1
|
Hong S, Yu T, Wang Z, Lee CH. Biomaterials for reliable wearable health monitoring: Applications in skin and eye integration. Biomaterials 2024; 314:122862. [PMID: 39357154 DOI: 10.1016/j.biomaterials.2024.122862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Recent advancements in biomaterials have significantly impacted wearable health monitoring, creating opportunities for personalized and non-invasive health assessments. These developments address the growing demand for customized healthcare solutions. Durability is a critical factor for biomaterials in wearable applications, as they must withstand diverse wearing conditions effectively. Therefore, there is a heightened focus on developing biomaterials that maintain robust and stable functionalities, essential for advancing wearable sensing technologies. This review examines the biomaterials used in wearable sensors, specifically those interfaced with human skin and eyes, highlighting essential strategies for achieving long-lasting and stable performance. We specifically discuss three main categories of biomaterials-hydrogels, fibers, and hybrid materials-each offering distinct properties ideal for use in durable wearable health monitoring systems. Moreover, we delve into the latest advancements in biomaterial-based sensors, which hold the potential to facilitate early disease detection, preventative interventions, and tailored healthcare approaches. We also address ongoing challenges and suggest future directions for research on material-based wearable sensors to encourage continuous innovation in this dynamic field.
Collapse
Affiliation(s)
- Seokkyoon Hong
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Tianhao Yu
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Ziheng Wang
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Chi Hwan Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA; School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA; Center for Implantable Devices, Purdue University, West Lafayette, IN, 47907, USA; School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA; Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
2
|
Yang J, Liu B, Wang Q, Yan H, Li G, Wang X, Shang Z, Ou T, Chen W. Carboxylated mesoporous silica nanoparticle-nucleic acid chimera conjugate-assisted delivery of siRNA and doxorubicin effectively treat drug-resistant bladder cancer. Biomed Pharmacother 2024; 178:117185. [PMID: 39053429 DOI: 10.1016/j.biopha.2024.117185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
Chemotherapy is the main treatment for bladder cancer, but drug resistance and side effects limit its application and therapeutic effect. Herein, we constructed doxorubicin (DOX)/COOH-mesoporous silica nanoparticle/polyethylenimine (PEI)/nucleic acid chimeras (DOX/MSN/Chimeras) to reduce the toxicity of chemotherapy drugs and the resistance of bladder cancer cells. Transmission electron microscopy showed that PEI was coated on the DOX/MSN/BSA nanoparticles with a diameter of about 150 nm. DOX/MSN/PEI could control DOX release for over 48 h, and the sudden release rate was significantly lower than DOX/MSN. Immunohistochemical results showed that DOX/MSN/Chimera specifically bound to bladder cancer cells, and markedly inhibited PI3K expression and proliferation of DOX-resistant bladder cancer cells. DOX/MSN/Chimera promoted the apoptosis of drug-resistant bladder cancer cells, which was superior to DOX/MSN/Aptamer or DOX/MSN. We further carried out animal experiments and found that DOX/MSN/Chimera could reduce the volume of transplanted tumors in vivo. Compared with DOX/MSN/Aptamer group, the proliferation rate was significantly decreased and the proportion of apoptotic cells was highly increased. Through the histological observation of kidneys and lungs, we believed that DOX/MSN/Chimera can effectively reduce the damage of chemotherapy drugs to normal tissues. In conclusion, we constructed a COOH-MSN/nucleic acid chimera conjugate for the targeted delivery of siRNA and anti-cancer drugs. Our study provides a new method for personalized and targeted treatment of drug-resistant bladder cancer.
Collapse
Affiliation(s)
- Jintao Yang
- Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Biao Liu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qi Wang
- Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Hao Yan
- Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Guangping Li
- Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xu Wang
- Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Zhenhua Shang
- Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Tongwen Ou
- Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Wen Chen
- Department of Pathology, The 8th Medical Center, Chinese PLA General Hospital, Beijing 100091, China.
| |
Collapse
|
3
|
Wang Y, Qian D, Wang X, Zhang X, Li Z, Meng X, Yu L, Yan X, He Z. Biomimetic Trypsin-Responsive Structure-Bridged Mesoporous Organosilica Nanomedicine for Precise Treatment of Acute Pancreatitis. ACS NANO 2024; 18:19283-19302. [PMID: 38990194 DOI: 10.1021/acsnano.4c05369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Developing strategies to target injured pancreatic acinar cells (PACs) in conjunction with primary pathophysiology-specific pharmacological therapy presents a challenge in the management of acute pancreatitis (AP). We designed and synthesized a trypsin-cleavable organosilica precursor bridged by arginine-based amide bonds, leveraging trypsin's ability to selectively identify guanidino groups on arginine via Asp189 at the active S1 pocket and cleave the carboxy-terminal (C-terminal) amide bond via catalytic triads. The precursors were incorporated into the framework of mesoporous silica nanoparticles (MSNs) for encapsulating the membrane-permeable Ca2+ chelator BAPTA-AM with a high loading content (∼43.9%). Mesenchymal stem cell membrane coating and surface modification with PAC-targeting ligands endow MSNs with inflammation recruitment and precise PAC-targeting abilities, resulting in the highest distribution at 3 h in the pancreas with 4.7-fold more accumulation than that of naked MSNs. The outcomes transpired as follows: After bioinspired MSNs' skeleton biodegradation by prematurely and massively activated trypsin, BAPTA-AM was on-demand released in injured PACs, thereby effectively eliminating intracellular calcium overload (reduced Ca2+ level by 81.3%), restoring cellular redox status, blocking inflammatory cascades, and inhibiting cell necrosis by impeding the IκBα/NF-κB/TNF-α/IL-6 and CaMK-II/p-RIP3/p-MLKL/caspase-8,9 signaling pathways. In AP mice, a single dose of the formulation significantly restored pancreatic function (lipase and amylase reduced more by 60%) and improved the survival rate from 50 to 91.6%. The formulation offers a potentially effective strategy for clinical translation in AP treatment.
Collapse
Affiliation(s)
- Yanan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- Sanya Oceanographic Institution, Sanya 572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, China
| | - Deyao Qian
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, China
| | - Xinyuan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, China
| | - Xue Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, China
| | - Zerui Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, China
| | - Xinlei Meng
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, China
| | - Liangmin Yu
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- Sanya Oceanographic Institution, Sanya 572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, China
| | - Xuefeng Yan
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, China
| | - Zhiyu He
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- Sanya Oceanographic Institution, Sanya 572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, China
| |
Collapse
|
4
|
Mladenović M, Jarić S, Mundžić M, Pavlović A, Bobrinetskiy I, Knežević NŽ. Biosensors for Cancer Biomarkers Based on Mesoporous Silica Nanoparticles. BIOSENSORS 2024; 14:326. [PMID: 39056602 PMCID: PMC11274377 DOI: 10.3390/bios14070326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
Mesoporous silica nanoparticles (MSNs) exhibit highly beneficial characteristics for devising efficient biosensors for different analytes. Their unique properties, such as capabilities for stable covalent binding to recognition groups (e.g., antibodies or aptamers) and sensing surfaces, open a plethora of opportunities for biosensor construction. In addition, their structured porosity offers capabilities for entrapping signaling molecules (dyes or electroactive species), which could be released efficiently in response to a desired analyte for effective optical or electrochemical detection. This work offers an overview of recent research studies (in the last five years) that contain MSNs in their optical and electrochemical sensing platforms for the detection of cancer biomarkers, classified by cancer type. In addition, this study provides an overview of cancer biomarkers, as well as electrochemical and optical detection methods in general.
Collapse
Affiliation(s)
| | | | | | | | | | - Nikola Ž. Knežević
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (M.M.); (S.J.); (M.M.); (A.P.)
| |
Collapse
|
5
|
Yasamineh S, Nikben N, Hamed Ahmed M, Abdul Kareem R, Kadhim Al-Aridhy A, Hosseini Hooshiar M. Increasing the sensitivity and accuracy of detecting exosomes as biomarkers for cancer monitoring using optical nanobiosensors. Cancer Cell Int 2024; 24:189. [PMID: 38816782 PMCID: PMC11138050 DOI: 10.1186/s12935-024-03379-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/19/2024] [Indexed: 06/01/2024] Open
Abstract
The advancement of nanoscience and material design in recent times has facilitated the creation of point-of-care devices for cancer diagnosis and biomolecule sensing. Exosomes (EXOs) facilitate the transfer of bioactive molecules between cancer cells and diverse cells in the local and distant microenvironments, thereby contributing to cancer progression and metastasis. Specifically, EXOs derived from cancer are likely to function as biomarkers for early cancer detection due to the genetic or signaling alterations they transport as payload within the cancer cells of origin. It has been verified that EXOs circulate steadily in bodily secretions and contain a variety of information that indicates the progression of the tumor. However, acquiring molecular information and interactions regarding EXOs has presented significant technical challenges due to their nanoscale nature and high heterogeneity. Colorimetry, surface plasmon resonance (SPR), fluorescence, and Raman scattering are examples of optical techniques utilized to quantify cancer exosomal biomarkers, including lipids, proteins, RNA, and DNA. Many optically active nanoparticles (NPs), predominantly carbon-based, inorganic, organic, and composite-based nanomaterials, have been employed in biosensing technology. The exceptional physical properties exhibited by nanomaterials, including carbon NPs, noble metal NPs, and magnetic NPs, have facilitated significant progress in the development of optical nanobiosensors intended for the detection of EXOs originating from tumors. Following a summary of the biogenesis, biological functions, and biomarker value of known EXOs, this article provides an update on the detection methodologies currently under investigation. In conclusion, we propose some potential enhancements to optical biosensors utilized in detecting EXO, utilizing various NP materials such as silicon NPs, graphene oxide (GO), metal NPs, and quantum dots (QDs).
Collapse
Affiliation(s)
- Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | | | | | | | - Ameer Kadhim Al-Aridhy
- College of Health and Medical Technology, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | |
Collapse
|
6
|
Sheng J, Wu Y, Ding H, Feng K, Shen Y, Zhang Y, Gu N. Multienzyme-Like Nanozymes: Regulation, Rational Design, and Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211210. [PMID: 36840985 DOI: 10.1002/adma.202211210] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Nanomaterials with more than one enzyme-like activity are termed multienzymic nanozymes, and they have received increasing attention in recent years and hold huge potential to be applied in diverse fields, especially for biosensing and therapeutics. Compared to single enzyme-like nanozymes, multienzymic nanozymes offer various unique advantages, including synergistic effects, cascaded reactions, and environmentally responsive selectivity. Nevertheless, along with these merits, the catalytic mechanism and rational design of multienzymic nanozymes are more complicated and elusive as compared to single-enzymic nanozymes. In this review, the multienzymic nanozymes classification scheme based on the numbers/types of activities, the internal and external factors regulating the multienzymatic activities, the rational design based on chemical, biomimetic, and computer-aided strategies, and recent progress in applications attributed to the advantages of multicatalytic activities are systematically discussed. Finally, current challenges and future perspectives regarding the development and application of multienzymatic nanozymes are suggested. This review aims to deepen the understanding and inspire the research in multienzymic nanozymes to a greater extent.
Collapse
Affiliation(s)
- Jingyi Sheng
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
| | - Yuehuang Wu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
| | - He Ding
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
| | - Kaizheng Feng
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
| | - Yan Shen
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Yu Zhang
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
| | - Ning Gu
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, P. R. China
- Medical School, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
7
|
Mohseni N, Moodi M, Kefayat A, Shokati F, Molaabasi F. Challenges and Opportunities of Using Fluorescent Metal Nanocluster-Based Colorimetric Assays in Medicine. ACS OMEGA 2024; 9:3143-3163. [PMID: 38284078 PMCID: PMC10809695 DOI: 10.1021/acsomega.3c06884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/27/2023] [Accepted: 12/14/2023] [Indexed: 01/30/2024]
Abstract
Development of rapid colorimetric methods based on novel optical-active metal nanomaterials has provided methods for the detection of ions, biomarkers, cancers, etc. Fluorescent metal nanoclusters (FMNCs) have gained a lot of attention due to their unique physical, chemical, and optical properties providing numerous applications from rapid and sensitive detection to cellular imaging. However, because of very small color changes, their colorimetric applications for developing rapid tests based on the naked eye or simple UV-vis absorption spectrophotometry are still limited. FMNCs with peroxidase-like activity have significant potential in a wide variety of applications, especially for point-of-care diagnostics. In this review, the effect of using various capping agents and metals for the preparation of nanoclusters in their colorimetric sensing properties is explored, and the synthesis and detection mechanisms and the recent advances in their application for ultrasensitive chemical and biological analysis regarding human health are highlighted. Finally, the challenges that remain as well as the future perspectives are briefly discussed. Overcoming these limitations will allow us to expand the nanocluster's application for colorimetric diagnostic purposes in medical practice.
Collapse
Affiliation(s)
- Nasim Mohseni
- Biomaterials
and Tissue Engineering Research Group, Department of Interdisciplinary
Technologies, Breast Cancer Research Center,
Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mohammad Moodi
- Department
of Materials Science and Engineering, Ferdowsi
University of Mashhad, Mashhad, Iran
| | - Amirhosein Kefayat
- Biomaterials
and Tissue Engineering Research Group, Department of Interdisciplinary
Technologies, Breast Cancer Research Center,
Motamed Cancer Institute, ACECR, Tehran, Iran
- Department
of Oncology, Isfahan University of Medical
Sciences, Isfahan, Iran
| | - Farhad Shokati
- Biomaterials
and Tissue Engineering Research Group, Department of Interdisciplinary
Technologies, Breast Cancer Research Center,
Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Fatemeh Molaabasi
- Biomaterials
and Tissue Engineering Research Group, Department of Interdisciplinary
Technologies, Breast Cancer Research Center,
Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
8
|
Li QY, Yu X, Li X, Bao LN, Zhang Y, Xie MJ, Jiang M, Wang YQ, Huang K, Xu L. Silicon-Carbon Dots-Loaded Mesoporous Silica Nanocomposites (mSiO 2@SiCDs): An Efficient Dual Inhibitor of Cu 2+-Mediated Oxidative Stress and Aβ Aggregation for Alzheimer's Disease. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54221-54233. [PMID: 37962427 DOI: 10.1021/acsami.3c10053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The redox-active metal ions, especially Cu2+, are highly correlated to Alzheimer's disease (AD) by causing metal ion-mediated oxidative stress and toxic metal-bound β-amyloid (Aβ) aggregates. Numerous pieces of evidence have revealed that the regulation of metal homeostasis could be an effective therapeutic strategy for AD. Herein, in virtue of the interaction of both amino-containing silane and ethylenediaminetetraacetic acid disodium salt for Cu2+, the silicon-carbon dots (SiCDs) are deliberately prepared using these two raw materials as the cocarbon source; meanwhile, to realize the local enrichment of SiCDs and further maximize the chelating ability to Cu2+, the SiCDs are feasibly loaded to the biocompatible mesoporous silica nanoparticles (mSiO2) with the interaction between residual silane groups on SiCDs and silanol groups of mSiO2. Thus-obtained nanocomposites (i.e., mSiO2@SiCDs) could serve as an efficient Cu2+ chelator with satisfactory metal selectivity and further modulate the enzymic activity of free Cu2+ and the Aβ42-Cu2+ complex to alleviate the pathological oxidative stress with an anti-inflammatory effect. Besides, mSiO2@SiCDs show an inspiring inhibitory effect on Cu2+-mediated Aβ aggregation and further protect the neural cells against the toxic Aβ42-Cu2+ complex. Moreover, the transgenic Caenorhabditis elegans CL2120 assay demonstrates the protective efficacy of mSiO2@SiCDs on Cu2+-mediated Aβ toxicity in vivo, indicating its potential for AD treatment.
Collapse
Affiliation(s)
- Qin-Ying Li
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xu Yu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Jiangxia Laboratory, Wuhan 430200, China
| | - Xi Li
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li-Na Bao
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Min-Jie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Ming Jiang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ya Qian Wang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kun Huang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Xu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
9
|
Barguilla I, Candela-Noguera V, Oliver P, Annangi B, Díez P, Aznar E, Martínez-Máñez R, Marcos R, Hernández A, Marcos MD. Toxicological Profiling and Long-Term Effects of Bare, PEGylated- and Galacto-Oligosaccharide-Functionalized Mesoporous Silica Nanoparticles. Int J Mol Sci 2023; 24:16158. [PMID: 38003350 PMCID: PMC10671840 DOI: 10.3390/ijms242216158] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Mesoporous silica nanoparticles (MSNs) are amongst the most used nanoparticles in biomedicine. However, the potentially toxic effects of MSNs have not yet been fully evaluated, being a controversial matter in research. In this study, bare MSNs, PEGylated MSNs (MSNs-PEG), and galacto-oligosaccharide-functionalized MSNs (MSNs-GAL) are synthesized and characterized to assess their genotoxicity and transforming ability on human lung epithelial BEAS-2B cells in short- (48 h) and long-term (8 weeks) exposure scenarios. Initial short-term treatments show a dose-dependent increase in genotoxicity for MSNs-PEG-treated cells but not oxidative DNA damage for MSNs, MSNs-PEG, or for MSNs-GAL. In addition, after 8 weeks of continuous exposure, neither induced genotoxic nor oxidative DNA is observed. Nevertheless, long-term treatment with MSNs-PEG and MSNs-GAL, but not bare MSNs, induces cell transformation features, as evidenced by the cell's enhanced ability to grow independently of anchorage, to migrate, and to invade. Further, the secretome from cells treated with MSNs and MSNs-GAL, but not MSNs-PEG, shows certain tumor-promoting abilities, increasing the number and size of HeLa cell colonies formed in the indirect soft-agar assay. These results show that MSNs, specifically the functionalized ones, provoke some measurable adverse effects linked to tumorigenesis. These effects are in the order of other nanomaterials, such as carbon nanotubes or cerium dioxide nanoparticles, but they are lower than those provoked by some approved drugs, such as doxorubicin or dexamethasone.
Collapse
Affiliation(s)
- Irene Barguilla
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain (R.M.)
| | - Vicente Candela-Noguera
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Patrick Oliver
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain (R.M.)
| | - Balasubramanyam Annangi
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain (R.M.)
| | - Paula Díez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Instituto de Investigación Sanitaria La Fe (IISLAFE), Universitat Politècnica de València, 46026 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Elena Aznar
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Instituto de Investigación Sanitaria La Fe (IISLAFE), Universitat Politècnica de València, 46026 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Instituto de Investigación Sanitaria La Fe (IISLAFE), Universitat Politècnica de València, 46026 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ricard Marcos
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain (R.M.)
| | - Alba Hernández
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain (R.M.)
| | - María Dolores Marcos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Instituto de Investigación Sanitaria La Fe (IISLAFE), Universitat Politècnica de València, 46026 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
10
|
Yang L, Rathnam C, Hidaka T, Hou Y, Conklin B, Pandian GN, Sugiyama H, Lee KB. Nanoparticle-Based Artificial Mitochondrial DNA Transcription Regulator: MitoScript. NANO LETTERS 2023; 23:2046-2055. [PMID: 36688839 DOI: 10.1021/acs.nanolett.2c03958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The growing knowledge of the links between aberrant mitochondrial gene transcription and human diseases necessitates both an effective and dynamic approach to control mitochondrial DNA (mtDNA) transcription. To address this challenge, we developed a nanoparticle-based synthetic mitochondrial transcription regulator (MitoScript). MitoScript provides great colloidal stability, excellent biocompatibility, efficient cell uptake, and selective mitochondria targeting and can be monitored in live cells using near-infrared fluorescence. Notably, MitoScript controlled mtDNA transcription in a human cell line in an effective and selective manner. MitoScript targeting the light strand promoter region of mtDNA resulted in the downregulation of ND6 gene silencing, which eventually affected cell redox status, with considerably increased reactive oxygen species (ROS) generation. In summary, we developed MitoScript for the efficient, nonviral modification of mitochondrial DNA transcription. Our platform technology can potentially contribute to understanding the fundamental mechanisms of mitochondrial disorders and developing effective treatments for mitochondrial diseases.
Collapse
Affiliation(s)
- Letao Yang
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Christopher Rathnam
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Takuya Hidaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Yannan Hou
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Brandon Conklin
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Ganesh N Pandian
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
11
|
Sobhanan J, Anas A, Biju V. Nanomaterials for Fluorescence and Multimodal Bioimaging. CHEM REC 2023; 23:e202200253. [PMID: 36789795 DOI: 10.1002/tcr.202200253] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/27/2023] [Indexed: 02/16/2023]
Abstract
Bioconjugated nanomaterials replace molecular probes in bioanalysis and bioimaging in vitro and in vivo. Nanoparticles of silica, metals, semiconductors, polymers, and supramolecular systems, conjugated with contrast agents and drugs for image-guided (MRI, fluorescence, PET, Raman, SPECT, photodynamic, photothermal, and photoacoustic) therapy infiltrate into preclinical and clinical settings. Small bioactive molecules like peptides, proteins, or DNA conjugated to the surfaces of drugs or probes help us to interface them with cells and tissues. Nevertheless, the toxicity and pharmacokinetics of nanodrugs, nanoprobes, and their components become the clinical barriers, underscoring the significance of developing biocompatible next-generation drugs and contrast agents. This account provides state-of-the-art advancements in the preparation and biological applications of bioconjugated nanomaterials and their molecular, cell, and in vivo applications. It focuses on the preparation, bioimaging, and bioanalytical applications of monomodal and multimodal nanoprobes composed of quantum dots, quantum clusters, iron oxide nanoparticles, and a few rare earth metal ion complexes.
Collapse
Affiliation(s)
- Jeladhara Sobhanan
- Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido, 060-0810, Japan.,Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Abdulaziz Anas
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kerala, 682 018, India
| | - Vasudevanpillai Biju
- Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido, 060-0810, Japan.,Research Institute for Electronic Science, Hokkaido University, Sapporo, 001-0020, Japan
| |
Collapse
|
12
|
A novel biosensing platform for detection of glaucoma biomarker GDF15 via an integrated BLI-ELASA strategy. Biomaterials 2023; 294:121997. [PMID: 36638554 DOI: 10.1016/j.biomaterials.2023.121997] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/26/2022] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide. Early discovery and prioritized intervention significantly impact its prognosis. Precise monitoring of the biomarker GDF15 contributes towards effective diagnosis and assessment of glaucoma. In this study, we demonstrate that GDF15 monitoring can also aid screening for glaucoma risk and early diagnosis. We obtained an aptamer (APT2TM) with high affinity, high specificity, and high stability for binding to both human-derived and rat-derived GDF15. Simulation results showed that the binding capabilities of APT2TM are mainly affected by the interplay between van der Waals forces and polar solvation energy, and that salt bridges and hydrogen bonds play critical roles. We then integrated an enzyme-linked aptamer sandwich assay (ELASA) into a biolayer interferometry (BLI) system to develop an automated, high-throughput, real-time monitoring BLI-ELASA biosensing platform. This platform exhibited a wide linear detection window (10-810 pg/mL range) and high sensitivity for GDF15 (detection limit of 5-6 pg/mL). Moreover, we confirmed its excellent performance when applied to GDF15 quantification in real samples from glaucomatous rats and clinical patients. We believe that this technology represents a robust, convenient, and cost-effective approach for risk screening, early diagnosis, and animal modeling evaluation of glaucoma in the near future.
Collapse
|
13
|
Wang Q, Lv L, Chi W, Bai Y, Gao W, Zhu P, Yu J. Porphyrin-Based Covalent Organic Frameworks with Donor-Acceptor Structure for Enhanced Peroxidase-like Activity as a Colorimetric Biosensing Platform. BIOSENSORS 2023; 13:188. [PMID: 36831954 PMCID: PMC9953433 DOI: 10.3390/bios13020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Hydrogen peroxide (H2O2) and glucose play a key role in many cellular signaling pathways. The efficient and accurate in situ detection of H2O2 released from living cells has attracted extensive research interests. Herein, a new porphyrin-based porous covalent organic framework (TAP-COF) was fabricated via one-step condensation of 1,6,7,12-tetrachloroperylene tetracarboxylic acid dianhydride and 5,10,15,20-tetrakis (4-aminophenyl)porphyrin iron(III). The obtained TAP-COF has high surface areas, abundant surface catalytic active sites, and highly effective electron transport due to its precisely controllable donor-acceptor arrangement and 3D porous structure. Then, the new TAP-COF exhibited excellent peroxidase-like catalytic activity, which could effectively catalyze oxidation of the substrate 3,3',5,5'-tetramethylbenzidine by H2O2 to produce a typical blue-colored reaction. On this basis, simple, rapid and selective colorimetric methods for in situ H2O2 detection were developed with the detection limit of 2.6 nM in the wide range of 0.01 to 200 μM. The colorimetric approach also could be used for in situ detection of H2O2 released from living MCF-7 cells. This portable sensor based on a COF nanozyme not only opens a new path for point-of-care testing, but also has potential applications in the field of cell biology and clinical diagnosis.
Collapse
Affiliation(s)
- Qian Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Liang Lv
- Jinan Agricultural Product Quality and Safety Center, Jinan 250316, China
| | - Wenhao Chi
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yujiao Bai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Wenqing Gao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Peihua Zhu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
14
|
An Oligopeptide-Protected Ultrasmall Gold Nanocluster with Peroxidase-Mimicking and Cellular-Imaging Capacities. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010070. [PMID: 36615266 PMCID: PMC9822283 DOI: 10.3390/molecules28010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/12/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Recent decades have witnessed the rapid progress of nanozymes and their high promising applications in catalysis and bioclinics. However, the comprehensive synthetic procedures and harsh synthetic conditions represent significant challenges for nanozymes. In this study, monodisperse, ultrasmall gold clusters with peroxidase-like activity were prepared via a simple and robust one-pot method. The reaction of clusters with H2O2 and 3,3',5,5'-tetramethylbenzidine (TMB) followed the Michaelis-Menton kinetics. In addition, in vitro experiments showed that the prepared clusters had good biocompatibility and cell imaging ability, indicating their future potential as multi-functional materials.
Collapse
|
15
|
Yañez-Aulestia A, Gupta NK, Hernández M, Osorio-Toribio G, Sánchez-González E, Guzmán-Vargas A, Rivera JL, Ibarra IA, Lima E. Gold nanoparticles: current and upcoming biomedical applications in sensing, drug, and gene delivery. Chem Commun (Camb) 2022; 58:10886-10895. [PMID: 36093914 DOI: 10.1039/d2cc04826d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gold nanoparticles (AuNPs) present unique physicochemical characteristics, low cytotoxicity, chemical stability, size/morphology tunability, surface functionalization capability, and optical properties which can be exploited for detection applications (colorimetry, surface-enhanced Raman scattering, and photoluminescence). The current challenge for AuNPs is incorporating these properties in developing more sensible and selective sensing methods and multifunctional platforms capable of controlled and precise drug or gene delivery. This review briefly highlights the recent progress of AuNPs in biomedicine as bio-sensors and targeted nano vehicles.
Collapse
Affiliation(s)
- Ana Yañez-Aulestia
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de Mexico, Circuito Exterior S/N, CU, Del. Coyoacán, Ciudad de Mexico, 04510, Mexico.
| | - Nishesh Kumar Gupta
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de Mexico, Circuito Exterior S/N, CU, Del. Coyoacán, Ciudad de Mexico, 04510, Mexico. .,University of Science and Technology (UST), Daejeon, Republic of Korea.,Department of Land, Water, and Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang, Republic of Korea
| | - Magali Hernández
- Departamento de Ingeniería y Tecnología, Universidad Nacional Autónoma de México Facultad de Estudios Superiores Cuautitlán Av. 1 de Mayo s/n, Cuautitlán Izcalli, Edo. de Méx, 54740, Mexico
| | - Génesis Osorio-Toribio
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de Mexico, Circuito Exterior S/N, CU, Del. Coyoacán, Ciudad de Mexico, 04510, Mexico.
| | - Elí Sánchez-González
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de Mexico, Circuito Exterior S/N, CU, Del. Coyoacán, Ciudad de Mexico, 04510, Mexico.
| | - Ariel Guzmán-Vargas
- Instituto Politécnico Nacional - ESIQIE, Avenida IPN UPALM Edificio 7, Zacatenco, Mexico City, 07738, DF, Mexico.
| | - José L Rivera
- Facultad de Ciencias Físico-Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, 58000, Mexico
| | - Ilich A Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de Mexico, Circuito Exterior S/N, CU, Del. Coyoacán, Ciudad de Mexico, 04510, Mexico.
| | - Enrique Lima
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de Mexico, Circuito Exterior S/N, CU, Del. Coyoacán, Ciudad de Mexico, 04510, Mexico.
| |
Collapse
|
16
|
Wu T, Chen K, Lai W, Zhou H, Wen X, Chan HF, Li M, Wang H, Tao Y. Bovine serum albumin-gold nanoclusters protein corona stabilized polystyrene nanoparticles as dual-color fluorescent nanoprobes for breast cancer detection. Biosens Bioelectron 2022; 215:114575. [PMID: 35868122 DOI: 10.1016/j.bios.2022.114575] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/24/2022] [Accepted: 07/12/2022] [Indexed: 11/02/2022]
Abstract
Breast cancer is the most prevalent malignancy and the first leading cause of cancer-related mortality among the female population worldwide. Approaches for precise and reliable detection of breast cancer cells, particularly in the nascent state, are desperately needed for elevating the survival rate of patients bearing the breast tumor. In this work, we successfully performed the sensitive, precise, and reliable breast cancer cell detection using facilely fabricated bovine serum albumin-gold nanocluster (BSA-AuNCs) protein corona stabilized, epithelial cell adhesion molecule (EpCAM) aptamer linked fluorescent polystyrene nanoparticle (PS NP), termed as PS-BSA-AuNCs-Apt. The rapidly adsorbed BSA-AuNCs hard protein corona without complicated covalent conjugation not only imparted excellent colloidal stability to the PS nanoparticles, but also offered numerous active anchors for the targeted EpCAM aptamers to locate. With the remarkable aid of the aptamers specifically targeting the EpCAM-positive breast cancer cells, the PS-BSA-AuNCs-Apt emitted strong and photostable dual-color fluorescent signals for precise and reliable cancer cell detection by overcoming the false signals. The specific identification potency of the PS-BSA-AuNCs-Apt system was further verified by successfully detecting the xenografted breast tumor tissue. Notably, to the best of our knowledge, the protein corona formed nanoprobes was exploited for direct tumor cell and tissue detection with high efficacy for the first time, demonstrating their promising potential in clinical tumor detection.
Collapse
Affiliation(s)
- Tingting Wu
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Keying Chen
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Wenjie Lai
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China; Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Huicong Zhou
- College of Science, Changchun Institute of Technology, Changchun, 130012, China
| | - Xingqiao Wen
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Science, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China; Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou, 510630, China.
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
17
|
|
18
|
Chen F, Song T. AuPt Bimetallic Nanozymes for Enhanced Glucose Catalytic Oxidase. Front Chem 2022; 10:854516. [PMID: 35265588 PMCID: PMC8899206 DOI: 10.3389/fchem.2022.854516] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/01/2022] [Indexed: 12/07/2022] Open
Abstract
Au metal nanoparticles as artificial nanozymes have attracted wide interest in biotechnology due to high stability and easy synthesis. Unfortunately, its catalytic activity is limited by the uniform surface electron distribution, fundamentally affecting the oxidation efficiency of glucose. Here, we synthesized AuPt bimetallic nanoparticles with unique surface electron structure due to the coupling effect of the two metal components, achieving improved glucose catalytic oxidase. Because of the effective work function difference between the two metals in AuPt, the electrons will transfer from Au to accumulate on Pt, simultaneously contributing to the substantial enhancement of Au-induced glucose oxidase and Pt-induced catalase performance. We systematically studied the enzyme-catalytic efficiency of AuPt with varied two metal proportions, in which Au:Pt at 3:1 showed the highest catalytic efficiency of glucose oxidase in solution. The AuPt nanoparticles were further co-cultured with cells and also showed excellent biological activity for glucose oxidase. This work demonstrates that the physicochemical properties between different metals can be exploited for engineering high-performance metal nanoparticle-based nanozymes, which opens up a new way to rationally design and optimize artificial nanozymes to mimic natural enzymes.
Collapse
Affiliation(s)
- Feixiang Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
- *Correspondence: Feixiang Chen,
| | - Tianlin Song
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Rajalakshmi K, Muthusamy S, Nam YS, Li Y, Lee KB, Xu Y. A new recognition moiety diphenylborinate in the detection of pyruvate via Lewis acid/base sensing pathway and its bioimaging applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120457. [PMID: 34653848 DOI: 10.1016/j.saa.2021.120457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/05/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Developing new reaction based recognizing units can enhance the specificity of target analyte molecules in practical applications of real samples and biosystems. Therefore, introducing a recognizing moiety diphenylborinate was encountered for the detection of pyruvate biomolecule through Lewis acid-base reaction based sensing strategy. The construction of the Schiff-base back bone between quinoline and N-(diethylamino)salicylaldehyde-diphenylborinate (QSB) were expressed the red shift from blue emission of quinoline in to green as that of dative bond developed between Schiff base nitrogen and boron atoms. The new sensing approach was involved such a way that fluorophore QSB is a Lewis acid while pyruvate acts as Lewis base, where the elimination of Lewis pair produced a weak green fluorescence including the formation of quinoline, N-(diethylamino)salicylaldehyde (QS). The switching products were witnessed through 1H NMR titration, HR-MS and FT-IR studies. The good selectivity and interference ability were achieved in presence of 1000-fold excess of possible interferences with LOD of 16 nM. Moreover, the tracking ability of the probe was employed towards pyruvate in live HeLa cell imaging for evaluating an exogenous and endogenous signals producing ability and its mitochondria targeting property was investigated successfully. Further, the practical utility of the probe was tested with milk samples and obtained good recovery results.
Collapse
Affiliation(s)
- Kanagaraj Rajalakshmi
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; Climate and Environmental Research Institute, Korea Institute of Science & Technology, Hwarang-ro 14-gil 5 Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Selvaraj Muthusamy
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; Climate and Environmental Research Institute, Korea Institute of Science & Technology, Hwarang-ro 14-gil 5 Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Yun-Sik Nam
- Advanced Analysis Center, Korea Institute of Science & Technology, Hwarang-ro 14-gil 5 Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Yujun Li
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kang-Bong Lee
- Climate and Environmental Research Institute, Korea Institute of Science & Technology, Hwarang-ro 14-gil 5 Seongbuk-gu, Seoul 02792, Republic of Korea.
| | - Yuanguo Xu
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
20
|
Vajhadin F, Mazloum-Ardakani M, Sanati A, Haghniaz R, Travas-Sejdic J. Optical cytosensors for the detection of circulating tumour cells. J Mater Chem B 2022; 10:990-1004. [PMID: 35107117 DOI: 10.1039/d1tb02370e] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Blood analysis is an established approach to monitor various diseases, ranging from heart defects and diabetes to cancer. Among various tumor markers in the blood, circulating tumor cells (CTCs) have received increasing attention due to the fact that they originate directly from the tumors. Capturing and detecting CTCs represents a promising approach in cancer diagnostics and clinical management of cancers. CTCs in blood progress to self-seeding a tumour or initiating a new lesion mass. Cytosensors are biosensors intended to identify CTCs in a blood sample of cancer patients and provide information about the cancer status. Herein, we firstly discuss different detection methods of state-of-the-art optical cytosensors, including colorimetry, fluorescence, surface plasmon resonance, photoelectrochemistry and electrochemiluminescence. Then we review the significant advances made in implementing biorecognition elements and nanomaterials for the detection of cancer cells. Despite great progress in optical cytosensors, and their integration with smartphones, they have still only been explored to prototype stages. Much more effort is needed to fulfil their potential in modern cancer diagnostics and in monitoring the state of disease for cancer patients.
Collapse
Affiliation(s)
- Fereshteh Vajhadin
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, 8915818411, Iran.
| | | | - Alireza Sanati
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Jadranka Travas-Sejdic
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand. .,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| |
Collapse
|
21
|
Lian M, Shao S, Liu M, Shi Y, Zhang H, Chen D. Cell membrane-coated nanoparticles as peroxidase mimetics for cancer cell targeted detection and therapy. Talanta 2022; 238:123071. [PMID: 34808566 DOI: 10.1016/j.talanta.2021.123071] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/22/2021] [Accepted: 11/14/2021] [Indexed: 01/10/2023]
Abstract
The development of novel and efficient recognition molecules that can be easily modified by nanomaterials to achieve ultra-sensitive and specific cancer cell analysis is of great significance for its early diagnosis and timely prognosis. Herin, a new nanostructured hybrid based on cell membrane-coated Au cores- ultrathin Pt skins composite nanoparticles (Au@Pt@CM NPs) were developed for in vitro detection and treatment of cancer cells. In this strategy, the Au@Pt NPs acted as the signal transducer, and the cell membrane were used as the cancer-cell recognition tool. The synthesized Au@Pt@CM NPs could catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of the hydrogen peroxide and were demonstrated to have excellent peroxidase-like activity. Coated with the source cancer cell membrane, the nanoparticles achieved highly specific self-recognition to the source cell. Therefore, the colorimetric method based on Au@Pt@CM NPs could detect the cancer cells in the linear range from 50 to 100000 cells/mL with a limit of detection of 5 cells/mL, which is much lower than other colorimetric detection methods. Afterwards, the nanoparticles as a mimetic enzyme were used for therapeutics of cancer cells through the ROS-mediated oxidative damage. Due to the change of the redox state in the cells by the Au@Pt@CM NPs, the hybrid can achieve the growth inhibitory effect and the selective killing effect on cancer cells. It can be expected that this novel hybrid membrane coating method will bring new insight into developing targeted nanomaterials for tumor treatment and detection.
Collapse
Affiliation(s)
- Meiling Lian
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin, 300300, China
| | - Shuaibin Shao
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin, 300300, China
| | - Meihan Liu
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin, 300300, China
| | - Yuqing Shi
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin, 300300, China
| | - Haijun Zhang
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin, 300300, China.
| | - Da Chen
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin, 300300, China.
| |
Collapse
|
22
|
Tao Y, Yi K, Wang H, Kim HW, Li K, Zhu X, Li M. CRISPR-Cas12a-regulated DNA adsorption and metallization on MXenes as enhanced enzyme mimics for sensitive colorimetric detection of hepatitis B virus DNA. J Colloid Interface Sci 2022; 613:406-414. [PMID: 35042038 DOI: 10.1016/j.jcis.2022.01.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 12/11/2022]
Abstract
Hepatitis B virus (HBV) infection is closely associated with the high risk of evolving into human hepatitis diseases including chronic hepatitis, liver fibrosis and cirrhosis, as well as hepatoma. Although various methods have been developed for HBV DNA detection, most of them either rely on expensive instruments or laborious procedures involving professional personnel. In this study, we for the first time established the CRISPR-Cas12a based colorimetric biosensor for target HBV detection by utilizing probe DNA regulation of the catalytic behaviors of Mxene-probe DNA-Ag/Pt nanohybrids. In the presence of HBV target, the Cas12a trans-cleavage activity could be efficiently activated to degrade the DNA probes, which led to the inhibition of DNA metallization and enzyme activity enhancer DNA adsorbed on Mxene, resulting in significantly reduced catalytic activity. The Mxene-probe DNA-Ag/Pt nanohybrids exhibited excellent sensitivity and specificity with subpicomolar detection limits, as well as good accuracy and stability for the determination of target HBV DNA in human serum samples. Moreover, this colorimetric sensing strategy could be integrated with the smartphone platform to allow the visible sensitive detection of target DNA. Taken together, the proposed colorimetric method provides a novel approach for HBV DNA diagnosis, especially suitable for the high endemic, developing countries with limited instrumental and medical supports.
Collapse
Affiliation(s)
- Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China
| | - Ke Yi
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, South Korea; Department of Nanobiomedical Science and BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, South Korea.
| | - Kai Li
- Department of Ultrasound, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Xiang Zhu
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China.
| |
Collapse
|
23
|
Hu Y, Lv S, Wan J, Zheng C, Shao D, Wang H, Tao Y, Li M, Luo Y. Recent advances in nanomaterials for prostate cancer detection and diagnosis. J Mater Chem B 2022; 10:4907-4934. [PMID: 35712990 DOI: 10.1039/d2tb00448h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite the significant progress in the discovery of biomarkers and the exploitation of technologies for prostate cancer (PCa) detection and diagnosis, the initial screening of these PCa-related biomarkers using current...
Collapse
Affiliation(s)
- Yongwei Hu
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Shixian Lv
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Jiaming Wan
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Chunxiong Zheng
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Dan Shao
- Institutes of Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
- Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou 510630, China
| | - Yun Luo
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
24
|
Fernandes N, Rodrigues CF, de Melo-Diogo D, Correia IJ, Moreira AF. Optimization of the GSH-Mediated Formation of Mesoporous Silica-Coated Gold Nanoclusters for NIR Light-Triggered Photothermal Applications. NANOMATERIALS 2021; 11:nano11081946. [PMID: 34443777 PMCID: PMC8401642 DOI: 10.3390/nano11081946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/16/2021] [Accepted: 07/25/2021] [Indexed: 12/26/2022]
Abstract
Cancer light-triggered hyperthermia mediated by nanomaterials aims to eliminate cancer cells by inducing localized temperature increases to values superior to 42 °C, upon irradiation with a laser. Among the different nanomaterials with photothermal capacity, the gold-based nanoparticles have been widely studied due to their structural plasticity and advantageous physicochemical properties. Herein, a novel and straightforward methodology was developed to produce gold nanoclusters coated with mesoporous silica (AuMSS), using glutathione (GSH) to mediate the formation of the gold clusters. The obtained results revealed that GSH is capable of triggering and control the aggregation of gold nanospheres, which enhanced the absorption of radiation in the NIR region of the spectra. Moreover, the produced AuMSS nanoclusters mediated a maximum temperature increase of 20 °C and were able to encapsulate a drug model (acridine orange). In addition, these AuMSS nanoclusters were also biocompatible with both healthy (fibroblasts) and carcinogenic (cervical cancer) cells, at a maximum tested concentration of 200 μg/mL. Nevertheless, the AuMSS nanoclusters’ NIR light-triggered heat generation successfully reduced the viability of cervical cancer cells by about 80%. This confirms the potential of the AuMSS nanoclusters to be applied in cancer therapy, namely as theragnostic agents.
Collapse
Affiliation(s)
- Natanael Fernandes
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (N.F.); (C.F.R.); (D.d.M.-D.); (I.J.C.)
| | - Carolina F. Rodrigues
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (N.F.); (C.F.R.); (D.d.M.-D.); (I.J.C.)
| | - Duarte de Melo-Diogo
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (N.F.); (C.F.R.); (D.d.M.-D.); (I.J.C.)
| | - Ilídio J. Correia
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (N.F.); (C.F.R.); (D.d.M.-D.); (I.J.C.)
- CIEPQPF—Departamento de Engenharia Química, Universidade de Coimbra, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| | - André F. Moreira
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (N.F.); (C.F.R.); (D.d.M.-D.); (I.J.C.)
- Correspondence: ; Tel.: +351-275-329-002; Fax: +351-275-329-099
| |
Collapse
|
25
|
Zhuo C, Zhang J, Lee JH, Jiao J, Cheng D, Liu L, Kim HW, Tao Y, Li M. Spatiotemporal control of CRISPR/Cas9 gene editing. Signal Transduct Target Ther 2021; 6:238. [PMID: 34148061 PMCID: PMC8214627 DOI: 10.1038/s41392-021-00645-w] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/09/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein 9 (CRISPR/Cas9) gene editing technology, as a revolutionary breakthrough in genetic engineering, offers a promising platform to improve the treatment of various genetic and infectious diseases because of its simple design and powerful ability to edit different loci simultaneously. However, failure to conduct precise gene editing in specific tissues or cells within a certain time may result in undesirable consequences, such as serious off-target effects, representing a critical challenge for the clinical translation of the technology. Recently, some emerging strategies using genetic regulation, chemical and physical strategies to regulate the activity of CRISPR/Cas9 have shown promising results in the improvement of spatiotemporal controllability. Herein, in this review, we first summarize the latest progress of these advanced strategies involving cell-specific promoters, small-molecule activation and inhibition, bioresponsive delivery carriers, and optical/thermal/ultrasonic/magnetic activation. Next, we highlight the advantages and disadvantages of various strategies and discuss their obstacles and limitations in clinical translation. Finally, we propose viewpoints on directions that can be explored to further improve the spatiotemporal operability of CRISPR/Cas9.
Collapse
Grants
- the Guangdong Province Science and Technology Innovation Special Fund (International Scientific Cooperation, 2018A050506035), the National Natural Science Foundation of China (51903256).
- the National Key Research and Development Program of China (2016YFE0117100), the National Natural Science Foundation of China (21875289 and U1501243), the Guangdong-Hong Kong Joint Innovation Project (2016A050503026), the Major Project on the Integration of Industry, Education and Research of Guangzhou City (201704030123), the Science and Technology Program of Guangzhou (201704020016), the Guangdong Innovative and Entrepreneurial Research Team Program (2013S086)
- National Research Foundation, Republic of Korea (2015K1A1A2032163, 2018K1A4A3A01064257, 2018R1A2B3003446)
- the National Key Research and Development Program of China (2019YFA0111300, 2016YFE0117100), the National Natural Science Foundation of China (21907113), the Guangdong Provincial Pearl River Talents Program (2019QN01Y131), the Thousand Talents Plan.
Collapse
Affiliation(s)
- Chenya Zhuo
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiabin Zhang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea
| | - Ju Jiao
- Department of Nuclear Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Du Cheng
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Li Liu
- Department of Gynecology and Obstetrics, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea.
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China.
| |
Collapse
|
26
|
Multifunctional nanoparticles as optical biosensing probe for breast cancer detection: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112249. [PMID: 34225888 DOI: 10.1016/j.msec.2021.112249] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 05/11/2021] [Accepted: 06/05/2021] [Indexed: 12/15/2022]
Abstract
Optical biosensors show attractive performance in medical sensing in the event of using different nanoparticles in their design. Owing to their unique optical characteristics and biological compatibility, gold nanoparticles (GNPs), silver nanoparticles (AgNPs), bimetallic nanoparticles and magnetic nanoparticles have been broadly implemented in making sensing tools. The functionalization of these nanoparticles with different components provides an excellent opportunity to assemble selective and sensitive sensing materials to detect various biological molecules related to breast cancer. This review summarizes the recent application of optical biosensing devices based on nanomaterials and discusses their pros and cons to improve breast cancer detection in real samples. In particular, the main constituent elements of these optical biosensors including recognition and transducer elements, types of applied nanostructures, analytical sensing procedures, sensor detection ranges and limit of detection (LOD), are expressed in detail.
Collapse
|
27
|
Li X, Lu S, Mu X, Li T, Sun S, Zhao Y, Hai J, Wang B. Red-light-responsive coordination polymers nanorods: New strategy for ultrasensitive photothermal detection of targeted cancer cells. Biosens Bioelectron 2021; 190:113417. [PMID: 34134071 DOI: 10.1016/j.bios.2021.113417] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 05/27/2021] [Accepted: 06/03/2021] [Indexed: 12/17/2022]
Abstract
The development of highly sensitive and simple detection methods for cancer cells is an important challenge to achieve early cancer diagnosis and effective treatment. In this paper, folic acid (FA)-conjugated platinum (IV) methylene blue (MB) coordination polymers nanorods (denoted as FA-PtCPs NRs) were developed by the photochemical method. The structure of the PtCPs NRs was investigated using the meta-dynamics and genetic algorithms (MTD-GC) method, and it was found that the coordination bond was formed between platinum (IV) and N atoms of MB. The field emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM) indicated that the morphology of PtCPs NRs was rod-like. The resulting FA-PtCPs NRs was used for the specific and ultra-sensitive temperature detection of cancer cells based on PtCPs NRs as a signal trigger unit and FA as a target recognition tool. After three-step reaction, oxidized 3,3',5,5'-tetramethylbenzidine (ox-TMB) with photothermal effect was obtained. Under 660 nm laser irradiation, such detection platform can convert the molecular recognition signal between FA and folate receptor (FR) of cancer cells into readable temperature value, which can be directly read by an ordinary thermometer, with a detection limit as low as 2 cells/mL. In addition, FA-PtCPs NRs could be used as fluorescent probes for in-situ bioimaging. Therefore, this photothermal sensing platform has a broad prospect in the field of point-of-care detection of cancer cells.
Collapse
Affiliation(s)
- Xinyue Li
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Gansu Lanzhou, 730000, PR China
| | - Siyu Lu
- Green Catalysis Center, And College of Chemistry, Zhengzhou University, Zhengzhou, 450000, People's Republic of China
| | - Xijiao Mu
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Gansu Lanzhou, 730000, PR China
| | - Tianrong Li
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Gansu Lanzhou, 730000, PR China
| | - Shihao Sun
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Gansu Lanzhou, 730000, PR China
| | - Yang Zhao
- School of Life Sciences, Lanzhou University, Gansu, Lanzhou, 730000, China
| | - Jun Hai
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Gansu Lanzhou, 730000, PR China.
| | - Baodui Wang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Gansu Lanzhou, 730000, PR China.
| |
Collapse
|
28
|
Li D, Wang G, Mei X. Diagnosis of cancer at early stages based on the multiplex detection of tumor markers using metal nanoclusters. Analyst 2021; 145:7150-7161. [PMID: 33020766 DOI: 10.1039/d0an01538e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Traditional cancer diagnosis strategies are not considered by most people until the last resort, which delays many cancer treatments leading to advanced stages. Tumor marker sensors show great potential for detecting cancer because of its cost-effective and harmless checking procedures. Normally, one tumor marker is detected each time by using one type of sensor, but the accuracy to declare cancer is not always satisfied. Metal nanoclusters are ultra-small nanomaterials with low toxicity, distinct optical properties, catalytic activities, and cost-effective performance. Some metal nanoclusters have been designed to detect more than one tumor marker in a single step. The consideration of combined parameters using such facile sensing strategies has the potential to simplify the test procedure, and increase the diagnostic accuracy of early cancer. Therefore, various sensing strategies for the multiplex detection of tumor markers using metal nanoclusters are summarized.
Collapse
Affiliation(s)
- Dan Li
- Department of Basic Science, Jinzhou Medical University, Jinzhou, People's Republic of China.
| | | | | |
Collapse
|
29
|
Zheng C, Zhang J, Chan HF, Hu H, Lv S, Na N, Tao Y, Li M. Engineering Nano-Therapeutics to Boost Adoptive Cell Therapy for Cancer Treatment. SMALL METHODS 2021; 5:e2001191. [PMID: 34928094 DOI: 10.1002/smtd.202001191] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/22/2021] [Indexed: 06/14/2023]
Abstract
Although adoptive transfer of therapeutic cells to cancer patients is demonstrated with great success and fortunately approved for the treatment of leukemia and B-cell lymphoma, potential issues, including the unclear mechanism, complicated procedures, unfavorable therapeutic efficacy for solid tumors, and side effects, still hinder its extensive applications. The explosion of nanotechnology recently has led to advanced development of novel strategies to address these challenges, facilitating the design of nano-therapeutics to improve adoptive cell therapy (ACT) for cancer treatment. In this review, the emerging nano-enabled approaches, that design multiscale artificial antigen-presenting cells for cell proliferation and stimulation in vitro, promote the transducing efficiency of tumor-targeting domains, engineer therapeutic cells for in vivo imaging, tumor infiltration, and in vivo functional sustainability, as well as generate tumoricidal T cells in vivo, are summarized. Meanwhile, the current challenges and future perspectives of the nanostrategy-based ACT for cancer treatment are also discussed in the end.
Collapse
Affiliation(s)
- Chunxiong Zheng
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Jiabin Zhang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Science, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Hanze Hu
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Shixian Lv
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, 98195, USA
| | - Ning Na
- Department of Kidney Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou, 510630, China
| |
Collapse
|
30
|
Lin FC, Xie Y, Deng T, Zink JI. Magnetism, Ultrasound, and Light-Stimulated Mesoporous Silica Nanocarriers for Theranostics and Beyond. J Am Chem Soc 2021; 143:6025-6036. [PMID: 33857372 DOI: 10.1021/jacs.0c10098] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Stimuli-responsive multifunctional mesoporous silica nanoparticles (MSNs) have been studied intensively during the past decade. A large variety of mesopore capping systems have been designed, initially to show that it could be done and later for biomedical applications such as drug delivery and imaging. On-command release of cargo molecules such as drugs from the pores can be activated by a variety of stimuli. This paper focuses on three noninvasive, biologically usable external stimuli: magnetism, ultrasound, and light. We survey the variety of MSNs that have been and are being used and assess capping designs and the advantages and drawbacks of the nanoplatforms' responses to the various stimuli. We discuss important recent advances, their basic mechanisms, and their requirements for stimulation. On the basis of our survey, we identify fundamental challenges and suggest future directions for research that will unleash the full potential of these fascinating nanosystems for clinical applications.
Collapse
Affiliation(s)
- Fang-Chu Lin
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States.,California NanoSystems Institute, University of California Los Angeles, California 90095, United States
| | - Yijun Xie
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States.,California NanoSystems Institute, University of California Los Angeles, California 90095, United States
| | - Tian Deng
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States.,California NanoSystems Institute, University of California Los Angeles, California 90095, United States
| | - Jeffrey I Zink
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States.,California NanoSystems Institute, University of California Los Angeles, California 90095, United States
| |
Collapse
|
31
|
Khan S, Sharifi M, Bloukh SH, Edis Z, Siddique R, Falahati M. In vivo guiding inorganic nanozymes for biosensing and therapeutic potential in cancer, inflammation and microbial infections. Talanta 2021; 224:121805. [PMID: 33379031 DOI: 10.1016/j.talanta.2020.121805] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 01/05/2023]
Abstract
Researchers have recently introduced some artificial enzymes based on nanomaterials that show significant catalytic activity relative to native enzymes called nanozyme. These nanozymes show superior performance than conventional catalysts and are considered as fascinating candidates for introducing the next generation of biomaterials in various industrial and biomedical fields. Recently, nanozymes have received a great deal of attention in biomedical applications due to their potential properties such as long-term stability, low cost, mass production capability, and controllable catalytic activity. Due to the intrinsic catalytic activity of nanoparticles (NPs) as nanozymes and their ability to be regulated in biomedical processes, this review paper focuses on the in vivo applications of nanozymes in biosensing and therapeutic activities. Despite the challenges and benefits of each approach, this paper attempts to provide an appropriate motivation for the classification of different nanozymes followed by their application in biomedical activities including in vivo biosensing and therapeutic potential in cancer, inflammation and microbial infections. Finally, some ongoing challenges and future perspective of nanozymes in biomedical application were surveyed. In conclusion, this paper may provide useful information regarding the development of nanozymes as promising platforms in biomedical settings due to expedited diagnosis, the advancement of multifactorial therapies and their pronounced stability.
Collapse
Affiliation(s)
- Suliman Khan
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Majid Sharifi
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Samir Haj Bloukh
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, PO Box 346, Ajman, United Arab Emirates
| | - Zehra Edis
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, PO Box 346, Ajman, United Arab Emirates
| | - Rabeea Siddique
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
32
|
Yang X, Qiu P, Yang J, Fan Y, Wang L, Jiang W, Cheng X, Deng Y, Luo W. Mesoporous Materials-Based Electrochemical Biosensors from Enzymatic to Nonenzymatic. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e1904022. [PMID: 31643131 DOI: 10.1002/smll.201904022] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/07/2019] [Indexed: 05/04/2023]
Abstract
Mesoporous materials have drawn more and more attention in the field of biosensors due to their high surface areas, large pore volumes, tunable pore sizes, as well as abundant frameworks. In this review, the progress on mesoporous materials-based biosensors from enzymatic to nonenzymatic are highlighted. First, recent advances on the application of mesoporous materials as supports to stabilize enzymes in enzymatic biosensing technology are summarized. Special emphasis is placed on the effect of pore size, pore structure, and surface functional groups of the support on the immobilization efficiency of enzymes and the biosensing performance. Then, the development of a nonenzymatic strategy that uses the intrinsic property of mesoporous materials (carbon, silica, metals, and composites) to mimic the behavior of enzymes for electrochemical sensing of some biomolecules is discussed. Finally, the challenges and perspective on the future development of biosensors based on mesoporous materials are proposed.
Collapse
Affiliation(s)
- Xuanyu Yang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| | - Pengpeng Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Yuchi Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Lianjun Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Wan Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Xiaowei Cheng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| | - Yonghui Deng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| | - Wei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| |
Collapse
|
33
|
|
34
|
Xiu LF, Huang KY, Zhu CT, Zhang Q, Peng HP, Xia XH, Chen W, Deng HH. Rare-Earth Eu 3+/Gold Nanocluster Ensemble-Based Fluorescent Photoinduced Electron Transfer Sensor for Biomarker Dipicolinic Acid Detection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:949-956. [PMID: 33405936 DOI: 10.1021/acs.langmuir.0c03341] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The use of metal ions to bridge the fluorescent materials to target analytes has been demonstrated to be a promising way to sensor design. Herein, the effect of rare-earth ions on the fluorescence of l-methionine-stabilized gold nanoclusters (Met-AuNCs) was investigated. It was found that europium (Eu3+) can significantly suppress the emission of Met-AuNCs, while other rare-earth ions showed a negligible impact. The mechanism on the observed fluorescence quenching of Met-AuNCs triggered by Eu3+ was systematically explored, with results revealing the dominant role of photoinduced electron transfer (PET). Eu3+ can bind to the surface of Met-AuNCs by the coordination effect and accepts the electron from the excited Met-AuNCs, which results in Met-AuNC fluorescence suppression. After introducing dipicolinic acid (DPA), an excellent biomarker for spore-forming pathogens, Eu3+ was removed from the surface of Met-AuNCs owing to the higher binding affinity between Eu3+ and DPA. Consequently, an immediate fluorescence recovery occurred when DPA was present in the system. Based on the Met-AuNC/Eu3+ ensemble, we then established a simple and sensitive fluorescence strategy for turn-on determination of biomarker DPA, with a linear range of 0.2-4 μM and a low limit of detection of 110 nM. The feasibility of the proposed method was further validated by the quantitative detection of DPA in the soil samples. We believe that this study would significantly facilitate the construction of metal-ion-mediated PET sensors for the measurement of various interested analytes by applying fluorescent AuNCs as detection probes.
Collapse
Affiliation(s)
- Ling-Fang Xiu
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Kai-Yuan Huang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Chen-Ting Zhu
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Qi Zhang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Hua-Ping Peng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Wei Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Hao-Hua Deng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| |
Collapse
|
35
|
Wang H, Wu T, Li M, Tao Y. Recent advances in nanomaterials for colorimetric cancer detection. J Mater Chem B 2020; 9:921-938. [PMID: 33367450 DOI: 10.1039/d0tb02163f] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The early diagnosis of cancer can significantly improve patient survival rates. Colorimetric methods for real-time naked-eye detection have aroused growing interest owing to their low cost, simplicity, and practicability. With the rapid development of nanotechnology, compared with conventional diagnostic methods, nanomaterials with unique physical and chemical properties were applied to improve selectivity and sensitivity in colorimetric detection of cancer biomarkers, such as MUC1 aptamer conjugated PtAuNPs to specifically recognize MUC1 proteins on the cancer cell surfaces, etching of silver nanoprisms to detect prostate-specific antigen, and aggregation or dispersion of AuNPs to sense prostate cancer antigen gene 3 or glutathione, by which the limit of detection (LOD) could approach values down to a few cancer cells per mL, several fg per mL proteins, several ng of nucleic acids, or even tens of nM of organic molecules. Herein, we review the recent progress achieved in developing colorimetric nanosensors for cancer diagnosis, particularly providing an overview of the sensing principles, target biomarkers, advanced nanomaterials employed in the fabrication of sensing platforms, and strategies for improving signal sensitivity and specificity. Finally, we sum up the nanomaterial-based colorimetric cancer detection as well as existing challenges that should be resolved to extend their clinical application.
Collapse
Affiliation(s)
- Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | | | | | | |
Collapse
|
36
|
Jiao A, Xu L, Tian Y, Cui Q, Liu X, Chen M. Cu 2O nanocubes-grafted highly dense Au nanoparticles with modulated electronic structures for improving peroxidase catalytic performances. Talanta 2020; 225:121990. [PMID: 33592738 DOI: 10.1016/j.talanta.2020.121990] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/01/2020] [Accepted: 12/05/2020] [Indexed: 12/14/2022]
Abstract
Based on the intermediate states of metal ions in metal oxide nanomaterials (NMs) that acted as the primary active species, the design of high-performance nanozymes has greatly stimulated current research in diverse biomedical applications. Herein, Cu2O nanocubes-grafted highly dense Au nanoparticles (NPs) was developed as an appealing nanozyme for H2O2 colorimetric sensor and antioxidant detections. The obtained Au/Cu2O heterostructures show efficient electron-transfer from metallic NPs to Cu2O nanocubes owing to the difference of Fermi energy between two components. The modulated electronic structure of Au/Cu2O hybrids enables them to possess enhanced peroxidase catalytic activity for the oxidation of 3, 3', 5, 5'-tetramethylbenzidine (TMB) in the presence of H2O2, which is about 32% higher than that of pristine Cu2O nanocubes. Then, an excellent H2O2 colorimetric sensor was established by using Au/Cu2O heterostructures with a low limit of detection (LOD) of 0.054 μM, which is much lower than the H2O2 allowance level of US FDA regulations (ca.15 μM, 0.05 wt%). The obtained Au/Cu2O nanoproducts exhibit pronounced long-time stability with 95% peroxidase activity maintained after keeping them for 30 days, while residual 64.5% via Cu2O nanocubes. Furthermore, we assessed the anti-oxidative behavior of three natural antioxidants (tannic acid, gallic acid, tartaric acid) with the LODs as low as 0.039, 0.16 and 1.55 μM, respectively, and the antioxidant capacity in the following order: tannic acid > gallic acid > tartaric acid. Therefore, it is believed that the as-prepared Au/Cu2O nanozymes have promising potential applications in fields of biomedicine and food safety.
Collapse
Affiliation(s)
- Anxin Jiao
- School of Physics, Shandong University, Jinan, Shandong, 250100, China
| | - Linlin Xu
- School of Physics, Shandong University, Jinan, Shandong, 250100, China
| | - Yue Tian
- School of Physics, Shandong University, Jinan, Shandong, 250100, China
| | - Qingqiang Cui
- School of Physics, Shandong University, Jinan, Shandong, 250100, China.
| | - Xiangdong Liu
- School of Physics, Shandong University, Jinan, Shandong, 250100, China.
| | - Ming Chen
- School of Physics, Shandong University, Jinan, Shandong, 250100, China
| |
Collapse
|
37
|
Jin Y, Wang H, Yi K, Lv S, Hu H, Li M, Tao Y. Applications of Nanobiomaterials in the Therapy and Imaging of Acute Liver Failure. NANO-MICRO LETTERS 2020; 13:25. [PMID: 34138224 PMCID: PMC8187515 DOI: 10.1007/s40820-020-00550-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/22/2020] [Indexed: 05/02/2023]
Abstract
This review focuses on the therapeutic mechanisms, targeting strategies of various nanomaterials in acute liver failure, and recent advances of diverse nanomaterials for acute liver failure therapy, diagnosis, and imaging. This review provides an outlook on the applications of nanomaterials, especially on the new horizons in acute liver failure therapy, and inspires broader interests across various disciplines. Acute liver failure (ALF), a fatal clinical disease featured with overwhelming hepatocyte necrosis, is a grand challenge in global health. However, a satisfactory therapeutic option for curing ALF is still absent, other than liver transplantation. Nanobiomaterials are currently being developed for the diagnosis and treatment of ALF. The liver can sequester most of nanoparticles from blood circulation, which becomes an intrinsic superiority for nanobiomaterials targeting hepatic diseases. Nanobiomaterials can enhance the bioavailability of free drugs, thereby significantly improving the therapeutic effects in ALF. Nanobiomaterials can also increase the liver accumulation of therapeutic agents and enable more effective targeting of the liver or specific liver cells. In addition, stimuli-responsive, optical, or magnetic nanomaterials exhibit great potential in the therapeutical, diagnostic, and imaging applications in ALF. Therefore, therapeutic agents in combination with nanobiomaterials increase the specificity of ALF therapy, diminish adverse systemic effects, and offer a multifunctional theranostic platform. Nanobiomaterial holds excellent significance and prospects in ALF theranostics. In this review, we summarize the therapeutic mechanisms and targeting strategies of various nanobiomaterials in ALF. We highlight recent developments of diverse nanomedicines for ALF therapy, diagnosis, and imaging. Furthermore, the challenges and future perspectives in the theranostics of ALF are also discussed.
Collapse
Affiliation(s)
- Yuanyuan Jin
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Ke Yi
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Shixian Lv
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Hanze Hu
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, People's Republic of China.
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, People's Republic of China.
| |
Collapse
|
38
|
Song Y, Qiao J, Liu W, Qi L. Norfloxacin detection based on the peroxidase-like activity enhancement of gold nanoclusters. Anal Bioanal Chem 2020; 413:979-985. [PMID: 33200243 DOI: 10.1007/s00216-020-03056-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/20/2020] [Accepted: 11/09/2020] [Indexed: 01/06/2023]
Abstract
The use of nanomaterials as mimic enzymes provides a promising way to implement bio-molecule detection in living systems. However, to achieve highly efficient catalytic processes with gold nanocluster-based nanozymes is still challenging. In this study, a facile reduction method was utilized to synthesize gold nanoclusters with 1-methyl-D-tryptophan as the reducing and capping agent. The obtained gold nanoclusters exhibited a peroxidase-mimicking property in the redox reaction of 3,3',5,5'-tetramethylbenzidine to blue oxidized 3,3',5,5'-tetramethylbenzidine in the presence of H2O2. The addition of norfloxacin endowed the nanozymes with a 10-fold enhancement in catalytic efficiency due to the surface charge-controlled electron transfer modulation. The colorimetric sensing system presented a high selectivity toward norfloxacin. The good linear relationship of norfloxacin monitoring was gained in the range of 1.25~8.0 μM (R2 = 0.996), with a detection limit of 0.2 μM. The practical application of the proposed protocol for the measurement of norfloxacin in capsules was realized. This demonstrates that on account of their significant catalytic efficiency enhancement, the gold nanocluster-based nanozymes hold great promise in realizing the selective detection of drugs. Graphical Abstract.
Collapse
Affiliation(s)
- Yuying Song
- College of Pharmacy, Xinxiang Medical University, No. 601 Jinsui Rd., Xinxiang, 453003, Henan, China
- Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing, 100190, China
| | - Juan Qiao
- Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A Yuquanlu, Beijing, 100049, China
| | - Wei Liu
- College of Pharmacy, Xinxiang Medical University, No. 601 Jinsui Rd., Xinxiang, 453003, Henan, China.
| | - Li Qi
- Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing, 100190, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A Yuquanlu, Beijing, 100049, China.
| |
Collapse
|
39
|
Rong R, Zhang Y, Tan W, Hu T, Wang X, Gui Z, Gong J, Xu X. Evidence of Translocation of Oral Zn 2+ Doped Magnetite Nanoparticles Across the Small Intestinal Wall of Mice and Deposition in Spleen: Unique Advantage in Biomedical Applications. ACS APPLIED BIO MATERIALS 2020; 3:7919-7929. [DOI: 10.1021/acsabm.0c01038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rui Rong
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Institute of Rare-Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yun Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Institute of Rare-Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - Weihang Tan
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Tingting Hu
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Xiaoqin Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Zongxiang Gui
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Jiachun Gong
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Xiaolong Xu
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, PR China
| |
Collapse
|
40
|
Oral delivery of bacteria: Basic principles and biomedical applications. J Control Release 2020; 327:801-833. [DOI: 10.1016/j.jconrel.2020.09.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/05/2020] [Indexed: 12/18/2022]
|
41
|
Zhuang QQ, He SB, Huang KY, Peng HP, Chen CM, Deng HH, Xia XH, Chen W, Hong GL. Decisive role of pH in synthesis of high purity fluorescent BSA-Au 20 nanoclusters. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 239:118520. [PMID: 32480270 DOI: 10.1016/j.saa.2020.118520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/30/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Various types of bovine serum albumin (BSA)-protected fluorescent gold nanoclusters (BSA-AuNCs) have been fabricated and applied in various fields. However, the conventional synthesis methods for BSA-AuNCs usually yield a low photoluminescence quantum yield (PLQY) in solution. In this study, we systematically examined the influences of incubation time, temperature, and pH on the formation process of BSA-AuNCs and then developed a novel strategy to synthesize BSA-AuNCs with PLQY (26%), far exceeding that of existing counterparts. Of the three important factors, pH, temperature, and time, pH plays a key role in the formation of BSA-AuNCs with different compositions and fluorescence properties. The matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) results showed that BSA-Au20NCs with high purity can be produced at a pH value of 10 and the correct combination of incubation temperature and reaction time. The advantages of the obtained BSA-Au20NCs, including small size, high PLQY, long lifetime, high purity, as well as facile modification, make them ideal candidates for luminescent probes in imaging and sensing applications.
Collapse
Affiliation(s)
- Quan-Quan Zhuang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China; Department of Pharmacy, Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Shao-Bin He
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Kai-Yuan Huang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Hua-Ping Peng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Chang-Mai Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Hao-Hua Deng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China.
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Wei Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China.
| | - Guo-Lin Hong
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, the First Affiliated Hospital of Xiamen University, Xiamen 361003, China.
| |
Collapse
|
42
|
Sharifi M, Hasan A, Attar F, Taghizadeh A, Falahati M. Development of point-of-care nanobiosensors for breast cancers diagnosis. Talanta 2020; 217:121091. [DOI: 10.1016/j.talanta.2020.121091] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023]
|
43
|
Fang X, Huang Y, Yu D, Shi C, Liu M. Highly stable folic acid functionalized copper-nanocluster/silica nanoparticles for selective targeting of cancer cells. RSC Adv 2020; 10:31463-31469. [PMID: 35520657 PMCID: PMC9056389 DOI: 10.1039/d0ra06523d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022] Open
Abstract
In this paper, we present a novel strategy to construct folic acid functionalized conjugated Cu nanoclusters (CuNCs) and silica (SiO2) nanocomposites for targeted detection of cancer cells. First of all, BSA capped CuNCs were encapsulated into a SiO2 matrix. The resulting CuNCs@SiO2 nanoparticles showed bright red fluorescence with an enhanced photoluminescence quantum yield compared with free CuNCs, as well as improved stability in a complex biological environment owning to the protection of the SiO2 matrix. Upon attachment of folic acid via the poly-l-lysine conjugates (PLL-FA) on the surface of CuNCs@SiO2 driven by electrostatic interaction, the as-prepared CuNCs@SiO2/PLL-FA nanocomposites are capable of selectively recognizing folate receptor (FR) over-expressed cancer cells rather than FR-negative cells. The cell viability assay proved the low biotoxicity of CuNCs@SiO2/PLL-FA nanocomposites toward living cells and the in vitro cellular imaging assay results demonstrated their selective endocytosis of FR-positive cells (KB cells), bringing about red fluorescence labeling within the cells. Intriguingly, our strategy provides a novel route to synthesize functional CuNCs@SiO2/PLL-FA nanocomposites equipped with superior fluorescence properties, high stability against external stimuli and good biocompatibility, and have great application potential in bioimaging imaging and targeted cell detection. Folic acid functionalized CuNCs@SiO2 nanocomposites with superior fluorescence properties, high stability and good biocompatibility for targeted cell imaging.![]()
Collapse
Affiliation(s)
- Xiaoming Fang
- Department of Respiratory, Affiliated Hospital of Nanjing Medical University, Changzhou Second People's Hospital Changzhou 213003 China
| | - Yanhua Huang
- Department of Respiratory, Affiliated Hospital of Nanjing Medical University, Changzhou Second People's Hospital Changzhou 213003 China
| | - Dan Yu
- Department of Respiratory, Affiliated Hospital of Nanjing Medical University, Changzhou Second People's Hospital Changzhou 213003 China
| | - Caiwen Shi
- Department of Respiratory, Affiliated Hospital of Nanjing Medical University, Changzhou Second People's Hospital Changzhou 213003 China
| | - Ming Liu
- Department of Respiratory, Affiliated Hospital of Nanjing Medical University, Changzhou Second People's Hospital Changzhou 213003 China
| |
Collapse
|
44
|
Zou X, Jin S, Wei X, Li X, Zhou M, Wang S, Zhu M. Overall Structures of Two Metal Nanoclusters: Chloride as a Bridge Fills the Space between the Metal Core and the Metal Shell. Inorg Chem 2020; 59:11905-11909. [DOI: 10.1021/acs.inorgchem.0c01638] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xuejuan Zou
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China
| | - Shan Jin
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China
| | - Xiao Wei
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China
| | - Xiaowu Li
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China
| | - Manman Zhou
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China
| | - Shuxin Wang
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui 230601, P. R. China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China
| |
Collapse
|
45
|
Zheng K, Xie J. Engineering Ultrasmall Metal Nanoclusters as Promising Theranostic Agents. TRENDS IN CHEMISTRY 2020. [DOI: 10.1016/j.trechm.2020.04.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
46
|
Yang MF, Yao X, Chen LM, Gu JY, Yang ZH, Chen HF, Zheng X, Zheng ZT. Synthesis and biological evaluation of resveratrol derivatives with anti-breast cancer activity. Arch Pharm (Weinheim) 2020; 353:e2000044. [PMID: 32342549 DOI: 10.1002/ardp.202000044] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/14/2022]
Abstract
Resveratrol is a natural phytoestrogen produced by plants to protect themselves from injury, UV irradiation, and fungal attack. The main active structure is E-resveratrol, which has many pharmacological activities. As the structure of resveratrol is similar to the natural estrogen 17β-estradiol and the synthetic estrogen E-diethylstilbestrol, resveratrol is used in reducing the incidence of breast cancer. However, the therapeutic application of resveratrol is limited due to its low bioavailability. To improve its bioavailability and pharmacological activity, some resveratrol derivatives have been designed and synthesized by substitutions of methoxy, hydroxyl, and other functional groups or heterocyclic esterification either on the "A" or "B" ring, and double bonds were replaced by imine bonds and isometric heterocycles such as naphthyl and imidazole, or synthetic resveratrol oligomers. The structures, synthetic routes, and evaluation of the biological activities of these compounds are discussed. These are aimed at providing some references for the study of resveratrol derivatives in anti-breast cancer treatment.
Collapse
Affiliation(s)
- Mei-Fang Yang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, The Second Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Xu Yao
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, The Second Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Li-Mei Chen
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, The Second Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Jin-Ying Gu
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, The Second Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Ze-Hua Yang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, The Second Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Hong-Fei Chen
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, The Second Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Xing Zheng
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, The Second Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Zi-Tong Zheng
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, The Second Affiliated Hospital of University of South China, Hengyang, Hunan, China
| |
Collapse
|
47
|
Wang P, Wang T, Hong J, Yan X, Liang M. Nanozymes: A New Disease Imaging Strategy. Front Bioeng Biotechnol 2020; 8:15. [PMID: 32117909 PMCID: PMC7015899 DOI: 10.3389/fbioe.2020.00015] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 01/09/2020] [Indexed: 12/27/2022] Open
Abstract
Nanozymes are nanomaterials with intrinsic enzyme-like properties. They can specifically catalyze substrates of natural enzymes under physiological condition with similar catalytic mechanism and kinetics. Compared to natural enzymes, nanozymes exhibit the unique advantages including high catalytic activity, low cost, high stability, easy mass production, and tunable activity. In addition, as a new type of artificial enzymes, nanozymes not only have the enzyme-like catalytic activity, but also exhibit the unique physicochemical properties of nanomaterials, such as photothermal properties, superparamagnetism, and fluorescence, etc. By combining the unique physicochemical properties and enzyme-like catalytic activities, nanozymes have been widely developed for in vitro detection and in vivo disease monitoring and treatment. Here we mainly summarized the applications of nanozymes for disease imaging and detection to explore their potential application in disease diagnosis and precision medicine.
Collapse
Affiliation(s)
- Peixia Wang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Experimental Center of Advanced Materials School of Materials Science & Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tao Wang
- Department of Neurosurgery, Peking University Third Hospital, Beijing, China
| | - Juanji Hong
- Experimental Center of Advanced Materials School of Materials Science & Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Minmin Liang
- Experimental Center of Advanced Materials School of Materials Science & Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
48
|
Vandghanooni S, Barar J, Eskandani M, Omidi Y. Aptamer-conjugated mesoporous silica nanoparticles for simultaneous imaging and therapy of cancer. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115759] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
49
|
Zheng J, Shi H, Wang M, Duan C, Huang Y, Li C, Xiang Y, Li G. Homogenous Electrochemical Method for Ultrasensitive Detection of Tumor Cells Designed by Introduction of Poly(A) Tails onto Cell Membranes. Anal Chem 2019; 92:2194-2200. [PMID: 31850744 DOI: 10.1021/acs.analchem.9b04877] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rapid and efficient detection of tumor cells is one of the central challenges for modern analytical technology. In this paper, we report a polyadenine (poly(A)) tail-based strategy for ultrasensitive detection of tumor cells in aqueous solution with an electrochemical technique. Specifically, tumor cell-specific EpCAM aptamers without any modification can tightly bind on cell membranes and facilitate the subsequent introduction of multiple poly(A) tails via programmable terminal deoxynucleotidyl transferase (TdT)-mediated elongation. Meanwhile, since tumor cells bearing poly(A) tails can be easily adsorbed onto the surface of gold electrodes through a strong interaction between adenosines and gold, a highly amplified electrochemical signal can be obtained. Thus, by virtue of poly(A) tails, the proposed method allows the detection of as low as 3 cells mL-1. Compared with the previously reported methods for tumor cells detection, this poly(A)-based homogeneous electrochemical method needs just one enzyme and one aptamer without any modification and avoids the complex and time-consuming modification process of the working electrode, which holds great potential application in the future.
Collapse
Affiliation(s)
- Ji Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , P. R. China
| | - Hai Shi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , P. R. China
| | - Mengjiao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , P. R. China
| | - Chengjie Duan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , P. R. China
| | - Yue Huang
- Department of Food Science and Engineering, College of Light Industry and Food Engineering , Nanjing Forestry University , Nanjing 210037 , P. R. China
| | - Chao Li
- School of Food and Biological Engineering , Hefei University of Technology , Hefei , Anhui 230009 , P. R. China
| | - Yang Xiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , P. R. China
| | - Genxi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , P. R. China.,Center for Molecular Recognition and Biosensing, School of Life Sciences , Shanghai University , Shanghai 200444 , P. R. China
| |
Collapse
|
50
|
S R, M P. Multi-functional FITC-silica@gold nanoparticles conjugated with guar gum succinate, folic acid and doxorubicin for CT/fluorescence dual imaging and combined chemo/PTT of cancer. Colloids Surf B Biointerfaces 2019; 186:110701. [PMID: 31812803 DOI: 10.1016/j.colsurfb.2019.110701] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/26/2019] [Accepted: 12/01/2019] [Indexed: 12/21/2022]
Abstract
A novel type of multi-functional fluorescein isothiocyanate (FITC)-silica (SiO2)@gold (Au) core-shell nanoparticles covered with folic acid (FA)-conjugated guar gum succinate (GGS) and doxorubicin (DOX) (FITC-SiO2@Au-DOX-GGS-FA NPs) was prepared for imaging and therapy of cancer. The physicochemical properties of these NPs were analyzed with 1H NMR, TEM and DLS. The FITC-SiO2@Au-DOX-GGS-FA NPs exhibited the fluorescence and X-ray attenuation properties due to the presence of FITC-SiO2@Au hybrid nanostructure. Due to acid-cleavable hydrazone bond between the DOX and NPs, the quantity of DOX delivered from the FITC-SiO2@Au-DOX-GGS-FA NPs was increased at pH 5.6 than that at pH 7.4. Besides, the multi-functional NPs presented the improved cellular uptake by HeLa cells via FA-receptor-mediated endocytosis due to the existence of FA. The developed NPs also presented the improved cytotoxicity towards the HeLa cells due to its tumor-targetability and DOX/photothermal effect. These results suggested that the FITC-SiO2@Au-DOX-GGS-FA NPs could be ideal for computed tomography (CT)/fluorescence dual imaging and combined chemo/photothermal therapy (PTT) of cancer.
Collapse
Affiliation(s)
- Rajkumar S
- Department of Chemistry, Hindustan Institute of Technology and Science, Padur, Chennai, 603 103, India
| | - Prabaharan M
- Department of Chemistry, Hindustan Institute of Technology and Science, Padur, Chennai, 603 103, India.
| |
Collapse
|