1
|
Mi G, Yao Y, Xia L, Zhao H, Yang Q, Wang ZM, Tong X. Reinforcing Photogenerated Carrier Extraction of Environment-Friendly InP/ZnSeS Quantum Dots for High-Performing Photoelectrochemical Photodetection and Solar Energy Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405275. [PMID: 39523748 DOI: 10.1002/smll.202405275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/28/2024] [Indexed: 11/16/2024]
Abstract
Colloidal InP/ZnSeS-based quantum dots (QDs) are considered promising building blocks for light-emitting devices due to their environmental friendliness, high quantum yield (QY), and narrow emission. However, the intrinsic type-I band structure severely hinders potential photoelectrochemical (PEC) applications requiring efficient photoexcited carrier separation and transfer. In this study, the optoelectronic properties of InP/ZnSeS QDs are tailored by introducing Al dopants in the ZnSeS layer, which concurrently passivate the surface defects and act as shallow donor states for suppressed non-radiative recombination and improved charge extraction efficiency. Consequently, as-fabricated InP/ZnSeS:Al QDs-based PEC-type photodetector exhibited a high detectivity up to 1011 Jones and a remarkable responsivity of 0.66 A W-1 at 600 nm even under self-powered condition (0V bias). In addition, as-prepared InP/ZnSeS:Al QDs-based photoanode can be alternatively used for PEC hydrogen generation, showing an H2 production rate of 73.7 µmol cm-2 h-1 under 1 sun illumination (AM 1.5G, 100 mW cm-2). The results offer a prospective strategy for optimizing eco-friendly QDs for high-performance multifunctional light detection/conversion devices.
Collapse
Affiliation(s)
- Guohua Mi
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Yisen Yao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Li Xia
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
- School of Electrical and Information Engineering, Panzhihua University, Panzhihua, 617000, P. R. China
| | - Hongyang Zhao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Qian Yang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Zhiming M Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
- Shimmer Center, Tianfu Jiangxi Laboratory, Chengdu, 641419, P. R. China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, P. R. China
| | - Xin Tong
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
- Shimmer Center, Tianfu Jiangxi Laboratory, Chengdu, 641419, P. R. China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China
- Yunnan Key Laboratory of Electromagnetic Materials and Devices, Yunnan University, Kunming, 650091, P. R. China
| |
Collapse
|
2
|
Wang H, Li W, Gloginjić M, Petrović S, Krupska TV, Turov VV, Zhao J, Yang W, Du Z, Chen S. High-Sensitivity Photoelectrochemical Ultraviolet Photodetector with Stable pH-Universal Adaptability Based on Whole Single-Crystal Integrated Self-Supporting 4H-SiC Nanoarrays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400045. [PMID: 38453678 DOI: 10.1002/smll.202400045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/28/2024] [Indexed: 03/09/2024]
Abstract
Emerging photoelectrochemical (PEC) photodetectors (PDs) have notable advantages over conventional PDs and have attracted extensive attention. However, harsh liquid environments, such as those with high corrosivity and attenuation, substantially restrict their widespread application. Moreover, most PEC PDs are constructed by assembling numerous nanostructures on current collector substrates, which inevitably contain abundant interfaces and defects, thus greatly weakening the properties of PDs. To address these challenges, a high-performance pH-universal PEC ultraviolet (UV) PD based on a whole single-crystal integrated self-supporting 4H-SiC nanopore array photoelectrode is constructed, which is fabricated using a two-step anodic oxidation approach. The PD exhibits excellent photodetection behavior, with high responsivity (218.77 mA W-1), detectivity (6.64 × 1013 Jones), external quantum efficiency (72.47%), and rapid rise/decay times (17/48 ms) under 375 nm light illumination with a low intensity of 0.15 mW cm-2 and a bias voltage of 0.6 V, which is fall in the state-of-the-art of the wide-bandgap semiconductor-based PDs reported thus far. Furthermore, the SiC PEC PD exhibits excellent photoresponse and long-term operational stability in pH-universal liquid environments. The improved photodetection performance of the SiC PEC PD is primarily attributed to the synergistic effect of the nanopore array structure, integrated self-supporting configuration, and single-crystal structure of the whole photoelectrode.
Collapse
Affiliation(s)
- Hulin Wang
- School of Resources, Environment and Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, P. R. China
- School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211, P. R. China
| | - Weijun Li
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211, P. R. China
| | - Marko Gloginjić
- Laboratory of Physics, Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, 11351, Serbia
| | - Srdjan Petrović
- Laboratory of Physics, Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, 11351, Serbia
| | - Tetyana V Krupska
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211, P. R. China
- Department of Nanoporous and Nanosized Carbon Materials, O. Chuiko Institute of Surface Chemistry, NASU, Kyiv, 03164, Ukraine
| | - Vladimir V Turov
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211, P. R. China
- Department of Nanoporous and Nanosized Carbon Materials, O. Chuiko Institute of Surface Chemistry, NASU, Kyiv, 03164, Ukraine
| | - Jialong Zhao
- School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Weiyou Yang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211, P. R. China
| | - Zhentao Du
- School of Resources, Environment and Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, P. R. China
| | - Shanliang Chen
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211, P. R. China
| |
Collapse
|
3
|
Chen H, Wang M, Huang W. Lead Monoxide Nanostructures for Nanophotonics: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1842. [PMID: 37368272 DOI: 10.3390/nano13121842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
Black-phosphorus-analog lead monoxide (PbO), as a new emerging 2D material, has rapidly gained popularity in recent years due to its unique optical and electronic properties. Recently, both theoretical prediction and experimental confirmation have revealed that PbO exhibits excellent semiconductor properties, including a tunable bandgap, high carrier mobility, and excellent photoresponse performance, which is undoubtedly of great interest to explore its practical application in a variety of fields, especially in nanophotonics. In this minireview, we firstly summarize the synthesis of PbO nanostructures with different dimensionalities, then highlight the recent progress in the optoelectronics/photonics applications based on PbO nanostructures, and present some personal insights on the current challenges and future opportunities in this research area. It is anticipated that this minireview can pave the way to fundamental research on functional black-phosphorus-analog PbO-nanostructure-based devices to meet the growing demands for next-generation systems.
Collapse
Affiliation(s)
- Hongyan Chen
- Engineering Training Center, Nantong University, Nantong 226019, China
| | - Mengke Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Weichun Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| |
Collapse
|
4
|
Li X, Peng L, Cai Y, He F, Zhou Q, Shi D. Potential Threat of Lead Oxide Nanoparticles for Food Crops: Comprehensive Understanding of the Impacts of Different Nanosized PbO x ( x = 1, 2) on Maize ( Zea mays L.) Seedlings In Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4235-4248. [PMID: 36854048 DOI: 10.1021/acs.jafc.2c06843] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
PbOx (PbO2 and PbO, x = 1, 2) nanoparticles are emerging contaminants in dust, soil, and water due to extensive application of commercial lead products. As far as we know, the current studies are first conducted to understand the phytotoxic effects of PbO2 (10 ± 3 nm) and PbO NPs (20 ± 5 nm) on maize (Zea mays L.) grown in hydroponic treatments. The exposure assays indicated that phytotoxic effects were dose- and size-dependent on PbOx NPs. Water uptake would be the crucial mechanism to govern the effects of PbOx on maize seed germination and root elongation, while the nanosize of particles and water transpiration processes would control maize growth and biomass production. PbOx NPs significantly influenced the macro- and micronutrients in roots and shoots of maize and significantly affected the maize growth and grain development. Our findings provide clear-cut evidence that PbO/PbO2 NPs can bioaccumulate in maize cell organelles via apoplastic and symplastic routes from the seed and root pathways along with water uptake and transportation. The significance of this research elucidates the impacts of PbO/PbO2 NPs on food security and indicates the threat of emerging PbO/PbO2 NPs to human dietary health.
Collapse
Affiliation(s)
- Xiaoping Li
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
- International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
- Environmental Research Group, School of Public Health, Imperial College London, 80 Wood Lane, London W12 0BZ, U.K
| | - Liyuan Peng
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
- International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Yue Cai
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
- International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Feng He
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
- International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Qishang Zhou
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
- International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Danqian Shi
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
- International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| |
Collapse
|
5
|
Lu C, Dong W, Zou Y, Wang Z, Tan J, Bai X, Ma N, Ge Y, Zhao Q, Xu X. Direct Z-Scheme SnSe 2/SnSe Heterostructure Passivated by Al 2O 3 for Highly Stable and Sensitive Photoelectrochemical Photodetectors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6156-6168. [PMID: 36669150 DOI: 10.1021/acsami.2c19762] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
To mimic the natural photosynthesis system, a Z-scheme heterostructure is proposed as a viable and effective strategy for efficient solar energy utilization such as photocatalysis and photoelectrochemical (PEC) water splitting due to the high carrier separation efficiency, fast charge transport, strong redox, and wide light absorption. However, it remains a huge challenge to form a direct Z-scheme heterostructure due to the internal electric-field restriction and vital band-alignment at the interface. Herein, the van der Waals heterostructure based on the allotrope SnSe2 and SnSe is designed and synthesized by a two-step vapor phase deposition method to overcome the limitation in the formation of the Z-scheme heterostructure for the first time. The Z-scheme heterostructure of SnSe2/SnSe is confirmed by X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, PEC measurement, density functional theory calculations, and water splitting. Strikingly, the PEC photodetectors based on the Z-scheme heterostructure show a synergistic effect of superior stability from SnSe and fast photoresponse from SnSe2. As such, the SnSe2/SnSe Z-scheme heterostructure shows a good photodetection performance in the ultraviolet to visible wavelength range. Furthermore, the photodetector shows a faster response/recovery time of 13/14 ms, a higher photosensitivity of 529.13 μA/W, and a higher detectivity of 4.94 × 109 Jones at 475 nm compared with those of single components. Furthermore, the photodetection stability of the SnSe2/SnSe is also greatly improved by a-thin-Al2O3-layer passivation. The results imply the promising rational design of a direct Z-scheme heterostructure with efficient charge transfer for high performance of optoelectronic devices.
Collapse
Affiliation(s)
- Chunhui Lu
- Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, China
| | - Wen Dong
- Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, China
| | - Yongqiang Zou
- Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, China
| | - Zeyun Wang
- Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, China
| | - Jiayu Tan
- Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, China
| | - Xing Bai
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an, 710048, China
| | - Nan Ma
- Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, China
| | - Yanqing Ge
- Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, China
| | - Qiyi Zhao
- School of Science, Xi'an University of Posts &Telecommunications, Xi'an, 710121, China
| | - Xinlong Xu
- Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, China
| |
Collapse
|
6
|
Liu X, Liu C, Fu Y, Xu Y, Khan K, Tareen AK, Zhang Y. van der Waals integration of mixed-dimensional CeO 2@Bi heterostructure for high-performance self-powered photodetector with fast response speed. NANOSCALE 2022; 14:16120-16129. [PMID: 36301088 DOI: 10.1039/d2nr04428e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Heterostructures have been extensively investigated for optoelectronic devices owing to their fantastic physicochemical properties. Herein, a mixed-dimensional van der Waals heterostructure (vdWH) CeO2@Bi, 1D ceria (CeO2) loaded with 0D bismuth quantum dots (Bi QDs), is synthesized through a facile hydrothermal bottom-up method. It is found that the fabricated CeO2@Bi-based photoelectrochemical (PEC)-type photodetector (PD) shows self-powered photodetection capability with a fast photoresponse speed of 0.02 s. Besides, a photocurrent of 2.00 μA cm-2 and a photoresponsivity of 888.89 μA W-1 under 365 nm illumination are obtained. Furthermore, good long-term cycle stability is also observed after 1 month in a harsh environment, indicating the great potential for practical applications. These results are further supported by density functional theory (DFT) calculations. We believe that the presented work is expected to provide a new pathway for the future utilization of vdWHs for high-performance optoelectronics.
Collapse
Affiliation(s)
- Xinlin Liu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Cailing Liu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Yushuang Fu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Yiguo Xu
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Karim Khan
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Ayesha Khan Tareen
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Ye Zhang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| |
Collapse
|
7
|
Zhu J, Chen H, Zi Y, Wang M, Huang W. Size-tunable bismuth quantum dots for self-powered photodetectors under ambient conditions. NANOTECHNOLOGY 2022; 34:025202. [PMID: 36191561 DOI: 10.1088/1361-6528/ac96f9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Although black phosphorus analogue, bismuthene, has been extensively investigated in recent years, yet the investigation into the photoelectronic devices is still in its infancy. In this contribution, uniform zero-dimensional (0D) bismuth (Bi) quantum dots (QDs) with different sizes were successfully synthesized by a simple solvothermal method. The as-synthesized 0D Bi QDs serve as working electrode materials by a direct deposition for photoelectrochemical (PEC)-type photodetection. The PEC results demonstrate that the as-fabricated 0D Bi QD-based electrode not only possess suitable self-powered broadband photoresponse, but also displays excellent photodetection performance. Under simulated light, the photocurrent density and photoresponsivity of the as-fabricated 0D Bi QD-based electrode can reach 2690 nA cm-2, and 22.0μA W-1, respectively. In addition, the as-prepared Bi QDs with the average diameter of 17 nm exhibit the best PEC photoresponse behavior in the studied size range of Bi QDs, mainly ascribed to the synergistic effect of suitable band gap and accessible active sites. It is anticipated that the uniform Bi QDs can be served as building blocks for a variety of photoelectronic devices, further expanding the application prospects of bismuthene, and can provide in-depth acknowledge on the performance optimization of monoelement Bi-based optical devices.
Collapse
Affiliation(s)
- Jun Zhu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, People's Republic of China
| | - Hongyan Chen
- Engineering Training Center, Nantong University, Nantong 226019, Jiangsu, People's Republic of China
| | - You Zi
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, People's Republic of China
| | - Mengke Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, People's Republic of China
| | - Weichun Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, People's Republic of China
| |
Collapse
|
8
|
Ingle A, Singh M, Tawfik SA, Murdoch BJ, Harrop Mayes EL, Sapountzis Spencer MJ, Ramanathan R, Bansal V. Reactive Oxygen Species Sequestration Induced Synthesis of β-PbO and Its Polymorphic Transformation to α-PbO at Atomically Thin Regimes. ACS NANO 2022; 16:10679-10691. [PMID: 35759757 DOI: 10.1021/acsnano.2c02432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The emergence of attractive properties in materials at atomically thin regimes has seen an ongoing interest in two-dimensional (2D) materials. An aspect that has lacked focused attention is the effect of 2D material thickness on its crystal structure. As several layered materials naturally exist in mixed metastable phases, it raises an important question of whether a specific polymorph of these mixed-phase materials will be favored at atomically thin limits. This work attempts to address this issue by employing lead monoxide as a model 2D polymorphic system. We propose a reactive oxygen species (ROS) sequestration-mediated liquid-phase exfoliation (LPE) strategy for the facile synthesis of ultrathin PbO. This is followed by a suite of microscopic and spectroscopic analyses of the PbO nanosheets that reveals the polymorphic transformation of orthorhombic (β) PbO to its tetragonal (α) analogue with reduction in nanosheet thickness. The transformation process reveals an interesting crystal structure of ultrathin 2D PbO where [001]-oriented domains of α-PbO coexist alongside [100]-oriented regions of β-PbO. Density functional theory (DFT) calculations support our experimental data by revealing a higher thermodynamic stability of the tetragonal phase in PbO monolayers. These findings are likely to instigate interest in carefully evaluating the crystal structures of ultrathin 2D materials while promoting research in understanding the phase transformation across a range of 2D crystals.
Collapse
Affiliation(s)
- Aviraj Ingle
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Mandeep Singh
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Sherif Abdulkader Tawfik
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Billy James Murdoch
- RMIT Microscopy and Microanalysis Facility, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Edwin Lawrence Harrop Mayes
- RMIT Microscopy and Microanalysis Facility, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | | | - Rajesh Ramanathan
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
9
|
Huang Z, Zhu J, Hu Y, Zhu Y, Zhu G, Hu L, Zi Y, Huang W. Tin Oxide (SnO2) Nanoparticles: Facile Fabrication, Characterization, and Application in UV Photodetectors. NANOMATERIALS 2022; 12:nano12040632. [PMID: 35214961 PMCID: PMC8876611 DOI: 10.3390/nano12040632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/27/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022]
Abstract
Tin oxide (SnO2) nanomaterials are of great interest in many fields such as catalytic, electrochemical, and biomedical applications, due to their low cost, suitable stability characteristics, high photosensitivity, etc. In this contribution, SnO2 NPs were facilely fabricated by calcination of tin (II) oxalate in air, followed by a liquid-phase exfoliation (LPE) method. Size-selected SnO2 NPs were easily obtained using a liquid cascade centrifugation (LCC) technique. The as-obtained SnO2 NPs displayed strong absorption in the UV region (~300 nm) and exhibited narrower absorption characteristics with a decrease in NP size. The as-fabricated SnO2 NPs were, for the first time, directly deposited onto a poly(ethylene terephthalate) (PET) film with a regular Ag lattice to fabricate a flexible working electrode for a photoelectrochemical (PEC)-type photodetector. The results demonstrated that the SnO2-NP-based electrode showed the strongest photoresponse signal in an alkaline electrolyte compared with those in neutral and acidic electrolytes. The maximum photocurrent density reached 14.0 μA cm−2, significantly outperforming black phosphorus nanosheets and black phosphorus analogue nanomaterials such as tin (II) sulfide nanosheets and tellurene. The as-fabricated SnO2 NPs with relatively larger size had better self-powered photoresponse performance. In addition, the as-fabricated SnO2-NP-based PEC photodetector exhibited strong cycling stability for on/off switching behavior under ambient conditions. It is anticipated that SnO2 nanostructures, as building blocks, can offer diverse availabilities for high-performance self-powered optoelectronic devices to realize a carbon-neutral or carbon-free environment.
Collapse
Affiliation(s)
| | - Jun Zhu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yi Hu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yueping Zhu
- Nantong Normal College, Nantong 226010, China
| | - Guanghua Zhu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Lanping Hu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - You Zi
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Weichun Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| |
Collapse
|
10
|
Zi Y, Zhu J, Hu L, Wang M, Huang W. Nanoengineering of Tin Monosulfide (SnS)‐Based Structures for Emerging Applications. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- You Zi
- School of Chemistry and Chemical Engineering Nantong University Nantong Jiangsu 226019 P. R. China
| | - Jun Zhu
- School of Chemistry and Chemical Engineering Nantong University Nantong Jiangsu 226019 P. R. China
| | - Lanping Hu
- School of Chemistry and Chemical Engineering Nantong University Nantong Jiangsu 226019 P. R. China
| | - Mengke Wang
- School of Chemistry and Chemical Engineering Nantong University Nantong Jiangsu 226019 P. R. China
| | - Weichun Huang
- School of Chemistry and Chemical Engineering Nantong University Nantong Jiangsu 226019 P. R. China
| |
Collapse
|
11
|
An D, Fu J, Xie Z, Xing C, Zhang B, Wang B, Qiu M. Progress in the therapeutic applications of polymer-decorated black phosphorus and black phosphorus analog nanomaterials in biomedicine. J Mater Chem B 2021; 8:7076-7120. [PMID: 32648567 DOI: 10.1039/d0tb00824a] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Wonderful black phosphorus (BP) and some BP analogs (BPAs) have been increasingly studied for their biomedical applications owing to their fascinating properties and biodegradability, but opportunities and challenges have always coexisted in their study. Poor stability upon exposure to the natural environment is the major obstacle hampering their in vivo applications. BP/polymer and BPAs/polymer nanocomposites can not only efficiently prevent their oxidation and aggregation but also exhibit "biological activity" due to synergistic effects. In this review, we briefly describe the synthesis methods and stability strategies of BP/polymer and BPAs/polymer. Then, advances pertaining to their exciting therapeutic applications in various fields are systematically introduced, such as cancer therapy (phototherapy, drug delivery, and synergistic immunotherapy), bone regeneration, and neurogenesis. Some challenges for future clinical trials and possible directions for further study are finally discussed.
Collapse
Affiliation(s)
- Dong An
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China. and Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, 266100, P. R. China.
| | - Jianye Fu
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China. and Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, 266100, P. R. China.
| | - Zhongjian Xie
- Shenzhen International Institute for Biomedical Research, Shenzhen 518116, P. R. China
| | - Chenyang Xing
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China.
| | - Bin Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China.
| | - Bing Wang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China.
| | - Meng Qiu
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, 266100, P. R. China.
| |
Collapse
|
12
|
Gao L, Chen H, Wang R, Wei S, Kuklin AV, Mei S, Zhang F, Zhang Y, Jiang X, Luo Z, Xu S, Zhang H, Ågren H. Ultra-Small 2D PbS Nanoplatelets: Liquid-Phase Exfoliation and Emerging Applications for Photo-Electrochemical Photodetectors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005913. [PMID: 33448145 DOI: 10.1002/smll.202005913] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/07/2020] [Indexed: 06/12/2023]
Abstract
2D PbS nanoplatelets (NPLs) form an emerging class of photoactive materials and have been proposed as robust materials for high-performance optoelectronic devices. However, the main drawback of PbS NPLs is the large lateral size, which inhibits their further investigations and practical applications. In this work, ultra-small 2D PbS NPLs with uniform lateral size (11.2 ± 1.7 nm) and thickness (3.7 ± 0.9 nm, ≈6 layers) have been successfully fabricated by a facile liquid-phase exfoliation approach. Their transient optical response and photo-response behavior are evaluated by femtosecond-resolved transient absorption and photo-electrochemical (PEC) measurements. It is shown that the NPLs-based photodetectors (PDs) exhibit excellent photo-response performance from UV to the visible range, showing extremely high photo-responsivity (27.81 mA W-1 ) and remarkable detectivity (3.96 × 1010 Jones), which are figures of merit outperforming currently reported PEC-type PDs. The outstanding properties are further analyzed based on the results of first-principle calculations, including electronic band structure and free energies for the oxygen evolution reaction process. This work highlights promising applications of ultra-small 2D PbS NPLs with the potential for breakthrough developments also in other fields of optoelectronic devices.
Collapse
Affiliation(s)
- Lingfeng Gao
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hualong Chen
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, P. R. China
| | - Rui Wang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, P. R. China
- Department of Electronic Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Songrui Wei
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, P. R. China
| | - Artem V Kuklin
- Department of Physics and Astronomy, Uppsala University, Uppsala, SE-751 20, Sweden
| | - Shan Mei
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Feng Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ye Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xiantao Jiang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhengqian Luo
- Department of Electronic Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Shixiang Xu
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Han Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Uppsala, SE-751 20, Sweden
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, P. R. China
| |
Collapse
|
13
|
Lyu Q, Peng L, Hong X, Fan T, Li J, Cui Y, Zhang H, Zhao J. Smart nano-micro platforms for ophthalmological applications: The state-of-the-art and future perspectives. Biomaterials 2021; 270:120682. [PMID: 33529961 DOI: 10.1016/j.biomaterials.2021.120682] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 12/18/2022]
Abstract
Smart nano-micro platforms have been extensively applied for diverse biomedical applications, mostly focusing on cancer therapy. In comparison with conventional nanotechnology, the smart nano-micro matrix can exhibit specific response to exogenous or endogenous triggers, and thus can achieve multiple functions e.g. site-specific drug delivery, bio-imaging and detection of bio-molecules. These intriguing techniques have expanded into ophthalmology in recent years, yet few works have been summarized in this field. In this work, we provide the state-of-the-art of diverse nano-micro platforms based on both the conventional materials (e.g. natural or synthetic polymers, lipid nanomaterials, metal and metal oxide nanoparticles) and emerging nanomaterials (e.g. up-conversion nanoparticles, quantum dots and carbon materials) in ophthalmology, with some smart nano/micro platformers highlighted. The common ocular diseases studied in the field of nano-micro systems are firstly introduced, and their therapeutic method and the related drawback in clinic treatment are presented. The recent progress of different materials for diverse ocular applications is then demonstrated, with the representative nano- and micro-systems highlighted in detail. At last, an in-depth discussion on the clinical translation challenges faced in this field and the future direction are provided. This review would allow the researchers to design more smart nanomedicines in a more rational manner for specific ophthalmology applications.
Collapse
Affiliation(s)
- Qinghua Lyu
- Shenzhen Eye Hospital, School of Ophthalmology & Optometry Affiliated to Shenzhen University, Shenzhen, 518040, PR China; Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Ling Peng
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Xiangqian Hong
- Shenzhen Eye Hospital, School of Ophthalmology & Optometry Affiliated to Shenzhen University, Shenzhen, 518040, PR China; Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Taojian Fan
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Jingying Li
- Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen, 518000, PR China
| | - Yubo Cui
- Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College,Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, PR China
| | - Han Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China.
| | - Jun Zhao
- Shenzhen Eye Hospital, School of Ophthalmology & Optometry Affiliated to Shenzhen University, Shenzhen, 518040, PR China; Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College,Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, PR China.
| |
Collapse
|
14
|
Miao J, Lang Z, Xue T, Li Y, Li Y, Cheng J, Zhang H, Tang Z. Revival of Zeolite-Templated Nanocarbon Materials: Recent Advances in Energy Storage and Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001335. [PMID: 33101857 PMCID: PMC7578874 DOI: 10.1002/advs.202001335] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/27/2020] [Indexed: 05/05/2023]
Abstract
Nanocarbon materials represent one of the hottest topics in physics, chemistry, and materials science. Preparation of nanocarbon materials by zeolite templates has been developing for more than 20 years. In recent years, novel structures and properties of zeolite-templated nanocarbons have been evolving and new applications are emerging in the realm of energy storage and conversion. Here, recent progress of zeolite-templated nanocarbons in advanced synthetic techniques, emerging properties, and novel applications is summarized: i) thanks to the diversity of zeolites, the structures of the corresponding nanocarbons are multitudinous; ii) by various synthetic techniques, novel properties of zeolite-templated nanocarbons can be achieved, such as hierarchical porosity, heteroatom doping, and nanoparticle loading capacity; iii) the applications of zeolite-templated nanocarbons are also evolving from traditional gas/vapor adsorption to advanced energy storage techniques including Li-ion batteries, Li-S batteries, fuel cells, metal-O2 batteries, etc. Finally, a perspective is provided to forecast the future development of zeolite-templated nanocarbon materials.
Collapse
Affiliation(s)
- Jun Miao
- Key Laboratory of Bioinorganic and Synthetic Chemistry (MOE)Institute of Applied Physics and Material EngineeringUniversity of MacauTaipaMacau SARP. R. China
- Instituto de Ciencia de Materiales MadridCSICMadrid28049Spain
| | - Zhongling Lang
- Polyoxometalate Science of Ministry of EducationNortheast Normal UniversityChangchunJilin130024P. R. China
| | - Tianyu Xue
- Institute of Microscale OptoelectronicsKey Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen Key Laboratory of Micro‐Nano Photonic Information TechnologyGuangdong Laboratory of Artificial Intelligence and Digital Economy (SZ)Shenzhen UniversityShenzhen518060P. R. China
- Biodesign Center for Biosensors and BioelectronicsBiodesign InstituteArizona State UniversityTempeAZ85281USA
- Center for High Pressure ScienceState Key Laboratory of Metastable Materials Science and TechnologyYanshan UniversityQinhuangdao066004P. R. China
| | - Yan Li
- Institute of Microscale OptoelectronicsKey Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen Key Laboratory of Micro‐Nano Photonic Information TechnologyGuangdong Laboratory of Artificial Intelligence and Digital Economy (SZ)Shenzhen UniversityShenzhen518060P. R. China
| | - Yiwen Li
- School of Material Science and EngineeringHubei UniversityWuhan430062P. R. China
- Department of ChemistryPurdue UniversityWest LafayetteIN47907USA
| | - Jiaji Cheng
- School of Material Science and EngineeringHubei UniversityWuhan430062P. R. China
| | - Han Zhang
- Institute of Microscale OptoelectronicsKey Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen Key Laboratory of Micro‐Nano Photonic Information TechnologyGuangdong Laboratory of Artificial Intelligence and Digital Economy (SZ)Shenzhen UniversityShenzhen518060P. R. China
| | - Zikang Tang
- Key Laboratory of Bioinorganic and Synthetic Chemistry (MOE)Institute of Applied Physics and Material EngineeringUniversity of MacauTaipaMacau SARP. R. China
| |
Collapse
|
15
|
Zhang Y, Huang P, Guo J, Shi R, Huang W, Shi Z, Wu L, Zhang F, Gao L, Li C, Zhang X, Xu J, Zhang H. Graphdiyne-Based Flexible Photodetectors with High Responsivity and Detectivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001082. [PMID: 32338405 DOI: 10.1002/adma.202001082] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/25/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Graphdiyne (GDY), a newly emerging 2D carbon allotrope, has been widely explored in various fields owing to its outstanding electronic properties such as the intrinsic bandgap and high carrier mobility. Herein, GDY-based photoelectrochemical-type photodetection is realized by spin-coating ultrathin GDY nanosheets onto flexible poly(ethylene terephthalate) (PET) substrates. The GDY-based photodetectors (PDs) demonstrate excellent photo-responsive behaviors with high photocurrent (Pph , 5.98 µA cm- 2 ), photoresponsivity (Rph , 1086.96 µA W- 1 ), detectivity (7.31 × 1010 Jones), and excellent long-term stability (more than 1 month). More importantly, the PDs maintain an excellent Pph after 1000 cycles of bending (4.45 µA cm- 2 ) and twisting (3.85 µA cm- 2 ), thanks to the great flexibility of the GDY structure that is compatible with the flexible PET substrate. Density functional theory (DFT) calculations are adopted to explore the electronic characteristics of GDY, which provides evidence for the performance enhancement of GDY in alkaline electrolyte. In this way, the GDY-based flexible PDs can enrich the fundamental study of GDY and pave the way for the exploration of GDY heterojunction-based photodetection.
Collapse
Affiliation(s)
- Ye Zhang
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Pu Huang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jia Guo
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Rongchao Shi
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tongyan Road 38, Haihe Educational Park, Tianjin, 300350, China
| | - Weichun Huang
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
- Nantong Key Lab of Intelligent and New Energy Materials, College of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, China
| | - Zhe Shi
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Leiming Wu
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Feng Zhang
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Lingfeng Gao
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Chao Li
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Xiuwen Zhang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jialiang Xu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tongyan Road 38, Haihe Educational Park, Tianjin, 300350, China
| | - Han Zhang
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
16
|
Jiang X, Huang W, Wang R, Li H, Xia X, Zhao X, Hu L, Chen T, Tang Y, Zhang H. Photocarrier relaxation pathways in selenium quantum dots and their application in UV-Vis photodetection. NANOSCALE 2020; 12:11232-11241. [PMID: 32412570 DOI: 10.1039/c9nr10235c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recently, chain-like materials have attracted significant attention due to their unique structure and outstanding electro-optical properties. However, the photocarrier dynamics and pathways in these materials that determine the electro-optical performances of the prepared devices have barely been touched. Herein, selenium quantum dots (Se QDs), one typical chain-like material, were prepared via a facile liquid phase exfoliation approach. The photocarrier dynamics in selenium quantum dots were systematically investigated by ultrafast transient absorption spectroscopy in the ultraviolet-visible regime. Four photocarrier decay pathways with different lifetimes were firstly detected, and they assist in the elucidation and reconstruction of the energy schematic diagram of Se QDs. Owing to the broadband photo-response and fast recovery time of Se QDs, a photoelectrochemical (PEC)-type photodetector was proposed for the first time to our knowledge, demonstrating its excellent photodetection properties. Considering the feasible fabrication method and clear photocarrier pathways, the excellent photocurrent density and stability of this photodetector undoubtedly guarantee that selenium is a promising candidate for advanced photonic devices.
Collapse
Affiliation(s)
- Xiantao Jiang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, Collaborative Innovation Center for Optoelectronic Science and Technology, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhang Y, Guo J, Xu Y, Huang W, Li C, Gao L, Wu L, Shi Z, Ma C, Ge Y, Zhang X, Zhang H. Synthesis and optoelectronics of mixed-dimensional Bi/Te binary heterostructures. NANOSCALE HORIZONS 2020; 5:847-856. [PMID: 32105281 DOI: 10.1039/c9nh00805e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mixed-dimensional binary heterostructures, especially 0D/2D heterostructures, have attracted significant attention due to their unique physical properties. In this contribution, 0D bismuth quantum dots (Bi QDs, VA) are immobilized onto 2D Te nanosheets (Te NSs, VIA) to prepare Bi QDs/Te NSs binary heterostructures (Bi/Te) through a facile and cost-effective hydrothermal method. The results from both experiments and density functional theory (DFT) calculations demonstrate the enhanced photo-response behaviors of Bi/Te-based photoelectrochemical (PEC)-type photodetectors (PDs). The as-prepared PDs exhibit a high photocurrent of 18.21 μA cm-2, significantly higher than those of previously reported pristine Bi QD and Te NS-based PDs. The PDs are further demonstrated to have excellent self-power capability and long-term stability over 30 days. Additionally, the obtained 786 fs pulse output signal in the telecommunications band reveals the great potential of Bi/Te for ultrafast photonic devices. It is believed that such VA/VIA binary heterostructures provide opportunities for developing multifunctional optoelectronic devices for nano-science applications.
Collapse
Affiliation(s)
- Ye Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, P. R. China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhang Y, You Q, Huang W, Hu L, Ju J, Ge Y, Zhang H. Few-layer hexagonal bismuth telluride (Bi 2Te 3) nanoplates with high-performance UV-Vis photodetection. NANOSCALE ADVANCES 2020; 2:1333-1339. [PMID: 36133032 PMCID: PMC9419258 DOI: 10.1039/d0na00006j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/09/2020] [Indexed: 05/21/2023]
Abstract
It is widely known that the excellent intrinsic electronic and optoelectronic advantages of bismuthene and tellurene make them attractive for applications in transistors and logic and optoelectronic devices. However, their poor optoelectronic performances, such as photocurrent density and photoresponsivity, under ambient conditions severely hinder their practical application. To satisfy the demand of high-performance optoelectronic devices and topological insulators, bismuth telluride nanoplates (Bi2Te3 NPs) with different sizes, successfully synthesized by a solvothermal approach have been, for the first time, employed to fabricate a working electrode for photoelectrochemical (PEC)-type photodetection. It is demonstrated that the as-prepared Bi2Te3 NP-based photodetectors exhibit remarkably improved photocurrent density, enhanced photoresponsivity, and faster response time and recovery time in the UV-Vis region, compared to bismuthene and tellurene-based photodetectors. Additionally, the PEC stability measurements show that Bi2Te3 NPs have a comparable long-term stability for on/off switching behaviour for the bismuthene and tellurene-based photodetectors. Therefore, it is anticipated that the present work can provide fundamental acknowledgement of the optoelectronic performance of a PEC-type Bi2Te3 NP-based photodetector, shedding light on new designs of high-performance topological insulator-based optoelectronic devices.
Collapse
Affiliation(s)
- Ye Zhang
- SZU-NUS Collaborative Innovation Centre for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University Shenzhen 518060 China
| | - Qi You
- SZU-NUS Collaborative Innovation Centre for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University Shenzhen 518060 China
| | - Weichun Huang
- Nantong Key Lab of Intelligent and New Energy Materials, College of Chemistry and Chemical Engineering, Nantong University Nantong 226019 Jiangsu P. R. China
| | - Lanping Hu
- Nantong Key Lab of Intelligent and New Energy Materials, College of Chemistry and Chemical Engineering, Nantong University Nantong 226019 Jiangsu P. R. China
| | - Jianfeng Ju
- Nantong Key Lab of Intelligent and New Energy Materials, College of Chemistry and Chemical Engineering, Nantong University Nantong 226019 Jiangsu P. R. China
| | - Yanqi Ge
- SZU-NUS Collaborative Innovation Centre for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University Shenzhen 518060 China
| | - Han Zhang
- SZU-NUS Collaborative Innovation Centre for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University Shenzhen 518060 China
| |
Collapse
|
19
|
Li C, Huang W, Gao L, Wang H, Hu L, Chen T, Zhang H. Recent advances in solution-processed photodetectors based on inorganic and hybrid photo-active materials. NANOSCALE 2020; 12:2201-2227. [PMID: 31942887 DOI: 10.1039/c9nr07799e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Due to their excellent and tailorable optoelectronic performance, low cost, facile fabrication, and compatibility with flexible substrates, solution-processed inorganic and hybrid photo-active materials have attracted extensive interest for next-generation photodetector applications. This review gives a comprehensive compilation of solution-processed photodetectors. The basic structures of the device and important parameters of photodetectors will be firstly summarized. Then the development of various solution processing technologies containing solution synthesis and liquid phase film-forming processes for the preparation of semiconductor films is described. From the materials science point of view, we give a comprehensive overview about the current status of solution processed semiconductor materials including inorganic and hybrid photo-active materials for the application of photodetectors. Moreover, challenges and future trends in the field of solution-processed photodetectors are proposed.
Collapse
Affiliation(s)
- Chao Li
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Weichun Huang
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, P. R. China
| | - Lingfeng Gao
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Huide Wang
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Lanping Hu
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, P. R. China
| | - Tingting Chen
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, P. R. China
| | - Han Zhang
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
| |
Collapse
|
20
|
Zhang Y, Zhang F, Wu L, Zhang Y, Huang W, Tang Y, Hu L, Huang P, Zhang X, Zhang H. Van der Waals Integration of Bismuth Quantum Dots-Decorated Tellurium Nanotubes (Te@Bi) Heterojunctions and Plasma-Enhanced Optoelectronic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903233. [PMID: 31609534 DOI: 10.1002/smll.201903233] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/15/2019] [Indexed: 05/07/2023]
Abstract
Van der Waals (vdW)-integrated heterojunctions have been widely investigated in optoelectronics due to their superior photoelectric conversion capability. In this work, 0D bismuth quantum dots (Bi QDs)-decorated 1D tellurium nanotubes (Te NTs) vdW heterojunctions (Te@Bi vdWHs) are constructed by a facile bottom-up assembly process. Transient absorption spectroscopy suggests that Te@Bi vdWH is a promising candidate for new-generation optoelectronic devices with fast response properties. The subsequent experiments and density functional theory calculations demonstrate the vdW interaction between Te NTs and Bi QDs, as well as the enhanced optoelectronic characteristics owing to the plasma effects at the interface between Te NTs and Bi QDs. Moreover, Te@Bi vdWHs-based photodetectors show significantly improved photoresponse behavior in the ultraviolet region compared to pristine Te NTs or Bi QDs-based photodetectors. The proposed integration of vdWHs is expected to pave the way for constructing new nanoscale heterodevices.
Collapse
Affiliation(s)
- Ye Zhang
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Feng Zhang
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Leiming Wu
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Yupeng Zhang
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Weichun Huang
- College of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, Jiangsu, P. R. China
| | - Yanfeng Tang
- College of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, Jiangsu, P. R. China
| | - Lanping Hu
- College of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, Jiangsu, P. R. China
| | - Pu Huang
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Xiuwen Zhang
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Han Zhang
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
21
|
Huang W, Zhang Y, You Q, Huang P, Wang Y, Huang ZN, Ge Y, Wu L, Dong Z, Dai X, Xiang Y, Li J, Zhang X, Zhang H. Enhanced Photodetection Properties of Tellurium@Selenium Roll-to-Roll Nanotube Heterojunctions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900902. [PMID: 31016874 DOI: 10.1002/smll.201900902] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/07/2019] [Indexed: 05/07/2023]
Abstract
Non-layered tellurium (Te) is a promising material for applications in transistor and optoelectronic devices for its advantages in excellent intrinsic electronic and optoelectronic properties. However, the poor photodetection performance and relatively uncertain stability of tellurene under ambient conditions greatly limit the practical applications. In order to improve the performance of tellurene-based materials, Te@Se roll-to-roll nanotubes with different selenium (Se) contents synthesized by epitaxial growth of Se on Te nanotubes are, for the first time, employed to fabricate working electrodes for photoelectrochemical (PEC)-type broadband photodetection. They exhibit not only a preferably enhanced capacity for self-powered broadband photodetection but also significantly improved photocurrent density and stability in various aqueous environments (HCl, NaCl, and KOH solutions), compared to tellurene-based photodetectors. It is anticipated that the present work can open up new possibilities for high-performance tellurene-based optoelectronic devices.
Collapse
Affiliation(s)
- Weichun Huang
- SZU-NUS Collaborative Innovation Centre for Optoelectronic Science & Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ye Zhang
- SZU-NUS Collaborative Innovation Centre for Optoelectronic Science & Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Qi You
- SZU-NUS Collaborative Innovation Centre for Optoelectronic Science & Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Pu Huang
- Shenzhen Key Laboratory of Flexible Memory Materials and Devices, College of Electronic Science and Technology, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yunzheng Wang
- SZU-NUS Collaborative Innovation Centre for Optoelectronic Science & Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ziyin N Huang
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Yanqi Ge
- SZU-NUS Collaborative Innovation Centre for Optoelectronic Science & Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Leiming Wu
- Faculty of Information Technology, Macau University of Science and Technology, Macao, 519020, P. R. China
| | - Zhijun Dong
- Shenzhen Institute of Information Technology, Shenzhen, 518172, P. R. China
| | - Xiaoyu Dai
- SZU-NUS Collaborative Innovation Centre for Optoelectronic Science & Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yuanjiang Xiang
- SZU-NUS Collaborative Innovation Centre for Optoelectronic Science & Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jianqing Li
- Faculty of Information Technology, Macau University of Science and Technology, Macao, 519020, P. R. China
| | - Xiuwen Zhang
- Shenzhen Key Laboratory of Flexible Memory Materials and Devices, College of Electronic Science and Technology, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Han Zhang
- SZU-NUS Collaborative Innovation Centre for Optoelectronic Science & Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|