Thoracic Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Q Ping Dou
- Department of Oncology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA
- Departments of Pharmacology & Pathology, School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Jianfei Shen
- Department of Thoracic Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China.
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China.
| | - Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
25
|
Targeting Ferroptosis for Lung Diseases: Exploring Novel Strategies in Ferroptosis-Associated Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1098970. [PMID: 34630843 PMCID: PMC8494591 DOI: 10.1155/2021/1098970] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/04/2021] [Accepted: 09/22/2021] [Indexed: 02/07/2023]
Abstract
Ferroptosis is an iron-dependent regulated necrosis characterized by the peroxidation damage of lipid molecular containing unsaturated fatty acid long chain on the cell membrane or organelle membrane after cellular deactivation restitution system, resulting in the cell membrane rupture. Ferroptosis is biochemically and morphologically distinct and disparate from other forms of regulated cell death. Recently, mounting studies have investigated the mechanism of ferroptosis, and numerous proteins play vital roles in regulating ferroptosis. With detailed studies, emerging evidence indicates that ferroptosis is found in multiple lung diseases, demonstrating that ferroptosis appears to be particularly important for lung diseases. The mounting interest in ferroptosis drugs specifically targeting the ferroptosis mechanism holds substantial therapeutic promise in lung diseases. The present review emphatically summarizes the functions and integrated molecular mechanisms of ferroptosis in various lung diseases, proposing that multiangle regulation of ferroptosis might be a promising strategy for the clinical treatment of lung diseases.
Collapse
|
26
|
Tang J, Zhuo Y, Li Y. Effects of Iron and Zinc on Mitochondria: Potential Mechanisms of Glaucomatous Injury. Front Cell Dev Biol 2021; 9:720288. [PMID: 34447755 PMCID: PMC8383321 DOI: 10.3389/fcell.2021.720288] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/22/2021] [Indexed: 12/26/2022] Open
Abstract
Glaucoma is the most substantial cause of irreversible blinding, which is accompanied by progressive retinal ganglion cell damage. Retinal ganglion cells are energy-intensive neurons that connect the brain and retina, and depend on mitochondrial homeostasis to transduce visual information through the brain. As cofactors that regulate many metabolic signals, iron and zinc have attracted increasing attention in studies on neurons and neurodegenerative diseases. Here, we summarize the research connecting iron, zinc, neuronal mitochondria, and glaucomatous injury, with the aim of updating and expanding the current view of how retinal ganglion cells degenerate in glaucoma, which can reveal novel potential targets for neuroprotection.
Collapse
Affiliation(s)
- Jiahui Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yiqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
27
|
Gao J, Yin Z, Wu Z, Sheng Z, Ma C, Chen R, Zhang X, Tang K, Fei J, Cao Z. Probing Synergistic Targets by Natural Compounds for Hepatocellular Carcinoma. Front Cell Dev Biol 2021; 9:715762. [PMID: 34395446 PMCID: PMC8355820 DOI: 10.3389/fcell.2021.715762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022] Open
Abstract
Background Designing combination drugs for malignant cancers has been restricted due to the scarcity of synergy-medicated targets, while some natural compounds have demonstrated potential to enhance anticancer effects. Methods We here explored the feasibility of probing synergy-mediated targets by Berberine (BER) and Evodiamine (EVO) in hepatocellular carcinoma (HCC). Using the genomics-derived HCC signaling networks of compound treatment, NF-κB and c-JUN were inferred as key responding elements with transcriptional activity coinhibited during the synergistic cytotoxicity induction in BEL-7402 cells. Then, selective coinhibitors of NF-κB and c-JUN were tested demonstrating similar synergistic antiproliferation activity. Results Consistent with in vivo experiments of zebrafish, coinhibitors were found to significantly reduce tumor growth by 79% and metastasis by 96% compared to blank control, accompanied by anti-angiogenic activity. In an analysis of 365 HCC individuals, the low expression group showed significantly lower malignancies and better prognosis, with the median survival time increased from 67 to 213%, compared to the rest of the groups. Conclusion Together, NF-κB and c-JUN were identified as promising synergistic inducers in developing anti-HCC therapies. Also, our method may provide a feasible strategy to explore new targeting space from natural compounds, opening opportunities for the rational design of combinational formulations in combatting malignant cancers.
Collapse
Affiliation(s)
- Jian Gao
- Department of Gastroenterology, School of Life Sciences and Technology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Zuojing Yin
- Department of Gastroenterology, School of Life Sciences and Technology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Zhuanbin Wu
- Shanghai Model Organisms Center, Inc., Shanghai, China
| | - Zhen Sheng
- Department of Gastroenterology, School of Life Sciences and Technology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Chao Ma
- Department of Gastroenterology, School of Life Sciences and Technology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Rui Chen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Xiongwen Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Kailin Tang
- Department of Gastroenterology, School of Life Sciences and Technology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Jian Fei
- Department of Gastroenterology, School of Life Sciences and Technology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Zhiwei Cao
- Department of Gastroenterology, School of Life Sciences and Technology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| |
Collapse
|
28
|
Wang H, Lin D, Yu Q, Li Z, Lenahan C, Dong Y, Wei Q, Shao A. A Promising Future of Ferroptosis in Tumor Therapy. Front Cell Dev Biol 2021; 9:629150. [PMID: 34178977 PMCID: PMC8219969 DOI: 10.3389/fcell.2021.629150] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/26/2021] [Indexed: 12/24/2022] Open
Abstract
Currently, mechanisms and therapeutic approaches have been thoroughly studied in various prevalent malignant tumors, such as breast and lung cancer. However, there is inevitable tumor progression and drug resistance. Uncovering novel treatment strategies to inhibit tumor development is important. Ferroptosis, a form of cell death associated with iron and lipid peroxidation, has drawn extensive attention. In this paper, we reviewed the underlying mechanisms of ferroptosis (i.e., iron, glutathione, and lipid metabolism) and its role in various tumors (i.e., lung cancer, liver carcinoma, breast cancer, and pancreatic cancer). Moreover, we summarized ferroptosis-related anti-tumor drugs and emphasized the potential of combined treatment of anti-tumor drugs and radiotherapy in an effort to provide novel anti-tumor treatments.
Collapse
Affiliation(s)
- Hui Wang
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danfeng Lin
- Department of Breast Surgery, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qianqian Yu
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhouqi Li
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
- Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Ying Dong
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qichun Wei
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
29
|
Chen PH, Chi JT. Unexpected zinc dependency of ferroptosis: what is in a name? Oncotarget 2021; 12:1126-1127. [PMID: 34136082 PMCID: PMC8202775 DOI: 10.18632/oncotarget.27951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Indexed: 01/22/2023] Open
|
30
|
Chen PH, Wu J, Xu Y, Ding CKC, Mestre AA, Lin CC, Yang WH, Chi JT. Zinc transporter ZIP7 is a novel determinant of ferroptosis. Cell Death Dis 2021; 12:198. [PMID: 33608508 PMCID: PMC7895949 DOI: 10.1038/s41419-021-03482-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 02/06/2023]
Abstract
Ferroptosis is a newly described form of regulated cell death triggered by oxidative stresses and characterized by extensive lipid peroxidation and membrane damages. The name of ferroptosis indicates that the ferroptotic death process depends on iron, but not other metals, as one of its canonical features. Here, we reported that zinc is also essential for ferroptosis in breast and renal cancer cells. Zinc chelator suppressed ferroptosis, and zinc addition promoted ferroptosis, even during iron chelation. By interrogating zinc-related genes in a genome-wide RNAi screen of ferroptosis, we identified SLC39A7, encoding ZIP7 that controls zinc transport from endoplasmic reticulum (ER) to cytosol, as a novel genetic determinant of ferroptosis. Genetic and chemical inhibition of the ZIP7 protected cells against ferroptosis, and the ferroptosis protection upon ZIP7 knockdown can be abolished by zinc supplementation. We found that the genetic and chemical inhibition of ZIP7 triggered ER stresses, including the induction of the expression of HERPUD1 and ATF3. Importantly, the knockdown of HERPUD1 abolished the ferroptosis protection phenotypes of ZIP7 inhibition. Together, we have uncovered an unexpected role of ZIP7 in ferroptosis by maintaining ER homeostasis. These findings may have therapeutic implications for human diseases involving ferroptosis and zinc dysregulations.
Collapse
Affiliation(s)
- Po-Han Chen
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27708, USA
- Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA
| | - Jianli Wu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27708, USA
- Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA
| | - Yitong Xu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27708, USA
- Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA
| | - Chien-Kuang Cornelia Ding
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27708, USA
- Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA
| | - Alexander A Mestre
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27708, USA
- Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA
- Department of Biochemistry, Duke University Medical Center, Durham, NC, 27708, USA
| | - Chao-Chieh Lin
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27708, USA
- Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA
| | - Wen-Hsuan Yang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27708, USA
- Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA
- Department of Biochemistry, Duke University Medical Center, Durham, NC, 27708, USA
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27708, USA.
- Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
31
|
The Application of Ferroptosis in Diseases. Pharmacol Res 2020; 159:104919. [DOI: 10.1016/j.phrs.2020.104919] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/30/2020] [Accepted: 05/08/2020] [Indexed: 01/17/2023]
|
32
|
Affiliation(s)
- Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation; the Third Affiliated Hospital; School of Basic Medical Sciences; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jingbo Li
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Daolin Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation; the Third Affiliated Hospital; School of Basic Medical Sciences; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
33
|
Advances of Zinc Signaling Studies in Prostate Cancer. Int J Mol Sci 2020; 21:ijms21020667. [PMID: 31963946 PMCID: PMC7014440 DOI: 10.3390/ijms21020667] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/16/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common cancers and the second leading cause of cancer-related death among men worldwide. Despite progresses in early diagnosis and therapeutic strategies, prognosis for patients with advanced PCa remains poor. Noteworthily, a unique feature of healthy prostate is its highest level of zinc content among all soft tissues in the human body, which dramatically decreases during prostate tumorigenesis. To date, several reviews have suggested antitumor activities of zinc and its potential as a therapeutic strategy of PCa. However, an overview about the role of zinc and its signaling in PCa is needed. Here, we review literature related to the content, biological function, compounds and clinical application of zinc in PCa. We first summarize zinc content in prostate tissue and sera of PCa patients with their clinical relevance. We then elaborate biological functions of zinc signaling in PCa on three main aspects, including cell proliferation, death and tumor metastasis. Finally, we discuss clinical applications of zinc-containing compounds and proteins involved in PCa signaling pathways. Based on currently available studies, we conclude that zinc plays a tumor suppressive role and can serve as a biomarker in PCa diagnosis and therapies.
Collapse
|
34
|
An P, Gao Z, Sun K, Gu D, Wu H, You C, Li Y, Cheng K, Zhang Y, Wang Z, Sun B. Photothermal-Enhanced Inactivation of Glutathione Peroxidase for Ferroptosis Sensitized by an Autophagy Promotor. ACS APPLIED MATERIALS & INTERFACES 2019; 11:42988-42997. [PMID: 31650832 DOI: 10.1021/acsami.9b16124] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Until now, ferroptotic therapeutic strategies remain simple, although ferroptosis has aroused extensive interest owing to its escape from the biocarriers of conventional therapeutic modalities. Herein, we construct a photothermal (PT)- and autophagy-enhanced ferroptotic therapeutic modality based on MnO2@HMCu2-xS nanocomposites (HMCMs) for efficient tumor ablation. The HMCMs possess PT-enhanced glutathione (GSH) depletion capability, thereby inducing PT-enhanced ferroptosis via the reinforced inactivation of glutathione peroxidase 4 (GPX4). Thereafter, the GSH-responsed Mn2+ release could generate reactive oxygen species (ROS) by a Fenton-like reaction to reinforce the intracellular oxidative stress for the lipid hydroperoxide (LPO) accumulation in ferroptosis. Additionally, an autophagy promotor rapamycin (Rapa) was loaded into HMCM for sensitizing cells to ferroptosis due to the indispensable role of autophagy in the ferroptosis process. The in vitro and in vivo data demonstrated that the HMCM exhibited superior anticancer effect in human breast cancer models and that the combined therapeutic system afforded the next generation of ferroptotic therapy for combatting malignant tumors.
Collapse
Affiliation(s)
- Peijing An
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing 210089 , P. R. China
| | - Zhiguo Gao
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing 210089 , P. R. China
| | - Kai Sun
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing 210089 , P. R. China
| | - Dihai Gu
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing 210089 , P. R. China
| | - Hongshuai Wu
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing 210089 , P. R. China
| | - Chaoqun You
- College of Chemical Engineering , Nanjing Forestry University , Nanjing 210037 , P. R. China
| | - Yaojia Li
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing 210089 , P. R. China
| | - Kaiwu Cheng
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing 210089 , P. R. China
| | - Yu Zhang
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing 210089 , P. R. China
| | - Zhifei Wang
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing 210089 , P. R. China
| | - Baiwang Sun
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing 210089 , P. R. China
| |
Collapse
|