1
|
Wen Y, Zhao S, Yu Z, Gong W, Lu S, Li H, Wang J. Preparation of molecularly imprinted polymer for the specific adsorption and selective extraction of alkylresorcinols from whole wheat flour. Food Chem 2024; 454:139815. [PMID: 38820642 DOI: 10.1016/j.foodchem.2024.139815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024]
Abstract
Alkylresorcinols are important biomarkers for evaluating whole wheat foods. However, their structures encompass a broad spectrum of homologs, making isolating and analyzing individual alkylresorcinol notably challenging. Herein, we synthesized highly selective molecularly imprinted polymers (MIPs) utilizing a facile and cost-effective precipitation polymerization method and 5-heneicosylresorcinol (ARC21:0) as the template molecule. Various crucial preparation parameters were systematically optimized, such as different porogens, functional monomers, imprinting ratios, and polymerization time. The polymers were characterized through scanning electron microscopy and Fourier transform infrared spectroscopy, and their adsorption performances were thoroughly evaluated. MIPs exhibited a notably enhanced adsorption capacity compared with that of non-imprinted polymers, reaching an optimal adsorption amount of 71.75 mg·mL-1 and imprinting factor of 2.02. Altogether, the synthesized MIPs showed superior affinity and selectivity for ARC21:0, as confirmed by their selective extraction, suggesting their potential applications in the analysis, separation, and monitoring of ARC21:0 in whole wheat foods.
Collapse
Affiliation(s)
- Yangyang Wen
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Shichao Zhao
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Zhenjia Yu
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Weiwei Gong
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Shiyi Lu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing, 100048, China
| | - Hongyan Li
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing, 100048, China.
| | - Jing Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
2
|
Wang H, Xiang Z. Structural insights into type III polyketide synthase CylI from cylindrocyclophane biosynthesis. Protein Sci 2024; 33:e5130. [PMID: 39302095 PMCID: PMC11413912 DOI: 10.1002/pro.5130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/06/2024] [Accepted: 07/14/2024] [Indexed: 09/22/2024]
Abstract
Type III polyketide synthases (PKSs) catalyze the formation of a variety of polyketide natural products with remarkable structural diversity and biological activities. Despite significant progress in structural and mechanistic studies of type III PKSs in bacteria, fungi, and plants, research on type III PKSs in cyanobacteria is lacking. Here, we report structural and mechanistic insights into CylI, a type III PKS that catalyzes the formation of the alkylresorcinol intermediate in cylindrocyclophane biosynthesis. The crystal structure of apo-CylI reveals a distinct arrangement of structural elements that are proximal to the active site. We further solved the crystal structures of CylI in complexes with two substrate analogues at resolutions of 1.9 Å. The complex structures indicate that N259 is the key residue that determines the substrate preference of CylI. We also solved the crystal structure of CylI complexed with the alkylresorcinol product at a resolution of 2.0 Å. Structural analysis and mutagenesis experiments suggested that S170 functions as a key residue that determines cyclization specificity. On the basis of this result, a double mutant was engineered to completely switch the cyclization of CylI from aldol condensation to lactonization. This work elucidates the molecular basis of type III PKS in cyanobacteria and lays the foundation for engineering CylI-like enzymes to generate new products.
Collapse
Affiliation(s)
- Hua‐Qi Wang
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenPR China
| | - Zheng Xiang
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenPR China
- Institute of Chemical Biology, Shenzhen Bay LaboratoryGaoke Innovation CenterShenzhenPR China
| |
Collapse
|
3
|
Pidot SJ, Klatt S, Ates LS, Frigui W, Sayes F, Majlessi L, Izumi H, Monk IR, Porter JL, Bennett-Wood V, Seemann T, Otter A, Taiaroa G, Cook GM, West N, Tobias NJ, Fuerst JA, Stutz MD, Pellegrini M, McConville M, Brosch R, Stinear TP. Marine sponge microbe provides insights into evolution and virulence of the tubercle bacillus. PLoS Pathog 2024; 20:e1012440. [PMID: 39207937 PMCID: PMC11361433 DOI: 10.1371/journal.ppat.1012440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Reconstructing the evolutionary origins of Mycobacterium tuberculosis, the causative agent of human tuberculosis, has helped identify bacterial factors that have led to the tubercle bacillus becoming such a formidable human pathogen. Here we report the discovery and detailed characterization of an exceedingly slow growing mycobacterium that is closely related to M. tuberculosis for which we have proposed the species name Mycobacterium spongiae sp. nov., (strain ID: FSD4b-SM). The bacterium was isolated from a marine sponge, taken from the waters of the Great Barrier Reef in Queensland, Australia. Comparative genomics revealed that, after the opportunistic human pathogen Mycobacterium decipiens, M. spongiae is the most closely related species to the M. tuberculosis complex reported to date, with 80% shared average nucleotide identity and extensive conservation of key M. tuberculosis virulence factors, including intact ESX secretion systems and associated effectors. Proteomic and lipidomic analyses showed that these conserved systems are functional in FSD4b-SM, but that it also produces cell wall lipids not previously reported in mycobacteria. We investigated the virulence potential of FSD4b-SM in mice and found that, while the bacteria persist in lungs for 56 days after intranasal infection, no overt pathology was detected. The similarities with M. tuberculosis, together with its lack of virulence, motivated us to investigate the potential of FSD4b-SM as a vaccine strain and as a genetic donor of the ESX-1 genetic locus to improve BCG immunogenicity. However, neither of these approaches resulted in superior protection against M. tuberculosis challenge compared to BCG vaccination alone. The discovery of M. spongiae adds to our understanding of the emergence of the M. tuberculosis complex and it will be another useful resource to refine our understanding of the factors that shaped the evolution and pathogenesis of M. tuberculosis.
Collapse
Affiliation(s)
- Sacha J. Pidot
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Stephan Klatt
- Department of Molecular Biology and Biochemistry, Bio21 Institute, University of Melbourne, Parkville, Australia
| | - Louis S. Ates
- Institut Pasteur, Université Paris Cité, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Wafa Frigui
- Institut Pasteur, Université Paris Cité, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Fadel Sayes
- Institut Pasteur, Université Paris Cité, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Laleh Majlessi
- Institut Pasteur, Université Paris Cité, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Hiroshi Izumi
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Ian R. Monk
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Jessica L. Porter
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Vicki Bennett-Wood
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Torsten Seemann
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Ashley Otter
- UK Health Security Agency, Porton Down, Salisbury, United Kingdom
| | - George Taiaroa
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Gregory M. Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Nicholas West
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Nicholas J. Tobias
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - John A. Fuerst
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Michael D. Stutz
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Marc Pellegrini
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Malcolm McConville
- Department of Molecular Biology and Biochemistry, Bio21 Institute, University of Melbourne, Parkville, Australia
| | - Roland Brosch
- Institut Pasteur, Université Paris Cité, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| |
Collapse
|
4
|
Tienda S, Vida C, Villar-Moreno R, de Vicente A, Cazorla FM. Development of a Pseudomonas-based biocontrol consortium with effective root colonization and extended beneficial side effects for plants under high-temperature stress. Microbiol Res 2024; 285:127761. [PMID: 38761488 DOI: 10.1016/j.micres.2024.127761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
The root microbiota plays a crucial role in plant performance. The use of microbial consortia is considered a very useful tool for studying microbial interactions in the rhizosphere of different agricultural crop plants. Thus, a consortium of 3 compatible beneficial rhizospheric Pseudomonas strains previously isolated from the avocado rhizosphere, was constructed. The consortium is composed of two compatible biocontrol P. chlororaphis strains (PCL1601 and PCL1606), and the biocontrol rhizobacterium Pseudomonas alcaligenes AVO110, which are all efficient root colonizers of avocado and tomato plants. These three strains were compatible with each other and reached stable levels both in liquid media and on plant roots. Bacterial strains were fluorescent tagged, and colonization-related traits were analyzed in vitro, revealing formation of mixed biofilm networks without exclusion of any of the strains. Additionally, bacterial colonization patterns compatible with the different strains were observed, with high survival traits on avocado and tomato roots. The bacteria composing the consortium shared the same root habitat and exhibited biocontrol activity against soil-borne fungal pathogens at similar levels to those displayed by the individual strains. As expected, because these strains were isolated from avocado roots, this Pseudomonas-based consortium had more stable bacterial counts on avocado roots than on tomato roots; however, inoculation of tomato roots with this consortium was shown to protect tomato plants under high-temperature stress. The results revealed that this consortium has side beneficial effect for tomato plants under high-temperature stress, thus improving the potential performance of the individual strains. We concluded that this rhizobacterial consortium do not improve the plant protection against soil-borne phytopathogenic fungi displayed by the single strains; however, its inoculation can show an specific improvement of plant performance on a horticultural non-host plant (such as tomato) when the plant was challenged by high temperature stress, thus extending the beneficial role of this bacterial consortium.
Collapse
Affiliation(s)
- Sandra Tienda
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Avda. Louis Pasteur 31, Málaga 29071, Spain; Grupo de Biología y Control de Enfermedades de Plantas, Área de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", IHSM-UMA-CSIC, Avda. Louis Pasteur 49, Málaga 29010, Spain
| | - Carmen Vida
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Avda. Louis Pasteur 31, Málaga 29071, Spain; Grupo de Biología y Control de Enfermedades de Plantas, Área de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", IHSM-UMA-CSIC, Avda. Louis Pasteur 49, Málaga 29010, Spain
| | - Rafael Villar-Moreno
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Avda. Louis Pasteur 31, Málaga 29071, Spain; Grupo de Biología y Control de Enfermedades de Plantas, Área de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", IHSM-UMA-CSIC, Avda. Louis Pasteur 49, Málaga 29010, Spain
| | - Antonio de Vicente
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Avda. Louis Pasteur 31, Málaga 29071, Spain; Grupo de Biología y Control de Enfermedades de Plantas, Área de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", IHSM-UMA-CSIC, Avda. Louis Pasteur 49, Málaga 29010, Spain
| | - Francisco M Cazorla
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Avda. Louis Pasteur 31, Málaga 29071, Spain; Grupo de Biología y Control de Enfermedades de Plantas, Área de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", IHSM-UMA-CSIC, Avda. Louis Pasteur 49, Málaga 29010, Spain.
| |
Collapse
|
5
|
Yancey CE, Hart L, Hefferan S, Mohamed OG, Newmister SA, Tripathi A, Sherman DH, Dick GJ. Metabologenomics reveals strain-level genetic and chemical diversity of Microcystis secondary metabolism. mSystems 2024; 9:e0033424. [PMID: 38916306 PMCID: PMC11264947 DOI: 10.1128/msystems.00334-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/22/2024] [Indexed: 06/26/2024] Open
Abstract
Microcystis spp. are renowned for producing the hepatotoxin microcystin in freshwater cyanobacterial harmful algal blooms around the world, threatening drinking water supplies and public and environmental health. However, Microcystis genomes also harbor numerous biosynthetic gene clusters (BGCs) encoding the biosynthesis of other secondary metabolites, including many with toxic properties. Most of these BGCs are uncharacterized and currently lack links to biosynthesis products. However, recent field studies show that many of these BGCs are abundant and transcriptionally active in natural communities, suggesting potentially important yet unknown roles in bloom ecology and water quality. Here, we analyzed 21 xenic Microcystis cultures isolated from western Lake Erie to investigate the diversity of the biosynthetic potential of this genus. Through metabologenomic and in silico approaches, we show that these Microcystis strains contain variable BGCs, previously observed in natural populations, and encode distinct metabolomes across cultures. Additionally, we find that the majority of metabolites and gene clusters are uncharacterized, highlighting our limited understanding of the chemical repertoire of Microcystis spp. Due to the complex metabolomes observed in culture, which contain a wealth of diverse congeners as well as unknown metabolites, these results underscore the need to deeply explore and identify secondary metabolites produced by Microcystis beyond microcystins to assess their impacts on human and environmental health.IMPORTANCEThe genus Microcystis forms dense cyanobacterial harmful algal blooms (cyanoHABs) and can produce the toxin microcystin, which has been responsible for drinking water crises around the world. While microcystins are of great concern, Microcystis also produces an abundance of other secondary metabolites that may be of interest due to their potential for toxicity, ecological importance, or pharmaceutical applications. In this study, we combine genomic and metabolomic approaches to study the genes responsible for the biosynthesis of secondary metabolites as well as the chemical diversity of produced metabolites in Microcystis strains from the Western Lake Erie Culture Collection. This unique collection comprises Microcystis strains that were directly isolated from western Lake Erie, which experiences substantial cyanoHAB events annually and has had negative impacts on drinking water, tourism, and industry.
Collapse
Affiliation(s)
- Colleen E. Yancey
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Lauren Hart
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Sierra Hefferan
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, USA
- Departments of Medicinal Chemistry, Chemistry, Microbiology, and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Osama G. Mohamed
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sean A. Newmister
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Ashootosh Tripathi
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - David H. Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Departments of Medicinal Chemistry, Chemistry, Microbiology, and Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Gregory J. Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, USA
- Cooperative Institute for Great Lakes Research (CIGLR), School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
6
|
Islamov II, Dzhemileva LU, Gaisin IV, Dzhemilev UM, D′yakonov VA. New Polyether Macrocycles as Promising Antitumor Agents-Targeted Synthesis and Induction of Mitochondrial Apoptosis. ACS OMEGA 2024; 9:19923-19931. [PMID: 38737069 PMCID: PMC11079895 DOI: 10.1021/acsomega.3c09566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 05/14/2024]
Abstract
A series of previously unknown aromatic polyether macrodiolides containing a cis,cis-1,5-diene moiety in the molecule were synthesized in 47-74% yields. Macrocycle compounds were first obtained by intermolecular esterification of aromatic polyether diols with α,ω-alka-nZ,(n+4)Z-dienedioic acids mediated by N-(3-(dimethylamino)propyl)-N'-ethylcarbodiimide hydrochloride (EDC·HCl) and 4-(dimethylamino)pyridine (DMAP). For the synthesized compounds, studies of cytotoxicity on tumor (Jurkat, K562, U937), conditionally normal (HEK293) cell lines, and normal fibroblasts were carried out. CC50 was determined, and the therapeutic selectivity index of cytotoxic action (SI) in comparison with normal fibroblasts was evaluated. With the involvement of modern methods of flow cytometry for the most promising macrocycles, their effect on mitochondria and the cell cycle was investigated. It was found that a new macrocycle exhibits pronounced apoptosis-inducing activity toward Jurkat cells and can retard cell division by blocking at the G1/S checkpoint. Also, it was shown that the synthesized macrodiolides influence mitochondria due to their high ability to penetrate the mitochondrial membrane.
Collapse
Affiliation(s)
- Ilgiz I. Islamov
- Institute
of Petrochemistry and Catalysis, Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa 450075, Russian Federation
| | - Lilya U. Dzhemileva
- N.
D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt, 47, Moscow 119991, Russian Federation
- State
Scientific Center of the Russian Federation Federal State Budgetary
Institution, “National Medical Research
Center of Endocrinology” of the Ministry of Health
of the Russian Federation, st. Dmitry Ulyanov, 11, Moscow 117292, Russian Federation
| | - Ilgam V. Gaisin
- Institute
of Petrochemistry and Catalysis, Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa 450075, Russian Federation
| | - Usein M. Dzhemilev
- N.
D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt, 47, Moscow 119991, Russian Federation
| | - Vladimir A. D′yakonov
- N.
D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt, 47, Moscow 119991, Russian Federation
| |
Collapse
|
7
|
Milke L, Kabuu M, Zschoche R, Gätgens J, Krumbach K, Carlstedt KL, Wurzbacher CE, Balluff S, Beemelmanns C, Jogler C, Marienhagen J, Kallscheuer N. A type III polyketide synthase cluster in the phylum Planctomycetota is involved in alkylresorcinol biosynthesis. Appl Microbiol Biotechnol 2024; 108:239. [PMID: 38407604 PMCID: PMC10896814 DOI: 10.1007/s00253-024-13065-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024]
Abstract
Members of the bacterial phylum Planctomycetota have recently emerged as promising and for the most part untapped sources of novel bioactive compounds. The characterization of more than 100 novel species in the last decade stimulated recent bioprospection studies that start to unveil the chemical repertoire of the phylum. In this study, we performed systematic bioinformatic analyses based on the genomes of all 131 described members of the current phylum focusing on the identification of type III polyketide synthase (PKS) genes. Type III PKSs are versatile enzymes involved in the biosynthesis of a wide array of structurally diverse natural products with potent biological activities. We identified 96 putative type III PKS genes of which 58 are encoded in an operon with genes encoding a putative oxidoreductase and a methyltransferase. Sequence similarities on protein level and the genetic organization of the operon point towards a functional link to the structurally related hierridins recently discovered in picocyanobacteria. The heterologous expression of planctomycetal type III PKS genes from strains belonging to different families in an engineered Corynebacterium glutamicum strain led to the biosynthesis of pentadecyl- and heptadecylresorcinols. Phenotypic assays performed with the heterologous producer strains and a constructed type III PKS gene deletion mutant suggest that the natural function of the identified compounds differs from that confirmed in other bacterial alkylresorcinol producers. KEY POINTS: • Planctomycetal type III polyketide synthases synthesize long-chain alkylresorcinols. • Phylogenetic analyses suggest an ecological link to picocyanobacterial hierridins. • Engineered C. glutamicum is suitable for an expression of planctomycete-derived genes.
Collapse
Affiliation(s)
- Lars Milke
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Moses Kabuu
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany
| | - Renè Zschoche
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany
| | - Jochem Gätgens
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Karin Krumbach
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Kim-Loreen Carlstedt
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany
| | - Carmen E Wurzbacher
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany
| | - Sven Balluff
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123, Saarbrücken, Germany
| | - Christine Beemelmanns
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123, Saarbrücken, Germany
- Saarland University, Saarbrücken, Germany
| | - Christian Jogler
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany
| | - Jan Marienhagen
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany
| | - Nicolai Kallscheuer
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany.
| |
Collapse
|
8
|
Chen KY, Wang HQ, Yuan Y, Mou SB, Xiang Z. Chemoenzymatic Synthesis of Cylindrocyclophanes A and F and Merocyclophanes A and D. Angew Chem Int Ed Engl 2023; 62:e202307602. [PMID: 37771066 DOI: 10.1002/anie.202307602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 09/30/2023]
Abstract
Incorporating enzymatic reactions into natural product synthesis can significantly improve synthetic efficiency and selectivity. In contrast to the increasing applications of biocatalytic functional-group interconversions, the use of enzymatic C-C bond formation reactions in natural product synthesis is underexplored. Herein, we report a concise and efficient approach for the synthesis of [7.7]paracyclophane natural products, a family of polyketides with diverse biological activities. By using enzymatic Friedel-Crafts alkylation, cylindrocyclophanes A and F and merocyclophanes A and D were synthesized in six to eight steps in the longest linear sequence. This study demonstrates the power of combining enzymatic reactions with contemporary synthetic methodologies and provides opportunities for the structure-activity relationship studies of [7.7]paracyclophane natural products.
Collapse
Affiliation(s)
- Kai-Yue Chen
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, University Town of Shenzhen, Nanshan District, 518055, Shenzhen, P. R. China
| | - Hua-Qi Wang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, University Town of Shenzhen, Nanshan District, 518055, Shenzhen, P. R. China
| | - Ye Yuan
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, University Town of Shenzhen, Nanshan District, 518055, Shenzhen, P. R. China
| | - Shu-Bin Mou
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, University Town of Shenzhen, Nanshan District, 518055, Shenzhen, P. R. China
| | - Zheng Xiang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, University Town of Shenzhen, Nanshan District, 518055, Shenzhen, P. R. China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, 518132, Shenzhen, P. R. China
| |
Collapse
|
9
|
Yang Y, Zhou Y, Lyu Y, Shao B, Xu Y. High-throughput multitarget quantitative assay to profile the whole grain-specific phytochemicals alkylresorcinols, benzoxazinoids and avenanthramides in whole grain and grain-based foods. Food Chem 2023; 426:136663. [PMID: 37352717 DOI: 10.1016/j.foodchem.2023.136663] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/31/2023] [Accepted: 06/16/2023] [Indexed: 06/25/2023]
Abstract
Currently, there is a growing interest in using whole grain (WG)-specific phytochemicals to perform WG research, including research on dietary assessment, health mechanisms, and quality control. However, the current approaches used for WG-specific phytochemical analysis cannot simultaneously achieve coverage, specificity, and sensitivity. In the present study, a series of WG-specific phytochemicals (alkylresorcinols (ARs), benzoxazinoids (BXs) and avenanthramides (AVAs)) were identified, and their mass spectrometry (MS) fragmentation mechanism was studied by TOF MS. Based on diagnostic fragmentation ions and retention time prediction models, a LC-MS/MS method was developed. Through this method, 56 ARs, 13 BXs, and 19 AVAs in WGs and grain-based foods were quantified for the first time. This method was validated and yielded excellent specificity, high sensitivity and negligible matrix effects. Finally, we established WG-specific phytochemical fingerprints in a variety of WG and grain-based foods. This method can be used for WG quality control and WG precision nutrition research.
Collapse
Affiliation(s)
- Yunjia Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, NO. 38 Xueyuan Road, Beijing 100083, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Yalin Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, NO. 38 Xueyuan Road, Beijing 100083, China
| | - Ying Lyu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, NO. 38 Xueyuan Road, Beijing 100083, China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Yajun Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, NO. 38 Xueyuan Road, Beijing 100083, China; PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, NO. 38 Xueyuan Road, Beijing 100083, China.
| |
Collapse
|
10
|
Yancey CE, Yu F, Tripathi A, Sherman DH, Dick GJ. Expression of Microcystis Biosynthetic Gene Clusters in Natural Populations Suggests Temporally Dynamic Synthesis of Novel and Known Secondary Metabolites in Western Lake Erie. Appl Environ Microbiol 2023; 89:e0209222. [PMID: 37070981 PMCID: PMC10231183 DOI: 10.1128/aem.02092-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/02/2023] [Indexed: 04/19/2023] Open
Abstract
Microcystis spp. produce diverse secondary metabolites within freshwater cyanobacterial harmful algal blooms (cyanoHABs) around the world. In addition to the biosynthetic gene clusters (BGCs) encoding known compounds, Microcystis genomes harbor numerous BGCs of unknown function, indicating a poorly understood chemical repertoire. While recent studies show that Microcystis produces several metabolites in the lab and field, little work has focused on analyzing the abundance and expression of its broader suite of BGCs during cyanoHAB events. Here, we use metagenomic and metatranscriptomic approaches to track the relative abundance of Microcystis BGCs and their transcripts throughout the 2014 western Lake Erie cyanoHAB. The results indicate the presence of several transcriptionally active BGCs that are predicted to synthesize both known and novel secondary metabolites. The abundance and expression of these BGCs shifted throughout the bloom, with transcript abundance levels correlating with temperature, nitrate, and phosphorus concentrations and the abundance of co-occurring predatory and competitive eukaryotic microorganisms, suggesting the importance of both abiotic and biotic controls in regulating expression. This work highlights the need for understanding the chemical ecology and potential risks to human and environmental health posed by secondary metabolites that are produced but often unmonitored. It also indicates the prospects for identifying pharmaceutical-like molecules from cyanoHAB-derived BGCs. IMPORTANCE Microcystis spp. dominate cyanobacterial harmful algal blooms (cyanoHABs) worldwide and pose significant threats to water quality through the production of secondary metabolites, many of which are toxic. While the toxicity and biochemistry of microcystins and several other compounds have been studied, the broader suite of secondary metabolites produced by Microcystis remains poorly understood, leaving gaps in our understanding of their impacts on human and ecosystem health. We used community DNA and RNA sequences to track the diversity of genes encoding synthesis of secondary metabolites in natural Microcystis populations and assess patterns of transcription in western Lake Erie cyanoHABs. Our results reveal the presence of both known gene clusters that encode toxic secondary metabolites as well as novel ones that may encode cryptic compounds. This research highlights the need for targeted studies of the secondary metabolite diversity in western Lake Erie, a vital freshwater source to the United States and Canada.
Collapse
Affiliation(s)
- Colleen E. Yancey
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Fengan Yu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Ashootosh Tripathi
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Natural Products Discovery Core, University of Michigan, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - David H. Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Gregory J. Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
- Cooperative Institute for Great Lakes Research (CIGLR), University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
11
|
Wang Q, Liu W, Zeb A, Lian Y, Shi R, Li J, Zheng Z. Toxicity effects of polystyrene nanoplastics and arsenite on Microcystis aeruginosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162496. [PMID: 36863597 DOI: 10.1016/j.scitotenv.2023.162496] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Despite the increasing research on the fate of nanoplastics (NPs, <100 nm) in freshwater systems, little is known about the joint toxic effects of metal(loid)s and NPs modified with different functional groups on microalgae. Here, we explored the joint toxic effects of two types of polystyrene NPs [one modified with a sulfonic acid group (PSNPs-SO3H), and one without this functional group (PSNPs)] and arsenic (As) on the microalgae Microcystis aeruginosa. The results highlighted that PSNPs-SO3H showed a smaller hydrodynamic diameter and greater potential to adsorb positively charged ions than PSNPs, contributing to the more severe growth inhibition, while both of them produced oxidative stress. Metabolomics further revealed that the fatty acid metabolism of the microalgae was significantly up-regulated under both NPs exposure, while PSNPs-SO3H down-regulated the tricarboxylic acid cycle (TCA cycle) of the microalgae. As uptake by algae was significantly reduced by 82.58 % and 59.65 % in the presence of 100 mg/L PSNPs and PSNPs-SO3H, respectively. The independent action model showed that the joint toxicity of both NPs with As was assessed as antagonistic. In addition, PSNPs and PSNPs-SO3H had dissimilar effects on the composition of the microalgae extracellular polymeric substances (EPS), resulting in different uptake and adsorption of As, thereby affecting the physiology and biochemistry of algae. Overall, our findings propose that the specific properties of NPs should be considered in future environmental risk assessments.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weitao Liu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Aurang Zeb
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuhang Lian
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ruiying Shi
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiantao Li
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zeqi Zheng
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
12
|
Zhang Y, Liu H, Chen Y, Liu Z, Qiu K, Wei S, Zhang W, Tan H. Alkyl aromatic derivatives from the endophytic fungus Cytospora rhizophorae. J Antibiot (Tokyo) 2023; 76:121-130. [PMID: 36575311 DOI: 10.1038/s41429-022-00591-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/22/2022] [Accepted: 12/06/2022] [Indexed: 12/28/2022]
Abstract
Two new alkylresorcinols named herein 5'-methoxy-integracins A-B (1-2), two new monomeric alkyl aromatic derivatives 3-(7-hydroxyheptyl)-5-methoxyphenol (5) and 7-(3,5-dihydroxyphenyl) heptyl acetate (6), along with four known compounds including integracins A-B (3-4), 2,4-dihydroxy-6-(8-hydroxyoctyl) benzene (7), and cytosporone B (8) were isolated from the endophytic fungus Cytospora rhizophorae A761. The structures of the four new compounds were elucidated by NMR, HRESIMS data, and electronic circular dichroism (ECD) calculations, whereas the compounds 1 and 2 were disclosed as a class of the natural rare-occurring dimeric alkylresorcinol derivatives. Moreover, the bioassays of the new compounds clarified that compound 1 was a potent inhibitor for the α-glucosidase, and compound 2 showed relatively good activity against the tumor cell lines. It is worth mentioning that the known compound integracin B (4) was first reported to display significant antibacterial activity against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) with MIC values of 6.25 μg ml-1.
Collapse
Affiliation(s)
- Yanjiang Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Hongxin Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Yuchan Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Zhaoming Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Kaidi Qiu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Shanshan Wei
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China.
| | - Haibo Tan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China.
| |
Collapse
|
13
|
Egami H, Hamashima Y. Asymmetric Fluorofunctionalizations with Carboxylate-Based Phase-Transfer Catalysts. CHEM REC 2023:e202200285. [PMID: 36734199 DOI: 10.1002/tcr.202200285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/29/2023] [Indexed: 02/04/2023]
Abstract
Fluorine is an attractive element in the field of pharmaceutical and agrochemical chemistry due to its unique properties. Considering the chiral environment in nature, where enantiomers often show different biological activities, the introduction of fluorine atom(s) into organic molecules to make chiral fluorinated compounds is an important subject. Herein, we describe the story of the development of our chiral carboxylate-based phase-transfer catalysts and their applications for asymmetric fluorocyclizations of alkenes bearing a carboxylic acid, an amide, and an oxime as an internal nucleophile with a dicationic fluorinating reagent, Selectfluor. We also describe dearomative fluorinations of indole derivatives, 2-naphthols, and resorcinols.
Collapse
Affiliation(s)
- Hiromichi Egami
- School of Pharmaceutical Sciences, University of Shizuoka 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Yoshitaka Hamashima
- School of Pharmaceutical Sciences, University of Shizuoka 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| |
Collapse
|
14
|
Dhakal D, Kokkaliari S, Rubin GM, Paul VJ, Ding Y, Luesch H. Biosynthesis of Lyngbyastatins 1 and 3, Cytotoxic Depsipeptides from an Okeania sp. Marine Cyanobacterium. JOURNAL OF NATURAL PRODUCTS 2023; 86:85-93. [PMID: 36546857 PMCID: PMC10197921 DOI: 10.1021/acs.jnatprod.2c00782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Lyngbyastatins (Lbns) 1 (1) and 3 (2) belong to a group of cyclic depsipeptides that inhibit cancer cell proliferation. These compounds have been isolated from different marine cyanobacterial collections, while further development of these compounds relies on their lengthy total synthesis. Biosynthetic studies of these compounds can provide viable strategies to access these compounds and develop new analogs. In this study, we report the identification and characterization of one Lbn biosynthetic gene cluster (BGC) from the marine cyanobacterium Okeania sp. VPG18-21. We initially identified 1 and 2 in the organic extract by mass spectrometry and performed the targeted isolation of these compounds, which feature a (2S,3R)-3-amino-2-methylpentanoic acid (MAP) and a (2S,3R)-3-amino-2-methylhexanoic acid (Amha) moiety, respectively. Parallel metagenomic sequencing of VPG18-21 led to the identification of a putative Lbn BGC that encodes six megaenzymes (LbnA-F), including one polyketide synthase (PKS, LbnE), four nonribosomal peptide synthetases (NRPSs, LbnB-D and -F), and one PKS-NRPS hybrid (LbnA). Bioinformatic analysis of these enzymes suggested that the BGC produces 1 and 2. Furthermore, our biochemical studies of three recombinant adenylation domains uncovered their substrate specificities, supporting the identity of the BGC. Finally, we identified near-complete Lbn-like BGCs in the genomes of two other marine cyanobacteria.
Collapse
Affiliation(s)
- Dipesh Dhakal
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Sofia Kokkaliari
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Garret M. Rubin
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Valerie J. Paul
- Smithsonian Marine Station at Ft. Pierce, 701 Seaway Drive, Ft. Pierce, Florida 34949, United States
| | - Yousong Ding
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Hendrik Luesch
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| |
Collapse
|
15
|
Páscoa I, Biltes R, Sousa J, Preto MAC, Vasconcelos V, Castro LF, Ruivo R, Cunha I. A Multiplex Molecular Cell-Based Sensor to Detect Ligands of PPARs: An Optimized Tool for Drug Discovery in Cyanobacteria. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23031338. [PMID: 36772378 PMCID: PMC9919141 DOI: 10.3390/s23031338] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 06/12/2023]
Abstract
Cyanobacteria produce a wealth of secondary metabolites. Since these organisms attach fatty acids into molecules in unprecedented ways, cyanobacteria can serve as a novel source for bioactive compounds acting as ligands for Peroxisome Proliferator-Activated Receptors (PPAR). PPARs (PPARα, PPARβ/δ and PPARγ) are ligand-activated nuclear receptors, involved in the regulation of various metabolic and cellular processes, thus serving as potential drug targets for a variety of pathologies. Yet, given that PPARs' agonists can have pan-, dual- or isoform-specific action, some controversy has been raised over currently approved drugs and their side effects, highlighting the need for novel molecules. Here, we expand and validate a cell-based PPAR transactivation activity biosensor, and test it in a screening campaign to guide drug discovery. Biosensor upgrades included the use of different reporter genes to increase signal intensity and stability, a different promoter to modulate reporter gene expression, and multiplexing to improve efficiency. Sensor's limit of detection (LOD) ranged from 0.36-0.89 nM in uniplex and 0.89-1.35 nM in multiplex mode. In triplex mode, the sensor's feature screening, a total of 848 fractions of 96 cyanobacteria extracts were screened. Hits were confirmed in multiplex mode and in uniplex mode, yielding one strain detected to have action on PPARα and three strains to have dual action on PPARα and -β.
Collapse
Affiliation(s)
- Inês Páscoa
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| | - Rita Biltes
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- FCUP-Faculty of Sciences, Department of Biology, University of Porto, 4169-007 Porto, Portugal
| | - João Sousa
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- FCUP-Faculty of Sciences, Department of Biology, University of Porto, 4169-007 Porto, Portugal
| | - Marco Aurélio Correia Preto
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| | - Vitor Vasconcelos
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
- FCUP-Faculty of Sciences, Department of Biology, University of Porto, 4169-007 Porto, Portugal
| | - Luís Filipe Castro
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
- FCUP-Faculty of Sciences, Department of Biology, University of Porto, 4169-007 Porto, Portugal
| | - Raquel Ruivo
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| | - Isabel Cunha
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| |
Collapse
|
16
|
Diversity of Bacterial Secondary Metabolite Biosynthetic Gene Clusters in Three Vietnamese Sponges. Mar Drugs 2022; 21:md21010029. [PMID: 36662202 PMCID: PMC9864124 DOI: 10.3390/md21010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Recent reviews have reinforced sponge-associated bacteria as a valuable source of structurally diverse secondary metabolites with potent biological properties, which makes these microbial communities promising sources of new drug candidates. However, the overall diversity of secondary metabolite biosynthetic potential present in bacteria is difficult to access due to the fact that the majority of bacteria are not readily cultured in the laboratory. Thus, use of cultivation-independent approaches may allow accessing "silent" and "cryptic" secondary metabolite biosynthetic gene clusters present in bacteria that cannot yet be cultured. In the present study, we investigated the diversity of secondary metabolite biosynthetic gene clusters (BGCs) in metagenomes of bacterial communities associated with three sponge species: Clathria reinwardti, Rhabdastrella globostellata, and Spheciospongia sp. The results reveal that the three metagenomes contain a high number of predicted BGCs, ranging from 282 to 463 BGCs per metagenome. The types of BGCs were diverse and represented 12 different cluster types. Clusters predicted to encode fatty acid synthases and polyketide synthases (PKS) were the most dominant BGC types, followed by clusters encoding synthesis of terpenes and bacteriocins. Based on BGC sequence similarity analysis, 363 gene cluster families (GCFs) were identified. Interestingly, no GCFs were assigned to pathways responsible for the production of known compounds, implying that the clusters detected might be responsible for production of several novel compounds. The KS gene sequences from PKS clusters were used to predict the taxonomic origin of the clusters involved. The KS sequences were related to 12 bacterial phyla with Actinobacteria, Proteobacteria, and Firmicutes as the most predominant. At the genus level, the KSs were most related to those found in the genera Mycolicibacterium, Mycobacterium, Burkholderia, and Streptomyces. Phylogenetic analysis of KS sequences resulted in detection of two known 'sponge-specific' BGCs, i.e., SupA and SwfA, as well as a new 'sponge-specific' cluster related to fatty acid synthesis in the phylum Candidatus Poribacteria and composed only by KS sequences of the three sponge-associated bacterial communities assessed here.
Collapse
|
17
|
Kavakli S, Grammbitter GL, Bode HB. Biosynthesis of the multifunctional isopropylstilbene in Photorhabdus laumondii involves cross-talk between specialized and primary metabolism. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Krumbholz J, Ishida K, Baunach M, Teikari JE, Rose MM, Sasso S, Hertweck C, Dittmann E. Deciphering Chemical Mediators Regulating Specialized Metabolism in a Symbiotic Cyanobacterium. Angew Chem Int Ed Engl 2022; 61:e202204545. [PMID: 35403785 PMCID: PMC9324945 DOI: 10.1002/anie.202204545] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 11/11/2022]
Abstract
Genomes of cyanobacteria feature a variety of cryptic biosynthetic pathways for complex natural products, but the peculiarities limiting the discovery and exploitation of the metabolic dark matter are not well understood. Here we describe the discovery of two cell density-dependent chemical mediators, nostoclide and nostovalerolactone, in the symbiotic model strain Nostoc punctiforme, and demonstrate their pronounced impact on the regulation of specialized metabolism. Through transcriptional, bioinformatic and labeling studies we assigned two adjacent biosynthetic gene clusters to the biosynthesis of the two polyketide mediators. Our findings provide insight into the orchestration of specialized metabolite production and give lessons for the genomic mining and high-titer production of cyanobacterial bioactive compounds.
Collapse
Affiliation(s)
- Julia Krumbholz
- Institute of Biochemistry and BiologyUniversity of PotsdamKarl-Liebknecht-Str. 24/2514476Potsdam-GolmGermany
| | - Keishi Ishida
- Leibniz Institute for Natural Product Research and Infection BiologyHans Knöll InstituteBeutenbergstr. 11a07745JenaGermany
| | - Martin Baunach
- Institute of Biochemistry and BiologyUniversity of PotsdamKarl-Liebknecht-Str. 24/2514476Potsdam-GolmGermany
| | - Jonna E. Teikari
- Institute of Biochemistry and BiologyUniversity of PotsdamKarl-Liebknecht-Str. 24/2514476Potsdam-GolmGermany
| | - Magdalena M. Rose
- Institute for BiologyDepartment of Plant PhysiologyLeipzig UniversityJohannisallee 21–2304103LeipzigGermany
| | - Severin Sasso
- Institute for BiologyDepartment of Plant PhysiologyLeipzig UniversityJohannisallee 21–2304103LeipzigGermany
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection BiologyHans Knöll InstituteBeutenbergstr. 11a07745JenaGermany
- Institute of MicrobiologyFaculty of Biological SciencesFriedrich Schiller University Jena07743JenaGermany
| | - Elke Dittmann
- Institute of Biochemistry and BiologyUniversity of PotsdamKarl-Liebknecht-Str. 24/2514476Potsdam-GolmGermany
| |
Collapse
|
19
|
Shestopalov AV, Gaponov AM, Zabolotneva AA, Appolonova SA, Markin PA, Borisenko OV, Tutelyan AV, Rumyantsev AG, Teplyakova ED, Shin VF, Savchuk DV, Volkova NI, Ganenko LA, Makarov VV, Yudin SM, Rumyantsev SA. Alkylresorcinols: New Potential Bioregulators in the Superorganism System (Human–Microbiota). BIOL BULL+ 2022. [DOI: 10.1134/s1062359022030153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Krumbholz J, Ishida K, Baunach M, Teikari JE, Rose MM, Sasso S, Hertweck C, Dittmann E. Entschlüsselung chemischer Mediatoren zur Regulierung des spezialisierten Stoffwechsels in einem symbiotischen Cyanobakterium. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Julia Krumbholz
- Institut für Biochemie und Biologie Universität Potsdam Karl-Liebknecht-Str. 24/25 14476 Potsdam-Golm Deutschland
| | - Keishi Ishida
- Leibniz Institut für Naturstoff-Forschung und Infektionsbiologie Hans Knöll Institute Beutenbergstr. 11a 07745 Jena Deutschland
| | - Martin Baunach
- Institut für Biochemie und Biologie Universität Potsdam Karl-Liebknecht-Str. 24/25 14476 Potsdam-Golm Deutschland
| | - Jonna E. Teikari
- Institut für Biochemie und Biologie Universität Potsdam Karl-Liebknecht-Str. 24/25 14476 Potsdam-Golm Deutschland
| | - Magdalena M. Rose
- Institut für Biologie AG Pflanzenphysiologie Universität Leipzig Johannisallee 21–23 04103 Leipzig Deutschland
| | - Severin Sasso
- Institut für Biologie AG Pflanzenphysiologie Universität Leipzig Johannisallee 21–23 04103 Leipzig Deutschland
| | - Christian Hertweck
- Leibniz Institut für Naturstoff-Forschung und Infektionsbiologie Hans Knöll Institute Beutenbergstr. 11a 07745 Jena Deutschland
- Institut für Mikrobiologie Fakultät für Biowissenschaften Friedrich-Schiller-Universität Jena 07743 Jena Deutschland
| | - Elke Dittmann
- Institut für Biochemie und Biologie Universität Potsdam Karl-Liebknecht-Str. 24/25 14476 Potsdam-Golm Deutschland
| |
Collapse
|
21
|
Braffman NR, Ruskoski TB, Davis KM, Glasser NR, Johnson C, Okafor CD, Boal AK, Balskus EP. Structural basis for an unprecedented enzymatic alkylation in cylindrocyclophane biosynthesis. eLife 2022; 11:75761. [PMID: 35212625 PMCID: PMC8916777 DOI: 10.7554/elife.75761] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
The cyanobacterial enzyme CylK assembles the cylindrocyclophane natural products by performing two unusual alkylation reactions, forming new carbon–carbon bonds between aromatic rings and secondary alkyl halide substrates. This transformation is unprecedented in biology, and the structure and mechanism of CylK are unknown. Here, we report X-ray crystal structures of CylK, revealing a distinctive fusion of a Ca2+-binding domain and a β-propeller fold. We use a mutagenic screening approach to locate CylK’s active site at its domain interface, identifying two residues, Arg105 and Tyr473, that are required for catalysis. Anomalous diffraction datasets collected with bound bromide ions, a product analog, suggest that these residues interact with the alkyl halide electrophile. Additional mutagenesis and molecular dynamics simulations implicate Asp440 in activating the nucleophilic aromatic ring. Bioinformatic analysis of CylK homologs from other cyanobacteria establishes that they conserve these key catalytic amino acids, but they are likely associated with divergent reactivity and altered secondary metabolism. By gaining a molecular understanding of this unusual biosynthetic transformation, this work fills a gap in our understanding of how alkyl halides are activated and used by enzymes as biosynthetic intermediates, informing enzyme engineering, catalyst design, and natural product discovery.
Collapse
Affiliation(s)
- Nathaniel R Braffman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Terry B Ruskoski
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, United States
| | - Katherine M Davis
- Department of Chemistry, Pennsylvania State University, University Park, United States
| | - Nathaniel R Glasser
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Cassidy Johnson
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - C Denise Okafor
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, United States
| | - Amie K Boal
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, United States
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| |
Collapse
|
22
|
Wang HQ, Mou SB, Xiao W, Zhou H, Hou XD, Wang SJ, Wang Q, Gao J, Wei Z, Liu L, Xiang Z. Structural Basis for the Friedel–Crafts Alkylation in Cylindrocyclophane Biosynthesis. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hua-Qi Wang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, P. R. China
| | - Shu-Bin Mou
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, P. R. China
| | - Wen Xiao
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, P. R. China
| | - Huan Zhou
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, P. R. China
| | - Xu-Dong Hou
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, P. R. China
| | - Su-Jing Wang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, P. R. China
| | - Qian Wang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, P. R. China
| | - Jiali Gao
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, P. R. China
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518027, P. R. China
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Zhiyi Wei
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
- Brain Research Center, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Lijun Liu
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, P. R. China
- DLX Scientific, Lawrence, Kansas 66049, United States
| | - Zheng Xiang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
23
|
An Overview of Alkylresorcinols Biological Properties and Effects. J Nutr Metab 2022; 2022:4667607. [PMID: 35036005 PMCID: PMC8754669 DOI: 10.1155/2022/4667607] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 12/11/2022] Open
Abstract
The investigation of alkylresorcinols has drawn an increasing interest recently. Alkylresorcinols (ARs) are natural chemical compounds synthesized by bacteria, fungi, sponges, and higher plants, possessing a lipophilic polyphenol structures and a myriad of biological properties. Human takes ARs as a component of a whole grain diet (from whole grain rye, wheat, and barley products), and thus, alkylresorcinols are frequently used as whole grain intake markers. Besides, ARs are considered as promising bioregulators of metabolic and immune processes, as well as adjuvant therapeutic agents for antimicrobial and anticancer treatment. In this review, we attempted to systematize the accumulated information concerning ARs origin, metabolism, biological properties, and their effect on human health.
Collapse
|
24
|
Pedrazzani C, Vanara F, Bhandari DR, Bruni R, Spengler B, Blandino M, Righetti L. 5- n-Alkylresorcinol Profiles in Different Cultivars of Einkorn, Emmer, Spelt, Common Wheat, and Tritordeum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14092-14102. [PMID: 34793147 PMCID: PMC8640985 DOI: 10.1021/acs.jafc.1c05451] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 05/25/2023]
Abstract
5-n-Alkylresorcinols (AR) are bioactive compounds found in the edible parts of many cereals. Here, saturated and unsaturated homologues, including the oxidized forms 5-(2'-oxo) AR and their plant metabolites, were profiled by ultrahigh-performance liquid chromatography-ion mobility separation-high-resolution mass spectrometry in 18 cultivars of einkorn, emmer, spelt, common wheat, and tritordeum, cultivated in two consecutive years under uniform agronomic conditions. The average content of AR ranged between 672.5 ± 129.8 and 1408.9 ± 528.0 mg/kg, exceeding 2380 mg/kg in some samples and highlighting a superior content in tritordeum and in modern cultivars with respect to old wheat genotypes. By evaluating the effect of environmental and agronomic factors on the different variables, the harvest year resulted to be always significant, while location and variety influenced AR abundance only for some homologues. Furthermore, the spatial distribution of AR was investigated by mass spectrometry imaging using transversal cross sections of wheat kernels. Our results show that AR homologues are mainly localized in the testa and in the outer pericarp of wheat kernels.
Collapse
Affiliation(s)
- Clara Pedrazzani
- Department
of Food and Drug, University of Parma, Parco Area delle Scienze 17/A, Parma 43124, Italy
| | - Francesca Vanara
- Department
of Agricultural, Forest and Food Sciences, University of Torino, Largo Paolo Braccini, 2, Grugliasco 10095, Italy
| | - Dhaka Ram Bhandari
- Institute
of Inorganic and Analytical Chemistry, Justus
Liebig University Giessen, Heinrich-Buff-Ring 17, Giessen 35392, Germany
| | - Renato Bruni
- Department
of Food and Drug, University of Parma, Parco Area delle Scienze 17/A, Parma 43124, Italy
| | - Bernhard Spengler
- Institute
of Inorganic and Analytical Chemistry, Justus
Liebig University Giessen, Heinrich-Buff-Ring 17, Giessen 35392, Germany
| | - Massimo Blandino
- Department
of Agricultural, Forest and Food Sciences, University of Torino, Largo Paolo Braccini, 2, Grugliasco 10095, Italy
| | - Laura Righetti
- Department
of Food and Drug, University of Parma, Parco Area delle Scienze 17/A, Parma 43124, Italy
| |
Collapse
|
25
|
Georgiev YN, Batsalova TG, Dzhambazov BM, Ognyanov MH, Denev PN, Antonova DV, Wold CW, Yanakieva IZ, Teneva II, Paulsen BS, Simova SD. Immunomodulating polysaccharide complexes and antioxidant metabolites from Anabaena laxa, Oscillatoria limosa and Phormidesmis molle. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Long-read metagenomics of soil communities reveals phylum-specific secondary metabolite dynamics. Commun Biol 2021; 4:1302. [PMID: 34795375 PMCID: PMC8602731 DOI: 10.1038/s42003-021-02809-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/25/2021] [Indexed: 01/04/2023] Open
Abstract
Microbial biosynthetic gene clusters (BGCs) encoding secondary metabolites are thought to impact a plethora of biologically mediated environmental processes, yet their discovery and functional characterization in natural microbiomes remains challenging. Here we describe deep long-read sequencing and assembly of metagenomes from biological soil crusts, a group of soil communities that are rich in BGCs. Taking advantage of the unusually long assemblies produced by this approach, we recovered nearly 3,000 BGCs for analysis, including 712 full-length BGCs. Functional exploration through metatranscriptome analysis of a 3-day wetting experiment uncovered phylum-specific BGC expression upon activation from dormancy, elucidating distinct roles and complex phylogenetic and temporal dynamics in wetting processes. For example, a pronounced increase in BGC transcription occurs at night primarily in cyanobacteria, implicating BGCs in nutrient scavenging roles and niche competition. Taken together, our results demonstrate that long-read metagenomic sequencing combined with metatranscriptomic analysis provides a direct view into the functional dynamics of BGCs in environmental processes and suggests a central role of secondary metabolites in maintaining phylogenetically conserved niches within biocrusts.
Collapse
|
27
|
Adak S, Moore BS. Cryptic halogenation reactions in natural product biosynthesis. Nat Prod Rep 2021; 38:1760-1774. [PMID: 34676862 DOI: 10.1039/d1np00010a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: Up to December 2020Enzymatic halogenation reactions are essential for the production of thousands of halogenated natural products. However, in recent years, scientists discovered several halogenases that transiently incorporate halogen atoms in intermediate biosynthetic molecules to activate them for further chemical reactions such as cyclopropanation, terminal alkyne formation, C-/O-alkylation, biaryl coupling, and C-C rearrangements. In each case, the halogen atom is lost in the course of biosynthesis to the final product and is hence termed "cryptic". In this review, we provide an overview of our current knowledge of cryptic halogenation reactions in natural product biosynthesis.
Collapse
Affiliation(s)
- Sanjoy Adak
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, 92093, USA.
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, 92093, USA. .,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
28
|
Otsubo M, Sakimoto K, Egami H, Hamashima Y. Dearomative enantio- and diastereoselective difluorination of resorcinol derivatives. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Figueiredo SAC, Preto M, Moreira G, Martins TP, Abt K, Melo A, Vasconcelos VM, Leão PN. Discovery of Cyanobacterial Natural Products Containing Fatty Acid Residues**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sandra A. C. Figueiredo
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR) University of Porto Avenida General Norton de Matos, s/n 4450-208 Matosinhos Portugal
| | - Marco Preto
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR) University of Porto Avenida General Norton de Matos, s/n 4450-208 Matosinhos Portugal
| | - Gabriela Moreira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR) University of Porto Avenida General Norton de Matos, s/n 4450-208 Matosinhos Portugal
| | - Teresa P. Martins
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR) University of Porto Avenida General Norton de Matos, s/n 4450-208 Matosinhos Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS) University of Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal
| | - Kathleen Abt
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR) University of Porto Avenida General Norton de Matos, s/n 4450-208 Matosinhos Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS) University of Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal
| | - André Melo
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry Faculty of Sciences University of Porto Rua do Campo Alegre 4169-007 Porto Portugal
| | - Vitor M. Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR) University of Porto Avenida General Norton de Matos, s/n 4450-208 Matosinhos Portugal
- Department of Biology Faculty of Sciences University of Porto Rua do Campo Alegre 4169-007 Porto Portugal
| | - Pedro N. Leão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR) University of Porto Avenida General Norton de Matos, s/n 4450-208 Matosinhos Portugal
| |
Collapse
|
30
|
Figueiredo SAC, Preto M, Moreira G, Martins TP, Abt K, Melo A, Vasconcelos VM, Leão PN. Discovery of Cyanobacterial Natural Products Containing Fatty Acid Residues*. Angew Chem Int Ed Engl 2021; 60:10064-10072. [PMID: 33599093 PMCID: PMC8252387 DOI: 10.1002/anie.202015105] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Indexed: 12/16/2022]
Abstract
In recent years, extensive sequencing and annotation of bacterial genomes has revealed an unexpectedly large number of secondary metabolite biosynthetic gene clusters whose products are yet to be discovered. For example, cyanobacterial genomes contain a variety of gene clusters that likely incorporate fatty acid derived moieties, but for most cases we lack the knowledge and tools to effectively predict or detect the encoded natural products. Here, we exploit the apparent absence of a functional β-oxidation pathway in cyanobacteria to achieve efficient stable-isotope-labeling of their fatty acid derived lipidome. We show that supplementation of cyanobacterial cultures with deuterated fatty acids can be used to easily detect natural product signatures in individual strains. The utility of this strategy is demonstrated in two cultured cyanobacteria by uncovering analogues of the multidrug-resistance reverting hapalosin, and novel, cytotoxic, lactylate-nocuolin A hybrids-the nocuolactylates.
Collapse
Affiliation(s)
- Sandra A. C. Figueiredo
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR)University of PortoAvenida General Norton de Matos, s/n4450-208MatosinhosPortugal
| | - Marco Preto
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR)University of PortoAvenida General Norton de Matos, s/n4450-208MatosinhosPortugal
| | - Gabriela Moreira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR)University of PortoAvenida General Norton de Matos, s/n4450-208MatosinhosPortugal
| | - Teresa P. Martins
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR)University of PortoAvenida General Norton de Matos, s/n4450-208MatosinhosPortugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS)University of PortoRua de Jorge Viterbo Ferreira, 2284050-313PortoPortugal
| | - Kathleen Abt
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR)University of PortoAvenida General Norton de Matos, s/n4450-208MatosinhosPortugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS)University of PortoRua de Jorge Viterbo Ferreira, 2284050-313PortoPortugal
| | - André Melo
- LAQV@REQUIMTE/Department of Chemistry and BiochemistryFaculty of SciencesUniversity of PortoRua do Campo Alegre4169-007PortoPortugal
| | - Vitor M. Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR)University of PortoAvenida General Norton de Matos, s/n4450-208MatosinhosPortugal
- Department of BiologyFaculty of SciencesUniversity of PortoRua do Campo Alegre4169-007PortoPortugal
| | - Pedro N. Leão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR)University of PortoAvenida General Norton de Matos, s/n4450-208MatosinhosPortugal
| |
Collapse
|
31
|
Discovery of anti-infective adipostatins through bioactivity-guided isolation and heterologous expression of a type III polyketide synthase. Bioorg Chem 2021; 112:104925. [PMID: 34022708 DOI: 10.1016/j.bioorg.2021.104925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/11/2021] [Accepted: 04/18/2021] [Indexed: 12/22/2022]
Abstract
Antibiotic resistance and emerging viral pandemics have posed an urgent need for new anti-infective drugs. By screening our microbial extract library against the main protease of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the notorious ESKAPE pathogens, an active fraction was identified and purified, leading to an initial isolation of adipostatins A (1) and B (2). In order to diversify the chemical structures of adipostatins toward enhanced biological activities, a type III polyketide synthase was identified from the native producer, Streptomyces davawensis DSM101723, and was subsequently expressed in an E. coli host, resulting in the isolation of nine additional adipostatins 3-11, including two new analogs (9 and 11). The structures of 1-11 were established by HRMS, NMR, and chemical derivatization, including using a microgram-scale meta-chloroperoxybenzoic acid epoxidation-MS/MS analysis to unambiguously determine the double bond position in the alkyl chain. The present study discovered SARS-CoV-2 main protease inhibitory activity for the class of adipostatins for the first time. Several of the adipostatins isolated also exhibited antimicrobial activity against selected ESKAPE pathogens.
Collapse
|
32
|
Yoon DJ, Cho ES, Hwang CY, Nam YD, Park SL, Lim SI, Seo MJ. Nocardioides luti sp. nov., belonging to the family Nocardioidaceae isolated from kaolinite, exhibiting the biosynthesis potential of alkylresorcinol. Antonie van Leeuwenhoek 2021; 114:983-995. [PMID: 33864547 DOI: 10.1007/s10482-021-01570-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/01/2021] [Indexed: 11/26/2022]
Abstract
A novel Gram-staining-positive, short rod-shaped, non-motile, and non-pigmented actinobacterial strain (KIGAM211T) was isolated from kaolinite, a soft white clay mineral, collected from Sancheong in the Republic of Korea. On the basis of 16S rRNA gene sequence analysis, strain KIGAM211T was determined to belong to the genus Nocardioides and was most closely related to N. ungokensis UKS-03T (97.5% similarity). Cells could grow between 4 and 35 °C (optimum 30 °C), 0-3% (w/v) NaCl concentration (optimum 0%) and pH 5.5-8.5 (optimum 7.0) on R2A agar. Morphological appearance of colonies was cream-white, arranged singly or in groups. Biochemical characterization of strain KAGAM211T indicated that it could hydrolyze casein, gelatin, Tweens 40 and tyrosine. Furthermore, the strain was positive for both oxidase and catalase activity. Strain KIGAM211T was characterized chemotaxonomically by MK-8 (H4) as the predominant menaquinone and phosphatidylglycerol (PG) and phosphatidylinositol (PI) as the major polar lipids. Major fatty acids were iso-C16:0 and C18:1 ω9c. The Ortholog average nucleotide identity (OrthoANI) and in silico DNA-DNA hybridization (isDDH) values between strain KIGAM211T and its most closely related strains of the Nocardioides genus were < 82% and < 24%, respectively, suggesting that strain KIGAM211T represent a novel species. The whole genome size of KIGAM211T was 4.52 Mb, comprising a total of 4,294 genes with DNA G + C content of 72.3 mol%. The genome of strain KIGAM211T also comprises the biosynthetic gene cluster for alkylresorcinol as secondary metabolite. The results of physiological, taxonomical, phylogenetic, and whole genome analyses allowed for differentiation of strain KIGAM211T from the recognized Nocardioides species. Therefore, strain KIGAM211T is considered to represent a novel species, for which the name Nocardioides luti sp. nov. (type strain KIGAM211T = KCTC 49364T = JCM 33859T) is proposed.
Collapse
Affiliation(s)
- Deok Jun Yoon
- Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University, Incheon, 22012, Republic of Korea
| | - Eui-Sang Cho
- Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University, Incheon, 22012, Republic of Korea
| | - Chi Young Hwang
- Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University, Incheon, 22012, Republic of Korea
| | - Young-Do Nam
- Research Group of Healthcare, Korea Food Research Institute, Wanju, 55365, Republic of Korea
| | - So-Lim Park
- Research Group of Healthcare, Korea Food Research Institute, Wanju, 55365, Republic of Korea
| | - Seong-Il Lim
- Research Group of Healthcare, Korea Food Research Institute, Wanju, 55365, Republic of Korea.
| | - Myung-Ji Seo
- Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University, Incheon, 22012, Republic of Korea.
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea.
- Institute for New Drug Development, Incheon National University, Incheon, 22012, Republic of Korea.
| |
Collapse
|
33
|
Larsen JS, Pearson LA, Neilan BA. Genome Mining and Evolutionary Analysis Reveal Diverse Type III Polyketide Synthase Pathways in Cyanobacteria. Genome Biol Evol 2021; 13:6178795. [PMID: 33739400 PMCID: PMC8086630 DOI: 10.1093/gbe/evab056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2021] [Indexed: 11/30/2022] Open
Abstract
Cyanobacteria are prolific producers of natural products, including polyketides and hybrid compounds thereof. Type III polyketide synthases (PKSs) are of particular interest, due to their wide substrate specificity and simple reaction mechanism, compared with both type I and type II PKSs. Surprisingly, only two type III PKS products, hierridins, and (7.7)paracyclophanes, have been isolated from cyanobacteria. Here, we report the mining of 517 cyanobacterial genomes for type III PKS biosynthesis gene clusters. Approximately 17% of the genomes analyzed encoded one or more type III PKSs. Together with already characterized type III PKSs, the phylogeny of this group of enzymes was investigated. Our analysis showed that type III PKSs in cyanobacteria evolved into three major lineages, including enzymes associated with 1) (7.7)paracyclophane-like biosynthesis gene clusters, 2) hierridin-like biosynthesis gene clusters, and 3) cytochrome b5 genes. The evolutionary history of these enzymes is complex, with some sequences partitioning primarily according to speciation and others putatively according to their reaction type. Protein modeling showed that cyanobacterial type III PKSs generally have a smaller active site cavity (mean = 109.035 Å3) compared with enzymes from other organisms. The size of the active site did not correlate well with substrate size, however, the “Gatekeeper” amino acid residues within the active site were strongly correlated to enzyme phylogeny. Our study provides unprecedented insight into the distribution, diversity, and molecular evolution of cyanobacterial type III PKSs, which could facilitate the discovery, characterization, and exploitation of novel enzymes, biochemical pathways, and specialized metabolites from this biosynthetically talented clade of microorganisms.
Collapse
Affiliation(s)
- Joachim Steen Larsen
- School of Environmental and Life Sciences, University of Newcastle, Newcastle, New South Wales, Australia
| | - Leanne Andrea Pearson
- School of Environmental and Life Sciences, University of Newcastle, Newcastle, New South Wales, Australia
| | - Brett Anthony Neilan
- School of Environmental and Life Sciences, University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
34
|
Wang Y, Joullié MM. Approaches to Cyclophane-Types of Cyclopeptide Alkaloids. CHEM REC 2021; 21:906-923. [PMID: 33656243 DOI: 10.1002/tcr.202100017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/15/2021] [Indexed: 11/09/2022]
Abstract
The cyclopeptide alkaloids are cyclic depsipeptides incorporating cyclophanes with polyamide units 13-, 14- and 15-membered macrocyclic systems. Although various pharmacological activities have been ascribed to cyclopeptide alkaloids from plants of the Rhamnacea family, these studies have been hampered by their low availability due to the lack of reasonable amounts distributed in nature. Therefore, novel and efficient synthetic approaches should be an important aim, which inspired us to examine how to diversely construct the unique structures of this type of natural products. In this account, several typical strategies are presented in terms of efficient, stereocontrolled and regioselective synthesis of cyclopeptide alkaloids.
Collapse
Affiliation(s)
- Yuanhao Wang
- Department of Chemistry, University of Pennsylvania, 231 S. 34th St., Philadelphia, PA 19104, USA
| | - Madeleine M Joullié
- Department of Chemistry, University of Pennsylvania, 231 S. 34th St., Philadelphia, PA 19104, USA
| |
Collapse
|
35
|
Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep 2021; 38:362-413. [PMID: 33570537 DOI: 10.1039/d0np00089b] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review covers the literature published in 2019 for marine natural products (MNPs), with 719 citations (701 for the period January to December 2019) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1490 in 440 papers for 2019), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. Methods used to study marine fungi and their chemical diversity have also been discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia and School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
36
|
Carpine R, Sieber S. Antibacterial and antiviral metabolites from cyanobacteria: Their application and their impact on human health. CURRENT RESEARCH IN BIOTECHNOLOGY 2021. [DOI: 10.1016/j.crbiot.2021.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
37
|
Freudenreich JJ, Bartlett S, Robertson NS, Kidd SL, Forrest S, Sore HF, Galloway WRJD, Welch M, Spring DR. Divergent Synthesis of Novel Cylindrocyclophanes that Inhibit Methicillin-Resistant Staphylococcus aureus (MRSA). ChemMedChem 2020; 15:1289-1293. [PMID: 32424962 PMCID: PMC7522682 DOI: 10.1002/cmdc.202000179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Indexed: 12/29/2022]
Abstract
The cylindrocyclophanes are a family of macrocyclic natural products reported to exhibit antibacterial activity. Little is known about the structural basis of this activity due to the challenges associated with their synthesis or isolation. We hypothesised that structural modification of the cylindrocyclophane scaffold could streamline their synthesis without significant loss of activity. Herein, we report a divergent synthesis of the cylindrocyclophane core enabling access to symmetrical macrocycles by means of a catalytic, domino cross-metathesis-ring-closing metathesis cascade, followed by late-stage diversification. Phenotypic screening identified several novel inhibitors of methicillin-resistant Staphylococcus aureus. The most potent inhibitor has a unique tetrabrominated [7,7]paracyclophane core with no known counterpart in nature. Together these illustrate the potential of divergent synthesis using catalysis and unbiased screening methods in modern antibacterial discovery.
Collapse
Affiliation(s)
| | - Sean Bartlett
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Naomi S. Robertson
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Sarah L. Kidd
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Suzie Forrest
- Department of BiochemistryUniversity of CambridgeDowning SiteCambridgeCB2 1QWUK
| | - Hannah F. Sore
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | | | - Martin Welch
- Department of BiochemistryUniversity of CambridgeDowning SiteCambridgeCB2 1QWUK
| | - David R. Spring
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| |
Collapse
|
38
|
Sengupta S, Mehta G. Macrocyclization via C-H functionalization: a new paradigm in macrocycle synthesis. Org Biomol Chem 2020; 18:1851-1876. [PMID: 32101232 DOI: 10.1039/c9ob02765c] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The growing emphasis on macrocycles in engaging difficult therapeutic targets such as protein-protein interactions and GPCRs via preferential adaptation of bioactive and cell penetrating conformations has provided impetus to the search for de novo macrocyclization strategies that are efficient, chemically robust and amenable to diversity creation. An emerging macrocyclization paradigm based on the C-H activation logic, of particular promise in the macrocyclization of complex peptides, has added a new dimension to this pursuit, enabling efficacious access to macrocycles of various sizes and topologies with high atom and step economy. Significant achievements in macrocyclization methodologies and their applications in the synthesis of bioactive natural products and drug-like molecules, employing strategic variations of C-H activation are captured in this review. It is expected that this timely account will foster interest in newer ways of macrocycle construction among practitioners of organic synthesis and chemical biology to advance the field.
Collapse
Affiliation(s)
- Saumitra Sengupta
- School of Chemistry, University of Hyderabad, Gachibowli, Hyderabad-5000 046, Telengana, India.
| | - Goverdhan Mehta
- School of Chemistry, University of Hyderabad, Gachibowli, Hyderabad-5000 046, Telengana, India.
| |
Collapse
|
39
|
Choi BK, Phan THT, Hwang S, Oh DC, Kang JS, Lee HS, Ngo TDN, Tran TTV, Shin HJ. Resorcinosides A and B, Glycosylated Alkylresorcinols from a Marine-Derived Strain of the Fungus Penicillium janthinellum. JOURNAL OF NATURAL PRODUCTS 2019; 82:3186-3190. [PMID: 31668073 DOI: 10.1021/acs.jnatprod.9b00776] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two new glycosylated alkylresorcinols, resorcinosides A (1) and B (2), were isolated from a strain of the fungus Penicillium janthinellum derived from a marine sediment sample collected from Cu Lao Cham Island, Vietnam. The structures of 1 and 2 were established by interpretation of 1D and 2D NMR and high-resolution ESIMS data, and their absolute configurations were confirmed by the coupling constant of the anomeric proton, acid hydrolysis, subsequent HPLC analysis, Mosher's method, and quantum-mechanics-based computational analysis of NMR chemical shifts. The structure elucidation indicated that 1 and 2 are new alkylresorcinols with d-glucose, and 2 has an α-pyrone moiety attached to the aromatic ring. Compound 1 exhibited cytotoxic activity against the NUGC-3 cancer cell line with a GI50 value of 9.3 μM.
Collapse
Affiliation(s)
- Byeoung-Kyu Choi
- Department of Marine Biotechnology , University of Science and Technology (UST) , 217 Gajungro Yuseong-gu , Daejeon 34113 , Republic of Korea
- Marine Natural Products Chemistry Laboratory , Korea Institute of Ocean Science and Technology (KIOST) , 385 Haeyang-ro , Yeoungdo-gu, Busan 49111 , Republic of Korea
| | - Thi Hoai Trinh Phan
- Nha Trang Institute of Technology Research and Application , Vietnam Academy of Science and Technology , 02 Hung Vuong , Nha Trang 650000 , Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology , 18 Hoang Quoc Viet , Cau Giay , Ha Noi 100000 , Vietnam
| | - Sunghoon Hwang
- Natural Products Research Institute, College of Pharmacy , Seoul National University , Seoul 08826 , Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy , Seoul National University , Seoul 08826 , Republic of Korea
| | - Jong Soon Kang
- Laboratory Animal Resource Center , Korea Research Institute of Bioscience and Biotechnology , 30 Yeongudanjiro , Cheongju 28116 , Republic of Korea
| | - Hwa-Sun Lee
- Marine Natural Products Chemistry Laboratory , Korea Institute of Ocean Science and Technology (KIOST) , 385 Haeyang-ro , Yeoungdo-gu, Busan 49111 , Republic of Korea
| | - Thi Duy Ngoc Ngo
- Nha Trang Institute of Technology Research and Application , Vietnam Academy of Science and Technology , 02 Hung Vuong , Nha Trang 650000 , Vietnam
| | - Thi Thanh Van Tran
- Nha Trang Institute of Technology Research and Application , Vietnam Academy of Science and Technology , 02 Hung Vuong , Nha Trang 650000 , Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology , 18 Hoang Quoc Viet , Cau Giay , Ha Noi 100000 , Vietnam
| | - Hee Jae Shin
- Department of Marine Biotechnology , University of Science and Technology (UST) , 217 Gajungro Yuseong-gu , Daejeon 34113 , Republic of Korea
- Marine Natural Products Chemistry Laboratory , Korea Institute of Ocean Science and Technology (KIOST) , 385 Haeyang-ro , Yeoungdo-gu, Busan 49111 , Republic of Korea
| |
Collapse
|
40
|
Reiter S, Cahn JKB, Wiebach V, Ueoka R, Piel J. Characterization of an Orphan Type III Polyketide Synthase Conserved in Uncultivated "Entotheonella" Sponge Symbionts. Chembiochem 2019; 21:564-571. [PMID: 31430416 PMCID: PMC7064976 DOI: 10.1002/cbic.201900352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/19/2019] [Indexed: 02/06/2023]
Abstract
Uncultivated bacterial symbionts from the candidate genus "Entotheonella" have been shown to produce diverse natural products previously attributed to their sponge hosts. In addition to these known compounds, "Entotheonella" genomes contain rich sets of biosynthetic gene clusters that lack identified natural products. Among these is a small type III polyketide synthase (PKS) cluster, one of only three clusters present in all known "Entotheonella" genomes. This conserved "Entotheonella" PKS (cep) cluster encodes the type III PKS CepA and the putative methyltransferase CepB. Herein, the characterization of CepA as an enzyme involved in phenolic lipid biosynthesis is reported. In vitro analysis showed a specificity for alkyl starter substrates and the production of tri- and tetraketide pyrones and tetraketide resorcinols. The conserved distribution of the cep cluster suggests an important role for the phenolic lipid polyketides produced in "Entotheonella" variants.
Collapse
Affiliation(s)
- Silke Reiter
- Department of Microbiology, Swiss Federal Institute of Technology, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland.,Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Jackson K B Cahn
- Department of Microbiology, Swiss Federal Institute of Technology, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Vincent Wiebach
- Department of Microbiology, Swiss Federal Institute of Technology, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Reiko Ueoka
- Department of Microbiology, Swiss Federal Institute of Technology, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Jörn Piel
- Department of Microbiology, Swiss Federal Institute of Technology, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| |
Collapse
|