1
|
Geremew A, Palmer L, Johnson A, Reeves S, Brooks N, Carson L. Multi-functional copper oxide nanoparticles synthesized using Lagerstroemia indica leaf extracts and their applications. Heliyon 2024; 10:e30178. [PMID: 38726176 PMCID: PMC11078880 DOI: 10.1016/j.heliyon.2024.e30178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Developing multifunctional nanomaterials through environmentally friendly and efficient approaches is a pivotal focus in nanotechnology. This study aimed to employ a biogenic method to synthesize multifunctional copper oxide nanoparticles (LI-CuO NPs) with diverse capabilities, including antibacterial, antioxidant, and seed priming properties, as well as photocatalytic organic dye degradation and wastewater treatment potentials using Lagerstroemia indica leaf extract. The synthesized LI-CuO NPs were extensively characterized using UV-vis spectroscopy, dynamic light scattering (DLS), X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform-infrared spectroscopy (FT-IR). The colloid displayed surface plasmon resonance peaks at 320 nm, characteristic of LI-CuO NPs. DLS analysis revealed an average particle size of 93.5 nm and a negative zeta potential of -20.3 mV. FTIR and XPS analyses demonstrated that LI-CuO NPs possessed abundant functional groups that acted as stabilizing agents. XRD analysis indicated pure crystalline and spherical LI-CuO NPs measuring 36 nm in size. Antibacterial tests exhibited significant differential activity of LI-CuO NPs against both gram-negative (Escherichia coli, Salmonella typhimurium) and gram-positive (Staphylococcus aureus and Listeria monocytogenes) bacteria. In antioxidant tests, the LI-CuO NPs demonstrated a remarkable radical scavenging activity of 97.6 % at a concentration of 400 μg mL-1. These nanoparticles were also found to enhance mustard seed germination at low concentrations. With a remarkable reusability, LI-CuO NPs exhibited excellent photocatalytic performance, with a degradation efficiency of 97.6 % at 150 μg/mL as well as a 95.6 % reduction in turbidity when applied to wastewater treatment. In conclusion, this study presents environmentally friendly method for the facile synthesis of LI-CuO NPs that could potentially offer promising applications in biomedicine, agriculture, and environmental remediation due to their multifunctional properties.
Collapse
Affiliation(s)
- Addisie Geremew
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX, 77446, USA
| | - Lenaye Palmer
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX, 77446, USA
| | - Andre Johnson
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX, 77446, USA
| | - Sheena Reeves
- Department of Chemical Engineering, College of Engineering, Prairie View A&M University, Prairie View, TX, 77446, USA
| | - Nigel Brooks
- Department of Chemical Engineering, College of Engineering, Prairie View A&M University, Prairie View, TX, 77446, USA
| | - Laura Carson
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX, 77446, USA
| |
Collapse
|
2
|
Maize MS, Alnassar H, Zeid AMA, Eisa WH, Ali ZI. Solid-State Synthesis of Liquorice-Stabilized Copper-Based Nanoparticles: Structural and Catalytic Studies. Chem Biodivers 2024; 21:e202301794. [PMID: 38356385 DOI: 10.1002/cbdv.202301794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/16/2024]
Abstract
A large-scale quantity of copper oxalate nanoparticles were successfully obtained via a facile and green solid-state chemical reaction. Copper oxalate nanoparticles were obtained by ball-milling between copper chloride, Liquorice (Glycyrrhiza glabra), and ascorbic acid at ambient conditions. The size and morphology of copper oxalate nanoparticles powder were studied by transmission and scanning electron microscopy. The prepared nanoparticles were semi-spherical in shape and ranged from 5 to 15 nm in size. UV/Vis spectroscopy, Fourier transforms infrared spectroscopy, and X-ray photoelectron spectroscopy measurements were carried out to characterize the prepared samples. Copper oxalate nanoparticles were evaluated as a catalyst in the catalytic degradation of 4-nitrophenol, bromophenol blue, reactive yellow, and a mixture of the three pollutants. The present study combined solid-state reaction and green requirements for the mass production of nanomaterials. The proposed reaction is performed in simple steps, inexpensive, low energy consuming, solvent-free, and minimizes the emission of secondary wastes.
Collapse
Affiliation(s)
- Mai S Maize
- Chemistry Department, Faculty of Science, Menoufia University, Egypt
| | - H Alnassar
- Department of laboratories technology, College of technological studies., Public authority of applied education and training., Shuwaikh, Kuwait
| | - A M Abou Zeid
- Chemistry Department, Faculty of Science, Jazan University, Saudi Arabia
| | - W H Eisa
- Spectroscopy Department, Physics Research Institute, National Research Centre (NRC), Dokki, Cairo, Egypt
| | - Z I Ali
- Radiation Chemistry Department, National Center for Radiation Research and Technology, NCRRT), Egyptian Atomic Energy Authority, ( EAEA), 3 Ahmad El-zoned St., Madinat Nasr, Cairo, Egypt
| |
Collapse
|
3
|
Amirjan M, Nemati F, Elahimehr Z, Rangraz Y. Copper oxides supported sulfur-doped porous carbon material as a remarkable catalyst for reduction of aromatic nitro compounds. Sci Rep 2024; 14:5491. [PMID: 38448558 PMCID: PMC10918164 DOI: 10.1038/s41598-024-55216-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/21/2024] [Indexed: 03/08/2024] Open
Abstract
Synthesis and manufacturing of metal-organic framework derived carbon/metal oxide nanomaterials with an advisable porous structure and composition are essential as catalysts in various organic transformation processes for the preparation of environmentally friendly catalysts. In this work, we report a scalable synthesis of sulfur-doped porous carbon-containing copper oxide nanoparticles (marked CuxO@CS-400) via direct pyrolysis of a mixture of metal-organic framework precursor called HKUST-1 and diphenyl disulfide for aromatic nitro compounds reduction. X-ray diffraction, surface area analysis (BET), X-ray energy diffraction (EDX) spectroscopy, thermal gravimetric analysis, elemental mapping, infrared spectroscopy (FT-IR), transmission electron microscope, and scanning electron microscope (FE-SEM) analysis were accomplished to acknowledge and investigate the effect of S and CuxO as active sites in heterogeneous catalyst to perform the reduction-nitro aromatic compounds reaction in the presence of CuxO@CS-400 as an effective heterogeneous catalyst. The studies showed that doping sulfur in the resulting carbon/metal oxide substrate increased the catalytic activity compared to the material without sulfur doping.
Collapse
Affiliation(s)
- Marzie Amirjan
- Department of Chemistry, Semnan University, Semnan, 35131-19111, Iran
| | - Firouzeh Nemati
- Department of Chemistry, Semnan University, Semnan, 35131-19111, Iran.
| | - Zeinab Elahimehr
- Department of Chemistry, Semnan University, Semnan, 35131-19111, Iran
| | - Yalda Rangraz
- Department of Chemistry, Semnan University, Semnan, 35131-19111, Iran
| |
Collapse
|
4
|
Guo Q, Li J, Mao J, Chen W, Yang M, Yang Y, Hua Y, Qiu L. Hollow MIL-125 Nanoparticles Loading Doxorubicin Prodrug and 3-Methyladenine for Reversal of Tumor Multidrug Resistance. J Funct Biomater 2023; 14:546. [PMID: 37998115 PMCID: PMC10671911 DOI: 10.3390/jfb14110546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/13/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Multidrug resistance (MDR) is a key factor in chemotherapy failure and tumor recurrence. The inhibition of drug efflux and autophagy play important roles in MDR therapy. Herein, a multifunctional delivery system (HA-MIL-125@DVMA) was prepared for synergistically reverse tumor MDR. Tumor-targeted hollow MIL-125-Ti nanoparticles were used to load the doxorubicin-vitamin E succinate (DV) prodrug and 3-methyladenine (3-MA) to enhance reverse MDR effects. The pH-sensitive DV can kill tumor cells and inhibit P-gp-mediated drug efflux, and 3-MA can inhibit autophagy. HA-MIL-125@DVMA had uniformly distributed particle size and high drug-load content. The nanoparticles could effectively release the drugs into tumor microenvironment due to the rapid hydrazone bond-breaking under low pH conditions, resulting in a high cumulative release rate. In in vitro cellular experiments, the accumulation of HA-MIL-125@DVMA and HA-MIL-125@DV in MCF-7/ADR cells was significantly higher than that in the control groups. Moreover, the nanoparticles significantly inhibited drug efflux in the cells, ensuring the accumulation of the drugs in cell cytoplasm and causing drug-resistant cells' death. Importantly, HA-MIL-125@DVMA effectively inhibited tumor growth without changes in body weight in tumor-bearing mice. In summary, the combination of the acid-sensitive prodrug DV and autophagy inhibitor 3-MA in a HA-MIL-125 nanocarrier can enhance the antitumor effect and reverse tumor MDR.
Collapse
Affiliation(s)
- Qingfeng Guo
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Jiangnan University, Wuxi 214122, China;
| | - Jie Li
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China; (J.L.); (J.M.); (W.C.); (M.Y.); (Y.Y.)
| | - Jing Mao
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China; (J.L.); (J.M.); (W.C.); (M.Y.); (Y.Y.)
| | - Weijun Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China; (J.L.); (J.M.); (W.C.); (M.Y.); (Y.Y.)
| | - Meiyang Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China; (J.L.); (J.M.); (W.C.); (M.Y.); (Y.Y.)
| | - Yang Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China; (J.L.); (J.M.); (W.C.); (M.Y.); (Y.Y.)
| | - Yuming Hua
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Jiangnan University, Wuxi 214122, China;
| | - Lipeng Qiu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China; (J.L.); (J.M.); (W.C.); (M.Y.); (Y.Y.)
| |
Collapse
|
5
|
Opportunities from Metal Organic Frameworks to Develop Porous Carbons Catalysts Involved in Fine Chemical Synthesis. Catalysts 2023. [DOI: 10.3390/catal13030541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
In the last decade, MOFs have been proposed as precursors of functional porous carbons with enhanced catalytic performances by comparison with other traditional carbonaceous catalysts. This area is rapidly growing mainly because of the great structural diversity of MOFs offering almost infinite possibilities. MOFs can be considered as ideal platforms to prepare porous carbons with highly dispersed metallic species or even single-metal atoms under strictly controlled thermal conditions. This review briefly summarizes synthetic strategies to prepare MOFs and MOF-derived porous carbons. The main focus relies on the application of the MOF-derived porous carbons to fine chemical synthesis. Among the most explored reactions, the oxidation and reduction reactions are highlighted, although some examples of coupling and multicomponent reactions are also presented. However, the application of this type of catalyst in the green synthesis of biologically active heterocyclic compounds through cascade reactions is still a challenge.
Collapse
|
6
|
Guan Y, Fu S, Song W, Zhang X, Liu B, Zhang F, Chai F. Controllable synthesis of sea urchin-like Cu–Au bimetallic nanospheres and their utility as efficient catalyst for hydrogenation of 4-nitrophenol. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.123968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
7
|
Jayaramulu K, Mukherjee S, Morales DM, Dubal DP, Nanjundan AK, Schneemann A, Masa J, Kment S, Schuhmann W, Otyepka M, Zbořil R, Fischer RA. Graphene-Based Metal-Organic Framework Hybrids for Applications in Catalysis, Environmental, and Energy Technologies. Chem Rev 2022; 122:17241-17338. [PMID: 36318747 PMCID: PMC9801388 DOI: 10.1021/acs.chemrev.2c00270] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Indexed: 11/06/2022]
Abstract
Current energy and environmental challenges demand the development and design of multifunctional porous materials with tunable properties for catalysis, water purification, and energy conversion and storage. Because of their amenability to de novo reticular chemistry, metal-organic frameworks (MOFs) have become key materials in this area. However, their usefulness is often limited by low chemical stability, conductivity and inappropriate pore sizes. Conductive two-dimensional (2D) materials with robust structural skeletons and/or functionalized surfaces can form stabilizing interactions with MOF components, enabling the fabrication of MOF nanocomposites with tunable pore characteristics. Graphene and its functional derivatives are the largest class of 2D materials and possess remarkable compositional versatility, structural diversity, and controllable surface chemistry. Here, we critically review current knowledge concerning the growth, structure, and properties of graphene derivatives, MOFs, and their graphene@MOF composites as well as the associated structure-property-performance relationships. Synthetic strategies for preparing graphene@MOF composites and tuning their properties are also comprehensively reviewed together with their applications in gas storage/separation, water purification, catalysis (organo-, electro-, and photocatalysis), and electrochemical energy storage and conversion. Current challenges in the development of graphene@MOF hybrids and their practical applications are addressed, revealing areas for future investigation. We hope that this review will inspire further exploration of new graphene@MOF hybrids for energy, electronic, biomedical, and photocatalysis applications as well as studies on previously unreported properties of known hybrids to reveal potential "diamonds in the rough".
Collapse
Affiliation(s)
- Kolleboyina Jayaramulu
- Department
of Chemistry, Indian Institute of Technology
Jammu, Jammu
and Kashmir 181221, India
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Soumya Mukherjee
- Inorganic
and Metal−Organic Chemistry, Department of Chemistry and Catalysis
Research Centre, Technical University of
Munich, Garching 85748, Germany
| | - Dulce M. Morales
- Analytical
Chemistry, Center for Electrochemical Sciences (CES), Faculty of Chemistry
and Biochemistry, Ruhr-Universität
Bochum, Universitätsstrasse 150, Bochum D-44780, Germany
- Nachwuchsgruppe
Gestaltung des Sauerstoffentwicklungsmechanismus, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, Berlin 14109, Germany
| | - Deepak P. Dubal
- School
of Chemistry and Physics, Queensland University
of Technology (QUT), 2 George Street, Brisbane, Queensland 4001, Australia
| | - Ashok Kumar Nanjundan
- School
of Chemistry and Physics, Queensland University
of Technology (QUT), 2 George Street, Brisbane, Queensland 4001, Australia
| | - Andreas Schneemann
- Lehrstuhl
für Anorganische Chemie I, Technische
Universität Dresden, Bergstrasse 66, Dresden 01067, Germany
| | - Justus Masa
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, Mülheim an der Ruhr D-45470, Germany
| | - Stepan Kment
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
- Nanotechnology
Centre, CEET, VŠB-Technical University
of Ostrava, 17 Listopadu
2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Wolfgang Schuhmann
- Analytical
Chemistry, Center for Electrochemical Sciences (CES), Faculty of Chemistry
and Biochemistry, Ruhr-Universität
Bochum, Universitätsstrasse 150, Bochum D-44780, Germany
| | - Michal Otyepka
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
- IT4Innovations, VŠB-Technical University of Ostrava, 17 Listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Radek Zbořil
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
- Nanotechnology
Centre, CEET, VŠB-Technical University
of Ostrava, 17 Listopadu
2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Roland A. Fischer
- Inorganic
and Metal−Organic Chemistry, Department of Chemistry and Catalysis
Research Centre, Technical University of
Munich, Garching 85748, Germany
| |
Collapse
|
8
|
Catalytic reduction of 4-nitrophenol using Cu/Cu2O nanocomposites based on magnetic maize straw. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04889-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
9
|
Weathering resistance (UV-shielding) improvement of a polyurethane automotive clear-coating applying metal-organic framework (MOF) modified GO nano-flakes (GO-ZIF-7). Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Carbon-Doped Copper (hydro)Oxides on Copper Wires as Self-supported Bifunctional Catalytic Electrode for Full Water Splitting. Catal Letters 2022. [DOI: 10.1007/s10562-022-04094-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
11
|
Wang M, Jiang M, Liao X, Wang X, Lai W, Li P, Li J, Hong C, Qi Y. Preparation of an electrochemical immunosensor based on a Cu/Cu 2O-rGO@Au signal synergistic amplification strategy and efficient and sensitive detection of alpha-fetoprotein. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2703-2713. [PMID: 35770823 DOI: 10.1039/d2ay00734g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The effective amplification of the signal is the prerequisite for the ultrasensitive detection of electrochemical immunosensors. To quantitatively detect alpha-fetoprotein (AFP), we prepared a sandwich-type electrochemical immunosensor. Using a gold nanoparticles (Au NPs) modified glassy carbon electrode (GCE) as the sensing platform and Cu/Cu2O-rGO@Au as the signal label, differential pulse voltammetry (DPV) was used to achieve sensitive detection of AFP. We found that the nanomaterials can undergo electro-oxidation and electro-reduction reactions between Cu(I) and Cu(II) in a buffer solution of pH = 6.0. It is worth mentioning that the incorporation of metals into metal oxide substrates is a new strategy to combine the catalytic activity of metal oxides with the electrical conductivity of metals. Reduced graphene oxide (rGO), which is rich in oxygen-containing groups, can load more Cu/Cu2O and Au NPs and increase the conductivity. The modification of Au NPs makes them have better biocompatibility and conductivity. Under the best detection conditions, the prepared immunosensor realizes the specific and ultrasensitive detection of AFP. The detection range is 0.01-50 ng mL-1 and the limit of detection (LOD) was as low as 0.589 pg mL-1 (S/N = 3); meanwhile it also has good practical application ability. Therefore, this immunosensor provides an important means for the early screening and detection of AFP.
Collapse
Affiliation(s)
- Min Wang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China.
| | - Mingzhe Jiang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China.
| | - Xiaochen Liao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China.
| | - Xiao Wang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China.
| | - Wenjing Lai
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China.
| | - Pengli Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China.
| | - Jiajia Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China.
| | - Chenglin Hong
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China.
| | - Yu Qi
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China.
| |
Collapse
|
12
|
Sun L, Li Q, Zheng M, Lin S, Guo C, Luo L, Guo S, Li Y, Wang C, Jiang B. Efficient Suzuki-Miyaura cross-coupling reaction by loading trace Pd nanoparticles onto copper-complex-derived Cu/C-700 solid support. J Colloid Interface Sci 2022; 608:2463-2471. [PMID: 34763890 DOI: 10.1016/j.jcis.2021.10.174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/26/2022]
Abstract
The development of efficient carbon-carbon cross-coupling catalysts with low noble metal amounts attracts much attention recently. Herein, a Cu/C-700/Pd nanocomposite is obtained by loading trace Pd2+ onto carbon support derived from a novel mononuclear copper complex, {[Cu(POP)2(Phen)2]BF4}. The as-prepared nanomaterial features the facial structure of highly dispersed copper phosphide nanoparticles as well as Pd nanoparticles via neighboring Cu-Pd sites. The Cu/C-700/Pd nanocomposite shows excellent catalytic activity (99.73%) and selectivity in Suzuki-Miyaura cross-coupling reaction, at trace Pd loading (0.43 mol%). Compared with the reported palladium nano catalysts, its advantages are proved. The appealing gateway to this stable, innovative and recyclability, Cu/C-700/Pd nanostructure recommends its beneficial utilization in carbon-carbon coupling and other environmentally friendly processes.
Collapse
Affiliation(s)
- Longjiang Sun
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China; School of Pharmacy, Jiamusi University, Jiamusi, HeilongJiang 154007, PR China
| | - Qi Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China
| | - Mang Zheng
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China
| | - Siying Lin
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China
| | - Changliang Guo
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China
| | - Laiyu Luo
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China
| | - Shien Guo
- Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, PR China
| | - Yuxin Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China.
| | - Cheng Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China.
| | - Baojiang Jiang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China.
| |
Collapse
|
13
|
Folkjær M, Lundegaard LF, Jeppesen HS, Marks M, Hvid MS, Frank S, Cibin G, Lock N. Pyrolysis of a metal-organic framework followed by in situ X-ray absorption spectroscopy, powder diffraction and pair distribution function analysis. Dalton Trans 2022; 51:10740-10750. [DOI: 10.1039/d2dt00616b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-organic frameworks (MOFs) can serve as precursors for new nanomaterials via thermal decomposition. Such MOF-derived nanomaterials (MDNs) are often comprised of metal and/or metal oxide particles embedded on porous carbon....
Collapse
|
14
|
Liu W, Duan W, Zhang Q, Gong X, Tian J. Novel bimetallic MOF derived N-doped carbon supported Ru nanoparticles for efficient reduction of nitro aromatic compounds and rhodamine B. NEW J CHEM 2022. [DOI: 10.1039/d2nj03197c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N-doped carbon enables Ru-NC-15 to exhibit extremely high catalytic activity towards 4-nitrophenol and rhodamine B reduction.
Collapse
Affiliation(s)
- Weixing Liu
- College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Tianjin 300071, People's Republic of China
| | - Wei Duan
- College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Tianjin 300071, People's Republic of China
| | - Qiang Zhang
- College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Tianjin 300071, People's Republic of China
| | - Xianjin Gong
- College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Tianjin 300071, People's Republic of China
| | - Jinlei Tian
- College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Tianjin 300071, People's Republic of China
| |
Collapse
|
15
|
Sadegh N, Haddadi H, Arabkhani P, Asfaram A, Sadegh F. Simultaneous elimination of Rhodamine B and Malachite Green dyes from the aqueous sample with magnetic reduced graphene oxide nanocomposite: Optimization using experimental design. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Zhang X, Duan Z, Wu Y, Qiu T, Shi X. Sintering-resistant and highly active boron oxide doped BxCuZrO2 catalyst for catalytic diethanolamine dehydrogenation. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Xu T, Zhang Y, Yi L, Lu W, Chen Z, Wu XF. Efficient synthesis of 2-trifluoromethyl-benzimidazoles via cascade annulation of trifluoroacetimidoyl chlorides and amines based on a heterogeneous copper doped g-C3N4 catalyst. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Wang D, Fan M, He T, Zeng F, Hu X, Li C, Su Z. Cu/Cu x S-Embedded N,S-Doped Porous Carbon Derived in Situ from a MOF Designed for Efficient Catalysis. Chemistry 2021; 27:11468-11476. [PMID: 34002909 DOI: 10.1002/chem.202101560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Indexed: 01/25/2023]
Abstract
The reasonable design of the precursor of a carbon-based nanocatalyst is an important pathway to improve catalytic performance. In this study, a simple solvothermal method was used to synthesize [Cu(TPT)(2,5-tdc)] ⋅ 2H2 O (Cu-MOF), which contains N and S atoms, in one step. Further in-situ carbonization of the Cu-MOF as the precursor was used to synthesize Cu/Cux S-embedded N,S-doped porous carbon (Cu/Cux S/NSC) composites. The catalytic activities of the prepared Cu/Cux S/NSC were investigated through catalytic reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). The results show that the designed Cu/Cux S/NSC has exceptional catalytic activity and recycling stability, with a reaction rate constant of 0.0256 s-1 , and the conversion rate still exceeds 90 % after 15 cycles. Meanwhile, the efficient catalytic reduction of dyes (CR, MO, MB and RhB) confirmed its versatility. Finally, the active sites of the Cu/Cux S/NSC catalysts were analyzed, and a possible multicomponent synergistic catalytic mechanism was proposed.
Collapse
Affiliation(s)
- Dongsheng Wang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China.,Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Mingyue Fan
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China.,Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Tingyu He
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Fanming Zeng
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China.,Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Xiaoli Hu
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China.,Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Chun Li
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Zhongmin Su
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China.,Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, P. R. China.,Joint Sino-Russian Laboratory of Optical Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| |
Collapse
|
19
|
Nazir MA, Bashir MA, Najam T, Javed MS, Suleman S, Hussain S, Kumar OP, Shah SSA, Rehman AU. Combining structurally ordered intermetallic nodes: Kinetic and isothermal studies for removal of malachite green and methyl orange with mechanistic aspects. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105973] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
Arabkhani P, Javadian H, Asfaram A, Ateia M. Decorating graphene oxide with zeolitic imidazolate framework (ZIF-8) and pseudo-boehmite offers ultra-high adsorption capacity of diclofenac in hospital effluents. CHEMOSPHERE 2021; 271:129610. [PMID: 33465623 DOI: 10.1016/j.chemosphere.2021.129610] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 05/17/2023]
Abstract
This study reports on an easy and scalable synthesis method of a novel magnetic nanocomposite (GO/ZIF-8/γ-AlOOH) based on graphene oxide (GO) nanosheets decorated with zeolitic imidazolate framework-8 (ZIF-8), pseudo-boehmite (γ-AlOOH), and iron oxide (Fe3O4) nanoparticles by combining solvothermal and solid-state dispersion (SSD) methods. The nanocomposite was successfully applied to remove of diclofenac sodium (DCF) - a widely used pharmaceutical - from water. Response Surface Methodology (RSM) was used to optimize the adsorption process and assess the interactions among the influencing factors on DCF removal efficiency; including contact time, adsorbent dosage, initial pH, solution temperature, and DCF concentration. Adsorption isotherm results showed a good fitting with the Langmuir isotherm model with an exceptional adsorption capacity value of 2594 mg g-1 at 30 °C, which was highly superior to the previously reported adsorbents. In addition, kinetic and thermodynamic investigations further illustrated that the adsorption process was fast (equilibrium time = 50 min) and endothermic. The regeneration of GO/ZIF-8/γ-AlOOH nanocomposite using acetic acid solution (10% v/v) after a simple magnetic separation was confirmed in five consecutive cycles, which eliminate the usage of organic solvents. The nanocomposite has also shown a superior performance in treating a simulated hospital effluent that contained various pharmaceuticals as well as other organic, and inorganic constituents.
Collapse
Affiliation(s)
- Payam Arabkhani
- Department of Chemistry, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Hamedreza Javadian
- Department of Chemical Engineering, ETSEIB, Universitat Politècnica de Catalunya, Diagonal 647, 08028, Barcelona, Spain
| | - Arash Asfaram
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Mohamed Ateia
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
21
|
Geng L, Li G, Zhang X, Wang X, Li C, Liu Z, Zhang DS, Zhang YZ, Wang G, Han H. Rational design of CuO/SiO2 nanocatalyst with anchor structure and hydrophilic surface for efficient hydrogenation of nitrophenol. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.121960] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
22
|
Hao M, Qiu M, Yang H, Hu B, Wang X. Recent advances on preparation and environmental applications of MOF-derived carbons in catalysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143333. [PMID: 33190884 DOI: 10.1016/j.scitotenv.2020.143333] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/03/2020] [Accepted: 10/19/2020] [Indexed: 05/07/2023]
Abstract
Carbon materials derived from metal organic frameworks (MOFs) have excellent properties of high surface area, high porosity, adjustable pore size, high conductivity and stability, and their applications in catalysis have become a rapidly expanding research field. In this review, we have summarized the synthesis strategies of MOF-derived carbons with different physical and chemical properties, obtained through direct carbonization, co-pyrolysis and post-treatment. The potential applications of derived carbons, especially monometal-, bimetal-, nonmetal-doped and metal-free carbons in organo-catalysis, photocatalysis and electrocatalysis are analyzed in detail from the environmental perspective. In addition, the improvement of catalytic efficiency is also considered from the aspects of increasing active sites, enhancing the activity of reactants and promoting free electron transfer. The function and synergy of various species of the composites in the catalytic reaction are summarized. The reaction paths and mechanisms are analyzed, and research ideas or trends are proposed for further development.
Collapse
Affiliation(s)
- Mengjie Hao
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, PR China; Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
| | - Muqing Qiu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, PR China.
| | - Hui Yang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, PR China
| | - Xiangxue Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China.
| |
Collapse
|
23
|
Jia M, Su J, Su P, Li W. Vapor-assisted self-conversion of basic carbonates in metal-organic frameworks. NANOSCALE 2021; 13:5069-5076. [PMID: 33650619 DOI: 10.1039/d0nr07700c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Incorporation of nanoparticles has been considered as an efficient method for enhancing the adsorption performance of metal-organic frameworks (MOFs). Alkali metal compounds possess outstanding affinity to acidic CO2. In this study, a robust self-conversion strategy is reported for improving the carbon capture performance of MOFs, through directly transforming partial metal centers to basic carbonate (BC) nanoparticles. Based on the hydrolysis of coordination bonds induced by water impurity in solvents and the decarboxylation of linkers under thermal and alkaline conditions, the self-loading of BC in MOFs can be realized by solvent vapor-assisted thermal treatment. Since water impurity causes limited self-conversion and excess organic solvent can purify MOFs, the BC-MOF materials maintain good crystallinity and even show superior porosity. Owing to the increased specific surface areas, open metal sites, and alkalinity of BC, the prepared MOF composites exhibit substantially improved CO2 capture performance with good balance between capacity and selectivity. For example, after self-conversion with ethanol solvent, the CO2 adsorption capacity and CO2/N2 (15 : 85) selectivity at 298 K and 100 kPa increase from 3.7 mmol g-1 and 11.4 to 5.8 mmol g-1 and 29.2, respectively.
Collapse
Affiliation(s)
- Miaomiao Jia
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, P.R. China.
| | - Jingyi Su
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, P.R. China.
| | - Pengcheng Su
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, P.R. China.
| | - Wanbin Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, P.R. China.
| |
Collapse
|
24
|
Li N, Yan W, Niu Y, Qu S, Zuo P, Bai H, Zhao N. Photoinduced In Situ Spontaneous Formation of a Reduced Graphene Oxide-Enwrapped Cu-Cu 2O Nanocomposite for Solar Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9838-9845. [PMID: 33595271 DOI: 10.1021/acsami.0c20636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The fast recombination of photogenerated charge carriers and poor stability have impeded the application of many narrow band gap semiconductors with otherwise excellent photocatalytic performance. A metal-semiconductor Schottky junction is a promising strategy to accelerate charge separation and enhance catalytic efficiency. However, the preparation of these structures often involves intricate processes and harsh conditions, which will inevitably destroy the electronic structures of the semiconductors and ruin their original properties in practical applications. In this study, a reduced graphene oxide (RGO)-enwrapped Cu-Cu2O nanocomposite (Cu-Cu2O@RGO) spontaneously evolved from an aqueous alcoholic solution containing cupric ions and graphene oxide (GO) under simulated sunlight irradiation. During this process, GO reduction and Cu-Cu2O nanoparticles growth occurred simultaneously in conjunction with in situ RGO encapsulation. Benefiting from the superior intrinsic semiconductor characteristic retention under mild reaction conditions, strong component interactions, and efficient interfacial charge transfer, the distinctive Cu-Cu2O@RGO nanocomposite supplied multiple channels for rapid electron transfer to substantially enhance the charge carrier separation efficiency and provide perfect chemical protection to effectively prevent Cu2O photocorrosion. This product also greatly suppressed self-aggregation to decrease the size of nanoparticles. Based on these merits, the Cu-Cu2O@RGO nanocomposite offered promising advances in photoelectrochemical and photocatalytic H2 evolution. This work provides an innovative photoinduced strategy for constructing an RGO-enwrapped semiconductor nanocomposite with efficient charge transfer interfaces while providing novel insights for the efficient solar energy utilization.
Collapse
Affiliation(s)
- Na Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjun Yan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yu Niu
- School of Electric Power, Civil Engineering and Architecture, Shanxi University, Taiyuan 030024, China
| | - Shijie Qu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Pingping Zuo
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongcun Bai
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Ning Zhao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| |
Collapse
|
25
|
Hao M, Qiu M, Yang H, Hu B, Wang X. Recent advances on preparation and environmental applications of MOF-derived carbons in catalysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143333. [DOI: doi.org/10.1016/j.scitotenv.2020.143333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
|
26
|
Yan X, Chen L, Song H, Gao Z, Wei H, Ren W, Wang W. Metal–organic framework (MOF)-derived catalysts for chemoselective hydrogenation of nitroarenes. NEW J CHEM 2021. [DOI: 10.1039/d1nj03227e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The MOFs derived catalysts conducted in the chemoselective hydrogenation of substituted nitroarenes, including pyrolysis and confined catalyst, are reviewed.
Collapse
Affiliation(s)
- Xiaorui Yan
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China
| | - Lele Chen
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China
| | - Huaxing Song
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China
| | - Zhaohua Gao
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China
| | - Haisheng Wei
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China
- Collaborative Innovation Center of Comprehensive Utilization of Light Hydrocarbon Resource, Yantai University, Yantai 264005, Shandong, China
| | - Wanzhong Ren
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China
- Collaborative Innovation Center of Comprehensive Utilization of Light Hydrocarbon Resource, Yantai University, Yantai 264005, Shandong, China
| | - Wenhua Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China
- Collaborative Innovation Center of Comprehensive Utilization of Light Hydrocarbon Resource, Yantai University, Yantai 264005, Shandong, China
| |
Collapse
|
27
|
Yang L, Zheng J, Xu J, Zhang B, Zhang M. A facile template method to fabricate one-dimensional Fe 3O 4@SiO 2@C/Ni microtubes with efficient catalytic and adsorption performance. CrystEngComm 2021. [DOI: 10.1039/d1ce01104a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Fe3O4@SiO2@C/Ni microtubes were well constructed with MoO3 microrods as sacrificing template, which manifested excellent performance as both catalyst and adsorbent.
Collapse
Affiliation(s)
- Liting Yang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China
| | - Jing Zheng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China
| | - Jingli Xu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China
| | - Baishun Zhang
- Anhui Institute of Public Security Education, 559 Wangjiang West Road, Hefei, Anhui 230088, PR China
| | - Min Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China
| |
Collapse
|
28
|
Coşkuner Filiz B. The role of catalyst support on activity of copper oxide nanoparticles for reduction of 4-nitrophenol. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.07.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
29
|
Konnerth H, Matsagar BM, Chen SS, Prechtl MH, Shieh FK, Wu KCW. Metal-organic framework (MOF)-derived catalysts for fine chemical production. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213319] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Shi R, Zhao J, Quan Y, Wang X, An J, Liu J, Sun W, Li Z, Ren J. Fabrication of Few-Layer Graphene-Supported Copper Catalysts Using a Lithium-Promoted Thermal Exfoliation Method for Methanol Oxidative Carbonylation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:30483-30493. [PMID: 32538075 DOI: 10.1021/acsami.0c08366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Exfoliation of graphene oxide (GO) via thermal expansion is regarded as the most promising approach to obtain few-layer graphene (FLG) in bulk. Herein, we introduce an efficient strategy for improving the exfoliation process by adding a tiny amount of lithium nitrate in the precursors, which significantly enhances the removal of oxygen-containing functional groups and produces 1-2 layer graphene. FLG-supported highly dispersed Cu nanoparticles (NPs, ≈4.2 nm) can be further synthesized through exfoliating the mixture of GO, lithium nitrate, and copper(II) nitrate, which displayed superior catalytic activity and stability in the synthesis of dimethyl carbonate (DMC) using liquid methanol oxidative carbonylation. The characterization results demonstrate that during the thermal expansion process, lithium nitrate was decomposed to Li2O and immediately reacted with CO2 released by the decomposition of GO to form stable Li2CO3, which promotes efficient charge transfer and produces Cuδ+ (0 < δ < 1) species in the Cu/Li-PGO catalyst. Density functional theory calculations prove that the presence of Cuδ+ markedly facilitates CO adsorption over the resulting catalyst and causes a decrease of the energy barrier of the rate-limiting step for DMC formation (CO insertion). These findings give a theoretical explanation of the enhanced catalytic performance of the Cu/Li-PGO catalyst. The present work provides a simple and practical avenue to the exfoliation of graphene and the dispersions of metal NPs on graphene sheets.
Collapse
Affiliation(s)
- Ruina Shi
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jinxian Zhao
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yanhong Quan
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xuhui Wang
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jiangwei An
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China
| | - Junjie Liu
- Division of Nanoscale Measurement and Advanced Materials, National Institute of Metrology, No. 18, Bei San Huan Dong Lu, Chaoyang Dist, Beijing 100029, China
| | - Wei Sun
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhong Li
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jun Ren
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
31
|
Xu W, Lin C, Liu S, Xie H, Qiu Y, Liu W, Chen H, Qiu S, Langer R. Effect of pyrolytic temperature over MOFs templated Cu NPs embedded in N-doped carbon matrix on hydrogenation catalytic activities. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Yang Y, Liu Y, Fang X, Miao W, Chen X, Sun J, Ni BJ, Mao S. Heterogeneous Electro-Fenton catalysis with HKUST-1-derived Cu@C decorated in 3D graphene network. CHEMOSPHERE 2020; 243:125423. [PMID: 31995878 DOI: 10.1016/j.chemosphere.2019.125423] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/17/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Transition metal and nanocarbon-based composites with high activity and stability draw great attention in electro-Fenton system for organic pollutants removal. In this study, HKUST-1-derived Cu@C nanoparticles embedded within three-dimensional reduced graphene oxide (rGO) network (denoted as 3DG/Cu@C) is synthesized through a simple strategy. The prepared catalyst shows ordered 3D porous carbon structure and Cu@C NPs are uniformly dispersed in the matrix. The 3DG/Cu@C is used as heterogeneous electro-Fenton (hetero-EF) catalyst and shows outstanding performance in various persistent organic pollutants removal. High concentration Rhodamine B (RhB) (40 mg L-1) can achieve a complete decolorization within 150 min with 25 mg L-1 3DG/Cu@C catalyst, which is one of the lowest catalyst dosages in hetero-EF for RhB removal. More importantly, the 3DG/Cu@C achieves high RhB mineralization efficiency of 81.5% and exhibits high catalytic performance in a wide pH window from 3 to 9. The 3DG/Cu@C also remains high efficiency after five successive reaction cycles. The working mechanism study shows that RhB is mainly oxidized by •OH and O2•- radicals through hetero-EF and anodic oxidation processes. The high stability and outstanding performance of 3DG/Cu@C provide new insights in organic pollutants removal by hetero-EF process with transition metal and nanocarbon-based catalysts.
Collapse
Affiliation(s)
- Yulin Yang
- Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Ying Liu
- Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Xian Fang
- Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Wei Miao
- Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Xiaoyan Chen
- Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Jing Sun
- Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Bing-Jie Ni
- Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Shun Mao
- Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
33
|
Ning L, Liao S, Dong C, Zhang M, Gu W, Liu X. Rare Earth Oxide Anchored Platinum Catalytic Site Coated Zeolitic Imidazolate Frameworks toward Enhancing Selective Hydrogenation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7198-7205. [PMID: 31971375 DOI: 10.1021/acsami.9b19867] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Controlling and manipulating the self-assembly technology at the nanoscale has become a powerful strategy for improving chemical processes and further developing the conception of atom efficiency. Herein, an unexpected core-shell structured Gd2O3@Pt@ZIF-8 nanoreactor has been fabricated using the self-assembly strategy in which the firm Gd2O3 nanosupport anchored the highly active Pt nanoparticle coated porous zeolitic imidazolate framework (ZIF-8). The well-designed Gd2O3@Pt@ZIF-8 structure shows good performance in selective hydrogenation of aldehyde-, keto-, and nitro-compounds with full conversion (>99.9%) and superior selectivity (>95%). It showed the channel sieving effect of the ZIF-8 channels toward enhancing the catalytic selectivity. After being recycled eight times, their activity remains unchanged and their core-shell structure is kept intact. So, the outer ZIF-8 membranes not only prevent Pt nanoparticles from agglomeration and slipping during a catalytic reaction but also maintain the original activity and long-term stability compared to the Gd2O3@Pt catalyst. The self-assembly strategy demonstrated here will allow the development of other highly active, stable, and selective catalysts for important but challenging transformations.
Collapse
Affiliation(s)
- Liangmin Ning
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Collaborative Innovation Centre of Chemical Science and Engineering , Nankai University , Tianjin 300071 , China
| | - Shengyun Liao
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering , Tianjin University of Technology , Tianjin 300384 , China
| | - Caiqiao Dong
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Collaborative Innovation Centre of Chemical Science and Engineering , Nankai University , Tianjin 300071 , China
| | - Mingtao Zhang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Collaborative Innovation Centre of Chemical Science and Engineering , Nankai University , Tianjin 300071 , China
| | - Wen Gu
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Collaborative Innovation Centre of Chemical Science and Engineering , Nankai University , Tianjin 300071 , China
| | - Xin Liu
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Collaborative Innovation Centre of Chemical Science and Engineering , Nankai University , Tianjin 300071 , China
| |
Collapse
|
34
|
Chen K, Ling J, Wu C. In Situ Generation and Stabilization of Accessible Cu/Cu
2
O Heterojunctions inside Organic Frameworks for Highly Efficient Catalysis. Angew Chem Int Ed Engl 2020; 59:1925-1931. [DOI: 10.1002/anie.201913811] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Kai Chen
- State Key Laboratory of Silicon MaterialsDepartment of ChemistryZhejiang University Hangzhou 310027 P. R. China
| | - Jia‐Long Ling
- State Key Laboratory of Silicon MaterialsDepartment of ChemistryZhejiang University Hangzhou 310027 P. R. China
| | - Chuan‐De Wu
- State Key Laboratory of Silicon MaterialsDepartment of ChemistryZhejiang University Hangzhou 310027 P. R. China
| |
Collapse
|
35
|
Bai Y, Zhang S, Feng S, Zhu M, Ma S. The first ternary Nd-MOF/GO/Fe3O4 nanocomposite exhibiting an excellent photocatalytic performance for dye degradation. Dalton Trans 2020; 49:10745-10754. [DOI: 10.1039/d0dt01648a] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A ternary Nd-MOF/GO/Fe3O4 nanocomposite was prepared as a recyclable photocatalyst for the photocatalytic degradation of MB and showed excellent stability.
Collapse
Affiliation(s)
- Yuting Bai
- Institute of Molecular Science
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry
- Shanxi University
- Taiyuan
- P. R. China
| | - Shuo Zhang
- Institute of Molecular Science
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry
- Shanxi University
- Taiyuan
- P. R. China
| | - Sisi Feng
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province; Shanxi University
- Taiyuan
- P. R. China
- Department of Chemistry
- University of South Florida
| | - Miaoli Zhu
- Institute of Molecular Science
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry
- Shanxi University
- Taiyuan
- P. R. China
| | - Shengqian Ma
- Department of Chemistry
- University of South Florida
- Tampa
- USA
| |
Collapse
|
36
|
Bai P, Wu N, Wang Y, Yang T, Li H, Zhang J, Chai Z, Wang X. pH-Controllable regeneration and visible-light photocatalytic redox of carbon and nitrogen co-doped Zn 3Nb 2O 8 towards degradation of multiple contaminants. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00085j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
N/C–Zn3Nb2O8 with a compatible band structure and negative surface demonstrates enhanced visible light photocatalytic activity and stability in degradation of multiple pH-sensitive contaminants.
Collapse
Affiliation(s)
- Ping Bai
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials
- School of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- People's Republic of China
| | - Niri Wu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials
- School of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- People's Republic of China
| | - Yuanjiang Wang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials
- School of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- People's Republic of China
| | - Ting Yang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials
- School of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- People's Republic of China
| | - Hui Li
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials
- School of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- People's Republic of China
| | - Jingyu Zhang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials
- School of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- People's Republic of China
| | - Zhanli Chai
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials
- School of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- People's Republic of China
| | - Xiaojing Wang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials
- School of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- People's Republic of China
| |
Collapse
|
37
|
Chen K, Ling J, Wu C. In Situ Generation and Stabilization of Accessible Cu/Cu
2
O Heterojunctions inside Organic Frameworks for Highly Efficient Catalysis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201913811] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kai Chen
- State Key Laboratory of Silicon MaterialsDepartment of ChemistryZhejiang University Hangzhou 310027 P. R. China
| | - Jia‐Long Ling
- State Key Laboratory of Silicon MaterialsDepartment of ChemistryZhejiang University Hangzhou 310027 P. R. China
| | - Chuan‐De Wu
- State Key Laboratory of Silicon MaterialsDepartment of ChemistryZhejiang University Hangzhou 310027 P. R. China
| |
Collapse
|
38
|
Wang S, Niu S, Li H, Lam KK, Wang Z, Du P, Leung CW, Qu S. Synthesis and controlled morphology of Ni@Ag core shell nanowires with excellent catalytic efficiency and recyclability. NANOTECHNOLOGY 2019; 30:385603. [PMID: 31174195 DOI: 10.1088/1361-6528/ab27ce] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ni@Ag core shell nanowires (NWs) were prepared by in situ chemical reduction of Ag+ around NiNWs as the inner core. Different Ni@Ag NWs with controllable morphologies were achieved through the layer-plus-island growth mode and this mechanism was confirmed by scanning electron microscopy, X-ray fluorescence, and X-ray photoelectron spectroscopy analyses. When used as a catalyst, the synthesized Ni@Ag NWs exhibited high reduction efficiency by showing a high reaction rate constant k of 0.408 s-1 in reducing 4-nitrophenol at room temperature. Besides, combining the magnetic property, including high saturation magnetization and low coercivity, the magnetic NiNW core contributes to excellent recyclability and long-term stability with only a 2.2% performance loss after 10 recycles by magnets. The Ni@Ag NWs proposed here show unprecedentedly high potential in applications requiring high efficiency and a recyclable catalyst.
Collapse
Affiliation(s)
- Shan Wang
- State Key Lab of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang province, 310027, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Huang C, Hao C, Ye Z, Zhou S, Wang X, Zhu L, Wu J. In situ growth of ZIF-8-derived ternary ZnO/ZnCo 2O 4/NiO for high performance asymmetric supercapacitors. NANOSCALE 2019; 11:10114-10128. [PMID: 31089662 DOI: 10.1039/c9nr02230a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this paper, the rational design and synthesis of ZIF-8-derived ternary ZnO/ZnCo2O4/NiO wrapped by nanosheets is introduced. Polyhedral ternary ZnO/ZnCo2O4/NiO composites surrounded by nanosheets with different compositions are successfully fabricated through in situ growth on ZIF-8 templates and subsequent thermal annealing in air. Electrochemical investigation reveals that when the molar ratio of nickel nitrate to cobalt nitrate is 1, the composite material is more outstanding, which shows a high specific capacitance of 1136.4 F g-1 at 1 A g-1 and excellent cycling stability of 86.54% after 5000 cycles. Moreover, the excellent performance of this material is also confirmed by assembling an asymmetric supercapacitor. The assembled hybrid device can reach a large potential range of 0-1.6 V and deliver a high energy density of 46.04 W h kg-1 as well as the maximum power density of 7987.5 W kg-1.
Collapse
Affiliation(s)
- Chengxiang Huang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Chen Hao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Zhaochun Ye
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Saisai Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Xiaohong Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Linli Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Jingbo Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
40
|
Lu W, Sun W, Tan X, Gao L, Zheng G. Stabilized Cu/Cu2O nanoparticles on rGO as an efficient heterogeneous catalyst for Glaser homo-coupling. CATAL COMMUN 2019. [DOI: 10.1016/j.catcom.2019.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
41
|
Wang M, Hu M, Hu B, Guo C, Song Y, Jia Q, He L, Zhang Z, Fang S. Bimetallic cerium and ferric oxides nanoparticles embedded within mesoporous carbon matrix: Electrochemical immunosensor for sensitive detection of carbohydrate antigen 19-9. Biosens Bioelectron 2019; 135:22-29. [PMID: 30991268 DOI: 10.1016/j.bios.2019.04.018] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/05/2019] [Accepted: 04/09/2019] [Indexed: 12/29/2022]
Abstract
A label-free electrochemical immunosensor was successfully developed for sensitively detecting carbohydrate antigen 19-9 (CA19-9) as a cancer marker. To achieve this, a series of bimetallic cerium and ferric oxide nanoparticles embedded within the mesoporous carbon matrix (represented by CeO2/FeOx@mC) was obtained from the bimetallic CeFe-based metal organic framework (CeFe-MOF) by calcination at different high temperatures. The formed CeO2 or FeOx nanoparticles were uniformly distributed within the highly graphitized mesoporous carbon matrix at the calcination temperature of 500 °C (represented by CeO2/FeOx@mC500). However, the obtained nanoparticles were aggregated into large size when calcined at the temperatures of 700 and 900 °C. The CA 19-9 antibody can be anchored to the CeO2/FeOx@mC network through chemical absorption between carboxylic groups of antibody and CeO2 or FeOx by ester-like bridging. The CeO2/FeOx@mC500-based immunosensor displayed superior sensing performance to the pristine CeFe-MOF, CeO2/FeOx@mC700- and CeO2/FeOx@mC900-based ones. Electrochemical impedance spectroscopy results showed that the developed immunosensor exhibited an extremely low detection limit of 10 μU·mL-1 (S/N = 3) within a wide range from 0.1 mU·mL-1 to 10 U·mL-1 toward CA 19-9. It also illustrated excellent specificity, good reproducibility and stability, and acceptable application analysis in the human serum solution which was diluted 100-fold with 0.01 M PBS solution (pH 7.4) and spiked with different amounts of CA19-9. Consequently, the proposed electrochemical immunosensor is capable enough of determining CA 19-9 in clinical diagnostics.
Collapse
Affiliation(s)
- Minghua Wang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, PR China
| | - Mengyao Hu
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, PR China
| | - Bin Hu
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, PR China
| | - Chuanpan Guo
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, PR China
| | - Yingpan Song
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, PR China
| | - Qiaojuan Jia
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, PR China
| | - Linghao He
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, PR China
| | - Zhihong Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, PR China.
| | - Shaoming Fang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, PR China.
| |
Collapse
|
42
|
Bao J, Wang J, Zhou Y, Hu Y, Zhang Z, Li T, Xue Y, Guo C, Zhang Y. Anchoring ultrafine PtNi nanoparticles on N-doped graphene for highly efficient hydrogen evolution reaction. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01182j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One-step rapid synthesis of ultrafine PtNi nanoparticles anchored on –NH2 and N doped graphene for highly efficient hydrogen evolution reaction.
Collapse
Affiliation(s)
- Jiehua Bao
- School of Chemistry and Chemical Engineering
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory
- Southeast University
- Nanjing 211189
- China
| | - Jiaqi Wang
- School of Chemistry and Chemical Engineering
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory
- Southeast University
- Nanjing 211189
- China
| | - Yuming Zhou
- School of Chemistry and Chemical Engineering
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory
- Southeast University
- Nanjing 211189
- China
| | - Yingjie Hu
- School of Environmental Science
- Nanjing Xiaozhuang University
- Nanjing 211171
- China
| | - Zewu Zhang
- School of Materials Science and Engineering
- Nanjing Institute of Technology
- Nanjing 211167
- China
| | - Tongfei Li
- School of Chemistry and Chemical Engineering
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory
- Southeast University
- Nanjing 211189
- China
| | - Yi Xue
- School of Chemistry and Chemical Engineering
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory
- Southeast University
- Nanjing 211189
- China
| | - Chang Guo
- School of Chemistry and Chemical Engineering
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory
- Southeast University
- Nanjing 211189
- China
| | - Yiwei Zhang
- School of Chemistry and Chemical Engineering
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory
- Southeast University
- Nanjing 211189
- China
| |
Collapse
|
43
|
Henning LM, Simon U, Gurlo A, Smales GJ, Bekheet MF. Grafting and stabilization of ordered mesoporous silica COK-12 with graphene oxide for enhanced removal of methylene blue. RSC Adv 2019; 9:36271-36284. [PMID: 35540574 PMCID: PMC9074999 DOI: 10.1039/c9ra05541j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/16/2019] [Indexed: 11/21/2022] Open
Abstract
Grafting of environmentally friendly produced ordered mesoporous silica (OMS) COK-12 with graphene oxide yields a superior OMS/GO adsorbent for methylene blue.
Collapse
Affiliation(s)
- Laura M. Henning
- Fachgebiet Keramische Werkstoffe/Chair of Advanced Ceramic Materials
- Institut für Werkstoffwissenschaften und-technologien
- Fakultät III
- Technische Universität Berlin
- 10623 Berlin
| | - Ulla Simon
- Fachgebiet Keramische Werkstoffe/Chair of Advanced Ceramic Materials
- Institut für Werkstoffwissenschaften und-technologien
- Fakultät III
- Technische Universität Berlin
- 10623 Berlin
| | - Aleksander Gurlo
- Fachgebiet Keramische Werkstoffe/Chair of Advanced Ceramic Materials
- Institut für Werkstoffwissenschaften und-technologien
- Fakultät III
- Technische Universität Berlin
- 10623 Berlin
| | - Glen J. Smales
- Bundesanstalt für Materialforschung und -prüfung (BAM)
- Division 6.5 – Polymers in Life Sciences and Nanotechnology
- 12205 Berlin
- Germany
| | - Maged F. Bekheet
- Fachgebiet Keramische Werkstoffe/Chair of Advanced Ceramic Materials
- Institut für Werkstoffwissenschaften und-technologien
- Fakultät III
- Technische Universität Berlin
- 10623 Berlin
| |
Collapse
|
44
|
Zhang X, Geng L, Zhang YZ, Zhang DS, Zhang R, Fu J, Gao J, Carozza JC, Zhou Z, Han H. Construction of Cu-based MOFs with enhanced hydrogenation performance by integrating open electropositive metal sites. CrystEngComm 2019. [DOI: 10.1039/c9ce01136f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A kind of new Cu(ii)-MOF with open electropositive metal Cu sites exhibits excellent activity, selectivity and reusability in hydrogenation of 4-nitrophenol to 4-aminophenol under mild conditions (25 °C, 1 atm).
Collapse
Affiliation(s)
- Xiuling Zhang
- College of Chemistry and Chemical Engineering
- De Zhou University
- DeZhou
- P. R. China
| | - Longlong Geng
- College of Chemistry and Chemical Engineering
- De Zhou University
- DeZhou
- P. R. China
| | - Yong-Zheng Zhang
- College of Chemistry and Chemical Engineering
- De Zhou University
- DeZhou
- P. R. China
| | - Da-Shuai Zhang
- College of Chemistry and Chemical Engineering
- De Zhou University
- DeZhou
- P. R. China
| | - Ranhui Zhang
- College of Chemistry and Chemical Engineering
- De Zhou University
- DeZhou
- P. R. China
| | - Junna Fu
- College of Chemistry and Chemical Engineering
- De Zhou University
- DeZhou
- P. R. China
| | - Jun Gao
- College of Chemical and Environmental Engineering
- Shandong University of Science and Technology
- Qingdao
- P. R. China
| | - Jesse C. Carozza
- Department of Chemistry
- University at Albany
- State University of New York
- Albany 12222
- USA
| | - Zheng Zhou
- Department of Chemistry
- University at Albany
- State University of New York
- Albany 12222
- USA
| | - Haixiang Han
- Department of Materials Science and Engineering
- Cornell University
- Ithaca
- USA
| |
Collapse
|