1
|
Orlikowska M, Wyciszkiewicz A, Węgrzyn K, Mehringer J, de Souza Paiva D, Jurczak P. Methods for monitoring protein-membrane binding. Comparison based on the interactions between amyloidogenic protein human cystatin C and phospholipid liposomes. Int J Biol Macromol 2024; 278:134889. [PMID: 39168225 DOI: 10.1016/j.ijbiomac.2024.134889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/01/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
A cell membrane is an essential cellular component providing protection against the outer environment. It is also a host for proteins and carbohydrates responsible for, e.g. transporter, receptor, or enzymatic functions. In parallel, the membrane may also be implicated in pathological processes leading, e.g. to the oligomerization of amyloid-forming proteins, a hallmark of i.a. Alzheimer's disease. The increasing need for detailed information on mechanisms driving the amyloid formation and the potential role of cell membranes in the process proves the research on protein-membrane interactions biologically relevant. Considering the potential and limitations of the relatively well established and newly developed methods, this study focused on selecting methods that allow a broad and comprehensive description of interactions between amyloidogenic protein human cystatin C and lipid bilayers. In the first step, dot-blot and ELISA tests were selected as techniques allowing fast screening for protein-ligand interactions. Next, surface plasmon resonance, spectral shift, biolayer interferometry, and switchSENSE® technology were used to determine kinetic parameters and binding constants for interactions between human cystatin C and the selected lipid bilayers. Based on the obtained results we have proposed the most promising candidates for monitoring of interactions and determining affinity between amyloidogenic proteins and membrane mimetics.
Collapse
Affiliation(s)
- Marta Orlikowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| | | | - Katarzyna Węgrzyn
- Laboratory of Molecular Biology, Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| | | | | | - Przemyslaw Jurczak
- Laboratory of Mass Spectrometry, Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; Biomacromolecule Research Team, RIKEN Center for Sustainable Resource Science, Wako-shi, Saitama 351-0198, Japan.
| |
Collapse
|
2
|
Tavakol M, Voïtchovsky K. Water and ions in electrified silica nano-pores: a molecular dynamics study. Phys Chem Chem Phys 2024; 26:22062-22072. [PMID: 39113575 DOI: 10.1039/d4cp00750f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Solid-liquid interfaces (SLIs) are ubiquitous in science and technology from the development of energy storage devices to the chemical reactions occurring in the biological milieu. In systems involving aqueous saline solutions as the liquid, both the water and the ions are routinely exposed to an electric field, whether the field is externally applied, or originating from the natural surface charges of the solid. In the current study a molecular dynamics (MD) framework is developed to study the effect of an applied voltage on the behaviour of ionic solutions located in a ∼7 nm pore between two uncharged hydrophilic silica slabs. We systematically investigate the dielectric properties of the solution and the organisation of the water and ions as a function of salt concentration. In pure water, the interplay between interfacial hydrogen bonds and the applied field can induce a significant reorganisation of the water orientation and densification at the interface. In saline solutions, at low concentrations and voltages the interface dominates the whole system due to the extended Debye length resulting in a dielectric constant lower than that for the bulk solution. An increase in salt concentration or voltage brings about more localized interfacial effects resulting in dielectric properties closer to that of the bulk solution. This suggests the possibility of tailoring the system to achieve the desired dielectric properties. For example, at a specific salt concentration, interfacial effects can locally increase the dielectric constant, something that could be exploited for energy storage.
Collapse
Affiliation(s)
- Mahdi Tavakol
- Physics Department, Durham University, Durham DH1 3LE, UK.
| | | |
Collapse
|
3
|
Zhukov I, Sikorska E, Orlikowska M, Górniewicz-Lorens M, Kepczynski M, Jurczak P. DPPA as a Potential Cell Membrane Component Responsible for Binding Amyloidogenic Protein Human Cystatin C. Molecules 2024; 29:3446. [PMID: 39124852 PMCID: PMC11313537 DOI: 10.3390/molecules29153446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
A phospholipid bilayer is a typical structure that serves crucial functions in various cells and organelles. However, it is not unusual for it to take part in pathological processes. The cell membrane may be a binding target for amyloid-forming proteins, becoming a factor modulating the oligomerization process leading to amyloid deposition-a hallmark of amyloidogenic diseases-e.g., Alzheimer's disease. The information on the mechanisms governing the oligomerization influenced by the protein-membrane interactions is scarce. Therefore, our study aims to describe the interactions between DPPA, a cell membrane mimetic, and amyloidogenic protein human cystatin C. Circular dichroism spectroscopy and differential scanning calorimetry were used to monitor (i) the secondary structure of the human cystatin C and (ii) the phase transition temperature of the DPPA, during the protein-membrane interactions. NMR techniques were used to determine the protein fragments responsible for the interactions, and molecular dynamics simulations were applied to provide a molecular structure representing the interaction. The obtained data indicate that the protein interacts with DPPA, submerging itself into the bilayer via the AS region. Additionally, the interaction increases the content of α-helix within the protein's secondary structure and stabilizes the whole molecule against denaturation.
Collapse
Affiliation(s)
- Igor Zhukov
- Laboratory of Biological NMR, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Emilia Sikorska
- Department of Organic Chemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland;
| | - Marta Orlikowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland;
| | - Magdalena Górniewicz-Lorens
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (M.G.-L.); (M.K.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Profesora Stanisława Łojasiewicza 11, 30-348 Krakow, Poland
| | - Mariusz Kepczynski
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (M.G.-L.); (M.K.)
| | - Przemyslaw Jurczak
- Laboratory of Mass Spectrometry, Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdansk, 80-307 Gdansk, Poland
- Biomacromolecule Research Team, RIKEN Center for Sustainable Resource Science, Wako-shi 351-0198, Saitama, Japan
| |
Collapse
|
4
|
Cafolla C, Philpott-Robson J, Elbourne A, Voïtchovsky K. Quantitative Detection of Biological Nanovesicles in Drops of Saliva Using Microcantilevers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44-53. [PMID: 38157306 PMCID: PMC10788824 DOI: 10.1021/acsami.3c12035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024]
Abstract
Extracellular nanovesicles (EVs) are lipid-based vesicles secreted by cells and are present in all bodily fluids. They play a central role in communication between distant cells and have been proposed as potential indicators for the early detection of a wide range of diseases, including different types of cancer. However, reliable quantification of a specific subpopulation of EVs remains challenging. The process is typically lengthy and costly and requires purification of relatively large quantities of biopsy samples. Here, we show that microcantilevers operated with sufficiently small vibration amplitudes can successfully quantify a specific subpopulation of EVs directly from a drop (0.1 mL) of unprocessed saliva in less than 20 min. Being a complex fluid, saliva is highly non-Newtonian, normally precluding mechanical sensing. With a combination of standard rheology and microrheology, we demonstrate that the non-Newtonian properties are scale-dependent, enabling microcantilever measurements with a sensitivity identical to that in pure water when operating at the nanoscale. We also address the problem of unwanted sensor biofouling by using a zwitterionic coating, allowing efficient quantification of EVs at concentrations down to 0.1 μg/mL, based on immunorecognition of the EVs' surface proteins. We benchmark the technique on model EVs and illustrate its potential by quantifying populations of natural EVs commonly present in human saliva. The method effectively bypasses the difficulty of targeted detection in non-Newtonian fluids and could be used for various applications, from the detection of EVs and viruses in bodily fluids to the detection of molecular clusters or nanoparticles in other complex fluids.
Collapse
Affiliation(s)
| | | | - Aaron Elbourne
- School
of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | | |
Collapse
|
5
|
Trewby W, Voïtchovsky K. Nanoscale probing of local dielectric changes at the interface between solids and aqueous saline solutions. Faraday Discuss 2023; 246:387-406. [PMID: 37449374 DOI: 10.1039/d3fd00021d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The mobility of dissolved ions and charged molecules at interfaces underpins countless processes in science and technology. Experimentally, this is typically measured from the averaged response of the charges to an electrical potential. High-resolution Atomic Force Microscopy (AFM) can image single adsorbed ions and molecules at solid-liquid interfaces, but probing the associated dynamics remains highly challenging. One possible strategy is to investigate the response of the species of interest to a highly localized AC electric field in an approach analogous to dielectric spectroscopy. The dielectric force experienced by the AFM tip apex is modulated by the dielectric properties of the sample probed, itself sensitive to the mobilities of solvated charges and dipoles. Previous work successfully used this approach to quantify the dielectric constant of thin samples, but with limited spatial resolution. Here we propose a strategy to simultaneously map the nanoscale topography and local dielectric variations across a range of interfaces by conducting high-resolution AFM imaging concomitantly with electrical AC measurements in a multifrequency approach. The strategy is tested over a 500 MHz bandwidth in pure liquids with different dielectric constants and in saline aqueous solutions. In liquids with higher dielectric constants, the system behaves as inductive-resistive-capacitive but the adjunction of ions removes the inductive resonances and precludes measurements at higher frequencies. High-resolution imaging is demonstrated over single graphene oxide (GrO) flakes with simultaneous but decoupled dielectric measurements. The dielectric constant is consistent and reproducible across liquids, except at higher salt concentrations where frequency-dependent effects occur. The results suggest the strategy is suitable for nanometre-level mapping of the dielectric properties of solid-liquid interfaces, but more work is needed to fully understand the different physical effects underpinning the measurements.
Collapse
Affiliation(s)
- William Trewby
- Physics Department, Durham University, Durham DH1 3LE, UK.
| | | |
Collapse
|
6
|
Kariuki R, Penman R, Bryant SJ, Orrell-Trigg R, Meftahi N, Crawford RJ, McConville CF, Bryant G, Voïtchovsky K, Conn CE, Christofferson AJ, Elbourne A. Behavior of Citrate-Capped Ultrasmall Gold Nanoparticles on a Supported Lipid Bilayer Interface at Atomic Resolution. ACS NANO 2022; 16:17179-17196. [PMID: 36121776 DOI: 10.1021/acsnano.2c07751] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanomaterials have the potential to transform biological and biomedical research, with applications ranging from drug delivery and diagnostics to targeted interference of specific biological processes. Most existing research is aimed at developing nanomaterials for specific tasks such as enhanced biocellular internalization. However, fundamental aspects of the interactions between nanomaterials and biological systems, in particular, membranes, remain poorly understood. In this study, we provide detailed insights into the molecular mechanisms governing the interaction and evolution of one of the most common synthetic nanomaterials in contact with model phospholipid membranes. Using a combination of atomic force microscopy (AFM) and molecular dynamics (MD) simulations, we elucidate the precise mechanisms by which citrate-capped 5 nm gold nanoparticles (AuNPs) interact with supported lipid bilayers (SLBs) of pure fluid (DOPC) and pure gel-phase (DPPC) phospholipids. On fluid-phase DOPC membranes, the AuNPs adsorb and are progressively internalized as the citrate capping of the NPs is displaced by the surrounding lipids. AuNPs also interact with gel-phase DPPC membranes where they partially embed into the outer leaflet, locally disturbing the lipid organization. In both systems, the AuNPs cause holistic perturbations throughout the bilayers. AFM shows that the lateral diffusion of the particles is several orders of magnitude smaller than that of the lipid molecules, which creates some temporary scarring of the membrane surface. Our results reveal how functionalized AuNPs interact with differing biological membranes with mechanisms that could also have implications for cooperative membrane effects with other molecules.
Collapse
Affiliation(s)
- Rashad Kariuki
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Rowan Penman
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Saffron J Bryant
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Rebecca Orrell-Trigg
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Nastaran Meftahi
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Russell J Crawford
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Chris F McConville
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
- Deakin University, Geelong, VIC 3220, Australia
| | - Gary Bryant
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Kislon Voïtchovsky
- University of Durham, Physics Department, Durham DH1 3LE, United Kingdom
| | - Charlotte E Conn
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Andrew J Christofferson
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Aaron Elbourne
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| |
Collapse
|
7
|
Tan S, Zhang D, Nguyen MT, Shutthanandan V, Varga T, Rousseau R, Johnson GE, Glezakou VA, Prabhakaran V. Tuning the Charge and Hydrophobicity of Graphene Oxide Membranes by Functionalization with Ionic Liquids at Epoxide Sites. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19031-19042. [PMID: 35420797 DOI: 10.1021/acsami.2c02366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Functionalization of graphene oxide (GO) membranes is generally achieved using carboxyl groups as binding sites for ligands. Herein, by taking advantage of the ability of imidazolium-based ionic liquids (ILs) to undergo an epoxide ring-opening reaction, a new approach of GO modification was established, in which ILs were bonded to the abundant epoxides on GO without sacrificing the carboxyl groups. Computational methods confirmed this unique configuration of ILs on GO, which enabled the dispersion of IL/GO flakes in water for facile casting into laminate membranes. Compared with neat GO, the ILs in IL/GO membranes served as spacers that substantially reduced the multi-valent cation mobility, simultaneously facilitated ion desolvation, and increased the water flux across the membrane. Our studies found that the higher separation efficiency of IL/GO membranes may be attributed to the synergistic modification of the hydrophobicity and surface charge. Specifically, the protonated nitrogen of the imidazolium cations altered the surface charge of GO, thereby generating electrostatic repulsion that enhanced the selectivity of cation rejection. On the other hand, the increased length of the alkyl chains bound to the imidazolium rings was found to increase the hydrophobicity of GO, which, in turn, aided the fine-tuning of the water desolvation/transport dynamics at the GO/IL interface to achieve a high water flux. Additionally, the water retention was reduced on the hydrophobic planes, which inhibited GO swelling during aqueous separations. Molecular dynamics simulations revealed increased water diffusivity when ILs were intercalated within GO layers. We establish that without requiring a high energy input, functionalization of GO membranes with ILs may be a promising approach to achieve efficient ion separation and critical material recovery.
Collapse
Affiliation(s)
- Shuai Tan
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Difan Zhang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Manh-Thuong Nguyen
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Vaithiyalingam Shutthanandan
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Tamas Varga
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Roger Rousseau
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Grant E Johnson
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Vassiliki-Alexandra Glezakou
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Venkateshkumar Prabhakaran
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
8
|
Kayal C, Tamayo-Elizalde M, Adam C, Ye H, Jerusalem A. Voltage-Driven Alterations to Neuron Viscoelasticity. Bioelectricity 2022; 4:31-38. [PMID: 39372227 PMCID: PMC11450331 DOI: 10.1089/bioe.2021.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background The consideration of neurons as coupled mechanical-electrophysiological systems is supported by a growing body of experimental evidence, including observations that cell membranes mechanically deform during the propagation of an action potential. However, the short-term (seconds to minutes) influence of membrane voltage on the mechanical properties of a neuron at the single-cell level remains unknown. Materials and Methods Here, we use microscale dynamic mechanical analysis to demonstrate that changes in membrane potential induce changes in the mechanical properties of individual neurons. We simultaneously measured the membrane potential and mechanical properties of individual neurons through a multiphysics single-cell setup. Membrane voltage of a single neuron was measured through whole-cell patch clamp. The mechanical properties of the same neuron were measured through a nanoindenter, which applied a dynamic indentation to the neuron at different frequencies. Results Neuronal storage and loss moduli were lower for positive voltages than negative voltages. Conclusion The observed effects of membrane voltage on neuron mechanics could be due to piezoelectric or flexoelectric effects and altered ion distributions under the applied voltage. Such effects could change cell mechanics by changing the intermolecular interactions between ions and the various biomolecules within the membrane and cytoskeleton.
Collapse
Affiliation(s)
- Celine Kayal
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Miren Tamayo-Elizalde
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Casey Adam
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Hua Ye
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Antoine Jerusalem
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Gisbert VG, Garcia R. Accurate Wide-Modulus-Range Nanomechanical Mapping of Ultrathin Interfaces with Bimodal Atomic Force Microscopy. ACS NANO 2021; 15:20574-20581. [PMID: 34851086 DOI: 10.1021/acsnano.1c09178] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The nanoscale determination of the mechanical properties of interfaces is of paramount relevance in materials science and cell biology. Bimodal atomic force microscopy (AFM) is arguably the most advanced nanoscale method for mapping the elastic modulus of interfaces. Simulations, theory, and experiments have validated bimodal AFM measurements on thick samples (from micrometer to millimeter). However, the bottom-effect artifact, this is, the influence of the rigid support on the determination of the Young's modulus, questions its accuracy for ultrathin materials and interfaces (1-15 nm). Here we develop a bottom-effect correction method that yields the intrinsic Young's modulus value of a material independent of its thickness. Experiments and numerical simulations validate the accuracy of the method for a wide range of materials (1 MPa to 100 GPa). Otherwise, the Young's modulus of an ultrathin material might be overestimated by a 10-fold factor.
Collapse
Affiliation(s)
- Victor G Gisbert
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Ricardo Garcia
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| |
Collapse
|
10
|
Payam AF, Piantanida L, Voïtchovsky K. Development of a flexure-based nano-actuator for high-frequency high-resolution directional sensing with atomic force microscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:093703. [PMID: 34598531 DOI: 10.1063/5.0057032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Scanning probe microscopies typically rely on the high-precision positioning of a nanoscale probe in order to gain local information about the properties of a sample. At a given location, the probe is used to interrogate a minute region of the sample, often relying on dynamical sensing for improved accuracy. This is the case for most force-based measurements in atomic force microscopy (AFM) where sensing occurs with a tip oscillating vertically, typically in the kHz to MHz frequency regime. While this approach is ideal for many applications, restricting dynamical sensing to only one direction (vertical) can become a serious limitation when aiming to quantify the properties of inherently three-dimensional systems, such as a liquid near a wall. Here, we present the design, fabrication, and calibration of a miniature high-speed scanner able to apply controlled fast and directional in-plane vibrations with sub-nanometer precision. The scanner has a resonance frequency of ∼35 kHz and is used in conjunction with a traditional AFM to augment the measurement capabilities. We illustrate its capabilities at a solid-liquid interface where we use it to quantify the preferred lateral flow direction of the liquid around every sample location. The AFM can simultaneously acquire high-resolution images of the interface, which can be superimposed with the directional measurements. Examples of sub-nanometer measurements conducted with the new scanner are also presented.
Collapse
Affiliation(s)
- Amir F Payam
- Department of Physics, Durham University, Durham DH1 3LE, United Kingdom
| | - Luca Piantanida
- Department of Physics, Durham University, Durham DH1 3LE, United Kingdom
| | - Kislon Voïtchovsky
- Department of Physics, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
11
|
Galassi VV, Wilke N. On the Coupling between Mechanical Properties and Electrostatics in Biological Membranes. MEMBRANES 2021; 11:478. [PMID: 34203412 PMCID: PMC8306103 DOI: 10.3390/membranes11070478] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022]
Abstract
Cell membrane structure is proposed as a lipid matrix with embedded proteins, and thus, their emerging mechanical and electrostatic properties are commanded by lipid behavior and their interconnection with the included and absorbed proteins, cytoskeleton, extracellular matrix and ionic media. Structures formed by lipids are soft, dynamic and viscoelastic, and their properties depend on the lipid composition and on the general conditions, such as temperature, pH, ionic strength and electrostatic potentials. The dielectric constant of the apolar region of the lipid bilayer contrasts with that of the polar region, which also differs from the aqueous milieu, and these changes happen in the nanometer scale. Besides, an important percentage of the lipids are anionic, and the rest are dipoles or higher multipoles, and the polar regions are highly hydrated, with these water molecules forming an active part of the membrane. Therefore, electric fields (both, internal and external) affects membrane thickness, density, tension and curvature, and conversely, mechanical deformations modify membrane electrostatics. As a consequence, interfacial electrostatics appears as a highly important parameter, affecting the membrane properties in general and mechanical features in particular. In this review we focus on the electromechanical behavior of lipid and cell membranes, the physicochemical origin and the biological implications, with emphasis in signal propagation in nerve cells.
Collapse
Affiliation(s)
- Vanesa Viviana Galassi
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza M5500, Argentina;
- Instituto Interdisciplinario de Ciencias Básicas (ICB), Universidad Nacional de Cuyo, CONICET, Mendoza M5500, Argentina
| | - Natalia Wilke
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Universidad Nacional de Córdoba, CONICET, Córdoba X5000HUA, Argentina
| |
Collapse
|
12
|
Elbourne A, Meftahi N, Greaves TL, McConville CF, Bryant G, Bryant SJ, Christofferson AJ. Nanostructure of a deep eutectic solvent at solid interfaces. J Colloid Interface Sci 2021; 591:38-51. [PMID: 33592524 DOI: 10.1016/j.jcis.2021.01.089] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/24/2022]
Abstract
HYPOTHESIS Deep eutectic solvents (DESs) are an attractive class of tunable solvents. However, their uptake for relevant applications has been limited due to a lack of detailed information on their structure-property relationships, both in the bulk and at interfaces. The lateral nanostructure of the DES-solid interfaces is likely to be more complex than previously reported and requires detailed, high-resolution investigation. EXPERIMENTS We employ a combination of high-resolution amplitude-modulated atomic force microscopy and molecular dynamics simulations to elucidate the lateral nanostructure of a DES at the solid-liquid interface. Specifically, the lateral and near-surface nanostructure of the DES choline chloride:glycerol is probed at the mica and highly-ordered pyrolytic graphite interfaces. FINDINGS The lateral nanostructure of the DES-solid interface is heterogeneous and well-ordered in both systems. At the mica interface, the DES is strongly ordered via polar interactions. The adsorbed layer has a distinct rhomboidal symmetry with a repeat spacing of ~0.9 nm comprising all DES species. At the highly ordered pyrolytic graphite interface, the adsorbed layer appears distinctly different, forming an apolor-driven row-like structure with a repeat spacing of ~0.6 nm, which largely excludes the chloride ion. The interfacial nanostructure results from a delicate balance of substrate templating, liquid-liquid interactions, species surface affinity, and packing constraints of cations, anions, and molecular components within the DES. For both systems, distinct near-surface nanostructural layering is observed, which becomes more pronounced close to the substrate. The surface nanostructures elucidated here significantly expand our understanding of DES interfacial behavior and will enhance the optimization of DES systems for surface-based applications.
Collapse
Affiliation(s)
- Aaron Elbourne
- School of Science, RMIT University, Melbourne, VIC 3000, Australia.
| | - Nastaran Meftahi
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Tamar L Greaves
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Christopher F McConville
- School of Science, RMIT University, Melbourne, VIC 3000, Australia; Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Gary Bryant
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Saffron J Bryant
- School of Science, RMIT University, Melbourne, VIC 3000, Australia.
| | | |
Collapse
|
13
|
Mapping cellular nanoscale viscoelasticity and relaxation times relevant to growth of living Arabidopsis thaliana plants using multifrequency AFM. Acta Biomater 2021; 121:371-382. [PMID: 33309827 DOI: 10.1016/j.actbio.2020.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/06/2020] [Accepted: 12/07/2020] [Indexed: 11/20/2022]
Abstract
The shapes of living organisms are formed and maintained by precise control in time and space of growth, which is achieved by dynamically fine-tuning the mechanical (viscous and elastic) properties of their hierarchically built structures from the nanometer up. Most organisms on Earth including plants grow by yield (under pressure) of cell walls (bio-polymeric matrices equivalent to extracellular matrix in animal tissues) whose underlying nanoscale viscoelastic properties remain unknown. Multifrequency atomic force microscopy (AFM) techniques exist that are able to map properties to a small subgroup of linear viscoelastic materials (those obeying the Kelvin-Voigt model), but are not applicable to growing materials, and hence are of limited interest to most biological situations. Here, we extend existing dynamic AFM methods to image linear viscoelastic behaviour in general, and relaxation times of cells of multicellular organisms in vivo with nanoscale resolution (~80 nm pixel size in this study), featuring a simple method to test the validity of the mechanical model used to interpret the data. We use this technique to image cells at the surface of living Arabidopsis thaliana hypocotyls to obtain topographical maps of storage E' = 120-200 MPa and loss E″ = 46-111 MPa moduli as well as relaxation times τ = 2.2-2.7 µs of their cell walls. Our results demonstrate that (taken together with previous studies) cell walls, despite their complex molecular composition, display a striking continuity of simple, linear, viscoelastic behaviour across scales-following almost perfectly the standard linear solid model-with characteristic nanometer scale patterns of relaxation times, elasticity and viscosity, whose values correlate linearly with the speed of macroscopic growth. We show that the time-scales probed by dynamic AFM experiments (microseconds) are key to understand macroscopic scale dynamics (e.g. growth) as predicted by physics of polymer dynamics.
Collapse
|
14
|
Gisbert VG, Amo CA, Jaafar M, Asenjo A, Garcia R. Quantitative mapping of magnetic properties at the nanoscale with bimodal AFM. NANOSCALE 2021; 13:2026-2033. [PMID: 33449980 DOI: 10.1039/d0nr08662b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We demonstrate that a force microscope operated in a bimodal configuration enables the mapping of magnetic interactions with high quantitative accuracy and high-spatial resolution (∼30 nm). Bimodal AFM operation doubles the number of observables with respect to conventional magnetic force microscopy methods which enables to determine quantitatively in a single processing step several magnetic properties. The theory of bimodal AFM provides analytical expressions for different magnetic force models, in particular those characterized by power-law and exponential distance dependences. Bimodal AFM provides a self-evaluation protocol to test the accuracy of the measurements. The agreement obtained between the experiments and theory for two different magnetic samples support the application of bimodal AFM to map quantitatively long-range magnetic interactions.
Collapse
Affiliation(s)
- Victor G Gisbert
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
15
|
Chiodini S, Ruiz-Rincón S, Garcia PD, Martin S, Kettelhoit K, Armenia I, Werz DB, Cea P. Bottom Effect in Atomic Force Microscopy Nanomechanics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000269. [PMID: 32761794 DOI: 10.1002/smll.202000269] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/04/2020] [Indexed: 05/27/2023]
Abstract
In this work, the influence of the rigid substrate on the determination of the sample Young's modulus, the so-called bottom-effect artifact, is demonstrated by an atomic force microscopy force-spectroscopy experiment. The nanomechanical properties of a one-component supported lipid membrane (SLM) exhibiting areas of two different thicknesses are studied: While a standard contact mechanics model (Sneddon) provides two different elastic moduli for these two morphologies, it is shown that Garcia's bottom-effect artifact correction yields a unique value, as expected for an intrinsic material property. Remarkably, it is demonstrated that the ratio between the contact radius (and not only the indentation) and the sample thickness is the key parameter addressing the relevance of the bottom-effect artifact. The experimental results are validated by finite element method simulations providing a solid support to Garcia's theory. The amphiphilic nature of the investigated material is representative of several kinds of lipids, suggesting that the results have far reaching implications for determining the correct Young's modulus of SLMs. The generality of Garcia's bottom-effect artifact correction allows its application to every kind of supported soft film.
Collapse
Affiliation(s)
- Stefano Chiodini
- Instituto de Nanociencia de Aragón (INA), Campus Rio Ebro, Universidad de Zaragoza, C/Mariano Esquillor s/n, Zaragoza, 50018, Spain
- Laboratorio de Microscopias Avanzadas (LMA), Campus Río Ebro, Universidad de Zaragoza, C/Mariano Esquillor s/n, Zaragoza, 50018, Spain
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, C/Pedro Cerbuna 12, Zaragoza, 50009, Spain
| | - Silvia Ruiz-Rincón
- Instituto de Nanociencia de Aragón (INA), Campus Rio Ebro, Universidad de Zaragoza, C/Mariano Esquillor s/n, Zaragoza, 50018, Spain
- Laboratorio de Microscopias Avanzadas (LMA), Campus Río Ebro, Universidad de Zaragoza, C/Mariano Esquillor s/n, Zaragoza, 50018, Spain
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, C/Pedro Cerbuna 12, Zaragoza, 50009, Spain
| | - Pablo D Garcia
- Instituto de Ciencia de Materiales, ICMM-CSIC, Campus de Cantoblanco, C/Sor Juana Inés de la Cruz, 3, Madrid, 28049, Spain
| | - Santiago Martin
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, C/Pedro Cerbuna 12, Zaragoza, 50009, Spain
- Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, C/Pedro Cerbuna 12, Zaragoza, 50009, Spain
| | - Katharina Kettelhoit
- Technische Universität Braunschweig, Institut für Organische Chemie, Hagenring 30, Braunschweig, 38106, Germany
| | - Ilaria Armenia
- Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, C/Pedro Cerbuna 12, Zaragoza, 50009, Spain
| | - Daniel B Werz
- Technische Universität Braunschweig, Institut für Organische Chemie, Hagenring 30, Braunschweig, 38106, Germany
| | - Pilar Cea
- Instituto de Nanociencia de Aragón (INA), Campus Rio Ebro, Universidad de Zaragoza, C/Mariano Esquillor s/n, Zaragoza, 50018, Spain
- Laboratorio de Microscopias Avanzadas (LMA), Campus Río Ebro, Universidad de Zaragoza, C/Mariano Esquillor s/n, Zaragoza, 50018, Spain
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, C/Pedro Cerbuna 12, Zaragoza, 50009, Spain
- Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, C/Pedro Cerbuna 12, Zaragoza, 50009, Spain
| |
Collapse
|
16
|
Deplazes E, Tafalla BD, Cranfield CG, Garcia A. Role of Ion-Phospholipid Interactions in Zwitterionic Phospholipid Bilayer Ion Permeation. J Phys Chem Lett 2020; 11:6353-6358. [PMID: 32687371 DOI: 10.1021/acs.jpclett.0c01479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Despite the central role of Na+ and K+ in physiological processes, it is still unclear whether they interact or alter the physical properties of simple zwitterionic phospholipid bilayers at physiologically relevant concentrations. Here we report a difference in membrane permeability between Na+ and K+, as measured with electrical impedance spectroscopy and tethered bilayer lipid membranes. We reveal that the differences in membrane permeability originate from distinct ion coordination by carbonyl oxygens at the phospholipid-water interface, altering the propensity for bilayer pore formation. Molecular dynamics simulations showed differences in the coordination of Na+ and K+ at the phospholipid-water interface of zwitterionic phospholipid bilayers. The ability of Na+ to conscript more phospholipids with a greater number of coordinating interactions causes a higher localized energy barrier for pore formation. These results provide evidence that ion-specific interactions at the phospholipid-water interface can modulate the physical properties of zwitterionic phospholipid bilayers.
Collapse
Affiliation(s)
- Evelyne Deplazes
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | | | - Charles G Cranfield
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Alvaro Garcia
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
17
|
Garcia R. Nanomechanical mapping of soft materials with the atomic force microscope: methods, theory and applications. Chem Soc Rev 2020; 49:5850-5884. [PMID: 32662499 DOI: 10.1039/d0cs00318b] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Fast, high-resolution, non-destructive and quantitative characterization methods are needed to develop materials with tailored properties at the nanoscale or to understand the relationship between mechanical properties and cell physiology. This review introduces the state-of-the-art force microscope-based methods to map at high-spatial resolution the elastic and viscoelastic properties of soft materials. The experimental methods are explained in terms of the theories that enable the transformation of observables into material properties. Several applications in materials science, molecular biology and mechanobiology illustrate the scope, impact and potential of nanomechanical mapping methods.
Collapse
Affiliation(s)
- Ricardo Garcia
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
| |
Collapse
|
18
|
Emelyanenko AM, Emelyanenko KA, Boinovich LB. Deep Undercooling of Aqueous Droplets on a Superhydrophobic Surface: The Specific Role of Cation Hydration. J Phys Chem Lett 2020; 11:3058-3062. [PMID: 32227995 DOI: 10.1021/acs.jpclett.0c00609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An extraordinary prolonged freezing delay was detected for the first time for deeply undercooled sessile droplets of aqueous solutions of alkali metal chlorides deposited onto a superhydrophobic surface. Accounting for the variation in the hydration energy of ions, their distribution in the vicinity of charged interfaces of solution/air and solution/superhydrophobic surface allows qualitative description of the observed ice nucleation kinetics and ionic specificity in freezing phenomena.
Collapse
Affiliation(s)
- Alexandre M Emelyanenko
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Leninsky Prospect 31 Bldg. 4, 119071 Moscow, Russia
| | - Kirill A Emelyanenko
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Leninsky Prospect 31 Bldg. 4, 119071 Moscow, Russia
| | - Ludmila B Boinovich
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Leninsky Prospect 31 Bldg. 4, 119071 Moscow, Russia
| |
Collapse
|
19
|
Foster W, Miyazawa K, Fukuma T, Kusumaatmaja H, Voϊtchovsky K. Self-assembly of small molecules at hydrophobic interfaces using group effect. NANOSCALE 2020; 12:5452-5463. [PMID: 32080696 DOI: 10.1039/c9nr09505e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Although common in nature, the self-assembly of small molecules at sold-liquid interfaces is difficult to control in artificial systems. The high mobility of dissolved small molecules limits their residence at the interface, typically restricting the self-assembly to systems under confinement or with mobile tethers between the molecules and the surface. Small hydrogen-bonding molecules can overcome these issues by exploiting group-effect stabilization to achieve non-tethered self-assembly at hydrophobic interfaces. Significantly, the weak molecular interactions with the solid makes it possible to influence the interfacial hydrogen bond network, potentially creating a wide variety of supramolecular structures. Here we investigate the nanoscale details of water and alcohols mixtures self-assembling at the interface with graphite through group-effect. We explore the interplay between inter-molecular and surface interactions by adding small amounts of foreign molecules able to interfere with the hydrogen bond network and systematically varying the length of the alcohol hydrocarbon chain. The resulting supramolecular structures forming at room temperature are then examined using atomic force microscopy with insights from computer simulations. We show that the group-based self-assembly approach investigated here is general and can be reproduced on other substrates such as molybdenum disulphide and graphene oxide, potentially making it relevant for a wide variety of systems.
Collapse
Affiliation(s)
- William Foster
- Durham University, Physics Department, Durham DH1 3LE, UK.
| | | | | | | | | |
Collapse
|
20
|
Lin W, Klein J. Control of surface forces through hydrated boundary layers. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
21
|
Benaglia S, Amo CA, Garcia R. Fast, quantitative and high resolution mapping of viscoelastic properties with bimodal AFM. NANOSCALE 2019; 11:15289-15297. [PMID: 31386741 DOI: 10.1039/c9nr04396a] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Quantitative mapping of viscoelastic properties of soft matter with a nanoscale spatial resolution is an active and relevant research topic in atomic force microscopy (AFM) and nanoscale science characterization. The AFM has demonstrated its accuracy to measure the energy dissipated on a sample surface with an atomic-scale resolution. However, the transformation of energy dissipation values associated with viscoelastic interactions to a material property remains very challenging. A key issue is to establish the relationship between the AFM observables and some material properties such as viscosity coefficient or relaxation time. Another relevant issue is to determine the accuracy of the measurements. We demonstrate that bimodal atomic force microscopy enables the accurate measurement of several viscoelastic parameters such as the Young's modulus, viscosity coefficient, retardation time or loss tangent. The parameters mentioned above are measured at the same time that the true topography. We demonstrate that the loss tangent is proportional to the viscosity coefficient. We show that the mapping of viscoelastic properties neither degrades the spatial resolution nor the imaging speed of AFM. The results are presented for homogeneous polymer and block co-polymer samples with Young's modulus, viscosity and retardation times ranging from 100 MPa to 3 GPa, 10 to 400 Pa s and 50 to 400 ns, respectively. Numerical simulations validate the accuracy of bimodal AFM to determine the viscoelastic parameters.
Collapse
Affiliation(s)
- Simone Benaglia
- Material Science Factory, Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Ines de la Cruz 3, 28049 Madrid, Spain.
| | | | | |
Collapse
|