1
|
Song R, Ma C, Li H, Cheng Y, Cui X, Wang Z, Huang L, Song C, Jing Y, Cao B, Wang L, Tian Q, Wang X, Zhang R, Zhang H. A temperature responsive hydrogel encapsulated with adipose-derived stem cells and melanin promotes repair and regeneration of endometrial injury. Bioeng Transl Med 2025; 10:e10714. [PMID: 39801752 PMCID: PMC11711210 DOI: 10.1002/btm2.10714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/22/2024] [Accepted: 08/03/2024] [Indexed: 01/16/2025] Open
Abstract
The endometrium, the inner lining of the uterus, assumes a crucial role in the female reproductive system. Disorders and injuries impacting the endometrium can lead to profound consequences, including infertility and compromised women's overall health. Recent advancements in stem cell research have opened new possibilities for the treatment and repair of endometrial issues. In the present study, we constructed a degradable hydrogel by loading adipose-derived stem cells (ADSCs) and melanin nanoparticles (MNP). In vitro cell experiments validated the biocompatibility of the prepared hydrogels and their adeptness in encapsulating ADSCs. Subsequently, we explored the impact of hydrogel@ADSC@MNP constructs in the healing process of uterine injury in mice. The results indicated that hydrogel@ADSC@MNP could augment endometrial thickness and ameliorate endometrial interstitial fibrosis. The injured tissue adjacent to hydrogel@ADSC@MNP constructs exhibited higher levels of bFGF, IGF-1, and VEGFA compared with the corresponding tissue in mice receiving hydrogel constructs alone or in the model group. Furthermore, the hydrogel@ADSC@MNP system enhanced the proliferative capabilities of uterine endometrial cells, facilitated microvasculature regeneration, and reinstated the endometrium's capacity to receive the embryos. Our findings strongly suggest that the hydrogel@ADSC@MNP system holds significant promise for repairing and regenerating damaged endometrium.
Collapse
Affiliation(s)
- Ruigao Song
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi HospitalTaiyuanChina
| | - Chicheng Ma
- College of Animal Science, Shanxi Agricultural UniversityTaiguChina
| | - Hongxia Li
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi HospitalTaiyuanChina
| | - Yu Cheng
- College of Animal Science, Shanxi Agricultural UniversityTaiguChina
| | - Xianmei Cui
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi HospitalTaiyuanChina
| | - Zanhong Wang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi HospitalTaiyuanChina
| | - Lijuan Huang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi HospitalTaiyuanChina
| | - Chunying Song
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi HospitalTaiyuanChina
| | - Yukai Jing
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi HospitalTaiyuanChina
| | - Bing Cao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi HospitalTaiyuanChina
| | - Lili Wang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi HospitalTaiyuanChina
| | - Qing Tian
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi HospitalTaiyuanChina
| | - Xi Wang
- College of Animal Science, Shanxi Agricultural UniversityTaiguChina
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial People's HospitalThe Fifth Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Hanwang Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi HospitalTaiyuanChina
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
2
|
Liu Y, Gao C, Li G, Niu Z, Liu X, Shen H, Sun J, Zhang R. Melanin Nanoparticle-Modified Probiotics for Targeted Synergistic Therapy of Ulcerative Colitis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31950-31965. [PMID: 38861025 DOI: 10.1021/acsami.4c02914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Ulcerative colitis (UC) is a recurrent chronic mucosal inflammation disease whose most significant pathological characteristics are intestinal inflammation and damaged mucosal barrier induced by reactive oxygen/nitrogen species, abnormal immune microenvironment, and intestinal microecological imbalance. Oral probiotics are a living therapy for intestinal diseases, but their clinical application is hindered by poor bacterial biological activity and insufficient intestinal retention. Here, we developed a targeted oral formulation, functionalized probiotic Lf@MPB, with Lactobacillus fermentum (Lf) as the core and modified melanin nanoparticles (MNPs) on its surface through a click reaction of tricarboxyphenylboronic acid for synergistic therapy of UC. In vitro experiments showed that Lf@MPB not only possessed strong free radical scavenging ability, reduced cellular mitochondrial polarization, and inhibited apoptosis but also significantly enhanced the viability of Lf probiotics in simulated gastrointestinal fluid. Fluorescence imaging in vivo revealed the high accumulation of Lf@MPB at the site of intestinal inflammation in dextran sulfate sodium-induced UC mice. Moreover, in vivo results demonstrated that Lf@MPB effectively alleviated oxidative stress and inflammatory response and restored the intestinal barrier. In addition, 16S rRNA gene sequencing verified that Lf@MPB could increase the abundance and diversity of intestinal microbial communities and optimize microbial composition to inhibit the progression of UC. This work combines effective antioxidant and anti-inflammatory strategies with the oral administration of functionalized probiotics to provide a promising alternative for UC treatment.
Collapse
Affiliation(s)
- Yuqin Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, China
| | - Caifang Gao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Gang Li
- Shanxi Medical University, Taiyuan 030001, China
| | | | - Xiaoli Liu
- Shanxi Medical University, Taiyuan 030001, China
| | - Hao Shen
- Shanxi Medical University, Taiyuan 030001, China
| | - Jinghua Sun
- First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial People's Hospital, Five Hospital of Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
3
|
Jiang Z, Fu Y, Shen H. Development of Intratumoral Drug Delivery Based Strategies for Antitumor Therapy. Drug Des Devel Ther 2024; 18:2189-2202. [PMID: 38882051 PMCID: PMC11179649 DOI: 10.2147/dddt.s467835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024] Open
Abstract
Research for tumor treatment with significant therapy effects and minimal side-effects has been widely carried over the past few decades. Different drug forms have received a lot of attention. However, systemic biodistribution induces efficacy and safety issues. Intratumoral delivery of agents might overcome these problems because of its abundant tumor accumulation and retention, thereby reducing side effects. Delivering hydrogels, nanoparticles, microneedles, and microspheres drug carriers directly to tumors can realize not only targeted tumor therapy but also low side-effects. Furthermore, intratumoral administration has been integrated with treatment strategies such as chemotherapy, enhancing radiotherapy, immunotherapy, phototherapy, magnetic fluid hyperthermia, and multimodal therapy. Some of these strategies are ongoing clinical trials or applied clinically. However, many barriers hinder it from being an ideal and widely used option, such as decreased drug penetration impeded by collagen fibers of a tumor, drug squeezed out by high density and high pressure, mature intratumoral injection technique. In this review, we systematically discuss intratumoral delivery of different drug carriers and current development of intratumoral therapy strategies.
Collapse
Affiliation(s)
- Zhimei Jiang
- Department of Pharmacy, West China Second University Hospital of Sichuan University, Chengdu, People’s Republic of China
- Evidence-Based Pharmacy Center, West China Second University Hospital of Sichuan University, Chengdu, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, People’s Republic of China
| | - Yuzhi Fu
- Department of Pharmacy, West China Second University Hospital of Sichuan University, Chengdu, People’s Republic of China
- Evidence-Based Pharmacy Center, West China Second University Hospital of Sichuan University, Chengdu, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, People’s Republic of China
| | - Hongxin Shen
- Department of Pharmacy, West China Second University Hospital of Sichuan University, Chengdu, People’s Republic of China
- Evidence-Based Pharmacy Center, West China Second University Hospital of Sichuan University, Chengdu, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, People’s Republic of China
| |
Collapse
|
4
|
Sun J, Zhao X, Shen H, Dong J, Rong S, Cai W, Zhang R. CD44-targeted melanin-based nanoplatform for alleviation of ischemia/reperfusion-induced acute kidney injury. J Control Release 2024; 368:1-14. [PMID: 38367863 DOI: 10.1016/j.jconrel.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/24/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
Ischemia/reperfusion (I/R)-induced acute kidney injury (AKI) is a serious kidney disease with high morbidity and mortality. However, there is no effective clinical treatment strategy. Herein, we developed a CD44 targeting nanoplatform based on HA-assembled melanin NPs covalently coupled with dexamethasone for I/R-induced AKI therapy by alleviating oxidative/inflammatory- induced damage. The constructed HA-MNP-DXM NPs had good dispersion, stability, and broad-spectrum scavenging capabilities against multiple reactive free radicals. Moreover, the NPs could be efficiently internalized and exhibited antioxidative, anti-inflammatory, and antiapoptotic effects in CoCl2-stimulated renal tubular epithelial NRK-52E cells. Furthermore, the I/R-induced AKI murine model was established to evaluate the in vivo performance of NPs. The results suggested the NPs could specifically target impaired kidneys upon intravenous administration according to NIR-II fluorescence imaging and showed high biosafety. Importantly, the NPs could improve renal function, alleviate oxidative stress and inflammatory reactions, inhibit apoptosis of tubular cells, and restore mitochondrial structure and function, exhibiting excellent therapeutic effects. Further therapeutic mechanism indicated the NPs maintained the cellular/mitochondrial redox balance by modulating the Nrf2 and HO-1 expression. Therefore, the NPs can be a promising therapeutic candidate for the treatment of I/R-induced AKI.
Collapse
Affiliation(s)
- Jinghua Sun
- First Hospital of Shanxi Medical University, Taiyuan, 030001, China; Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xuhui Zhao
- First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Hao Shen
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China
| | - Jie Dong
- Shanxi Medical University, Taiyuan, 030001, China
| | - Shuo Rong
- Shanxi Medical University, Taiyuan, 030001, China
| | - Wenwen Cai
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial People' Hospital, Five Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
5
|
Sun J, Han J, Dong J, Zhai X, Zhang R. A kidney-targeted chitosan-melanin nanoplatform for alleviating diabetic nephropathy through modulation of blood glucose and oxidative stress. Int J Biol Macromol 2024; 264:130663. [PMID: 38453104 DOI: 10.1016/j.ijbiomac.2024.130663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/12/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Diabetic nephropathy (DN) is a serious complication in patients with diabetes, whose expansion process is closely related to oxidative stress caused by hyperglycemia. Herein, we report a chitosan-targeted dagliflozin-loaded melanin nanoparticle (CSMDNPs) that can selectively accumulate in injured kidneys, reduce blood glucose, and alleviate the oxidative stress-induced damage. CSMDNPs possess good dispersion and physiological stability, responsive release at acidic pH, and strong scavenging activities for various reactive oxygen and reactive nitrogen radicals. Moreover, in vitro experiments confirm that CSMDNPs have good biocompatibility, enable targeted uptake in NRK-52E renal tubular cells, and also well alleviate high glucose-induced oxidative stress. In the STZ-induced DN model, CSMDNPs exhibit high targeting distribution and retention in the damaged kidneys of DN mice according to photoacoustic imaging. At the end of CSMDNPs treatment, DN mice show a decrease in fasting blood glucose and a return to near-normal urine and blood indices. H&E, PAS, and masson pathological staining also indicates that CSMDNPs significantly inhibit the expansion of renal interstitium, glycogen, and collagen deposition, showing excellent therapeutic effects. In addition, melanin acts as both drug carrier and antioxidant without exogenous carrier introduction, exhibiting better biosafety and translational prospects.
Collapse
Affiliation(s)
- Jinghua Sun
- First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Juanjuan Han
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China
| | - Jie Dong
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China
| | - Xiaoyan Zhai
- Department of Baisic Medicine, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial People's Hospital, Five Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
6
|
Zhou L, Yang Z, Guo L, Zou Q, Zhang H, Sun SK, Ye Z, Zhang C. Noninvasive Assessment of Kidney Injury by Combining Structure and Function Using Artificial Intelligence-Based Manganese-Enhanced Magnetic Resonance Imaging. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5474-5485. [PMID: 38271189 DOI: 10.1021/acsami.3c14936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Contrast-enhanced magnetic resonance imaging (MRI) is seriously limited in kidney injury detection due to the nephrotoxicity of clinically used gadolinium-based contrast agents. Herein, we propose a noninvasive method for the assessment of kidney injury by combining structure and function information based on manganese (Mn)-enhanced MRI for the first time. As a proof of concept, the Mn-melanin nanoprobe with good biocompatibility and excellent T1 relaxivity is applied in MRI of a unilateral ureteral obstruction mice model. The abundant renal structure and function information is obtained through qualitative and quantitative analysis of MR images, and a brand new comprehensive assessment framework is proposed to precisely identify the degree of kidney injury successfully. Our study demonstrates that Mn-enhanced MRI is a promising approach for the highly sensitive and biosafe assessment of kidney injury in vivo.
Collapse
Affiliation(s)
- Li Zhou
- Department of Radiology, Tianjin Chest Hospital, Tianjin 300052, China
| | - Zizhen Yang
- Department of Radiology, Ningbo No.2 Hospital, Ningbo 315012, China
| | - Li Guo
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Quan Zou
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Hong Zhang
- Department of Radiology, Tianjin Chest Hospital, Tianjin 300052, China
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Zhaoxiang Ye
- Department of Radiology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Cai Zhang
- Department of Radiology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
7
|
El-Zawawy NA, Kenawy ER, Ahmed S, El-Sapagh S. Bioproduction and optimization of newly characterized melanin pigment from Streptomyces djakartensis NSS-3 with its anticancer, antimicrobial, and radioprotective properties. Microb Cell Fact 2024; 23:23. [PMID: 38229042 PMCID: PMC10792909 DOI: 10.1186/s12934-023-02276-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/15/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Melanin is a natural pigment that is considered a promising biomaterial for numerous biotechnological applications across several industries. Melanin has biomedical applications as antimicrobial, anticancer, and antioxidant properties. Additionally, in the pharmaceutical and cosmetic industries, it is used in drug delivery and as a radioprotective agent. Also, melanin has environmental uses in the fields of bioremediation and the food industry. The biosynthesis of melanin pigment is an area of interest for researchers due to its multifunctionality, high compatibility, and biodegradability. Therefore, our present work is the first attempt to characterize and optimize the productivity of melanin pigment from Streptomyces djakartensis NSS-3 concerning its radioprotection and biological properties. RESULTS Forty isolates of soil actinobacteria were isolated from the Wadi Allaqui Biosphere Reserve, Egypt. Only one isolate, ACT3, produced a dark brown melanin pigment extracellularly. This isolate was identified according to phenotypic properties and molecular phylogenetic analysis as Streptomyces djakartensis NSS-3 with accession number OP912881. Plackett-Burman experimental design (PBD) and response surface methodology (RSM) using a Box-Behnken design (BBD) were performed for optimum medium and culturing conditions for maximum pigment production, resulting in a 4.19-fold improvement in melanin production (118.73 mg/10 mL). The extracted melanin pigment was purified and characterized as belonging to nitrogen-free pyomelanin based on ultraviolet-visible spectrophotometry (UV-VIS), Fourier transform infrared (FT-IR), Raman spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and NMR studies. Purified melanin demonstrated potent scavenging activity with IC50 values of 18.03 µg/mL and revealed high potency as sunscreens (in vitro SPF = 18.5). Moreover, it showed a nontoxic effect on a normal cell line (WI38), while it had a concentration-dependent anticancer effect on HCT116, HEPG, and MCF7 cell lines with IC50 = 108.9, 43.83, and 81.99 µg/mL, respectively. Also, purified melanin had a detrimental effect on the tested MDR bacterial strains, of which PA-09 and SA-04 were clearly more susceptible to melanin compared with other strains with MICs of 6.25 and 25 µg/mL, respectively. CONCLUSION Our results demonstrated that the newly characterized pyomelanin from Streptomyces djakartensis NSS-3 has valuable biological properties due to its potential photoprotective, antioxidant, anticancer, antimicrobial, and lack of cytotoxic activities, which open up new prospects for using this natural melanin pigment in various biotechnological applications and avoiding chemical-based drugs.
Collapse
Affiliation(s)
- Nessma A El-Zawawy
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, Egypt.
| | - El-Refaie Kenawy
- Chemistry Department, Polymer Research Unit, Faculty of Science, Tanta University, Tanta, Egypt
| | - Sara Ahmed
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Shimaa El-Sapagh
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
8
|
Sun J, Han Y, Dong J, Lv S, Zhang R. Melanin/melanin-like nanoparticles: As a naturally active platform for imaging-guided disease therapy. Mater Today Bio 2023; 23:100894. [PMID: 38161509 PMCID: PMC10755544 DOI: 10.1016/j.mtbio.2023.100894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
The development of biocompatible and efficient nanoplatforms that combine diagnostic and therapeutic functions is of great importance for precise disease treatment. Melanin, an endogenous biopolymer present in living organisms, has attracted increasing attention as a versatile bioinspired functional platform owing to its unique physicochemical properties (e.g., high biocompatibility, strong chelation of metal ions, broadband light absorption, high drug binding properties) and inherent antioxidant, photoprotective, anti-inflammatory, and anti-tumor effects. In this review, the fundamental physicochemical properties and preparation methods of natural melanin and melanin-like nanoparticles were outlined. A systematical description of the recent progress of melanin and melanin-like nanoparticles in single, dual-, and tri-multimodal imaging-guided the visual administration and treatment of osteoarthritis, acute liver injury, acute kidney injury, acute lung injury, brain injury, periodontitis, iron overload, etc. Was then given. Finally, it concluded with a reasoned discussion of current challenges toward clinical translation and future striving directions. Therefore, this comprehensive review provides insight into the current status of melanin and melanin-like nanoparticles research and is expected to optimize the design of novel melanin-based therapeutic platforms and further clinical translation.
Collapse
Affiliation(s)
- Jinghua Sun
- The Molecular Medicine Research Team of First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Yahong Han
- Shanxi Medical University, Taiyuan 030001, China
| | - Jie Dong
- Shanxi Medical University, Taiyuan 030001, China
| | - Shuxin Lv
- Shanxi Medical University, Taiyuan 030001, China
| | - Ruiping Zhang
- The Molecular Medicine Research Team of First Hospital of Shanxi Medical University, Taiyuan, 030001, China
- The Radiology Department of Shanxi Provincial People’ Hospital, Five Hospital of Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
9
|
Li C, Ding Z, Han Y. Mn-Doped Nano-Hydroxyapatites as Theranostic Agents with Tumor pH-Amplified MRI-Signal Capabilities for Guiding Photothermal Therapy. Int J Nanomedicine 2023; 18:6101-6118. [PMID: 37915749 PMCID: PMC10617543 DOI: 10.2147/ijn.s429336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023] Open
Abstract
Background The integration of diagnostic and therapeutic functions into a biosafe nanoplatform with intelligent response functions at the tumor microenvironment (TME) is a promising strategy for cancer therapy. Methods Mn-doped nano-hydroxyapatite (nHAPMn) nanoparticles were successfully prepared via a simple coprecipitation method for magnetic resonance imaging (MRI)-guided photothermal therapy. This study is the first to report on the use of Mn to render biodegradable hydroxyapatite suitable for MRI and effective photothermal therapy (PTT) simultaneously by regulating the pH of nHAPMn during the preparation process. Results Combined with near-infrared (NIR) laser irradiation, a photothermal conversion efficiency of 26% and effective photothermal lethality in vitro were achieved. Moreover, the degradation of nHAPMn led to the release of Mn ions and amplified the MRI signals in an acidic TME, which confirmed that nHAPMn had a good pH-responsive MRI capacity in solid tumors. In animal experiments, tumors in the nHAPMn5+NIR group completely abated after 14 days of treatment, with no significant recurrence during the experiment. Conclusion Therefore, nHAPMn is promising as a nanotheranostic agent and can be effective in clinical diagnosis and therapy for treating cancer.
Collapse
Affiliation(s)
- Chengyu Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, People’s Republic of China
| | - Ziyou Ding
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, People’s Republic of China
| | - Yingchao Han
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, People’s Republic of China
| |
Collapse
|
10
|
Mavridi-Printezi A, Menichetti A, Mordini D, Montalti M. Functionalization of and through Melanin: Strategies and Bio-Applications. Int J Mol Sci 2023; 24:9689. [PMID: 37298641 PMCID: PMC10253489 DOI: 10.3390/ijms24119689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
A unique feature of nanoparticles for bio-application is the ease of achieving multi-functionality through covalent and non-covalent functionalization. In this way, multiple therapeutic actions, including chemical, photothermal and photodynamic activity, can be combined with different bio-imaging modalities, such as magnetic resonance, photoacoustic, and fluorescence imaging, in a theragnostic approach. In this context, melanin-related nanomaterials possess unique features since they are intrinsically biocompatible and, due to their optical and electronic properties, are themselves very efficient photothermal agents, efficient antioxidants, and photoacoustic contrast agents. Moreover, these materials present a unique versatility of functionalization, which makes them ideal for the design of multifunctional platforms for nanomedicine integrating new functions such as drug delivery and controlled release, gene therapy, or contrast ability in magnetic resonance and fluorescence imaging. In this review, the most relevant and recent examples of melanin-based multi-functionalized nanosystems are discussed, highlighting the different methods of functionalization and, in particular, distinguishing pre-functionalization and post-functionalization. In the meantime, the properties of melanin coatings employable for the functionalization of a variety of material substrates are also briefly introduced, especially in order to explain the origin of the versatility of melanin functionalization. In the final part, the most relevant critical issues related to melanin functionalization that may arise during the design of multifunctional melanin-like nanoplatforms for nanomedicine and bio-application are listed and discussed.
Collapse
Affiliation(s)
| | | | | | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (A.M.); (D.M.)
| |
Collapse
|
11
|
Li Z, Li Z, Wang J. Visualization of Phototherapy Evolution by Optical Imaging. Molecules 2023; 28:molecules28103992. [PMID: 37241733 DOI: 10.3390/molecules28103992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), is a non-invasive and effective approach used for cancer treatment, in which phototherapeutic agents are irradiated with an appropriate light source to produce cytotoxic reactive oxygen species (ROS) or heat to ablate cancer cells. Unfortunately, traditional phototherapy lacks a facile imaging method to monitor the therapeutic process and efficiency in real time, usually leading to severe side effects due to high levels of ROS and hyperthermia. To realize precise cancer treatment methods, it is highly desired to develop phototherapeutic agents possessing an imaging ability to evaluate the therapeutic process and efficacy in real time during cancer phototherapy. Recently, a series of self-reporting phototherapeutic agents were reported to monitor PDT and PTT processes by combining optical imaging technologies with phototherapy. Due to the real-time feedback provided by optical imaging technology, therapeutic responses or dynamic changes in the tumor microenvironment could be evaluated in a timely manner, thereby achieving personalized precision treatment and minimizing toxic side effects. In this review, we focus on the advances in the development of self-reporting phototherapeutic agents for a cancer phototherapy evaluation based on optical imaging technology to realize precision cancer treatments. Additionally, we propose the current challenges and future directions of self-reporting agents for precision medicine.
Collapse
Affiliation(s)
- Zhiheng Li
- College of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Zheng Li
- Wuhan Academy of Agricultural Sciences, Wuhan 430072, China
| | - Jie Wang
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
12
|
Yang Y, Li T, Jing W, Yan Z, Li X, Fu W, Zhang R. Dual-modality and Noninvasive Diagnostic of MNP-PEG-Mn Nanoprobe for Renal Fibrosis Based on Photoacoustic and Magnetic Resonance Imaging. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12797-12808. [PMID: 36866785 DOI: 10.1021/acsami.2c22512] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
To date, imaging-guided multimodality therapy is important to improve the accuracy of the diagnosis of renal fibrosis, and nanoplatforms for imaging-guided multimodality diagnosis are gaining more and more attention. There are many limitations and deficiencies in clinical use for early-stage diagnosis of renal fibrosis, and multimodal imaging can contribute more thoroughly and provide in-detail information for effective clinical diagnosis. Melanin is an endogenous biomaterial, and we developed an ultrasmall particle size melanin nanoprobe (MNP-PEG-Mn) based on photoacoustic (PA) and magnetic resonance (MR) dual-modal imaging. MNP-PEG-Mn nanoprobe, with the average diameter about 2.7 nm, can be passively targeted for accumulation in the kidney, and it has excellent free radical scavenging and antioxidant abilities without further exacerbating renal fibrosis. Using the normal group signal as a control, the dual-modal imaging results showed that the MR imaging (MAI) and PA imaging (PAI) signals reached the strongest at 6 h when MNP-PEG-Mn entered the 7 day renal fibrosis group via the left vein of the tail end of the mice; however, the strength of the dual-modal imaging signal and the gradient of signal change were significantly weaker in the 28 day renal fibrosis group than in the 7 day renal fibrosis group and normal group. The phenomenon preliminarily indicates that as a PAI/MRI dual-modality contrast medium candidate, MNP-PEG-Mn has outstanding ability in clinical application potential.
Collapse
Affiliation(s)
- Yilin Yang
- Shanxi Medical University, Taiyuan 030001, People's Republic of China
| | - Tingting Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, People's Republic of China
| | - Wenyu Jing
- Shanxi Medical University, Taiyuan 030001, People's Republic of China
| | - Zirui Yan
- Shanxi Medical University, Taiyuan 030001, People's Republic of China
| | - Xueqi Li
- Shanxi Medical University, Taiyuan 030001, People's Republic of China
| | - Weihua Fu
- Shanxi Medical University, Taiyuan 030001, People's Republic of China
| | - Ruiping Zhang
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
13
|
Guo L, Li W, Gu Z, Wang L, Guo L, Ma S, Li C, Sun J, Han B, Chang J. Recent Advances and Progress on Melanin: From Source to Application. Int J Mol Sci 2023; 24:4360. [PMID: 36901791 PMCID: PMC10002160 DOI: 10.3390/ijms24054360] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Melanin is a biological pigment formed by indoles and phenolic compounds. It is widely found in living organisms and has a variety of unique properties. Due to its diverse characteristics and good biocompatibility, melanin has become the focus in the fields of biomedicine, agriculture, the food industry, etc. However, due to the wide range of melanin sources, complex polymerization properties, and low solubility of specific solvents, the specific macromolecular structure and polymerization mechanism of melanin remain unclear, which significantly limits the further study and application of melanin. Its synthesis and degradation pathways are also controversial. In addition, new properties and applications of melanin are constantly being discovered. In this review, we focus on the recent advances in the research of melanin in all aspects. Firstly, the classification, source, and degradation of melanin are summarized. Secondly, a detailed description of the structure, characterization, and properties of melanin is followed. The novel biological activity of melanin and its application is described at the end.
Collapse
Affiliation(s)
- Lili Guo
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Wenya Li
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Zhiyang Gu
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Litong Wang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Lan Guo
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Saibo Ma
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Cuiyao Li
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Jishang Sun
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Baoqin Han
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Jing Chang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| |
Collapse
|
14
|
Jung W, Lee DY, Moon E, Jon S. Nanoparticles derived from naturally occurring metal chelators for theranostic applications. Adv Drug Deliv Rev 2022; 191:114620. [PMID: 36379406 DOI: 10.1016/j.addr.2022.114620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/15/2022]
Abstract
Metals are indispensable for the activities of all living things, from single-celled organisms to higher organisms, including humans. Beyond their intrinsic quality as metal ions, metals help creatures to maintain requisite biological processes by forming coordination complexes with endogenous ligands that are broadly distributed in nature. These types of naturally occurring chelating reactions are found through the kingdoms of life, including bacteria, plants and animals. Mimicking these naturally occurring coordination complexes with intrinsic biocompatibility may offer an opportunity to develop nanomedicine toward clinical applications. Herein, we introduce representative examples of naturally occurring coordination complexes in a selection of model organisms and highlight such bio-inspired metal-chelating nanomaterials for theranostic applications.
Collapse
Affiliation(s)
- Wonsik Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea; Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Dong Yun Lee
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Seoul 05505, Republic of Korea; Translational Biomedical Research Group, Biomedical Research Center, Asan Institute for Life Science, Asan Medical Center, 88 Olympic-ro 43-gil, Seoul 05505, Republic of Korea.
| | - Eugene Moon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea; Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Sangyong Jon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea; Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea.
| |
Collapse
|
15
|
Lv S, Sun J, Guo C, Qin Y, Zhang R. PAI/MRI Visualization of Tumor Derived Cellular Microvesicles with Endogenous Biopolymer Nanoparticles Modification. Int J Nanomedicine 2022; 17:2883-2890. [PMID: 35795080 PMCID: PMC9252299 DOI: 10.2147/ijn.s367721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/07/2022] [Indexed: 12/24/2022] Open
Abstract
Background Tumor derived cellular microvesicles (TDMVs), as excellent drug delivery vehicles in vivo, play an important role in the treatment of cancers. However, it is difficult to obtain intuitional biodistribution behavior and internalization mechanisms of TDMVs in vivo. Thus, it is very urgent and important to establish a stable and reliable visualization technology to track the biological behavior and function of TDMVs. As an endogenous biopolymer, melanin possesses natural biocompatibility and biodegradability, and various biological imaging could be realized by modifying it. Therefore, melanin-based nanoparticles are excellent candidates for in vivo visualization of TDMVs. Methods In this work, the biodistribution and metabolic behavior of TDMVs were visualized by dual-modality imaging with PAI and MRI after incubation with gadolinium ion-chelated melanin nanoparticles. Results In this study, MRI and PAI dual-modality imaging of the in vivo distribution behavior of TDMVs was achieved with the help of MNP-Gd. The good targeting ability of TDMVs at the homologous tumor site was observed, and their distribution and metabolism behavior in the whole body were studied at the meantime. The results indicated that TDMVs preferentially accumulated in syngeneic tumor sites and liver regions after intravenous injection and were eventually metabolized by the kidneys over time. Conclusion This work proposed a novel dual-modal imaging strategy for the visualization of TDMVs, which is of great significance for further understanding the biological mechanisms of extracellular vesicles.
Collapse
Affiliation(s)
- Shuxin Lv
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, People's Republic of China
| | - Jinghua Sun
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, People's Republic of China
| | - Chunyan Guo
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, People's Republic of China
| | - Yufei Qin
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, People's Republic of China
| | - Ruiping Zhang
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, People's Republic of China
| |
Collapse
|
16
|
Liang S, Liao G, Zhu W, Zhang L. Manganese-based hollow nanoplatforms for MR imaging-guided cancer therapies. Biomater Res 2022; 26:32. [PMID: 35794641 PMCID: PMC9258146 DOI: 10.1186/s40824-022-00275-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/10/2022] [Indexed: 12/13/2022] Open
Abstract
Theranostic nanoplatforms integrating diagnostic and therapeutic functions have received considerable attention in the past decade. Among them, hollow manganese (Mn)-based nanoplatforms are superior since they combine the advantages of hollow structures and the intrinsic theranostic features of Mn2+. Specifically, the hollow cavity can encapsulate a variety of small-molecule drugs, such as chemotherapeutic agents, photosensitizers and photothermal agents, for chemotherapy, photodynamic therapy (PDT) and photothermal therapy (PTT), respectively. After degradation in the tumor microenvironment (TME), the released Mn2+ is able to act simultaneously as a magnetic resonance (MR) imaging contrast agent (CA) and as a Fenton-like agent for chemodynamic therapy (CDT). More importantly, synergistic treatment outcomes can be realized by reasonable and optimized design of the hollow nanosystems. This review summarizes various Mn-based hollow nanoplatforms, including hollow MnxOy, hollow matrix-supported MnxOy, hollow Mn-doped nanoparticles, hollow Mn complex-based nanoparticles, hollow Mn-cobalt (Co)-based nanoparticles, and hollow Mn-iron (Fe)-based nanoparticles, for MR imaging-guided cancer therapies. Finally, we discuss the potential obstacles and perspectives of these hollow Mn-based nanotheranostics for translational applications. Mn-based hollow nanoplatforms such as hollow MnxOy nanoparticles, hollow matrix-supported MnxOy nanoparticles, Mn-doped hollow nanoparticles, Mn complex-based hollow nanoparticles, hollow Mn-Co-based nanoparticles and hollow Mn-Fe-based nanoparticles show great promise in cancer theranostics.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guangfu Liao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China.
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Li Zhang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| |
Collapse
|
17
|
Li T, Yang Y, Jing W, Yan Z, Che J, Xu H, Hu X, Zhang R. Melanin-gelatin nanoparticles with both EPR effect and renal clearance for PA/MRI dual-modal imaging of tumors. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 134:112718. [DOI: 10.1016/j.msec.2022.112718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/31/2022] [Accepted: 02/12/2022] [Indexed: 01/09/2023]
|
18
|
Multimodal magnetic resonance image and electroencephalogram constrained fusion algorithm using deep learning. Soft comput 2021. [DOI: 10.1007/s00500-021-06574-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Liu X, Rong P. Recent Advances of Manganese-Based Hybrid Nanomaterials for Cancer Precision Medicine. Front Oncol 2021; 11:707618. [PMID: 34722253 PMCID: PMC8548572 DOI: 10.3389/fonc.2021.707618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/14/2021] [Indexed: 11/22/2022] Open
Abstract
Cancer precision medicine (CPM) could tailor the best treatment for individual cancer patients, while imaging techniques play important roles in its application. With the characteristics of noninvasion, nonionized, radiation-free, multidimensional imaging function, and real-time monitoring, magnetic resonance imaging (MRI) is an effective way for early tumor detection, and it has become a tower of strength in CPM imaging techniques. Due to linkage with nephrogenic systemic fibrosis (NSF), gadolinium (Gd)-based contrast agent (CA), which was long used in MRI, has been restricted by the Food and Drug Administration (FDA). In this review, we would like to introduce the manganese (Mn)-based CAs that could significantly increase the safety of MRI CAs by realizing more superior performance and functions simultaneously in the diagnosis and treatment of tumors. Also, recent advances in Mn-based hybrid nanomaterials for CPM are summarized and discussed.
Collapse
Affiliation(s)
- Xiaoman Liu
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha, China.,Postdoctoral Research Station of Clinical Medicine, Third Xiangya Hospital, Central South University, Changsha, China.,College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Pengfei Rong
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
20
|
Zhao Y, Liu Y, Wang Y, Xu B, Zhang S, Liu J, Zhang T, Jin L, Song S, Zhang H. Rapidly clearable MnCo 2O 4@PAA as novel nanotheranostic agents for T 1/T 2 bimodal MRI imaging-guided photothermal therapy. NANOSCALE 2021; 13:16251-16257. [PMID: 34549746 DOI: 10.1039/d1nr04067g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Integrating multi-modal imaging and therapy functions into a nanoplatform has been recognized as a promising strategy for cancer theranostics with high accuracy and efficiency. However, there are still some challenges, such as the complicated synthesis process and instability. Herein, we successfully prepared clearable MnCo2O4 nanodots modified with polyacrylic acid (MnCo2O4@PAA) as nanoagents for T1/T2 bimodal MRI imaging-guided PTT. Owing to their intrinsic magnetic properties, single MnCo2O4@PAA nanomaterials can serve as contrasts for T1/T2 bimodal MRI, providing precise diagnotic information. Moreover, excellent absorption in the NIR biowindow endows MnCo2O4@PAA with good photothermal performance, and the ultrasmall size of MnCo2O4@PAA allows them to penetrate deeply into tumors, resulting in a good anticancer effect in vitro and in vivo. What is more, MnCo2O4@PAA can almost be completely cleared from mice at 7 d postinjection, implying their negligible long-term toxicity. These findings demonstrate that MnCo2O4@PAA are promising nanoagents for cancer diagnosis and treatment, which have great potential for clinical applications.
Collapse
Affiliation(s)
- Ying Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
- School of Applied Chemistry and Engineering University of Science and Technology of China, Hefei 230026, China
| | - Yang Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
- School of Applied Chemistry and Engineering University of Science and Technology of China, Hefei 230026, China
| | - Yinghui Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
| | - Bo Xu
- The first hospital of Jilin University, Changchun 130021, China
| | - Songtao Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
| | - Jianhua Liu
- Department of Radiology, The second hospital of Jilin University, Changchun 130041, China.
| | - Tianqi Zhang
- Department of Radiology, The second hospital of Jilin University, Changchun 130041, China.
| | - Longhai Jin
- Department of Radiology, The second hospital of Jilin University, Changchun 130041, China.
| | - Songyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
- School of Applied Chemistry and Engineering University of Science and Technology of China, Hefei 230026, China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
21
|
Sun J, Li L, Cai W, Chen A, Zhang R. Multifunctional Hybrid Nanoprobe for Photoacoustic/PET/MR Imaging-Guided Photothermal Therapy of Laryngeal Cancer. ACS APPLIED BIO MATERIALS 2021; 4:5312-5323. [PMID: 35007012 DOI: 10.1021/acsabm.1c00423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Laryngeal cancer is highly aggressive and insensitive to conventional targeted therapies, which often result in poor therapeutic outcomes. Image-guided precision therapy is a promising strategy in oncology that has superior safety and efficacy versus conventional therapies. Here, we present a multifunctional theranostic nanoplatform based on melanin-coated gold nanorod (GNR) that exhibits excellent multimodal imaging ability and photothermal effects. These attributes make the platform applicable for multimodal photoacoustic (PA)/positron emission tomography (PET)/magnetic resonance (MR) image-guided photothermal treatment of laryngeal cancer. The melanin nanoparticles markedly suppress the cytotoxicity of the template cetyltrimethylammonium bromide bilayer and conferred the GNR with excellent PET/MR imaging performances, due to their native biocompatibilities and strong affinities to metal ions. Moreover, the introduction of GNR to the melanin nanoparticles greatly improved the near-infrared absorbances and passive targeting capabilities, leading to exceptional PA imaging and photothermal ablation of tumors. The nanoplatform exhibits high stability and dispersity under physiological conditions. After intravenous injection, the nanoplatform could be precisely tracked in vivo and enabled laryngopharyngeal superficial cancer to be located and imaged. Combined photothermal therapy effectively ablated tumors with negligible side effects. Thus, this work presents a unique and biocompatible nanoplatform that allows multimodal imaging, high anti-tumor PTT efficacy, and negligible side effects in the treatment of laryngeal cancer.
Collapse
Affiliation(s)
- Jinghua Sun
- Imaging Department, The Third Hospital of Shanxi Medical University, Taiyuan 030032, China.,Shanxi Medical University, Taiyuan 030001, China
| | - Liping Li
- Imaging Department, The Third Hospital of Shanxi Medical University, Taiyuan 030032, China.,Shanxi Medical University, Taiyuan 030001, China
| | - Wenwen Cai
- Imaging Department, The Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Anqi Chen
- Imaging Department, The Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Ruiping Zhang
- Imaging Department, The Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| |
Collapse
|
22
|
Chen K, Li Q, Zhao X, Zhang J, Ma H, Sun X, Yu Q, Zhang Y, Fang C, Nie L. Biocompatible melanin based theranostic agent for in vivo detection and ablation of orthotopic micro-hepatocellular carcinoma. Biomater Sci 2021; 8:4322-4333. [PMID: 32602480 DOI: 10.1039/d0bm00825g] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Early diagnosis and therapy of hepatocellular carcinoma (HCC) is critical to improve the five-year survival rates of patients. Theranostic agents synergized with photothermal ablation are expected to realize the early detection and treatment of orthotopic HCC. However, conventional metallic nanoagents are limited by their potential bio-toxicity to surrounding normal organs. Recently, endogenous biological melanin pigments have been utilized to develop nanoplatforms due to their excellent biocompatibility and degradability. Whereas, the insufficient capability of PEGylated melanin nanoparticles (PEG-MNPs) in photoacoustic (PA) imaging limits their further biomedical applications. Paradoxically, it is difficult to meet these two different requirements. Herein, a multifunctional nanoagent based on melanin (MNPs) conjugating the near-infrared (NIR) dye IR820 was successfully designed and fabricated. Encapsulation by polyethylene glycol (PEG) renders the solubility in water and allows the physical absorption of IR820 for enhanced photoacoustic (PA) performance and photothermal therapy. Besides, PEG coating on the surface of IR820-PEG-MNPs resulted in a reduction in swallowing in the reticuloendothelial system of the liver and spleen, prolonging the circulation time in the blood and increasing the accumulation in the tumor. The IR820-PEG-MNPs displayed satisfactory PA and T1-weighted magnetic resonance imaging (MRI) signals in aqueous solution as well as strong photothermal efficiency. Compared with prior injection, PA/MR signals of the tumor region were enhanced by 4.13- and 1.60-fold, respectively, which could effectively detect lesions smaller than ∼1.8 mm. Furthermore, the high photothermal conversion efficiency (40.2%) endowed the IR820-PEG-MNPs with the capability of selectively ablating tumors in orthotopic HCC mouse models under the guidance of PA/MR imaging. This work broadens the biomedical applications of melanin-based agent, which are promising for the precise diagnosis of orthotopic micro HCC and imaging guided photothermal ablation.
Collapse
Affiliation(s)
- Kang Chen
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, PR China. and Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou 510280, PR China
| | - Qiaolin Li
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, PR China. and Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou 510280, PR China
| | - Xingyang Zhao
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, PR China. and Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou 510280, PR China
| | - Jinde Zhang
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, PR China.
| | - Haosong Ma
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, PR China.
| | - Xiang Sun
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, PR China.
| | - Qian Yu
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, PR China.
| | - Yueming Zhang
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, PR China. and Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou 510280, PR China
| | - Chihua Fang
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, PR China. and Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou 510280, PR China
| | - Liming Nie
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, PR China.
| |
Collapse
|
23
|
Sun J, Cai W, Sun Y, Guo C, Zhang R. Facile Synthesis of Melanin-Dye Nanoagent for NIR-II Fluorescence/Photoacoustic Imaging-Guided Photothermal Therapy. Int J Nanomedicine 2020; 15:10199-10213. [PMID: 33364754 PMCID: PMC7751739 DOI: 10.2147/ijn.s284520] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/13/2020] [Indexed: 12/19/2022] Open
Abstract
Background Laryngeal cancer is the second most common type of primary epithelial malignant tumor in the head and neck region, and the development of therapies that are more precise, efficient, and safe is necessary to preserve patient speech and swallowing functions as much as possible. Multi-modal imaging-guided photothermal therapy (PTT) can precisely delineate tumors, monitor the real-time accumulation of photothermal agents at the tumor site, accurately select the optimal region for irradiation, and predict the best time for laser treatment. Compared with exogeneous photothermal agents, endogenous melanin materials have better biosafety in vivo, in terms of native biocompatibility and biodegradability, as well as good near-infrared (NIR) absorbance. An NIR-II dye can be attached to melanin via a facile method, and applying a melanin-dye-based nanoprobe could be an excellent choice for the elimination of superficial laryngeal cancer while avoiding total laryngectomy. Methods In this work, a promising nanoprobe was constructed using a facile EDC/NHS strategy involving an NIR-II dye and melanin nanoparticles. Results The nanoprobe exhibited good water solubility, dispersibility, strong NIR-II fluorescence and photoacoustic (PA) signals, and higher photothermal performance. Cellular studies showed that the nanoprobe had low toxicity, excellent biocompatibility, and significantly enhanced imaging properties. After the nanoprobe was intravenously injected into Hep-2 laryngeal xenografts, superior dual-modal images were obtained at various time points, which revealed that the optimal photothermal treatment time was 8 h. Subsequently, PTT was carried out in vivo, and laryngeal tumors were completely eliminated after laser irradiation without any obvious side effects. Conclusion These results indicate the immense potential of nanoprobes for the NIR-II fluorescence/PA imaging-guided photothermal therapy of laryngeal cancer.
Collapse
Affiliation(s)
- Jinghua Sun
- Center for Translational Medicine Research, Shanxi Medical University, Imaging Department, The Affiliated Bethune Hospital of Shanxi Medical University, Taiyuan 030001, People's Republic of China
| | - Wenwen Cai
- Center for Translational Medicine Research, Shanxi Medical University, Imaging Department, The Affiliated Bethune Hospital of Shanxi Medical University, Taiyuan 030001, People's Republic of China
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Chunyan Guo
- Center for Translational Medicine Research, Shanxi Medical University, Imaging Department, The Affiliated Bethune Hospital of Shanxi Medical University, Taiyuan 030001, People's Republic of China
| | - Ruiping Zhang
- Center for Translational Medicine Research, Shanxi Medical University, Imaging Department, The Affiliated Bethune Hospital of Shanxi Medical University, Taiyuan 030001, People's Republic of China
| |
Collapse
|
24
|
Mavridi-Printezi A, Guernelli M, Menichetti A, Montalti M. Bio-Applications of Multifunctional Melanin Nanoparticles: From Nanomedicine to Nanocosmetics. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2276. [PMID: 33212974 PMCID: PMC7698489 DOI: 10.3390/nano10112276] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022]
Abstract
Bioinspired nanomaterials are ideal components for nanomedicine, by virtue of their expected biocompatibility or even complete lack of toxicity. Natural and artificial melanin-based nanoparticles (MNP), including polydopamine nanoparticles (PDA NP), excel for their extraordinary combination of additional optical, electronic, chemical, photophysical, and photochemical properties. Thanks to these features, melanin plays an important multifunctional role in the design of new platforms for nanomedicine where this material works not only as a mechanical support or scaffold, but as an active component for imaging, even multimodal, and simple or synergistic therapy. The number of examples of bio-applications of MNP increased dramatically in the last decade. Here, we review the most recent ones, focusing on the multiplicity of functions that melanin performs in theranostics platforms with increasing complexity. For the sake of clarity, we start analyzing briefly the main properties of melanin and its derivative as well as main natural sources and synthetic methods, moving to imaging application from mono-modal (fluorescence, photoacoustic, and magnetic resonance) to multi-modal, and then to mono-therapy (drug delivery, anti-oxidant, photothermal, and photodynamic), and finally to theranostics and synergistic therapies, including gene- and immuno- in combination to photothermal and photodynamic. Nanomedicine aims not only at the treatment of diseases, but also to their prevention, and melanin in nature performs a protective action, in the form of nanopigment, against UV-Vis radiations and oxidants. With these functions being at the border between nanomedicine and cosmetics nanotechnology, recently examples of applications of artificial MNP in cosmetics are increasing, paving the road to the birth of the new science of nanocosmetics. In the last part of this review, we summarize and discuss these important recent results that establish evidence of the interconnection between nanomedicine and cosmetics nanotechnology.
Collapse
Affiliation(s)
- Alexandra Mavridi-Printezi
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (M.G.); (A.M.)
| | - Moreno Guernelli
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (M.G.); (A.M.)
| | - Arianna Menichetti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (M.G.); (A.M.)
| | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (M.G.); (A.M.)
- Tecnopolo di Rimini, Via Campana 71, 47922 Rimini, Italy
| |
Collapse
|
25
|
Li X, Sun Y, Ma L, Liu G, Wang Z. The Renal Clearable Magnetic Resonance Imaging Contrast Agents: State of the Art and Recent Advances. Molecules 2020; 25:E5072. [PMID: 33139643 PMCID: PMC7662352 DOI: 10.3390/molecules25215072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
The advancements of magnetic resonance imaging contrast agents (MRCAs) are continuously driven by the critical needs for early detection and diagnosis of diseases, especially for cancer, because MRCAs improve diagnostic accuracy significantly. Although hydrophilic gadolinium (III) (Gd3+) complex-based MRCAs have achieved great success in clinical practice, the Gd3+-complexes have several inherent drawbacks including Gd3+ leakage and short blood circulation time, resulting in the potential long-term toxicity and narrow imaging time window, respectively. Nanotechnology offers the possibility for the development of nontoxic MRCAs with an enhanced sensitivity and advanced functionalities, such as magnetic resonance imaging (MRI)-guided synergistic therapy. Herein, we provide an overview of recent successes in the development of renal clearable MRCAs, especially nanodots (NDs, also known as ultrasmall nanoparticles (NPs)) by unique advantages such as high relaxivity, long blood circulation time, good biosafety, and multiple functionalities. It is hoped that this review can provide relatively comprehensive information on the construction of novel MRCAs with promising clinical translation.
Collapse
Affiliation(s)
- Xiaodong Li
- Department of Radiology, China-Japan Union Hospital of Jilin University, Xiantai Street, Changchun 130033, China;
| | - Yanhong Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (Y.S.); (L.M.)
| | - Lina Ma
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (Y.S.); (L.M.)
| | - Guifeng Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Xiantai Street, Changchun 130033, China;
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (Y.S.); (L.M.)
| |
Collapse
|
26
|
Kang S, Baskaran R, Ozlu B, Davaa E, Kim JJ, Shim BS, Yang SG. T 1-Positive Mn 2+-Doped Multi-Stimuli Responsive poly(L-DOPA) Nanoparticles for Photothermal and Photodynamic Combination Cancer Therapy. Biomedicines 2020; 8:E417. [PMID: 33066425 PMCID: PMC7656312 DOI: 10.3390/biomedicines8100417] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 01/12/2023] Open
Abstract
In this study, we designed near-infrared (NIR)-responsive Mn2+-doped melanin-like poly(L-DOPA) nanoparticles (MNPs), which act as multifunctional nano-platforms for cancer therapy. MNPs, exhibited favorable π-π stacking, drug loading, dual stimuli (NIR and glutathione) responsive drug release, photothermal and photodynamic therapeutic activities, and T1-positive contrast for magnetic resonance imaging (MRI). First, MNPs were fabricated via KMnO4 oxidation, where the embedded Mn2+ acted as a T1-weighted contrast agent. MNPs were then modified using a photosensitizer, Pheophorbide A, via a reducible disulfide linker for glutathione-responsive intracellular release, and then loaded with doxorubicin through π-π stacking and hydrogen bonding. The therapeutic potential of MNPs was further explored via targeted design. MNPs were conjugated with folic acid (FA) and loaded with SN38, thereby demonstrating their ability to bind to different anti-cancer drugs and their potential as a versatile platform, integrating targeted cancer therapy and MRI-guided photothermal and chemotherapeutic therapy. The multimodal therapeutic functions of MNPs were investigated in terms of T1-MR contrast phantom study, photothermal and photodynamic activity, stimuli-responsive drug release, enhanced cellular uptake, and in vivo tumor ablation studies.
Collapse
Affiliation(s)
- Sumin Kang
- Department of Chemical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea; (S.K.); (B.O.)
| | - Rengarajan Baskaran
- Department of Biomedical Science, Inha University College of Medicine, 366 Seohae-Daero, Jung-gu, Incheon 22332, Korea; (R.B.); (E.D.); (J.J.K.)
| | - Busra Ozlu
- Department of Chemical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea; (S.K.); (B.O.)
- Program in Biomedical Science & Engineering, Inha University Graduate School, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| | - Enkhzaya Davaa
- Department of Biomedical Science, Inha University College of Medicine, 366 Seohae-Daero, Jung-gu, Incheon 22332, Korea; (R.B.); (E.D.); (J.J.K.)
| | - Jung Joo Kim
- Department of Biomedical Science, Inha University College of Medicine, 366 Seohae-Daero, Jung-gu, Incheon 22332, Korea; (R.B.); (E.D.); (J.J.K.)
- Program in Biomedical Science & Engineering, Inha University Graduate School, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| | - Bong Sup Shim
- Department of Chemical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea; (S.K.); (B.O.)
- Program in Biomedical Science & Engineering, Inha University Graduate School, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| | - Su-Geun Yang
- Department of Biomedical Science, Inha University College of Medicine, 366 Seohae-Daero, Jung-gu, Incheon 22332, Korea; (R.B.); (E.D.); (J.J.K.)
- Program in Biomedical Science & Engineering, Inha University Graduate School, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
- Inha Institute of Aerospace Medicine, Inha University College of Medicine, 366 Seohae-Daero, Jung-gu, Incheon 22332, Korea
| |
Collapse
|
27
|
Cai W, Sun J, Sun Y, Zhao X, Guo C, Dong J, Peng X, Zhang R. NIR-II FL/PA dual-modal imaging long-term tracking of human umbilical cord-derived mesenchymal stem cells labeled with melanin nanoparticles and visible HUMSC-based liver regeneration for acute liver failure. Biomater Sci 2020; 8:6592-6602. [PMID: 33231594 DOI: 10.1039/d0bm01221a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Acetaminophen (APAP) has been widely used for relieving pain and fever, whilst overdose would lead to the occurrence of acute liver failure (ALF). Currently, few effective treatments are available for ALF in clinic, especially for severe, advanced- or end-stage patients who need liver transplantation. Human umbilical cord-derived mesenchymal stem cells (hUMSCs), as one of the mesenchymal stem cells, not only contribute to relieving hepatotoxicity and promoting hepatocyte regeneration due to their self-renewing, multi-differentiation potential, anti-inflammatory, immunomodulatory and paracrine properties, but possess lower immunomodulatory effects, faster self-renewal properties and noncontroversial ethical concerns, which may play a better role in the treatment of ALF. In this work, hUMSCs were rapidly labeled with near-infrared II fluorescent dye-modified melanin nanoparticles (MNP-PEG-H2), which could realize long-term tracking of hUMSCs by NIR-II fluorescent (FL)/photoacoustic (PA) dual-modal imaging and could visualize hUMSC-based liver regeneration in ALF. The nanoparticles exhibited good dispersibility and biocompatibility, high labeling efficiency for hUMSCs and excellent NIR-II FL/PA imaging performance. Moreover, the MNP-PEG-H2 labeled hUMSCs could be continuously traced in vivo for up to 21 days. After intravenous delivery, the NIR-II FL and PA images revealed that labeled hUMSCs were able to engraft in the injured liver and repair damaged tissue in ALF mice. Therefore, the hUMSCs labeled with endogenous melanin nanoparticles solve the key tracing problem of MSC-based regenerative medicine and realize the visualization of the treatment process, which may provide an efficient, safe and potential choice for ALF.
Collapse
Affiliation(s)
- Wenwen Cai
- Imaging Department, The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan 030032, China.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Qu B, Zhang X, Han Y, Peng X, Sun J, Zhang R. IR820 functionalized melanin nanoplates for dual-modal imaging and photothermal tumor eradication. NANOSCALE ADVANCES 2020; 2:2587-2594. [PMID: 36133390 PMCID: PMC9418734 DOI: 10.1039/d0na00236d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/04/2020] [Indexed: 05/02/2023]
Abstract
Melanin as an endogenous biomolecule is widely applied in the biomedical field, focusing especially on diagnostic imaging and photothermal therapy in cancer treatment. However, its photothermal conversion efficiency, a benchmark in tumor photothermal therapy (PTT), often could not satisfy PTT requirements to some degree, and this greatly influenced its use in photothermal cancer therapy. As for fluorescence imaging, a small-molecule NIR dye as a fluorescence probe is easily and rapidly metabolized in vivo, resulting in low accumulation in a tumor. To overcome these problems, we attempt to use melanin as a carrier to conjugate a fluorochrome, a recombinant small NIR dye IR820 nanoplatform containing melanin (MNP-PEG-IR820 abbreviated to MPI). The addition of IR820 not only enhances the PTT ability of the nanoplatform, but also endows the material with excellent NIR fluorescence behavior. Most importantly, the integration of fluorescence dye and melanin improves the circulation and stability performance of IR820 while reducing its toxicity in vivo, owing to the protectivity of melanin. Thus, the diagnostic capability is enhanced. Meanwhile, the behavior of the nanoplatform in PAI/PTT is significantly improved. The in vitro investigations reveal that the MPI NPs afford a potent PTT effect and ideal resistance to photobleaching. After intravenous injection, the MPI NPs display effective PTT tumor eradication in a Hep-2 tumor bearing mouse model with excellent dual NIR-I fluorescence/photoacoustic imaging guided phototherapy. Hence, our work shows the potential of MPI NPs as nano-theranostics for biomedical application to laryngocarcinoma.
Collapse
Affiliation(s)
- Botao Qu
- School of Basic Medical Sciences, Shanxi Medical University, Imaging College of Shanxi Medical University, The Affiliated Bethune Hospital of Shanxi Medical University Taiyuan 030001 P. R. China
| | - Xiaomin Zhang
- School of Basic Medical Sciences, Shanxi Medical University, Imaging College of Shanxi Medical University, The Affiliated Bethune Hospital of Shanxi Medical University Taiyuan 030001 P. R. China
| | - Yahong Han
- School of Basic Medical Sciences, Shanxi Medical University, Imaging College of Shanxi Medical University, The Affiliated Bethune Hospital of Shanxi Medical University Taiyuan 030001 P. R. China
| | - Xiaoyang Peng
- School of Basic Medical Sciences, Shanxi Medical University, Imaging College of Shanxi Medical University, The Affiliated Bethune Hospital of Shanxi Medical University Taiyuan 030001 P. R. China
| | - Jinghua Sun
- School of Basic Medical Sciences, Shanxi Medical University, Imaging College of Shanxi Medical University, The Affiliated Bethune Hospital of Shanxi Medical University Taiyuan 030001 P. R. China
| | - Ruiping Zhang
- School of Basic Medical Sciences, Shanxi Medical University, Imaging College of Shanxi Medical University, The Affiliated Bethune Hospital of Shanxi Medical University Taiyuan 030001 P. R. China
| |
Collapse
|
29
|
Han Y, Qu B, Li J, Zhang X, Peng X, Li W, Zhang R. A simple POM clusters for in vivo NIR-II photoacoustic imaging-guided NIR-II photothermal therapy. J Inorg Biochem 2020; 209:111121. [PMID: 32505013 DOI: 10.1016/j.jinorgbio.2020.111121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 01/13/2023]
Abstract
Photoacoustic (PA) imaging in the second near-infrared (NIR-II) window exhibits enhanced deep-tissue imaging capability. Likely, cancer therapy in the NIR-II window could provide deeper penetration depth and higher exposure to laser over NIR-I. However, the traditional application of excitation light is still in the NIR-I window. In view of the excellent imaging and therapeutic capabilities of NIR-II window, we have demonstrated a simple polyoxometalate (POM) clusters (molecular formula: (Na)n(PMo12O40) or (NH4+)n(PMo12O40)), which integrates NIR-II photoacoustic imaging and NIR-II photothermal therapy into an "all-in-one" theranostic nanoplatform, and could be used for PA imaging-guided photothermal therapy in the NIR-II window. In vivo experiments demonstrate that the POM clusters with good water solubility and biocompatibility were effective to kill tumor without recurrence and metastasis under 1064 nm laser illumination.
Collapse
Affiliation(s)
- Yahong Han
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; Imaging Department of the Affiliated Bethune Hospital of Shanxi Medical University, Taiyuan 030001, PR China
| | - Botao Qu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; Imaging Department of the Affiliated Bethune Hospital of Shanxi Medical University, Taiyuan 030001, PR China
| | - Juan Li
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China
| | - Xiaomin Zhang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China
| | - Xiaoyang Peng
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China
| | - Weihua Li
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, PR China.
| | - Ruiping Zhang
- Imaging Department of the Affiliated Bethune Hospital of Shanxi Medical University, Taiyuan 030001, PR China
| |
Collapse
|
30
|
Avasthi A, Caro C, Pozo-Torres E, Leal MP, García-Martín ML. Magnetic Nanoparticles as MRI Contrast Agents. Top Curr Chem (Cham) 2020; 378:40. [PMID: 32382832 PMCID: PMC8203530 DOI: 10.1007/s41061-020-00302-w] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/18/2020] [Indexed: 12/14/2022]
Abstract
Iron oxide nanoparticles (IONPs) have emerged as a promising alternative to conventional contrast agents (CAs) for magnetic resonance imaging (MRI). They have been extensively investigated as CAs due to their high biocompatibility and excellent magnetic properties. Furthermore, the ease of functionalization of their surfaces with different types of ligands (antibodies, peptides, sugars, etc.) opens up the possibility of carrying out molecular MRI. Thus, IONPs functionalized with epithelial growth factor receptor antibodies, short peptides, like RGD, or aptamers, among others, have been proposed for the diagnosis of various types of cancer, including breast, stomach, colon, kidney, liver or brain cancer. In addition to cancer diagnosis, different types of IONPs have been developed for other applications, such as the detection of brain inflammation or the early diagnosis of thrombosis. This review addresses key aspects in the development of IONPs for MRI applications, namely, synthesis of the inorganic core, functionalization processes to make IONPs biocompatible and also to target them to specific tissues or cells, and finally in vivo studies in animal models, with special emphasis on tumor models.
Collapse
Affiliation(s)
- Ashish Avasthi
- BIONAND - Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía-Universidad de Málaga, C/Severo Ochoa, 35, 29590, Málaga, Spain
| | - Carlos Caro
- BIONAND - Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía-Universidad de Málaga, C/Severo Ochoa, 35, 29590, Málaga, Spain
| | - Esther Pozo-Torres
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012, Seville, Spain
| | - Manuel Pernia Leal
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012, Seville, Spain.
| | - María Luisa García-Martín
- BIONAND - Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía-Universidad de Málaga, C/Severo Ochoa, 35, 29590, Málaga, Spain. .,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Málaga, Spain.
| |
Collapse
|
31
|
Liu H, Yang Y, Liu Y, Pan J, Wang J, Man F, Zhang W, Liu G. Melanin-Like Nanomaterials for Advanced Biomedical Applications: A Versatile Platform with Extraordinary Promise. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903129. [PMID: 32274309 PMCID: PMC7141020 DOI: 10.1002/advs.201903129] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/31/2019] [Indexed: 05/03/2023]
Abstract
Developing efficient, sustainable, and biocompatible high-tech nanoplatforms derived from naturally existing components in living organisms is highly beneficial for diverse advanced biomedical applications. Melanins are nontoxic natural biopolymers owning widespread distribution in various biosystems, possessing fascinating physicochemical properties and playing significant physiological roles. The multifunctionality together with intrinsic biocompatibility renders bioinspired melanin-like nanomaterials considerably promising as a versatile and powerful nanoplatform with broad bioapplication prospects. This panoramic Review starts with an overview of the fundamental physicochemical properties, preparation methods, and polymerization mechanisms of melanins. A systematical and well-bedded description of recent advancements of melanin-like nanomaterials regarding diverse biomedical applications is then given, mainly focusing on biological imaging, photothermal therapy, drug delivery for tumor treatment, and other emerging biomedicine-related implementations. Finally, current challenges toward clinical translation with an emphasis on innovative design strategies and future striving directions are rationally discussed. This comprehensive and detailed Review provides a deep understanding of the current research status of melanin-like nanomaterials and is expected to motivate further optimization of the design of novel tailorable and marketable multifunctional nanoplatforms in biomedicine.
Collapse
Affiliation(s)
- Heng Liu
- Department of RadiologyPLA Rocket Force Characteristic Medical CenterBeijing100088China
- Department of RadiologyDaping HospitalArmy Medical UniversityChongqing400042China
| | - Youyuan Yang
- Department of RadiologyDaping HospitalArmy Medical UniversityChongqing400042China
| | - Yu Liu
- Department of UltrasoundThe First Affiliated HospitalArmy Medical UniversityChongqing400038China
| | - Jingjing Pan
- Department of RadiologyPLA Rocket Force Characteristic Medical CenterBeijing100088China
| | - Junqing Wang
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityGuangzhou510275China
| | - Fengyuan Man
- Department of RadiologyPLA Rocket Force Characteristic Medical CenterBeijing100088China
| | - Weiguo Zhang
- Department of RadiologyDaping HospitalArmy Medical UniversityChongqing400042China
- Chongqing Clinical Research Center for Imaging and Nuclear MedicineChongqing400042China
| | - Gang Liu
- Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| |
Collapse
|
32
|
Qu B, Li X, Zhang X, Li W, Zhang R. PVP-coated Sb2Se3 nanorods as nanotheranostic agents for photoacoustic imaging and photothermal therapy in NIR-I bio-windows. RSC Adv 2020; 10:15221-15227. [PMID: 35495440 PMCID: PMC9052336 DOI: 10.1039/d0ra01638a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/07/2020] [Indexed: 11/21/2022] Open
Abstract
Antimony selenide (Sb2Se3) as a simple, low toxicity, low-cost p-type semiconductor material with broad absorbance ranging from the UV to the NIR region has many potential applications in photovoltaic, thermoelectric, and phase-change memory devices. Owing to these excellent properties, Sb2Se3 nanorods were firstly synthesized with triphenylantimony and dibenzyldiselenide under solvothermal conditions. In order to enhance the biocompatibility of the Sb2Se3 nanorods, polyvinylpyrrolidone (PVP) was coated onto the surface of the Sb2Se3 nanorods to form PVP-coated Sb2Se3 nanorods. The cell viability of PVP-coated Sb2Se3 nanorods toward Hep-2 cells was assessed for 24 h using a Cell Counting Kit-8 (CCK-8) assay. The results showed that Hep-2 cells treated with PVP-coated Sb2Se3 nanorods were alive at a concentration as high as 100 μg mL−1 in the absence of NIR irradiation. In vivo assessment confirmed that PVP-coated Sb2Se3 nanorods exhibited excellent photoacoustic imaging and PTT performance, which yielded complete ablation of tumors after laser irradiation (808 nm or 980 nm) in the NIR-I bio-window. Herein we reported a biocompatible PVP-coated Sb2Se3 nanorods as PTT nanotheranostic agent, which is responsive to the light (808 and 980 nm) in NIR-I bio-windows and effective for photoacoustic imaging and photothermal destruction of cancer cell.![]()
Collapse
Affiliation(s)
- Botao Qu
- School of Basic Medical Sciences
- Shanxi Medical University
- Imaging College of Shanxi Medical University
- Imaging Department of the Affiliated Da Yi Hospital of Shanxi Medical University
- Taiyuan 030001
| | - Xiaoyan Li
- School of Basic Medical Sciences
- Shanxi Medical University
- Imaging College of Shanxi Medical University
- Imaging Department of the Affiliated Da Yi Hospital of Shanxi Medical University
- Taiyuan 030001
| | - Xiaomin Zhang
- School of Basic Medical Sciences
- Shanxi Medical University
- Imaging College of Shanxi Medical University
- Imaging Department of the Affiliated Da Yi Hospital of Shanxi Medical University
- Taiyuan 030001
| | - Weihua Li
- Department of Radiology
- The First Affiliated Hospital of Shenzhen University
- Shenzhen Second People's Hospital
- Shenzhen 518035
- China
| | - Ruiping Zhang
- School of Basic Medical Sciences
- Shanxi Medical University
- Imaging College of Shanxi Medical University
- Imaging Department of the Affiliated Da Yi Hospital of Shanxi Medical University
- Taiyuan 030001
| |
Collapse
|
33
|
Chen A, Sun J, Liu S, Li L, Peng X, Ma L, Zhang R. The effect of metal ions on endogenous melanin nanoparticles used as magnetic resonance imaging contrast agents. Biomater Sci 2020; 8:379-390. [PMID: 31728481 DOI: 10.1039/c9bm01580a] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The effect of chelated metal ions on endogenous melanin nanoparticles as magnetic resonance imaging contrast agents.
Collapse
Affiliation(s)
- Anqi Chen
- Imaging Department
- The Affiliated Da Yi Hospital of Shanxi Medical University
- Taiyuan 030000
- China
- Shanxi Medical University
| | - Jinghua Sun
- Imaging Department
- The Affiliated Da Yi Hospital of Shanxi Medical University
- Taiyuan 030000
- China
- Shanxi Medical University
| | - Shijie Liu
- Shanxi Medical University
- Taiyuan 030001
- China
| | - Liping Li
- Shanxi Medical University
- Taiyuan 030001
- China
| | | | - Lixin Ma
- Department of Radiology
- University of Missouri
- Columbia
- USA
- Harry S. Truman Memorial Veterans’ Hospital
| | - Ruiping Zhang
- Imaging Department
- The Affiliated Da Yi Hospital of Shanxi Medical University
- Taiyuan 030000
- China
- Shanxi Medical University
| |
Collapse
|
34
|
Meng T, Fan B, Li Q, Peng X, Xu J, Zhang R. Matrix metalloproteinase-initiated aggregation of melanin nanoparticles as highly efficient contrast agent for enhanced tumor accumulation and dual-modal imaging. J Mater Chem B 2020; 8:9888-9898. [DOI: 10.1039/d0tb01651a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
MMP2-initiated size-changeable melanin nanoparticles significantly increase the T1-weighted MRI and PA signals in vivo due to enhanced tumor accumulations.
Collapse
Affiliation(s)
- Tingwei Meng
- School of Basic Medical Sciences
- Department of Biochemistry and Molecular Biology
- Shanxi Medical University
- Taiyuan 030001
- People's Republic of China
| | - Bo Fan
- Department of Pharmacy
- Shanxi Medical University
- Taiyuan 030001
- People's Republic of China
| | - Qian Li
- Department of Pharmacy
- Shanxi Medical University
- Taiyuan 030001
- People's Republic of China
| | - Xiaoyang Peng
- School of Basic Medical Sciences
- Department of Biochemistry and Molecular Biology
- Shanxi Medical University
- Taiyuan 030001
- People's Republic of China
| | - Jun Xu
- First Hospital of Shanxi Medical University
- Taiyuan 030001
- People's Republic of China
| | - Ruiping Zhang
- Imaging Department of the Affiliated Bethune Hospital of Shanxi Medical University
- Taiyuan 030001
- People's Republic of China
| |
Collapse
|
35
|
Sun T, Jiang D, Rosenkrans ZT, Ehlerding EB, Ni D, Qi C, Kutyreff CJ, Barnhart TE, Engle JW, Huang P, Cai W. A Melanin-Based Natural Antioxidant Defense Nanosystem for Theranostic Application in Acute Kidney Injury. ADVANCED FUNCTIONAL MATERIALS 2019; 29:10.1002/adfm.201904833. [PMID: 32055240 PMCID: PMC7017599 DOI: 10.1002/adfm.201904833] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Indexed: 05/05/2023]
Abstract
Acute kidney injury (AKI) is frequently associated with oxidative stress and causes high mortality annually in clinics. Nanotechnology-mediated antioxidative therapy is emerging as a novel strategy for the treatment of AKI. Herein, a novel biomedical use of the endogenous biopolymer melanin as a theranostic natural antioxidant defense nanoplatform for AKI is reported. In this study, ultrasmall Mn2+-chelated melanin (MMP) nanoparticles are easily prepared via a simple coordination and self-assembly strategy, and further incorporated with polyethylene glycol (MMPP). In vitro experiments reveal the ability of MMPP nanoparticles to scavenge multiple toxic reactive oxygen species (ROS) and suppress ROS-induced oxidative stress. Additionally, in vivo results from a murine AKI model demonstrate preferential renal uptake of MMPP nanoparticles and a subsequent robust antioxidative response with negligible side effects according to positron emission tomography/magnetic resonance (PET/MR) bimodal imaging and treatment assessment. These results indicate that the effectiveness of MMPP nanoparticles for treating AKI suggests the potential efficacy of melanin as a natural theranostic antioxidant nanoplatform for AKI, as well as other ROS-related diseases.
Collapse
Affiliation(s)
- Tuanwei Sun
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, P. R. China
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Dawei Jiang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, P. R. China
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Zachary T Rosenkrans
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Emily B Ehlerding
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Dalong Ni
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Chao Qi
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, P. R. China
| | - Christopher J Kutyreff
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Todd E Barnhart
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jonathan W Engle
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, P. R. China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin 53705, United States
| |
Collapse
|
36
|
Xie Y, Wang J, Wang J, Hu Z, Hariri A, Tu N, Krug KA, Burkart MD, Gianneschi NC, Jokerst JV, Rinehart JD. Tuning the ultrasonic and photoacoustic response of polydopamine-stabilized perfluorocarbon contrast agents. J Mater Chem B 2019; 7:4833-4842. [PMID: 31389967 PMCID: PMC6690494 DOI: 10.1039/c9tb00928k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Contrast-enhanced ultrasound (CEUS) offers the exciting prospect of retaining the ease of ultrasound imaging while enhancing imaging clarity, diagnostic specificity, and theranostic capability. To advance the capabilities of CEUS, the synthesis and understanding of new ultrasound contrast agents (UCAs) is a necessity. Many UCAs are nano- or micro-scale materials composed of a perfluorocarbon (PFC) and stabilizer that synergistically induce an ultrasound response that is both information-rich and easily differentiated from natural tissue. In this work, we probe the extent to which CEUS is modulated through variation in a PFC stabilized with fluorine-modified polydopamine nanoparticles (PDA NPs). The high level of synthetic tunability in this system allows us to study signal as a function of particle aggregation and PFC volatility in a systematic manner. Separation of aggregated and non-aggregated nanoparticles lead to a fundamentally different signal response, and for this system, PFC volatility has little effect on CEUS intensity despite a range of over 50 °C in boiling point. To further explore the imaging tunability and multimodality, Fe3+-chelation was employed to generate an enhanced photoacoustic (PA) signal in addition to the US signal. In vitro and in vivo results demonstrate that PFC-loaded PDA NPs show stronger PA signal than the non-PFC ones, indicating that the PA signal can be used for in situ differentiation between PFC-loading levels. In sum, these data evince the rich role synthetic chemistry can play in guiding new directions of development for UCAs.
Collapse
Affiliation(s)
- Yijun Xie
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Liu M, Zhang P, Deng L, Guo D, Tan M, Huang J, Luo Y, Cao Y, Wang Z. IR780-based light-responsive nanocomplexes combining phase transition for enhancing multimodal imaging-guided photothermal therapy. Biomater Sci 2019; 7:1132-1146. [PMID: 30648167 DOI: 10.1039/c8bm01524d] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Near-infrared (NIR) light-triggered photothermal therapy (PTT) has been widely applied for treating cancer. The combination of nanotechnology and NIR has shown great promise for promoting the efficacy of PTT. However, PTT alone could not completely ablate the tumors and easily causes tumor recurrence. To overcome this challenge, many studies have been performed to enhance PTT, including combining chemical therapy and radiotherapy, both of which have side effects on the body. To reduce the side effects and enhance PTT, a new infrared IR780-based nanocomplex combining liquid fluorocarbon perfluoropentane (PFP) has been synthesized for enhancing multimodal imaging-guided PTT. Under NIR irradiation, the size changes of PFP-loaded nanobubbles transforming into microbubbles allow ultrasound (US) imaging, showing boundaries and internal information of tumors. The breakup process and cascade reaction of phase transition can improve intratumoral permeation and retention of nanoparticles in nonmicrovascular tissue and damage the cell membranes of tumors, further enhancing PTT to kill tumor cells. The strong absorption in the NIR field of IR780-loaded NPs allows not only photoacoustic (PA) imaging but also NIR fluorescence (NIRF) imaging, which provides more anatomical information about tumors. This nanocomplex exhibits good biocompatibility and nontoxicity, strong PA/US/NIRF imaging contrast, excellent liquid-gas transition and a photothermal effect. This finding provides a new method to enhance multimodal imaging-guided cancer nanotheranostics.
Collapse
Affiliation(s)
- Mingzhu Liu
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Fan B, Yang X, Li X, Lv S, Zhang H, Sun J, Li L, Wang L, Qu B, Peng X, Zhang R. Photoacoustic-imaging-guided therapy of functionalized melanin nanoparticles: combination of photothermal ablation and gene therapy against laryngeal squamous cell carcinoma. NANOSCALE 2019; 11:6285-6296. [PMID: 30882835 DOI: 10.1039/c9nr01122f] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Multimodality therapy under imaging-guidance is significant to improve the accuracy of cancer treatment. In this study, a photoacoustic imaging (PAI)-guided anticancer strategy based on poly-l-lysine functionalized melanin nanoparticles (MNP-PLL) was developed to treat laryngeal squamous cell carcinoma (LSCC). As a promising alternative to traditional therapies for LSCC, MNP-PLL/miRNA nanoparticles were combined with photothermal ablation against primary tumors and miR-145-5p mediated gene therapy for depleting the metastatic potential of tumor cells. Furthermore, taking advantage of the photoacoustic properties of melanin, PAI guided therapy could optimize the time point of NIR irradiation to maximize the efficacy of photothermal therapy (PTT). The in vitro and in vivo results proved that the combined treatments displayed the most significant tumor suppression compared with monotherapy. By integrating thermo-gene therapies into a theranostic nanoplatform, the MNP-PLL/miR-145-5p nanoparticles significantly suppressed the LSCC progression, indicating their great potential use for cancer therapy.
Collapse
Affiliation(s)
- Bo Fan
- Department of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Liu S, Li W, Gai S, Yang G, Zhong C, Dai Y, He F, Yang P, Suh YD. A smart tumor microenvironment responsive nanoplatform based on upconversion nanoparticles for efficient multimodal imaging guided therapy. Biomater Sci 2019; 7:951-962. [DOI: 10.1039/c8bm01243a] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A smart tumor microenvironment responsive theranostic nanoplatform USPDF for UCL/CT dual-mode imaging and combination of chemotherapy and photothermal therapy.
Collapse
Affiliation(s)
- Shikai Liu
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Wenting Li
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Guixin Yang
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Chongna Zhong
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Yunlu Dai
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Yung Doug Suh
- Research Center for Bio Platform Technology
- Korea Research Institute of Chemical Technology (KRICT)
- DaeJeon 305-600
- Korea
- School of Chemical Engineering
| |
Collapse
|
40
|
Mou C, Yang Y, Bai Y, Yuan P, Wang Y, Zhang L. Hyaluronic acid and polydopamine functionalized phase change nanoparticles for ultrasound imaging-guided photothermal-chemotherapy. J Mater Chem B 2019; 7:1246-1257. [DOI: 10.1039/c8tb03056a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hyaluronic acid and polydopamine functionalized phase change nanoparticles for ultrasound imaging-guided photothermal-chemotherapy.
Collapse
Affiliation(s)
- Chongyan Mou
- Chongqing Research Center for Pharmaceutical Engineering
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology
- College of Pharmacy
- Chongqing Medical University
- Chongqing 400016
| | - Yang Yang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging
- Institute of Ultrasound Imaging
- Chongqing Medical University
- Chongqing 400016
- P. R. China
| | - Yan Bai
- Chongqing Research Center for Pharmaceutical Engineering
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology
- College of Pharmacy
- Chongqing Medical University
- Chongqing 400016
| | - Pei Yuan
- Chongqing Research Center for Pharmaceutical Engineering
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology
- College of Pharmacy
- Chongqing Medical University
- Chongqing 400016
| | - Yiwu Wang
- Experimental Teaching and Management Center
- Chongqing Medical University
- Chongqing 400016
- P. R. China
| | - Liangke Zhang
- Chongqing Research Center for Pharmaceutical Engineering
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology
- College of Pharmacy
- Chongqing Medical University
- Chongqing 400016
| |
Collapse
|