1
|
Torkashvand Z, Sepehrmansourie H, Zolfigol MA, Gu Y. Ti-based MOFs with acetic acid pendings as an efficient catalyst in the preparation of new spiropyrans with biological moieties. Sci Rep 2024; 14:14101. [PMID: 38890358 PMCID: PMC11189590 DOI: 10.1038/s41598-024-62757-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
The strategy of designing heterogeneous porous catalysts by a post-modification method is a smart strategy to increase the catalytic power of desired catalysts. Accordingly, in this report, metal-organic frameworks based on titanium with acetic acid pending were designed and synthesized via post-modification method. The structure of the target catalyst has been investigated using different techniques such as FT-IR, XRD, SEM, EDX, Mapping, and N2 adsorption/desorption (BET/the BJH) the correctness of its formation has been proven. The catalytic application of Ti-based MOFs functionalized with acetic acid was evaluated in the preparation of new spiropyrans, and the obtained results show that the catalytic performance is improved by this modification. The strategy of designing heterogeneous porous catalysts through post-modification methods presents a sophisticated approach to enhancing the catalytic efficacy of desired catalysts. In this context, our study focuses on the synthesis and characterization of metal-organic frameworks (MOFs) based on titanium, functionalized with acetic acid pendants, using a post-modification method. Various characterization techniques, including Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), mapping, and N2 adsorption/desorption (BET/BJH), were employed to investigate the structure and composition of the synthesized catalyst. These techniques collectively confirmed the successful formation and structural integrity of the target catalyst. The structure of the synthesized products was confirmed by melting point, 1H-NMR and 13C-NMR and FT-IR techniques. Examining the general process of catalyst synthesis and its catalytic application shows that the mentioned modification is very useful for catalytic purposes. The presented catalyst was used in synthesis of a wide range of biologically active spiropyrans with good yields. The simultaneous presence of several biologically active cores in the synthesized products will highlight the biological properties of these compounds. The present study offers a promising insight into the rational design, synthesis, and application of task-specific porous catalysts, particularly in the context of synthesizing biologically active candidate molecules.
Collapse
Affiliation(s)
- Zahra Torkashvand
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838683, Iran.
| | - Yanlong Gu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan, 430074, China
| |
Collapse
|
2
|
Tavakoli E, Sepehrmansourie H, Zolfigol MA, Khazaei A, Mohammadzadeh A, Ghytasranjbar E, As'Habi MA. Synthesis and Application of Task-Specific Bimetal-Organic Frameworks in the Synthesis of Biological Active Spiro-Oxindoles. Inorg Chem 2024; 63:5805-5820. [PMID: 38511836 DOI: 10.1021/acs.inorgchem.3c03742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The use of click chemistry as a smart and suitable method for the development of new heterogeneous catalysts is based on metal-organic frameworks as well as the production of organic compounds. The development of the click chemistry method can provide a new strategy to achieve superior properties of MOFs. Here, the two metals Co and Fe are used to create a bimetallic-organic framework. In the following, the click chemistry and postmodification method are well organized and an acidic heterogeneous porous catalyst is developed. This prepared catalyst was used as a highly efficient catalyst for the preparation of new spiro-oxindoles obtained through click chemistry with good to excellent yields (80-94%). This presented catalytic system can compete with the best reported catalytic systems. The findings showed that the presence of Co and Fe metals in the MOF, and the presence of the triazole ring on the catalyst, can increase the catalytic efficiencies. This study offers novel insights into the architecture of Metal-Organic Frameworks (MOFs), click chemistry, and biologically active compounds. Additionally, the research explores the antibacterial properties of the synthesized spiro-oxindoles and catalysts. The findings reveal significant antibacterial activities of the synthesized compounds against S. aureus, MRSA, and E. coli bacteria.
Collapse
Affiliation(s)
- Elham Tavakoli
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 6517838683 Iran
| | - Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 6517838683 Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 6517838683 Iran
| | - Ardeshir Khazaei
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 6517838683 Iran
| | - Abdolmajid Mohammadzadeh
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan 6519745777, Iran
| | - Elaheh Ghytasranjbar
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan 6519745777, Iran
| | - Mohammad Ali As'Habi
- Department of Phytochemistry, Medicinal Plant and Drugs research Institute, Shahid Beheshti University, Evin, Tehran 1983963113, Iran
| |
Collapse
|
3
|
Babaee S, Sepehrmansourie H, Zarei M, Zolfigol MA, Hosseinifard M. Synthesis of picolinates via a cooperative vinylogous anomeric-based oxidation using UiO-66(Zr)-N(CH 2PO 3H 2) 2 as a catalyst. RSC Adv 2023; 13:22503-22511. [PMID: 37497088 PMCID: PMC10368083 DOI: 10.1039/d3ra03438k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023] Open
Abstract
The anomeric effect highlights the significant influence of the functional group and reaction conditions on oxidation-reduction. This article successfully investigates the anomeric effect in the synthesis of picolinate and picolinic acid derivatives through a multi-component reaction involving 2-oxopropanoic acid or ethyl 2-oxopropanoate, ammonium acetate, malononitrile, and various aldehydes. To facilitate this process, we employed UiO-66(Zr)-N(CH2PO3H2)2 as a novel nanoporous heterogeneous catalyst. The inclusion of phosphorous acid tags on the UiO-66(Zr)-N(CH2PO3H2)2 offers the potential for synthesizing picolinates at ambient temperature.
Collapse
Affiliation(s)
- Saeed Babaee
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +988138380709 +988138282807
| | - Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +988138380709 +988138282807
| | - Mahmoud Zarei
- Department of Chemistry, Faculty of Science, University of Qom Qom 37185-359 Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +988138380709 +988138282807
| | - Mojtaba Hosseinifard
- Department of Energy, Materials and Energy Research Center P.O. Box 31787-316 Karaj Iran
| |
Collapse
|
4
|
Tavakoli E, Sepehrmansourie H, Zarei M, Zolfigol MA, Khazaei A, As'Habi MA. Application of Zr-MOFs based copper complex in synthesis of pyrazolo[3, 4-b]pyridine-5-carbonitriles via anomeric-based oxidation. Sci Rep 2023; 13:9388. [PMID: 37296128 PMCID: PMC10256735 DOI: 10.1038/s41598-023-34172-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/25/2023] [Indexed: 06/12/2023] Open
Abstract
In this research article, Zr-MOFs based copper complex as a novel heterogeneous and porous catalyst was designed and prepared. The structure of catalyst has verified by various techniques such as FT-IR, XRD, SEM, N2 adsorption-desorption isotherms (BET), EDS, SEM-elemental mapping, TG and DTG analysis. UiO-66-NH2/TCT/2-amino-Py@Cu(OAc)2 was used as an efficient catalyst in the synthesis of pyrazolo[3,4-b]pyridine-5-carbonitrile derivatives. The aromatization of titled molecules is performed via a cooperative vinylogous anomeric-based oxidation both under air and inert atmospheres. The unique properties of the presented method are short reaction time, high yield, reusability of catalyst, synthesis of desired product under mild and green condition.
Collapse
Affiliation(s)
- Elham Tavakoli
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali-Sina University, Hamedan, 6517838965, Iran
| | - Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali-Sina University, Hamedan, 6517838965, Iran
| | - Mahmoud Zarei
- Department of Chemistry, Faculty of Science, University of Qom, Qom, 37185-359, Iran.
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali-Sina University, Hamedan, 6517838965, Iran.
| | - Ardeshir Khazaei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali-Sina University, Hamedan, 6517838965, Iran.
| | - Mohammad Ali As'Habi
- Department of Phytochemistry, Medicinal Plant and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, 1983963113, Iran
| |
Collapse
|
5
|
Sepehrmansourie H, Mohammadi Rasooll M, Zarei M, Zolfigol MA, Gu Y. Application of Metal-Organic Frameworks with Sulfonic Acid Tags in the Synthesis of Pyrazolo[3,4- b]pyridines via a Cooperative Vinylogous Anomeric-Based Oxidation. Inorg Chem 2023. [PMID: 37262344 DOI: 10.1021/acs.inorgchem.3c01131] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Herein, we report the design and synthesis of Co-MOF-71/imidazole/SO3H as a novel porous catalyst with sulfonic acid tags. The structure and morphology of the catalyst were investigated using various techniques such as Fourier transform-infrared spectroscopy (FT-IR), X-ray diffraction, scanning electron microscopy (SEM), SEM elemental mapping, energy-dispersive X-ray spectroscopy, Barret-Joyner-Halenda, and N2 adsorption-desorption isotherms. Co-MOF-71/imidazole/SO3H was studied in the preparation of novel pyrazolo[3,4-b]pyridines under mild and green conditions via a cooperative vinylogous anomeric-based oxidation. A wide range of mono and bis pyrazolo[3,4-b]pyridines were synthesized with good to excellent yields (65-82%). A hot filtration test for the heterogeneous nature of the catalyst indicated the high stability of the prepared catalyst. The recyclability of Co-MOF-71/imidazole/SO3H is another advantage of the present methodology. The structures of the final products were confirmed using FT-IR, 1H-NMR, and 13C-NMR spectroscopic techniques.
Collapse
Affiliation(s)
- Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Milad Mohammadi Rasooll
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Mahmoud Zarei
- Department of Chemistry, Faculty of Science, University of Qom, Qom 37185359, Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Yanlong Gu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan 430074, China
| |
Collapse
|
6
|
Danishyar B, Sepehrmansourie H, Ahmadi H, Zarei M, Zolfigol MA, Hosseinifard M. Application of Nanomagnetic Metal-Organic Frameworks in the Green Synthesis of Nicotinonitriles via Cooperative Vinylogous Anomeric-Based Oxidation. ACS OMEGA 2023; 8:18479-18490. [PMID: 37273641 PMCID: PMC10233831 DOI: 10.1021/acsomega.2c06651] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/24/2023] [Indexed: 06/06/2023]
Abstract
In the current study, we synthesized a new nanomagnetic metal-organic framework Fe3O4@MIL-53(Al)-N(CH2PO3)2 and characterized it using various techniques. This nanomagnetic metal-organic framework was used for the synthesis of a wide range of nicotinonitrile derivatives as suitable drug candidates by a four-component reaction of 3-oxo-3-phenylpropanenitrile or 3-(4-chlorophenyl)-3-oxopropanenitrile, ammonium acetate (NH4OAc), acetophenone derivatives, and various aldehydes including those bearing electron-donating, electron-withdrawing, and halogen groups, which afforded desired products (27 samples) via a cooperative vinylogous anomeric-based oxidation (CVABO) mechanism under solvent-free conditions in excellent yields (68-90%) and short reaction times (40-60 min). Increasing the surface-to-volume ratio, easy separation of the catalyst using an external magnet, and high chemical and temperature stability are the advantages of the described nanomagnetic metal-organic frameworks.
Collapse
Affiliation(s)
- Bashirullah Danishyar
- Department
of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 65178-38683, Iran
| | - Hassan Sepehrmansourie
- Department
of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 65178-38683, Iran
| | - Hossein Ahmadi
- Department
of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 65178-38683, Iran
| | - Mahmoud Zarei
- Department
of Chemistry, Faculty of Science, University
of Qom, Qom 37185-359, Iran
| | - Mohammad Ali Zolfigol
- Department
of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 65178-38683, Iran
| | - Mojtaba Hosseinifard
- Department
of Energy, Materials and Energy Research
Center, P.O. Box 31787-316, Karaj 31648-19712, Iran
| |
Collapse
|
7
|
Torkashvand Z, Sepehrmansourie H, Zolfigol MA, As'Habi MA. Application of Ti-MOF-UR as a new porous catalyst for the preparation of pyrazolo[3,4-b]quinoline and pyrazolo[4,3-e]pyridines. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
8
|
Ahmadi H, Zarei M, Zolfigol MA. Catalytic Application of a Novel Basic Alkane‐sulfonate Metal‐organic Frameworks in the Preparation of Pyrido[2,3‐
d
]pyrimidines
via
a Cooperative Vinylogous Anomeric‐based Oxidation. ChemistrySelect 2022. [DOI: 10.1002/slct.202202155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hossein Ahmadi
- Department of Organic Chemistry Faculty of Chemistry Bu-Ali Sina University Hamedan Iran
| | - Mahmoud Zarei
- Department of Chemistry Faculty of Science University of Qom Qom Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry Faculty of Chemistry Bu-Ali Sina University Hamedan Iran
| |
Collapse
|
9
|
Phosphonic acid tagged carbon quantum dots encapsulated in SBA-15 as a novel catalyst for the preparation of N-heterocycles with pyrazolo, barbituric acid and indole moieties. Sci Rep 2022; 12:20812. [PMID: 36460684 PMCID: PMC9718821 DOI: 10.1038/s41598-022-24553-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
Herein, we have presented a new insight for the synthesis of a hybrid heterogeneous catalyst. For this purpose, phosphonic acid tagged carbon quantum dots of CQDs-N(CH2PO3H2)2 encapsulated and assembled in channels of SBA-15 using a post-modification strategy. The mesoporous catalyst of functionalized carbon quantum dots (CQDs) was characterized by several techniques. CQDs-N(CH2PO3H2)2/SBA-15 as an excellent catalyst was applied for the preparation of novel pyrazolo[4',3':5,6]pyrido[2,3-d]pyrimidine derivatives by using pyrazole, barbituric acid and indole moieties at 100 °C under the solvent-free condition. The present work shows that a significant increase in the catalytic activity can be achieved by a rational design of mesoporous SBA-15 modified with CQDs for the synthesis of biological active candidates. The synthesized compounds did not convert to their corresponding pyridines via an anomeric-based oxidation mechanism.
Collapse
|
10
|
Sepehrmansourie H, Kalhor S, Zarei M, Zolfigol MA, Hosseinifard M. A convenient catalytic method for preparation of new tetrahydropyrido[2,3- d]pyrimidines via a cooperative vinylogous anomeric based oxidation. RSC Adv 2022; 12:34282-34292. [PMID: 36545580 PMCID: PMC9709663 DOI: 10.1039/d2ra05655k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
In this study, a novel functionalized metal-organic frameworks MIL-125(Ti)-N(CH2PO3H2)2 was designed and synthesized via post-modification methodology. Then, MIL-125(Ti)-N(CH2PO3H2)2 as a mesoporous catalyst was applied for the synthesis of a wide range of novel tetrahydropyrido[2,3-d]pyrimidines as bioactive candidate compounds by one-pot condensation reaction of 3-(1-methyl-1H-pyrrol-2-yl)-3-oxopropanenitrile, 6-amino-1,3-dimethylpyrimidine-2,4(1H,3H)-dione and aromatic aldehydes at 100 °C under solvent-free condition. Interestingly, the preparation of tetrahydropyrido[2,3-d]pyrimidine was achieved via vinylogous anomeric based oxidation mechanism with a high yield and short reaction time.
Collapse
Affiliation(s)
- Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina UniversityHamedan 6517838683Iran+988138380709+988138282807
| | - Sima Kalhor
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina UniversityHamedan 6517838683Iran+988138380709+988138282807
| | - Mahmoud Zarei
- Department of Chemistry, Faculty of Science, University of QomQom37185-359Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina UniversityHamedan 6517838683Iran+988138380709+988138282807
| | - Mojtaba Hosseinifard
- Department of Energy, Materials and Energy Research CenterP.O. Box 31787-316KarajIran
| |
Collapse
|
11
|
Kheilkordi Z, Mohammadi Ziarani G, Badiei A, Mohajer F, Luque R. Fe3O4@SiO2@Pr-Oxime-(BuSO3H)3 synthesis and its application as magnetic nanocatalyst in the synthesis of heterocyclic [3.3.3]propellanes. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02685-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Sepehrmansourie H, Zarei M, Zolfigol MA, Gu Y. A New Approach for the Synthesis of Bis(3-Indolyl)Pyridines via a Cooperative Vinylogous Anomeric Based Oxidation Using Ammonium Acetate as a Dual Reagent-Catalyst Role under Mild and Green Condition. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2128830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Mahmoud Zarei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Yanlong Gu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Danishyar B, Sepehrmansourie H, Zarei M, Zolfigol MA, As’Habi MA, Gu Y. Synthesis and Application of Novel Magnetic Glycoluril Tetrakis(Methylene Phosphorous Acid) as a Nano Biological Catalyst for the Preparation of Nicotinonitriles via a Cooperative Vinylogous Anomeric-Based Oxidation. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2126506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Bashirullah Danishyar
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Mahmoud Zarei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Mohammad Ali As’Habi
- Department of Phytochemistry, Medicinal Plant and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Yanlong Gu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, PR China
| |
Collapse
|
14
|
Sepehrmansourie H, Zarei M, Zolfigol MA, Babaee S, Azizian S, Rostamnia S. Catalytic synthesis of new pyrazolo [3,4-b] pyridine via a cooperative vinylogous anomeric-based oxidation. Sci Rep 2022; 12:14145. [PMID: 35986040 PMCID: PMC9391453 DOI: 10.1038/s41598-022-17879-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 08/02/2022] [Indexed: 12/13/2022] Open
Abstract
In this study, a novel nano-magnetic metal-organic frameworks based on Fe3O4 namely Fe3O4@MIL-101(Cr)-N(CH2PO3)2 was synthesized and fully characterized. The prepared sample was used as catalyst in the synthesis of pyrazolo [3,4-b] pyridines as convenient medicine by condensation reaction of aldehydes, 5-(1H-Indol-3-yl)- 2H-pyrazol-3-ylamine and 3-(cyanoacetyl)indole via a CVABO. The products were obtained with high yields at 100 °C and under solvent-free conditions.
Collapse
Affiliation(s)
- Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Mahmoud Zarei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran.
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran.
| | - Saeed Babaee
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Saeid Azizian
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Sadegh Rostamnia
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), PO Box 16846-13114, Tehran, Iran
| |
Collapse
|
15
|
Shirvandi Z, Rostami A, Ghorbani-Choghamarani A. Magnetic mesocellular foams with nickel complexes: as efficient and reusable nanocatalysts for the synthesis of symmetrical and asymmetrical diaryl chalcogenides. NANOSCALE ADVANCES 2022; 4:2208-2223. [PMID: 36133448 PMCID: PMC9419205 DOI: 10.1039/d1na00822f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/03/2022] [Indexed: 06/15/2023]
Abstract
In this work, magnetic mesocellular foam (M-MCF) silica nanoparticles were prepared via inserting magnetic nanoparticles into the pores of mesocellular foams, the inner surface of which was functionalized with a methionine-nickel complex (M-MCF@Met-Ni). The structure of the as-prepared nanocatalysts was studied by FT-IR spectroscopy, BET, TGA, VSM, SEM, HR-TEM, EDS, WDX, XRD, and ICP-OES techniques. Thereafter, this nanocatalyst was used as a new, effective, and magnetically reusable catalyst for C-S and C-Se bond formation under mild conditions. All corresponding products were prepared with good yields and appropriate turnover number (TON) and turnover frequency (TOF), which reveals the high activity of this magnetic nanocatalyst in both reactions. In addition, the recovery and hot filtration tests indicated that this catalyst could be simply separated from the reaction mixture using an outside magnet and reused five consecutive times without any significant loss of its catalyst activity or metal leaching.
Collapse
Affiliation(s)
- Zeinab Shirvandi
- Department of Chemistry, Faculty of Science, University of Kurdistan Zip Code 66177-15175 Sanandaj Iran
| | - Amin Rostami
- Department of Chemistry, Faculty of Science, University of Kurdistan Zip Code 66177-15175 Sanandaj Iran
| | | |
Collapse
|
16
|
Jalili F, Zarei M, Zolfigol MA, Khazaei A. Application of novel metal-organic framework [Zr-UiO-66-PDC-SO 3H]FeCl 4 in the synthesis of dihydrobenzo[ g]pyrimido[4,5- b]quinoline derivatives. RSC Adv 2022; 12:9058-9068. [PMID: 35424891 PMCID: PMC8985156 DOI: 10.1039/d1ra08710j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/08/2022] [Indexed: 01/21/2023] Open
Abstract
In the current paper, we produce a new metal-organic framework (MOF) based on Zr metal, [Zr-UiO-66-PDC-SO3H]FeCl4, via an anion exchange method, which is fully characterized by FT-IR, SEM with elemental mapping and EDX, FE-SEM and TEM. Furthermore, the use of [Zr-UiO-66-PDC-SO3H]FeCl4 as a porous catalyst was examined for the one-pot synthesis of novel dihydrobenzo[g]pyrimido[4,5-b]quinoline derivatives by reaction of 6-amino-1,3-dimethylpyrimidine-2,4(1H,3H)-dione, 2-hydroxynaphthalene-1,4-dione and various aldehydes at 100 °C with good to excellent yields.
Collapse
Affiliation(s)
- Fatemeh Jalili
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali-Sina University 6517838965 Hamedan Iran
| | - Mahmoud Zarei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali-Sina University 6517838965 Hamedan Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali-Sina University 6517838965 Hamedan Iran
| | - Ardeshir Khazaei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali-Sina University 6517838965 Hamedan Iran
| |
Collapse
|
17
|
Tavakoli E, Sepehrmansourie H, Zarei M, Zolfigol MA, Khazaei A, Hosseinifard M. Applications of novel composite UiO-66-NH 2/Melamine with phosphorous acid tags as a porous and efficient catalyst for the preparation of novel spiro-oxindoles. NEW J CHEM 2022. [DOI: 10.1039/d2nj03340b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A new approach for the incorporation of phosphorous acid tags into a metal organic framework based on UiO-66-NH2/Melamine was introduced. This new catalyst was applied to the preparation of novel spiro-oxindoles under mild and green conditions.
Collapse
Affiliation(s)
- Elham Tavakoli
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Mahmoud Zarei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Ardeshir Khazaei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Mojtaba Hosseinifard
- Department of Semiconductors, Materials and Energy Research Center, P.O. Box 31787-316, Karaj, Iran
| |
Collapse
|
18
|
Kalhor S, Zarei M, Zolfigol MA, Sepehrmansourie H, Nematollahi D, Alizadeh S, Shi H, Arjomandi J. Anodic electrosynthesis of MIL-53(Al)-N(CH 2PO 3H 2) 2 as a mesoporous catalyst for synthesis of novel (N-methyl-pyrrol)-pyrazolo[3,4-b]pyridines via a cooperative vinylogous anomeric based oxidation. Sci Rep 2021; 11:19370. [PMID: 34588471 PMCID: PMC8481481 DOI: 10.1038/s41598-021-97801-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/24/2021] [Indexed: 02/08/2023] Open
Abstract
In this paper, the MIL-53(Al)-NH2 metal-organic frameworks (MOFs) was prepared based on the anodic electrosynthesis under green conditions. The anodic electrosynthesis as an environmentally friendly procedure was performed in the aqueous solution, room temperature, atmospheric pressure, and in the short reaction time (30 min). Also, the employed procedure was accomplished without the need for the ex-situ salt and base/probase additives as cation source and ligand activating agent at the constant current mode (10.0 mA cm-2). The electrosynthesized MOFs was functionalized with phosphorus acid tags as a novel mesoporous catalyst. This mesoporous catalyst was successfully employed for synthesis of new series (N-methyl-pyrrol)-pyrazolo[3,4-b]pyridines by one-pot condensation reaction of 3-methyl-1-phenyl-1H-pyrazol-5-amine, 3-(1-methyl-1H-pyrrol-2-yl)-3-oxopropanenitrile and various aromatic aldehydes (mono, bis and tripodal). This catalyst proceeded the organic synthetic reaction via a cooperative vinylogous anomeric based oxidation mechanism with a marginal decreasing its catalytic activity after recycling and reusability.
Collapse
Affiliation(s)
- Sima Kalhor
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, PO Box 6517838683, Hamedan, Iran
| | - Mahmoud Zarei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, PO Box 6517838683, Hamedan, Iran.
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, PO Box 6517838683, Hamedan, Iran.
| | - Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, PO Box 6517838683, Hamedan, Iran
| | - Davood Nematollahi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, PO Box 6517838683, Hamedan, Iran.
| | - Saber Alizadeh
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, PO Box 6517838683, Hamedan, Iran.
| | - Hu Shi
- School of Chemistry and Chemical Engineering, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China.
| | - Jalal Arjomandi
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, PO Box 6517838683, Hamedan, Iran
| |
Collapse
|
19
|
Rasooll MM, Zarei M, Zolfigol MA, Sepehrmansourie H, Omidi A, Hasani M, Gu Y. Novel nano-architectured carbon quantum dots (CQDs) with phosphorous acid tags as an efficient catalyst for the synthesis of multisubstituted 4 H-pyran with indole moieties under mild conditions. RSC Adv 2021; 11:25995-26007. [PMID: 35479474 PMCID: PMC9037214 DOI: 10.1039/d1ra02515e] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/28/2021] [Indexed: 01/23/2023] Open
Abstract
In this work, a new nano-structured catalyst with phosphorus acid moieties, synthesized by the reaction of carbon quantum dots (CQDs) and phosphorus acid under refluxing EtOH. The structure and morphology of CQDs–N(CH2PO3H2)2 were fully characterized using various techniques such as Fourier transform infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, thermogravimetric (TG) analysis, fluorescence and X-ray diffraction (XRD) measurements. The new CQDs–N(CH2PO3H2)2 catalyst was successfully used for the synthesis of 2-amino-6-(2-methyl-1H-indol-3-yl)-4-phenyl-4H-pyran-3,5-dicarbonitriles by the one-pot reaction of various aromatic aldehydes, 3-(1H-indol-3-yl)-3-oxopropanenitrile derivatives and malononitrile in refluxing EtOH and/or ultrasonic irradiation conditions. A new nano-structured catalyst with phosphorus acid moieties, synthesized by the reaction of carbon quantum dots (CQDs) and phosphorus acid under refluxing EtOH.![]()
Collapse
Affiliation(s)
- Milad Mohammadi Rasooll
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +988 138380709 +988 138282807
| | - Mahmoud Zarei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +988 138380709 +988 138282807
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +988 138380709 +988 138282807
| | - Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +988 138380709 +988 138282807
| | - Afsaneh Omidi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan Iran
| | - Masoumeh Hasani
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan Iran
| | - Yanlong Gu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology 1037 Luoyu Road, Hongshan District Wuhan 430074 China
| |
Collapse
|
20
|
Acosta-Quiroga K, Rojas-Peña C, Nerio LS, Gutiérrez M, Polo-Cuadrado E. Spirocyclic derivatives as antioxidants: a review. RSC Adv 2021; 11:21926-21954. [PMID: 35480788 PMCID: PMC9034179 DOI: 10.1039/d1ra01170g] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/22/2021] [Indexed: 12/28/2022] Open
Abstract
In recent years, spiro compounds have attracted significant interest in medicinal chemistry due to their numerous biological activities attributed primarily to their versatility and structural similarity to important pharmacophore centers. Currently, the development of drugs with potential antioxidant activities is of great importance since numerous investigations have shown that oxidative stress is involved in the development and progression of numerous diseases such as cancer, senile cataracts, kidney failure, diabetes, high blood pressure, cirrhosis, and neurodegenerative diseases, among others. This article provides an overview of the synthesis and various antioxidant activities found in naturally occurring and synthetic spiro compounds. Among the antioxidant activities reviewed are DPPH, ABTS, FRAP, anti-LPO, superoxide, xanthine oxidase, peroxide, hydroxyl, and nitric oxide tests, among others. Molecules that presented best results for these tests were spiro compounds G14, C12, D41, C18, C15, D5, D11, E1, and C14. In general, most active compounds are characterized for having at least one oxygen atom; an important number of them (around 35%) are phenolic compounds, and in molecules where this functional group was absent, aryl ethers and nitrogen-containing functional groups such as amine and amides could be found. Recent advances in the antioxidant activity profiles of spiro compounds have shown that they have a significant position in discovering drugs with potential antioxidant activities.
Collapse
Affiliation(s)
- Karen Acosta-Quiroga
- Universidad de la Amazonia, Programa de Química Cl. 17 Diagonal 17 con, Cra. 3F Florencia 180001 Colombia
| | - Cristian Rojas-Peña
- Universidad de la Amazonia, Programa de Química Cl. 17 Diagonal 17 con, Cra. 3F Florencia 180001 Colombia
| | - Luz Stella Nerio
- Universidad de la Amazonia, Programa de Química Cl. 17 Diagonal 17 con, Cra. 3F Florencia 180001 Colombia
| | - Margarita Gutiérrez
- Laboratorio Síntesis Orgánica y Actividad Biológica, Instituto de Química de Recursos Naturales, Universidad de Talca Casilla 747 Talca 3460000 Chile
| | - Efraín Polo-Cuadrado
- Laboratorio Síntesis Orgánica y Actividad Biológica, Instituto de Química de Recursos Naturales, Universidad de Talca Casilla 747 Talca 3460000 Chile
| |
Collapse
|
21
|
Kalhor S, Zarei M, Sepehrmansourie H, Zolfigol MA, Shi H, Wang J, Arjomandi J, Hasani M, Schirhagl R. Novel uric acid-based nano organocatalyst with phosphorous acid tags: Application for synthesis of new biologically-interest pyridines with indole moieties via a cooperative vinylogous anomeric based oxidation. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
22
|
Akkoç M, Buğday N, Altın S, Yaşar S. Magnetite@MCM‐41 nanoparticles as support material for Pd‐
N
‐heterocyclic carbene complex: A magnetically separable catalyst for Suzuki–Miyaura reaction. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mitat Akkoç
- Hekimhan Vocational College, Department of Property Protection and Security Malatya Turgut Özal University Malatya Turkey
| | - Nesrin Buğday
- Faculty of Science and Arts, Department of Chemistry İnönü University Malatya Turkey
| | - Serdar Altın
- Faculty of Science and Arts, Department of Physics İnönü University Malatya Turkey
| | - Sedat Yaşar
- Faculty of Science and Arts, Department of Chemistry İnönü University Malatya Turkey
| |
Collapse
|
23
|
Sepehrmansourie H, Zarei M, Zolfigol MA, Babaee S, Rostamnia S. Application of novel nanomagnetic metal-organic frameworks as a catalyst for the synthesis of new pyridines and 1,4-dihydropyridines via a cooperative vinylogous anomeric based oxidation. Sci Rep 2021; 11:5279. [PMID: 33674662 PMCID: PMC7935861 DOI: 10.1038/s41598-021-84005-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Herein, a new magnetic metal-organic frameworks based on Fe3O4 (NMMOFs) with porous and high surface area materials were synthesized. Then, NMMOFs were characterized by FT-IR, XRD, SEM, elemental mapping, energy dispersive X-ray (EDS), TG, DTG, VSM, and N2 adsorption-desorption isotherms (BET). Fe3O4@Co(BDC)-NH2 as a magnetic porous catalyst was applied for synthesis of novel fused pyridines and 1,4-dihydropyridines with pyrazole and pyrimidine moieties as suitable drug candidates under ultrasonic irradiation. The significant advantages of the presented methodology are mild, facile workup, high yields, short reaction times, high thermal stability, and reusability of the described NMMOFs catalyst.
Collapse
Affiliation(s)
- Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, 6517838683, Hamedan, Iran
| | - Mahmoud Zarei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, 6517838683, Hamedan, Iran.
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, 6517838683, Hamedan, Iran.
| | - Saeed Babaee
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, 6517838683, Hamedan, Iran
| | - Sadegh Rostamnia
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), PO Box, 16846-13114, Tehran, Iran.
- Organic and Nano Group (ONG), Department of Chemistry, Faculty of Science, University of Maragheh, PO Box, 55181-83111, Maragheh, Iran.
| |
Collapse
|
24
|
Fathi M, Naimi-Jamal MR, Dekamin MG, Panahi L, Demchuk OM. A straightforward, environmentally beneficial synthesis of spiro[diindeno[1,2-b:2',1'-e]pyridine-11,3'-indoline]-2',10,12-triones mediated by a nano-ordered reusable catalyst. Sci Rep 2021; 11:4820. [PMID: 33649384 PMCID: PMC7921678 DOI: 10.1038/s41598-021-84209-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 02/15/2021] [Indexed: 11/09/2022] Open
Abstract
A library of new spiro[diindeno[1,2-b:2',1'-e]pyridine-11,3'-indoline]-2',10,12-trione derivatives has been prepared in an efficient, one-pot pseudo four-component method mediated by a reusable heterogeneous nano-ordered mesoporous SO3H functionalized-silica (MCM-41-SO3H) catalyst. Excellent yields, short reaction times, as well as convenient non-chromatographic purification of the products and environmental benefits such as green and metal-free conditions constitute the main advantages of the developed synthetic methodology. The obtained fused indole-indenone dyes would be of interest to pharmaceutical and medicinal chemistry. Furthermore, due to their sensitivity to pH changes, they could be used as novel pH indicators.
Collapse
Affiliation(s)
- Mahsa Fathi
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Islamic Republic of Iran
| | - M Reza Naimi-Jamal
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Islamic Republic of Iran.
| | - Mohammad G Dekamin
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Islamic Republic of Iran
| | - Leila Panahi
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Islamic Republic of Iran
| | - Oleg M Demchuk
- Pharmaceutical Research Institute, 8 Rydygiera Street, 01-793, Warsaw, Poland
| |
Collapse
|
25
|
Sepehrmansourie H, Zarei M, Zolfigol MA, Mehrzad A, Hafizi-Atabak HR. Application of [PVI-SO 3H]NO 3 as a novel polymeric nitrating agent with ionic tags in preparation of high-energetic materials. RSC Adv 2021; 11:8367-8374. [PMID: 35423348 PMCID: PMC8695208 DOI: 10.1039/d1ra00651g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/06/2021] [Accepted: 02/15/2021] [Indexed: 01/11/2023] Open
Abstract
In this paper, poly(vinyl imidazole) sulfonic acid nitrate [PVI-SO3H]NO3 was synthesized and fully characterized. Then, [PVI-SO3H]NO3 was applied for the preparation of energetic materials such as 1,1-diamino-2,2-dinitroethene (FOX-7), pentaerythritol tetranitrate (PETN), 1,3,5-trinitro-1,3,5-triazinane (RDX) and trinitrotoluene (TNT). The major advantages of the presented methodology are mild, facile workup, high yields and short reaction times. [PVI-SO3H]NO3 is a suitable nitrating agent for in situ generation of NO2 and without using any co-catalysts of the described nitrating reagent.
Collapse
Affiliation(s)
- Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +988138380709 +988138282807
| | - Mahmoud Zarei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +988138380709 +988138282807
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +988138380709 +988138282807
| | - Amin Mehrzad
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +988138380709 +988138282807
| | | |
Collapse
|
26
|
Babaee S, Zarei M, Zolfigol MA, Khazalpour S, Hasani M, Rinner U, Schirhagl R, Norouzi N, Rostamnia S. Synthesis of biological based hennotannic acid-based salts over porous bismuth coordination polymer with phosphorous acid tags. RSC Adv 2021; 11:2141-2157. [PMID: 35424185 PMCID: PMC8693640 DOI: 10.1039/d0ra06674e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/20/2020] [Indexed: 11/30/2022] Open
Abstract
In this paper, a novel porous polymer capable of coordinating to bismuth (PCPs-Bi) was synthesized. The Bi-PCPs was then reacted with phosphorous acid to produce a novel polymer PCPs(Bi)N(CH2PO3H2)2 which is shown to act as an efficient and recyclable catalyst. The mentioned catalyst was applied for the efficient synthesis of new mono and bis naphthoquinone-based salts of piperidine and/or piperazine via the reaction of hennotannic acid with various aldehydes, piperidine and/or piperazine, respectively. The structure of the resulting mono and bis substituted piperazine or piperidine-based naphthoquinone salts was thoroughly characterized spectroscopically. The electrochemical behavior of the products was also investigated. The presented protocol has the advantages of excellent yields (82-95%), short reaction times (4-30 min) and simple work-up.
Collapse
Affiliation(s)
- Saeed Babaee
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University PO Box 6517838683 Hamedan Iran +988138380709 +988138282807
| | - Mahmoud Zarei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University PO Box 6517838683 Hamedan Iran +988138380709 +988138282807
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University PO Box 6517838683 Hamedan Iran +988138380709 +988138282807
| | - Sadegh Khazalpour
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan Iran
| | - Masoumeh Hasani
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan Iran
| | - Uwe Rinner
- Department of Life Sciences, IMC University of Applied Sciences Piaristengasse 1, 3500 Krems Austria
| | - Romana Schirhagl
- University Medical Center Groningen, Groningen University Antonius Deusinglaan 1, 9713 AV Groningen Netherlands
| | - Neda Norouzi
- University Medical Center Groningen, Groningen University Antonius Deusinglaan 1, 9713 AV Groningen Netherlands
| | - Sadegh Rostamnia
- Organic and Nano Group (ONG), Department of Chemistry, Faculty of Science, University of Maragheh PO Box 55181-83111 Maragheh Iran
| |
Collapse
|
27
|
Youseftabar-Miri L, Hosseinjani-Pirdehi H, Akrami A, Hallajian S. Recent investigations in the synthesis of spirooxindole derivatives by Iranian researchers. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01921-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Karimirad F, Behbahani FK. γ-Fe2O3@Si-(CH2)3@mel@(CH2)4SO3H as a magnetically bifunctional and retrievable nanocatalyst for green synthesis of benzo[c]acridine-8(9H)-ones and 2-amino-4H-chromenes. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1802751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Fatemeh Karimirad
- Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran
| | | |
Collapse
|
29
|
Jafari F, Ghorbani‐Choghamarani A, Hasanzadeh N. Guanidine complex of copper supported on boehmite nanoparticles as practical, recyclable, chemo and homoselective organic–inorganic hybrid nanocatalyst for organic reactions. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Fariba Jafari
- Department of Chemistry, Khozestan Science and Research Branch Islamic Azad University Ahvaz Iran
- Department of Chemistry, Ahvaz Branch Islamic Azad University Ahvaz Iran
| | - Arash Ghorbani‐Choghamarani
- Department of Chemistry, Ahvaz Branch Islamic Azad University Ahvaz Iran
- Department of Chemistry, Faculty of Science Ilam University P.O. Box 69315516 Ilam Iran
| | - Neda Hasanzadeh
- Department of Chemistry, Ahvaz Branch Islamic Azad University Ahvaz Iran
| |
Collapse
|
30
|
Nikoorazm M, Tahmasbi B, Gholami S, Moradi P. Copper and nickel immobilized on cytosine@MCM‐41: as highly efficient, reusable and organic–inorganic hybrid nanocatalysts for the homoselective synthesis of tetrazoles and pyranopyrazoles. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mohsen Nikoorazm
- Department of Chemistry, Faculty of Science Ilam University Ilam P.O. Box 69315516 Iran
| | - Bahman Tahmasbi
- Department of Chemistry, Faculty of Science Ilam University Ilam P.O. Box 69315516 Iran
| | - Shahab Gholami
- Department of Chemistry, Faculty of Science Ilam University Ilam P.O. Box 69315516 Iran
| | - Parisa Moradi
- Department of Chemistry, Faculty of Science Ilam University Ilam P.O. Box 69315516 Iran
| |
Collapse
|
31
|
Babaee S, Zarei M, Sepehrmansourie H, Zolfigol MA, Rostamnia S. Synthesis of Metal-Organic Frameworks MIL-101(Cr)-NH 2 Containing Phosphorous Acid Functional Groups: Application for the Synthesis of N-Amino-2-pyridone and Pyrano [2,3- c]pyrazole Derivatives via a Cooperative Vinylogous Anomeric-Based Oxidation. ACS OMEGA 2020; 5:6240-6249. [PMID: 32258858 PMCID: PMC7114146 DOI: 10.1021/acsomega.9b02133] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 03/05/2020] [Indexed: 05/24/2023]
Abstract
In the current paper, we successfully developed and used metal-organic frameworks (MOFs) based on MIL-101(Cr)-NH2 with phosphorus acid functional groups MIL-101(Cr)-N(CH2PO3H2)2. The synthesized metal-organic frameworks (MOFs) as a multi-functional heterogeneous and nanoporous catalyst were used for the synthesis of N-amino-2-pyridone and pyrano [2,3-c]pyrazole derivatives via reaction of ethyl cyanoacetate or ethyl acetoacetate, hydrazine hydrate, malononitrile, and various aldehydes. The final step of the reaction mechanism was preceded by a cooperative vinylogous anomeric-based oxidation. Recycle and reusability of the described catalyst MIL-101(Cr)-N(CH2PO3H2)2 were also investigated.
Collapse
Affiliation(s)
- Saeed Babaee
- Department
of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 6517838683, Hamedan, Iran
| | - Mahmoud Zarei
- Department
of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 6517838683, Hamedan, Iran
| | - Hassan Sepehrmansourie
- Department
of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 6517838683, Hamedan, Iran
| | - Mohammad Ali Zolfigol
- Department
of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 6517838683, Hamedan, Iran
| | - Sadegh Rostamnia
- Organic
and Nano Group (ONG), Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box 55181-83111, Maragheh, Iran
| |
Collapse
|
32
|
Kazemi M. Magnetically reusable nanocatalysts in biginelli synthesis of dihydropyrimidinones (DHPMs). SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1720740] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mosstafa Kazemi
- Young Researchers and Elite Club, Islamic Azad University, Ilam, Iran
| |
Collapse
|
33
|
Sepehrmansouri H, Zarei M, Zolfigol MA, Moosavi-Zare AR, Rostamnia S, Moradi S. Multilinker phosphorous acid anchored En/MIL-100(Cr) as a novel nanoporous catalyst for the synthesis of new N-heterocyclic pyrimido[4,5-b]quinolines. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2019.01.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Sepehrmansourie H, Zarei M, Taghavi R, Zolfigol MA. Mesoporous Ionically Tagged Cross-Linked Poly(vinyl imidazole)s as Novel and Reusable Catalysts for the Preparation of N-Heterocycle Spiropyrans. ACS OMEGA 2019; 4:17379-17392. [PMID: 31656911 PMCID: PMC6812116 DOI: 10.1021/acsomega.9b02135] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/23/2019] [Indexed: 06/03/2023]
Abstract
Herein, two novel mesoporous cross-linked poly(vinyl imidazole)s with sulfonic acid tags, [PVI-SO3H]Cl (1) and [PVI-SO3H]FeCl4 (2), were prepared and characterized by a variety of techniques such as Fourier transform infrared spectroscopy, scanning electron microscopy, elemental mapping, energy dispersive X-ray analysis, transmission electron microscopy, thermal gravimetry, derivative thermal gravimetry, and N2 adsorption-desorption isotherms (Brunauer-Emmett-Teller). In addition, magnetic properties of poly(vinyl imidazole) sulfonic acid iron(IV) chloride [PVI-SO3H]FeCl4 (2) as an ionically tagged magnetic polymer were investigated using a vibrating sample magnetometer. The presented polymers, [PVI-SO3H]Cl (1) and [PVI-SO3H]FeCl4 (2), were successfully applied as reusable and efficient catalysts for the preparation of N-heterocycle spiropyrans. The described catalysts were recycled and reused with a marginal decrease in their catalytic activities. The desired products were prepared under mild and green conditions. The structures of the obtained products were confirmed by various analysis techniques.
Collapse
Affiliation(s)
- Hassan Sepehrmansourie
- Department of Organic Chemistry,
Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Mahmoud Zarei
- Department of Organic Chemistry,
Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Reza Taghavi
- Department of Organic Chemistry,
Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry,
Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
| |
Collapse
|
35
|
Saigal, Irfan M, Khan P, Abid M, Khan MM. Design, Synthesis, and Biological Evaluation of Novel Fused Spiro-4 H-Pyran Derivatives as Bacterial Biofilm Disruptor. ACS OMEGA 2019; 4:16794-16807. [PMID: 31646225 PMCID: PMC6796888 DOI: 10.1021/acsomega.9b01571] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/13/2019] [Indexed: 10/07/2023]
Abstract
This study aims to synthesize novel fused spiro-4H-pyran derivatives under green conditions to develop agents having antimicrobial activity. The synthesized compounds were initially screened for in vitro antibacterial activity against two Gram-positive and three Gram-negative bacterial strains, and all the compounds exhibited moderate to potent antibacterial activity. However, compound 4l showed significant inhibition toward all the bacterial strains, particularly against Streptococcus pneumoniae and Escherichia coli with minimum inhibitory concentration values of 125 μg/mL for each. The toxicity studies of selected compounds (4c, 4e, 4l, and 4m) using human red blood cells as well as human embryonic kidney (HEK-293) cells showed nontoxic behavior at desired concentration. Growth kinetic and time-kill curve studies of 4l against S. pneumoniae and E. coli supported its bactericidal nature. Interestingly, compound 4l showed a synergistic effect when used in combination with ciprofloxacin against selected strains. Biofilm formation in the presence of a lead compound, as assessed by XTT assay, showed complete disruption of the bacterial biofilm visualized by scanning electron microscopy. Overall, the findings suggest 4l to be considered as a promising lead for further development as an antibacterial agent.
Collapse
Affiliation(s)
- Saigal
- Department
of Chemistry, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Mohammad Irfan
- Department of Biosciences and Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Parvez Khan
- Department of Biosciences and Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mohammad Abid
- Department of Biosciences and Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Md. Musawwer Khan
- Department
of Chemistry, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| |
Collapse
|
36
|
Ghorbani‐Choghamarani A, Heidarnezhad Z, Tahmasbi B. New Complex of Copper on Boehmite Nanoparticles as Highly Efficient and Reusable Nanocatalyst for Synthesis of Sulfides and Ethers. ChemistrySelect 2019. [DOI: 10.1002/slct.201901444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Zahra Heidarnezhad
- Department of ChemistryFaculty of ScienceIlam University, P.O. Box 69315516 Ilam Iran
| | - Bahman Tahmasbi
- Department of ChemistryFaculty of ScienceIlam University, P.O. Box 69315516 Ilam Iran
| |
Collapse
|
37
|
Modification of boehmite nanoparticles with Adenine for the immobilization of Cu(II) as organic–inorganic hybrid nanocatalyst in organic reactions. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.02.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
38
|
Tahmasbi B, Ghorbani-Choghamarani A. Magnetic MCM-41 nanoparticles as a support for the immobilization of a palladium organometallic catalyst and its application in C–C coupling reactions. NEW J CHEM 2019. [DOI: 10.1039/c9nj02727k] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An organometallic catalyst of palladium has been immobilized on magnetic MCM-41 nanoparticles and used for C–C coupling reactions. The products were obtained in high yields and good TOF values which were indicate the high efficiency of this catalyst.
Collapse
|
39
|
Zarei M, Zolfigol MA, Moosavi‐Zare AR, Noroozizadeh E, Rostamnia S. Three‐Component Synthesis of Spiropyrans Using SBA‐15/En Bonded Phosphorous Acid [SBA‐15/Pr‐NH1‐y(CH2PO3H2)y‐Et‐NH2‐x(CH2PO3H2)x] as a New Nanoporous Heterogeneous Catalyst. ChemistrySelect 2018. [DOI: 10.1002/slct.201802525] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mahmoud Zarei
- Department of Organic ChemistryFaculty of ChemistryBu-Ali Sina University Hamedan 6517838683, Iran
| | - Mohammad Ali Zolfigol
- Department of Organic ChemistryFaculty of ChemistryBu-Ali Sina University Hamedan 6517838683, Iran
| | | | - Ehsan Noroozizadeh
- Department of Organic ChemistryFaculty of ChemistryBu-Ali Sina University Hamedan 6517838683, Iran
| | - Sadegh Rostamnia
- Organic and Nano Group (ONG)Department of Chemistry, Faculty of ScienceUniversity of Maragheh, Maragheh Iran
| |
Collapse
|