1
|
Lamon S, Yu H, Zhang Q, Gu M. Lanthanide ion-doped upconversion nanoparticles for low-energy super-resolution applications. LIGHT, SCIENCE & APPLICATIONS 2024; 13:252. [PMID: 39277593 PMCID: PMC11401911 DOI: 10.1038/s41377-024-01547-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/31/2024] [Accepted: 07/22/2024] [Indexed: 09/17/2024]
Abstract
Energy-intensive technologies and high-precision research require energy-efficient techniques and materials. Lens-based optical microscopy technology is useful for low-energy applications in the life sciences and other fields of technology, but standard techniques cannot achieve applications at the nanoscale because of light diffraction. Far-field super-resolution techniques have broken beyond the light diffraction limit, enabling 3D applications down to the molecular scale and striving to reduce energy use. Typically targeted super-resolution techniques have achieved high resolution, but the high light intensity needed to outperform competing optical transitions in nanomaterials may result in photo-damage and high energy consumption. Great efforts have been made in the development of nanomaterials to improve the resolution and efficiency of these techniques toward low-energy super-resolution applications. Lanthanide ion-doped upconversion nanoparticles that exhibit multiple long-lived excited energy states and emit upconversion luminescence have enabled the development of targeted super-resolution techniques that need low-intensity light. The use of lanthanide ion-doped upconversion nanoparticles in these techniques for emerging low-energy super-resolution applications will have a significant impact on life sciences and other areas of technology. In this review, we describe the dynamics of lanthanide ion-doped upconversion nanoparticles for super-resolution under low-intensity light and their use in targeted super-resolution techniques. We highlight low-energy super-resolution applications of lanthanide ion-doped upconversion nanoparticles, as well as the related research directions and challenges. Our aim is to analyze targeted super-resolution techniques using lanthanide ion-doped upconversion nanoparticles, emphasizing fundamental mechanisms governing transitions in lanthanide ions to surpass the diffraction limit with low-intensity light, and exploring their implications for low-energy nanoscale applications.
Collapse
Affiliation(s)
- Simone Lamon
- School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, 200093, Shanghai, China.
- Institute of Photonic Chips, University of Shanghai for Science and Technology, 200093, Shanghai, China.
| | - Haoyi Yu
- School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, 200093, Shanghai, China
- Institute of Photonic Chips, University of Shanghai for Science and Technology, 200093, Shanghai, China
| | - Qiming Zhang
- School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, 200093, Shanghai, China
- Institute of Photonic Chips, University of Shanghai for Science and Technology, 200093, Shanghai, China
| | - Min Gu
- School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, 200093, Shanghai, China.
- Institute of Photonic Chips, University of Shanghai for Science and Technology, 200093, Shanghai, China.
| |
Collapse
|
2
|
Zhu Z, Liang Y, Zhao Q, Wu H, Pan B, Qiao S, Wang B, Zhan Q. Three-dimensional, dual-color nanoscopy enabled by migrating photon avalanches with one single low-power CW beam. Sci Bull (Beijing) 2024; 69:458-465. [PMID: 38171962 DOI: 10.1016/j.scib.2023.12.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/03/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
The development of super-resolution fluorescence microscopy is very essential for understanding the physical and biological fundamentals at nanometer scale. However, to date most super-resolution modalities require either complicated/costly purpose-built systems such as multiple-beam architectures or complex post-processing procedures with intrinsic artifacts. Achieving three-dimensional (3D) or multi-channel sub-diffraction microscopic imaging using a simple method remains a challenging and struggling task. Herein, we proposed 3D highly-nonlinear super-resolution microscopy using a single-beam excitation strategy, and the microscopy principle was modelled and studied based on the ultrahigh nonlinearity enabled by photon avalanches. According to the simulation, the point spread function of highly nonlinear microscopy is switchable among different modes and can shrink three-dimensionally to sub-diffraction scale at the photon avalanche mode. Experimentally, we demonstrated 3D optical nanoscopy assisted with huge optical nonlinearities in a simple laser scanning configuration, achieving a lateral resolution down to 58 nm (λ/14) and an axial resolution down to 185 nm (λ/5) with one single beam of low-power, continuous-wave, near-infrared laser. We further extended the photon avalanche effect to many other emitters to develop multi-color photon avalanching nanoprobes based on migrating photon avalanche mechanism, which enables us to implement single-beam dual-color sub-diffraction super-resolution microscopic imaging.
Collapse
Affiliation(s)
- Zhimin Zhu
- Centre for Optical and Electromagnetic Research, Guangdong Engineering Research Centre of Optoelectronic Intelligent Information Perception, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Yusen Liang
- Centre for Optical and Electromagnetic Research, Guangdong Engineering Research Centre of Optoelectronic Intelligent Information Perception, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Qi Zhao
- Centre for Optical and Electromagnetic Research, Guangdong Engineering Research Centre of Optoelectronic Intelligent Information Perception, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Hui Wu
- Centre for Optical and Electromagnetic Research, Guangdong Engineering Research Centre of Optoelectronic Intelligent Information Perception, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Binxiong Pan
- Centre for Optical and Electromagnetic Research, Guangdong Engineering Research Centre of Optoelectronic Intelligent Information Perception, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Shuqian Qiao
- Centre for Optical and Electromagnetic Research, Guangdong Engineering Research Centre of Optoelectronic Intelligent Information Perception, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Baoju Wang
- Centre for Optical and Electromagnetic Research, Guangdong Engineering Research Centre of Optoelectronic Intelligent Information Perception, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.
| | - Qiuqiang Zhan
- Centre for Optical and Electromagnetic Research, Guangdong Engineering Research Centre of Optoelectronic Intelligent Information Perception, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
3
|
Gálico DA, Santos Calado CM, Murugesu M. Lanthanide molecular cluster-aggregates as the next generation of optical materials. Chem Sci 2023; 14:5827-5841. [PMID: 37293634 PMCID: PMC10246660 DOI: 10.1039/d3sc01088k] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023] Open
Abstract
In this perspective, we provide an overview of the recent achievements in luminescent lanthanide-based molecular cluster-aggregates (MCAs) and illustrate why MCAs can be seen as the next generation of highly efficient optical materials. MCAs are high nuclearity compounds composed of rigid multinuclear metal cores encapsulated by organic ligands. The combination of high nuclearity and molecular structure makes MCAs an ideal class of compounds that can unify the properties of traditional nanoparticles and small molecules. By bridging the gap between both domains, MCAs intrinsically retain unique features with tremendous impacts on their optical properties. Although homometallic luminescent MCAs have been extensively studied since the late 1990s, it was only recently that heterometallic luminescent MCAs were pioneered as tunable luminescent materials. These heterometallic systems have shown tremendous impacts in areas such as anti-counterfeiting materials, luminescent thermometry, and molecular upconversion, thus representing a new generation of lanthanide-based optical materials.
Collapse
Affiliation(s)
- Diogo Alves Gálico
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | | | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|
4
|
Labrador-Páez L, Kankare J, Hyppänen I, Soukka T, Andresen E, Resch-Genger U, Widengren J, Liu H. Frequency-Domain Method for Characterization of Upconversion Luminescence Kinetics. J Phys Chem Lett 2023; 14:3436-3444. [PMID: 37010896 PMCID: PMC10108355 DOI: 10.1021/acs.jpclett.3c00269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
The frequency-domain (FD) method provides an alternative to the commonly used time-domain (TD) approach in characterizing the luminescence kinetics of luminophores, with its own strengths, e.g., the capability to decouple multiple lifetime components with higher reliability and accuracy. While extensively explored for characterizing luminophores with down-shifted emission, this method has not been investigated for studying nonlinear luminescent materials such as lanthanide-doped upconversion nanoparticles (UCNPs), featuring more complicated kinetics. In this work, employing a simplified rate-equation model representing a standard two-photon energy-transfer upconversion process, we thoroughly analyzed the response of the luminescence of UCNPs in the FD method. We found that the FD method can potentially obtain from a single experiment the effective decay rates of three critical energy states of the sensitizer/activator ions involved in the upconversion process. The validity of the FD method is demonstrated by experimental data, agreeing reasonably well with the results obtained by TD methods.
Collapse
Affiliation(s)
- Lucía Labrador-Páez
- Department
of Applied Physics, KTH Royal Institute
of Technology, SE-10691 Stockholm, Sweden
| | - Jouko Kankare
- Department
of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Iko Hyppänen
- Department
of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Tero Soukka
- Department
of Life Technologies/Biotechnology, University
of Turku, FI-20520 Turku, Finland
| | - Elina Andresen
- Division
of Biophotonics, Federal Institute for Materials
Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| | - Ute Resch-Genger
- Division
of Biophotonics, Federal Institute for Materials
Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| | - Jerker Widengren
- Department
of Applied Physics, KTH Royal Institute
of Technology, SE-10691 Stockholm, Sweden
| | - Haichun Liu
- Department
of Applied Physics, KTH Royal Institute
of Technology, SE-10691 Stockholm, Sweden
| |
Collapse
|
5
|
Alvelid J, Bucci A, Testa I. Far Red-Shifted CdTe Quantum Dots for Multicolour Stimulated Emission Depletion Nanoscopy. Chemphyschem 2023; 24:e202200698. [PMID: 36239140 PMCID: PMC10098508 DOI: 10.1002/cphc.202200698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/07/2022] [Indexed: 02/03/2023]
Abstract
Stimulated emission depletion (STED) nanoscopy is a widely used nanoscopy technique. Two-colour STED imaging in fixed and living cells is standardised today utilising both fluorescent dyes and fluorescent proteins. Solutions to image additional colours have been demonstrated using spectral unmixing, photobleaching steps, or long-Stokes-shift dyes. However, these approaches often compromise speed, spatial resolution, and image quality, and increase complexity. Here, we present multicolour STED nanoscopy with far red-shifted semiconductor CdTe quantum dots (QDs). STED imaging of the QDs is optimized to minimize blinking effects and maximize the number of detected photons. The far-red and compact emission spectra of the investigated QDs free spectral space for the simultaneous use of fluorescent dyes, enabling straightforward three-colour STED imaging with a single depletion beam. We use our method to study the internalization of QDs in cells, opening up the way for future super-resolution studies of particle uptake and internalization.
Collapse
Affiliation(s)
- Jonatan Alvelid
- Department of Applied Physics and SciLifeLab, KTH Royal Institute of Technology, 114 28, Stockholm, Sweden
| | - Andrea Bucci
- Department of Applied Physics and SciLifeLab, KTH Royal Institute of Technology, 114 28, Stockholm, Sweden
| | - Ilaria Testa
- Department of Applied Physics and SciLifeLab, KTH Royal Institute of Technology, 114 28, Stockholm, Sweden
| |
Collapse
|
6
|
Malhotra K, Hrovat D, Kumar B, Qu G, Houten JV, Ahmed R, Piunno PAE, Gunning PT, Krull UJ. Lanthanide-Doped Upconversion Nanoparticles: Exploring A Treasure Trove of NIR-Mediated Emerging Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2499-2528. [PMID: 36602515 DOI: 10.1021/acsami.2c12370] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs) possess the remarkable ability to convert multiple near-infrared (NIR) photons into higher energy ultraviolet-visible (UV-vis) photons, making them a prime candidate for several advanced applications within the realm of nanotechnology. Compared to traditional organic fluorophores and quantum dots (QDs), UCNPs possess narrower emission bands (fwhm of 10-50 nm), large anti-Stokes shifts, low toxicity, high chemical stability, and resistance to photobleaching and blinking. In addition, unlike UV-vis excitation, NIR excitation is nondestructive at lower power intensities and has high tissue penetration depths (up to 2 mm) with low autofluorescence and scattering. Together, these properties make UCNPs exceedingly favored for advanced bioanalytical and theranostic applications, where these systems have been well-explored. UCNPs are also well-suited for bioimaging, optically modulating chemistries, forensic science, and other state-of-the-art research applications. In this review, an up-to-date account of emerging applications in UCNP research, beyond bioanalytical and theranostics, are presented including optogenetics, super-resolution imaging, encoded barcodes, fingerprinting, NIR vision, UCNP-assisted photochemical manipulations, optical tweezers, 3D printing, lasing, NIR-II imaging, UCNP-molecule nanohybrids, and UCNP-based persistent luminescent nanocrystals.
Collapse
Affiliation(s)
- Karan Malhotra
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - David Hrovat
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
- Gunning Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Balmiki Kumar
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Grace Qu
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Justin Van Houten
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Reda Ahmed
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Paul A E Piunno
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Patrick T Gunning
- Gunning Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Ulrich J Krull
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| |
Collapse
|
7
|
Wei T, Shi Y, Wang X, Xu Y, Cui J, Wu L, Zhang B, Wang J, Han Y. Realization of multiple luminescence manipulation in tungsten bronze oxides based on photochromism toward real-time, reversible, and fast processes. Inorg Chem Front 2023. [DOI: 10.1039/d3qi00335c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Multiple luminescence manipulation in tungsten bronze oxides based on photochromism.
Collapse
Affiliation(s)
- Tong Wei
- College of Science, Civil Aviation University of China, Tianjin 300300, China
| | - Yongchao Shi
- College of Science, Civil Aviation University of China, Tianjin 300300, China
| | - Xiangyu Wang
- College of Science, Civil Aviation University of China, Tianjin 300300, China
| | - Yingqiu Xu
- College of Science, Civil Aviation University of China, Tianjin 300300, China
| | - Jiao Cui
- College of Science, Civil Aviation University of China, Tianjin 300300, China
| | - Liwei Wu
- College of Science, Civil Aviation University of China, Tianjin 300300, China
| | - Borui Zhang
- College of Science, Civil Aviation University of China, Tianjin 300300, China
| | - Jiawei Wang
- College of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China
| | - Yingdong Han
- College of Science, Civil Aviation University of China, Tianjin 300300, China
| |
Collapse
|
8
|
Mettenbrink EM, Yang W, Wilhelm S. Bioimaging with Upconversion Nanoparticles. ADVANCED PHOTONICS RESEARCH 2022; 3:2200098. [PMID: 36686152 PMCID: PMC9858112 DOI: 10.1002/adpr.202200098] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Bioimaging enables the spatiotemporal visualization of biological processes at various scales empowered by a range of different imaging modalities and contrast agents. Upconversion nanoparticles (UCNPs) represent a distinct type of such contrast agents with the potential to transform bioimaging due to their unique optical properties and functional design flexibilities. This review explores and discusses the opportunities, challenges, and limitations that UCNPs exhibit as bioimaging probes and highlights applications with spatial dimensions ranging from the single nanoparticle level to cellular, tissue, and whole animal imaging. We further summarized recent advancements in bioimaging applications enabled by UCNPs, including super-resolution techniques and multimodal imaging methods, and provide a perspective on the future potential of UCNP-based technologies in bioimaging research and clinical translation. This review may provide a valuable resource for researchers interested in exploring and applying UCNP-based bioimaging technologies.
Collapse
Affiliation(s)
- Evan M. Mettenbrink
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Wen Yang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
- Institute for Biomedical Engineering, Science, and Technology (IBEST), University of Oklahoma, Norman, Oklahoma, 73019, USA
| |
Collapse
|
9
|
Chen C, Ding L, Liu B, Du Z, Liu Y, Di X, Shan X, Lin C, Zhang M, Xu X, Zhong X, Wang J, Chang L, Halkon B, Chen X, Cheng F, Wang F. Exploiting Dynamic Nonlinearity in Upconversion Nanoparticles for Super-Resolution Imaging. NANO LETTERS 2022; 22:7136-7143. [PMID: 36018249 DOI: 10.1021/acs.nanolett.2c02269] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Single-beam super-resolution microscopy, also known as superlinear microscopy, exploits the nonlinear response of fluorescent probes in confocal microscopy. The technique requires no complex purpose-built system, light field modulation, or beam shaping. Here, we present a strategy to enhance this technique's spatial resolution by modulating excitation intensity during image acquisition. This modulation induces dynamic optical nonlinearity in upconversion nanoparticles (UCNPs), resulting in variations of nonlinear fluorescence response in the obtained images. The higher orders of fluorescence response can be extracted with a proposed weighted finite difference imaging algorithm from raw fluorescence images to generate an image with higher resolution than superlinear microscopy images. We apply this approach to resolve single nanoparticles in a large area, improving the resolution to 132 nm. This work suggests a new scope for the development of dynamic nonlinear fluorescent probes in super-resolution nanoscopy.
Collapse
Affiliation(s)
- Chaohao Chen
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Ding
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Baolei Liu
- School of Physics, Beihang University, Beijing 100191, China
| | - Ziqing Du
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Yongtao Liu
- Smart Computational Imaging Laboratory, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Xiangjun Di
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Xuchen Shan
- School of Physics, Beihang University, Beijing 100191, China
| | - Chenxiao Lin
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz, Berlin 14109, Germany
| | - Min Zhang
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Xiaoxue Xu
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Xiaolan Zhong
- School of Physics, Beihang University, Beijing 100191, China
| | - Jianfeng Wang
- School of Physics, Beihang University, Beijing 100191, China
| | - Lingqian Chang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Benjamin Halkon
- Centre for Audio, Acoustics & Vibration, Faculty of Engineering & IT, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Xin Chen
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Faliang Cheng
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Fan Wang
- School of Physics, Beihang University, Beijing 100191, China
- School of Electrical and Data Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| |
Collapse
|
10
|
Chen Z, Cai Z, Liu W, Yan Z. Optical trapping and manipulation for single-particle spectroscopy and microscopy. J Chem Phys 2022; 157:050901. [DOI: 10.1063/5.0086328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Optical tweezers can control the position and orientation of individual colloidal particles in solution. Such control is often desirable but challenging for single-particle spectroscopy and microscopy, especially at the nanoscale. Functional nanoparticles that are optically trapped and manipulated in a three-dimensional (3D) space can serve as freestanding nanoprobes, which provide unique prospects of sensing and mapping the surrounding environment of the nanoparticles and studying their interactions with biological systems. In this perspective, we will first describe the optical forces underlying the optical trapping and manipulation of microscopic particles, then review the combinations and applications of different spectroscopy and microscopy techniques with optical tweezers. Finally, we will discuss the challenges of performing spectroscopy and microscopy on single nanoparticles with optical tweezers, the possible routes to address these challenges, and the new opportunities that will arise.
Collapse
Affiliation(s)
- Zhenzhen Chen
- The University of North Carolina at Chapel Hill, United States of America
| | - Zhewei Cai
- Clarkson University, United States of America
| | - Wenbo Liu
- The University of North Carolina at Chapel Hill, United States of America
| | - Zijie Yan
- University of North Carolina at Chapel Hill, United States of America
| |
Collapse
|
11
|
Ngo TT, Lozano G, Míguez H. Enhanced up-conversion photoluminescence in fluoride-oxyfluoride nanophosphor films by embedding gold nanoparticles. MATERIALS ADVANCES 2022; 3:4235-4242. [PMID: 35693427 PMCID: PMC9125566 DOI: 10.1039/d2ma00068g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/01/2022] [Indexed: 06/15/2023]
Abstract
Owing to their unique non-linear optical character, lanthanide-based up-converting materials are potentially interesting for a wide variety of fields ranging from biomedicine to light harvesting. However, their poor luminescent efficiency challenges the development of technological applications. In this context, localized surface plasmon resonances (LSPRs) have been demonstrated as a valuable strategy to improve light conversion. Herein, we utilize LSPR induced by gold nanoparticles (NPs) to enhance up-conversion photoluminescence (UCPL) in transparent, i.e. scattering-free, films made of nanophosphors formed by fluoride-oxyfluoride host matrix that feature high thermal stability. Transparency allows excitation by an external source without extinction losses caused by unwanted diffuse reflection. We provide a simple method to embed gold NPs in films made of YF/YOF:Yb3+,Er3+ UC nanophosphors, via preparation of a viscous paste composed of both UC nanophosphors and colloidal gold NPs, reducing complexity in sample fabrication. The dimensions of gold NPs are such that their associated LSPR matches spectrally with the green emission band of the Er3+ doped nanophosphors. In order to demonstrate the benefits of plasmonic nanoparticles for UCPL in nanophosphor films, we provide a careful analysis of the structural properties of the composite thin films along with precise characterization of the impact of the gold NPs on the photophysical properties of UC nanophosphors.
Collapse
Affiliation(s)
- Thi Tuyen Ngo
- Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Sevilla (US), Américo Vespucio, 49 41092 Sevilla Spain
| | - Gabriel Lozano
- Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Sevilla (US), Américo Vespucio, 49 41092 Sevilla Spain
| | - Hernán Míguez
- Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Sevilla (US), Américo Vespucio, 49 41092 Sevilla Spain
| |
Collapse
|
12
|
Guo X, Pu R, Zhu Z, Qiao S, Liang Y, Huang B, Liu H, Labrador-Páez L, Kostiv U, Zhao P, Wu Q, Widengren J, Zhan Q. Achieving low-power single-wavelength-pair nanoscopy with NIR-II continuous-wave laser for multi-chromatic probes. Nat Commun 2022; 13:2843. [PMID: 35606360 PMCID: PMC9126916 DOI: 10.1038/s41467-022-30114-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/06/2022] [Indexed: 12/26/2022] Open
Abstract
Stimulated emission depletion (STED) microscopy is a powerful diffraction-unlimited technique for fluorescence imaging. Despite its rapid evolution, STED fundamentally suffers from high-intensity light illumination, sophisticated probe-defined laser schemes, and limited photon budget of the probes. Here, we demonstrate a versatile strategy, stimulated-emission induced excitation depletion (STExD), to deplete the emission of multi-chromatic probes using a single pair of low-power, near-infrared (NIR), continuous-wave (CW) lasers with fixed wavelengths. With the effect of cascade amplified depletion in lanthanide upconversion systems, we achieve emission inhibition for a wide range of emitters (e.g., Nd3+, Yb3+, Er3+, Ho3+, Pr3+, Eu3+, Tm3+, Gd3+, and Tb3+) by manipulating their common sensitizer, i.e., Nd3+ ions, using a 1064-nm laser. With NaYF4:Nd nanoparticles, we demonstrate an ultrahigh depletion efficiency of 99.3 ± 0.3% for the 450 nm emission with a low saturation intensity of 23.8 ± 0.4 kW cm-2. We further demonstrate nanoscopic imaging with a series of multi-chromatic nanoprobes with a lateral resolution down to 34 nm, two-color STExD imaging, and subcellular imaging of the immunolabelled actin filaments. The strategy expounded here promotes single wavelength-pair nanoscopy for multi-chromatic probes and for multi-color imaging under low-intensity-level NIR-II CW laser depletion.
Collapse
Affiliation(s)
- Xin Guo
- Centre for Optical and Electromagnetic Research, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Rui Pu
- Centre for Optical and Electromagnetic Research, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Zhimin Zhu
- Centre for Optical and Electromagnetic Research, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Shuqian Qiao
- Centre for Optical and Electromagnetic Research, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Yusen Liang
- Centre for Optical and Electromagnetic Research, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Bingru Huang
- Centre for Optical and Electromagnetic Research, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Haichun Liu
- Experimental Biomolecular Physics, Department of Applied Physics, KTH Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | - Lucía Labrador-Páez
- Experimental Biomolecular Physics, Department of Applied Physics, KTH Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | - Uliana Kostiv
- Experimental Biomolecular Physics, Department of Applied Physics, KTH Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | - Pu Zhao
- Centre for Optical and Electromagnetic Research, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Qiusheng Wu
- Centre for Optical and Electromagnetic Research, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Jerker Widengren
- Experimental Biomolecular Physics, Department of Applied Physics, KTH Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | - Qiuqiang Zhan
- Centre for Optical and Electromagnetic Research, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China.
- MOE Key Laboratory and Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China.
| |
Collapse
|
13
|
Near-infrared excitation/emission microscopy with lanthanide-based nanoparticles. Anal Bioanal Chem 2022; 414:4291-4310. [PMID: 35312819 DOI: 10.1007/s00216-022-03999-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 12/26/2022]
Abstract
Near-infrared optical imaging offers some advantages over conventional imaging, such as deeper tissue penetration, low or no autofluorescence, and reduced tissue scattering. Lanthanide-doped nanoparticles (LnNPs) have become a trend in the field of photoactive nanomaterials for optical imaging due to their unique optical features and because they can use NIR light as excitation and/or emission light. This review is focused on NaREF4 NPs and offers an overview of the state-of-the-art investigation in their use as luminophores in optical microscopy, time-resolved imaging, and super-resolution nanoscopy based on, or applied to, LnNPs. Secondly, whenever LnNPs are combined with other nanomaterial or nanoparticle to afford nanohybrids, the characterization of their physical and chemical properties is of current interest. In this context, the latest trends in optical microscopy and their future perspectives are discussed.
Collapse
|
14
|
Dong H, Sun LD, Yan CH. Local Structure Engineering in Lanthanide-Doped Nanocrystals for Tunable Upconversion Emissions. J Am Chem Soc 2021; 143:20546-20561. [PMID: 34865480 DOI: 10.1021/jacs.1c10425] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Upconversion emissions from lanthanide-doped nanocrystals have sparked extensive research interests in nanophotonics, biomedicine, photovoltaics, photocatalysis, etc. Rational modulation of upconversion emissions is highly desirable to meet the requirements of specific applications. Among the diverse developed methods, local structure engineering is fundamentally feasible, through which the upconversion emission intensity, selectivity, wavelength shift, and lifetime can be tuned effectively. The underlying mechanism of the local-structure-dependent upconversion emissions lies in the degree of parity hybridization and energy level splitting of lanthanide ions as well as the interionic energy transfer efficiency. Over the past few years, there has been significant progress in local-structure-engineered upconversion emissions. In this Perspective, we first introduce the principles of upconversion emissions and typical characterization methods for local structure. Subsequently, we summarize recent achievements in tuning of upconversion emissions through local structure engineering, including host composition adjustment, external field regulation, and interfacial strain management. Finally, we propose a few perspectives that should tackle the current bottlenecks. This Perspective is expected to deepen the understanding of local-structure-dependent upconversion emissions and arouse adequate attention to the engineering of local structure for desired properties of inorganic nanocrystals.
Collapse
Affiliation(s)
- Hao Dong
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ling-Dong Sun
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chun-Hua Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
15
|
Zhang H, Zhao M, Ábrahám IM, Zhang F. Super-Resolution Imaging With Lanthanide Luminescent Nanocrystals: Progress and Prospect. Front Bioeng Biotechnol 2021; 9:692075. [PMID: 34660546 PMCID: PMC8514657 DOI: 10.3389/fbioe.2021.692075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/16/2021] [Indexed: 12/26/2022] Open
Abstract
Stimulated emission depletion (STED) nanoscopy has overcome a serious diffraction barrier on the optical resolution and facilitated new discoveries on detailed nanostructures in cell biology. Traditional fluorescence probes employed in the super-resolution imaging approach include organic dyes and fluorescent proteins. However, some limitations of these probes, such as photobleaching, short emission wavelengths, and high saturation intensity, still hamper the promotion of optical resolution and bio-applications. Recently, lanthanide luminescent probes with unique optical properties of non-photobleaching and sharp emissions have been applied in super-resolution imaging. In this mini-review, we will introduce several different mechanisms for lanthanide ions to achieve super-resolution imaging based on an STED-like setup. Then, several lanthanide ions used in super-resolution imaging will be described in detail and discussed. Last but not least, we will emphasize the future challenges and outlooks in hope of advancing the next-generation lanthanide fluorescent probes for super-resolution optical imaging.
Collapse
Affiliation(s)
- Hongxin Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, iChem, Fudan University, Shanghai, China
| | - Mengyao Zhao
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, iChem, Fudan University, Shanghai, China
| | - István M Ábrahám
- Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Institute, University of Pécs, Pécs, Hungary
| | - Fan Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, iChem, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Ngo TT, Cabello-Olmo E, Arroyo E, Becerro AI, Ocaña M, Lozano G, Míguez H. Highly Versatile Upconverting Oxyfluoride-Based Nanophosphor Films. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30051-30060. [PMID: 34142553 PMCID: PMC8251696 DOI: 10.1021/acsami.1c07012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/02/2021] [Indexed: 05/26/2023]
Abstract
Fluoride-based compounds doped with rare-earth cations are the preferred choice of materials to achieve efficient upconversion, of interest for a plethora of applications ranging from bioimaging to energy harvesting. Herein, we demonstrate a simple route to fabricate bright upconverting films that are transparent, self-standing, flexible, and emit different colors. Starting from the solvothermal synthesis of uniform and colloidally stable yttrium fluoride nanoparticles doped with Yb3+ and Er3+, Ho3+, or Tm3+, we find the experimental conditions to process the nanophosphors as optical quality films of controlled thickness between few hundreds of nanometers and several micrometers. A thorough analysis of both structural and photophysical properties of films annealed at different temperatures reveals a tradeoff between the oxidation of the matrix, which transitions through an oxyfluoride crystal phase, and the efficiency of the upconversion photoluminescence process. It represents a significant step forward in the understanding of the fundamental properties of upconverting materials and can be leveraged for the optimization of upconversion systems in general. We prove bright multicolor upconversion photoluminescence in oxyfluoride-based phosphor transparent films upon excitation with a 980 nm laser for both rigid and flexible versions of the layers, being possible to use the latter to coat surfaces of arbitrary shape. Our results pave the way toward the development of upconverting coatings that can be conveniently integrated in applications that demand a large degree of versatility.
Collapse
Affiliation(s)
| | | | - Encarnación Arroyo
- Instituto de Ciencia de Materiales
de Sevilla, Consejo Superior de Investigaciones
Científicas-Universidad de Sevilla, Américo Vespucio 49, 41092, Sevilla, Spain
| | - Ana I. Becerro
- Instituto de Ciencia de Materiales
de Sevilla, Consejo Superior de Investigaciones
Científicas-Universidad de Sevilla, Américo Vespucio 49, 41092, Sevilla, Spain
| | - Manuel Ocaña
- Instituto de Ciencia de Materiales
de Sevilla, Consejo Superior de Investigaciones
Científicas-Universidad de Sevilla, Américo Vespucio 49, 41092, Sevilla, Spain
| | - Gabriel Lozano
- Instituto de Ciencia de Materiales
de Sevilla, Consejo Superior de Investigaciones
Científicas-Universidad de Sevilla, Américo Vespucio 49, 41092, Sevilla, Spain
| | - Hernán Míguez
- Instituto de Ciencia de Materiales
de Sevilla, Consejo Superior de Investigaciones
Científicas-Universidad de Sevilla, Américo Vespucio 49, 41092, Sevilla, Spain
| |
Collapse
|
17
|
Ferrera-González J, Francés-Soriano L, Estébanez N, Navarro-Raga E, González-Béjar M, Pérez-Prieto J. NIR laser scanning microscopy for photophysical characterization of upconversion nanoparticles and nanohybrids. NANOSCALE 2021; 13:10067-10080. [PMID: 34042932 DOI: 10.1039/d1nr00389e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photophysical characterization of upconversion nanoparticles (UCNPs) and nanohybrids (UCNHs) is more challenging than that of down-conversion nanomaterials. Moreover, it is still difficult to gain knowledge about the homogeneity of the sample and colocalization of emissive chromophores and nanoparticles in nanohybrids. Near infrared laser scanning microscopy (NIR-LSM) is a well-known and useful imaging technique, which enables excitation in the NIR region and has been extensively applied to optical fluorescence imaging of organic fluorophores and nanomaterials, such as quantum dots, which exhibit a short-lived emission. NIR-LSM has recently been used to determine the empirical emission lifetime of UCNPs, thus extending its application range to nanomaterials with a long lifetime emission. Here, we review our previous findings and include new measurements and samples to fully address the potential of this technique. NIR-LSM has proved to be extraordinarily useful not only for photophysical characterization of UCNHs consisting of UCNPs capped with a fluorophore to easily visualize the occurrence of the resonance energy transfer process between the UCNH constituents and their homogeneity, but also to assess the colocalization of the fluorophore and the UCNP in the UCNH; all this information can be acquired on the micro-/nano-meter scale by just taking one image.
Collapse
Affiliation(s)
- Juan Ferrera-González
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, University of Valencia, C/Catedrático José Beltrán, 2, Paterna, Valencia 46980, Spain.
| | - Laura Francés-Soriano
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, University of Valencia, C/Catedrático José Beltrán, 2, Paterna, Valencia 46980, Spain. and nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique, Réactivité et Analyse), Université de Rouen Normandie, CNRS, INSA, 76821 Mont-Saint-Aignan Cedex, France
| | - Nestor Estébanez
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, University of Valencia, C/Catedrático José Beltrán, 2, Paterna, Valencia 46980, Spain.
| | - Enrique Navarro-Raga
- Servicio Central de Soporte a la Investigación Experimental (SCSIE). University of Valencia, Burjassot, Valencia 46100, Spain
| | - María González-Béjar
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, University of Valencia, C/Catedrático José Beltrán, 2, Paterna, Valencia 46980, Spain.
| | - Julia Pérez-Prieto
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, University of Valencia, C/Catedrático José Beltrán, 2, Paterna, Valencia 46980, Spain.
| |
Collapse
|
18
|
Peng T, Pu R, Wang B, Zhu Z, Liu K, Wang F, Wei W, Liu H, Zhan Q. The Spectroscopic Properties and Microscopic Imaging of Thulium-Doped Upconversion Nanoparticles Excited at Different NIR-II Light. BIOSENSORS-BASEL 2021; 11:bios11050148. [PMID: 34068452 PMCID: PMC8151359 DOI: 10.3390/bios11050148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/11/2022]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs) are promising bioimaging nanoprobes due to their excellent photostability. As one of the most commonly used lanthanide activators, Tm3+ ions have perfect ladder-type electron configuration and can be directly excited by bio-friendly near-infrared-II (NIR-II) wavelengths. Here, the emission characteristics of Tm3+-doped nanoparticles under laser excitations of different near-infrared-II wavelengths were systematically investigated. The 1064 nm, 1150 nm, and 1208 nm lasers are proposed to be three excitation strategies with different response spectra of Tm3+ ions. In particular, we found that 1150 nm laser excitation enables intense three-photon 475 nm emission, which is nearly 100 times stronger than that excited by 1064 nm excitation. We further optimized the luminescence brightness after investigating the luminescence quenching mechanism of bare NaYF4: Tm (1.75%) core. After growing an inert shell, a ten-fold increase of emission intensity was achieved. Combining the advantages of NIR-II wavelength and the higher-order nonlinear excitation, a promising facile excitation strategy was developed for the application of thulium-doped upconversion nanoparticles in nanoparticles imaging and cancer cell microscopic imaging.
Collapse
Affiliation(s)
- Tingting Peng
- Centre for Optical and Electromagnetic Research, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China; (T.P.); (R.P.); (B.W.); (Z.Z.)
| | - Rui Pu
- Centre for Optical and Electromagnetic Research, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China; (T.P.); (R.P.); (B.W.); (Z.Z.)
| | - Baoju Wang
- Centre for Optical and Electromagnetic Research, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China; (T.P.); (R.P.); (B.W.); (Z.Z.)
| | - Zhimin Zhu
- Centre for Optical and Electromagnetic Research, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China; (T.P.); (R.P.); (B.W.); (Z.Z.)
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (K.L.); (F.W.)
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (K.L.); (F.W.)
| | - Wei Wei
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510006, China;
| | - Haichun Liu
- Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology (KTH), SE-106 91 Stockholm, Sweden;
| | - Qiuqiang Zhan
- Centre for Optical and Electromagnetic Research, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China; (T.P.); (R.P.); (B.W.); (Z.Z.)
- National Centre for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
- Correspondence:
| |
Collapse
|
19
|
Liu Y, Peng Z, Peng X, Yan W, Yang Z, Qu J. Shedding New Lights Into STED Microscopy: Emerging Nanoprobes for Imaging. Front Chem 2021; 9:641330. [PMID: 33959587 PMCID: PMC8093789 DOI: 10.3389/fchem.2021.641330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/15/2021] [Indexed: 12/29/2022] Open
Abstract
First reported in 1994, stimulated emission depletion (STED) microscopy has long been regarded as a powerful tool for real-time superresolved bioimaging . However, high STED light power (101∼3 MW/cm2) is often required to achieve significant resolution improvement, which inevitably introduces phototoxicity and severe photobleaching, damaging the imaging quality, especially for long-term cases. Recently, the employment of nanoprobes (quantum dots, upconversion nanoparticles, carbon dots, polymer dots, AIE dots, etc.) in STED imaging has brought opportunities to overcoming such long-existing issues. These nanomaterials designed for STED imaging show not only lower STED power requirements but also more efficient photoluminescence (PL) and enhanced photostability than organic molecular probes. Herein, we review the recent progress in the development of nanoprobes for STED imaging, to highlight their potential in improving the long-term imaging quality of STED microscopy and broadening its application scope. We also discuss the pros and cons for specific classes of nanoprobes for STED bioimaging in detail to provide practical references for biological researchers seeking suitable imaging kits, promoting the development of relative research field.
Collapse
Affiliation(s)
| | | | - Xiao Peng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Wei Yan
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | | | | |
Collapse
|
20
|
Dong H, Sun LD, Yan CH. Lanthanide-Doped Upconversion Nanoparticles for Super-Resolution Microscopy. Front Chem 2021; 8:619377. [PMID: 33520938 PMCID: PMC7843451 DOI: 10.3389/fchem.2020.619377] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/07/2020] [Indexed: 12/26/2022] Open
Abstract
Super-resolution microscopy offers a non-invasive and real-time tool for probing the subcellular structures and activities on nanometer precision. Exploring adequate luminescent probes is a great concern for acquiring higher-resolution image. Benefiting from the atomic-like transitions among real energy levels, lanthanide-doped upconversion nanoparticles are featured by unique optical properties including excellent photostability, large anti-Stokes shifts, multicolor narrowband emissions, tunable emission lifetimes, etc. The past few years have witnessed the development of upconversion nanoparticles as probes for super-resolution imaging studies. To date, the optimal resolution reached 28 nm (λ/36) for single nanoparticles and 82 nm (λ/12) for cytoskeleton structures with upconversion nanoparticles. Compared with conventional probes such as organic dyes and quantum dots, upconversion nanoparticle-related super-resolution microscopy is still in the preliminary stage, and both opportunities and challenges exist. In this perspective article, we summarized the recent advances of upconversion nanoparticles for super-resolution microscopy and projected the future directions of this emerging field. This perspective article should be enlightening for designing efficient upconversion nanoprobes for super-resolution imaging and promote the development of upconversion nanoprobes for cell biology applications.
Collapse
Affiliation(s)
- Hao Dong
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Ling-Dong Sun
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Chun-Hua Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| |
Collapse
|
21
|
Wang XG, Li M, Zhang L, Zhao H, Palaoag TD. A New Method on Super Pixel Reducing Stereo Matching Time of Integrated Imaging. INT J PATTERN RECOGN 2020. [DOI: 10.1142/s0218001421540148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Stereo vision and 3D reconstruction technologies are increasingly concerned in many fields. Stereo matching algorithm is the core of stereo vision and also a technical difficulty. A novel method based on super pixels is mentioned in this paper to reduce the calculating amount and the time. Stereo images from University of Tsukuba are used to test our method. The proposed method spends only 1% of the time spent by the conventional method. Through a two-step super-pixel matching optimization, it takes 6.72 s to match a picture, which is 12.96% of the pre-optimization.
Collapse
Affiliation(s)
- Xue-Guang Wang
- School of Information and Control Engineering, China University of Mining and Technology, DaXue Road 1, XuZhou JiangSu, 221116, China
- School of Control and Mechanical Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Ming Li
- School of Information and Control Engineering, China University of Mining and Technology, DaXue Road 1, XuZhou JiangSu, 221116, China
| | - Lei Zhang
- School of Mathematics and Physics, University of Engineering, HeBei HanDan, TaiJiRoad19#, 056038, P. R. China
| | - Hui Zhao
- School of Information & Electrical Engineering, Hebei University of Engineering, Taiji Road 19, Handan, Hebei, 056038, P. R. China
- College of Teacher Education, University of the Cordilleras, Governor Pack Rd., Baguio City, 2600, Philippines
| | - Thelma D. Palaoag
- College of Information Technology and Computer Science, University of the Cordilleras, Governor Pack Rd., Baguio City, 2600, Philippines
| |
Collapse
|
22
|
De Camillis S, Ren P, Cao Y, Plöschner M, Denkova D, Zheng X, Lu Y, Piper JA. Controlling the non-linear emission of upconversion nanoparticles to enhance super-resolution imaging performance. NANOSCALE 2020; 12:20347-20355. [PMID: 33006350 DOI: 10.1039/d0nr04809g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Upconversion nanoparticles (UCNPs) exhibit unique optical properties such as photo-emission stability, large anti-Stokes shift, and long excited-state lifetimes, allowing significant advances in a broad range of applications from biomedical sensing to super-resolution microscopy. In recent years, progress on nanoparticle synthesis led to the development of many strategies for enhancing their upconversion luminescence, focused in particular on heavy doping of lanthanide ions and core-shell structures. In this article, we investigate the non-linear emission properties of fully Yb-based core-shell UCNPs and their impact on the super-resolution performance of stimulated excitation-depletion (STED) microscopy and super-linear excitation-emission (uSEE) microscopy. Controlling the power-dependent emission curve enables us to relax constraints on the doping concentrations and to reduce the excitation power required for accessing sub-diffraction regimes. We take advantage of this feature to implement multiplexed super-resolution imaging of a two-sample mixture.
Collapse
Affiliation(s)
- Simone De Camillis
- ARC Centre of excellence for Nanoscale Biophotonics (CNBP), Department of Physics and Astronomy, Macquarie University, NSW 2109, Australia.
| | - Peng Ren
- ARC Centre of excellence for Nanoscale Biophotonics (CNBP), Department of Physics and Astronomy, Macquarie University, NSW 2109, Australia. and CNBP, School of Engineering and Physics, Macquarie University, NSW 2109, Australia.
| | - Yueying Cao
- ARC Centre of excellence for Nanoscale Biophotonics (CNBP), Department of Physics and Astronomy, Macquarie University, NSW 2109, Australia. and CNBP, Department of Molecular Sciences, Macquarie University, NSW 2109, Australia
| | - Martin Plöschner
- ARC Centre of excellence for Nanoscale Biophotonics (CNBP), Department of Physics and Astronomy, Macquarie University, NSW 2109, Australia. and School of Information Technology and Electrical Engineering, The University of Queensland, QLD 4072, Australia
| | - Denitza Denkova
- ARC Centre of excellence for Nanoscale Biophotonics (CNBP), Department of Physics and Astronomy, Macquarie University, NSW 2109, Australia. and Institute for BioEngineering of Catalonia (IBEC), 08028 Barcelona, Spain
| | - Xianlin Zheng
- ARC Centre of excellence for Nanoscale Biophotonics (CNBP), Department of Physics and Astronomy, Macquarie University, NSW 2109, Australia.
| | - Yiqing Lu
- ARC Centre of excellence for Nanoscale Biophotonics (CNBP), Department of Physics and Astronomy, Macquarie University, NSW 2109, Australia. and CNBP, School of Engineering and Physics, Macquarie University, NSW 2109, Australia.
| | - James A Piper
- ARC Centre of excellence for Nanoscale Biophotonics (CNBP), Department of Physics and Astronomy, Macquarie University, NSW 2109, Australia.
| |
Collapse
|
23
|
Gao L, Shan X, Xu X, Liu Y, Liu B, Li S, Wen S, Ma C, Jin D, Wang F. Video-rate upconversion display from optimized lanthanide ion doped upconversion nanoparticles. NANOSCALE 2020; 12:18595-18599. [PMID: 32555904 DOI: 10.1039/d0nr03076g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Volumetric displays that create bright image points within a transparent bulk are one of the most attractive technologies in everyday life. Lanthanide ion doped upconversion nanoparticles (UCNPs) are promising luminescent nanomaterials for background free, full-colour volumetric displays of transparent bulk materials. However, video-rate display using UCNPs has been limited by their low emission intensity. Herein, we developed a video-rate upconversion display system with much enhanced brightness. The integral emission intensity of the single UCNPs was fully employed for video-rate display. It was maximized by optimizing the emitter concentration and, more importantly, by temporally synchronizing the scanning time of the excitation light to the the raised emission time of the single UCNPs. The excitation power dependent emission response and emission time decay curves were systematically characterized for the single UCNPs with various emitter concentrations from 0.5% to 6%. 1%Tm3+ doped UCNPs presented the highest integral emission intensity. By embedding this UCNPs into a polyvinyl acetate (PVA) film, we achieved a two-dimensional (2D) upconversion display with a frame rate of 29 Hz for 35 by 50 pixels. This work demonstrates that the temporal response as well as the integral emission intensity enable video-rate upconversion display.
Collapse
Affiliation(s)
- Laixu Gao
- School of Physical Science and Technology, Lingnan Normal University, Zhanjiang, 524048, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Plöschner M, Denkova D, De Camillis S, Das M, Parker LM, Zheng X, Lu Y, Ojosnegros S, Piper JA. Simultaneous super-linear excitation-emission and emission depletion allows imaging of upconversion nanoparticles with higher sub-diffraction resolution. OPTICS EXPRESS 2020; 28:24308-24326. [PMID: 32752412 DOI: 10.1364/oe.400651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Upconversion nanoparticles (UCNPs) are becoming increasingly popular as biological markers as they offer photo-stable imaging in the near-infrared (NIR) biological transparency window. Imaging at NIR wavelengths benefits from low auto-fluorescence background and minimal photo-damage. However, as the diffraction limit increases with the wavelength, the imaging resolution deteriorates. To address this limitation, recently two independent approaches have been proposed for imaging UCNPs with sub-diffraction resolution, namely stimulated emission-depletion (STED) microscopy and super linear excitation-emission (uSEE) microscopy. Both methods are very sensitive to the UCNP composition and the imaging conditions, i.e. to the excitation and depletion power. Here, we demonstrate that the imaging conditions can be chosen in a way that activates both super-resolution regimes simultaneously when imaging NaYF4:Yb,Tm UCNPs. The combined uSEE-STED mode benefits from the advantages of both techniques, allowing for imaging with lateral resolution about six times better than the diffraction limit due to STED and simultaneous improvement of the axial resolution about twice over the diffraction limit due to uSEE. Conveniently, at certain imaging conditions, the uSEE-STED modality can achieve better resolution at four times lower laser power compared to STED mode, making the method appealing for biological applications. We illustrate this by imaging UCNPs functionalized by colominic acid in fixed neuronal phenotype cells.
Collapse
|
25
|
Liu Z, Liu J, Wang X, Mi F, Wang D, Wu C. Fluorescent Bioconjugates for Super-Resolution Optical Nanoscopy. Bioconjug Chem 2020; 31:1857-1872. [DOI: 10.1021/acs.bioconjchem.0c00320] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Zhihe Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 510855, China
| | - Jie Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 510855, China
- Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China
| | - Xiaodong Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 510855, China
| | - Feixue Mi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 510855, China
| | - Dan Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 510855, China
| |
Collapse
|
26
|
Liu B, Chen C, Di X, Liao J, Wen S, Su QP, Shan X, Xu ZQ, Ju LA, Mi C, Wang F, Jin D. Upconversion Nonlinear Structured Illumination Microscopy. NANO LETTERS 2020; 20:4775-4781. [PMID: 32208705 DOI: 10.1021/acs.nanolett.0c00448] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Video-rate super-resolution imaging through biological tissue can visualize and track biomolecule interplays and transportations inside cellular organisms. Structured illumination microscopy allows for wide-field super resolution observation of biological samples but is limited by the strong extinction of light by biological tissues, which restricts the imaging depth and degrades its imaging resolution. Here we report a photon upconversion scheme using lanthanide-doped nanoparticles for wide-field super-resolution imaging through the biological transparent window, featured by near-infrared and low-irradiance nonlinear structured illumination. We demonstrate that the 976 nm excitation and 800 nm upconverted emission can mitigate the aberration. We found that the nonlinear response of upconversion emissions from single nanoparticles can effectively generate the required high spatial frequency components in the Fourier domain. These strategies lead to a new modality in microscopy with a resolution below 131 nm, 1/7th of the excitation wavelength, and an imaging rate of 1 Hz.
Collapse
Affiliation(s)
- Baolei Liu
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Chaohao Chen
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Xiangjun Di
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Jiayan Liao
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Shihui Wen
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Qian Peter Su
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Xuchen Shan
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Zai-Quan Xu
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Lining Arnold Ju
- School of Biomedical Engineering, Faculty of Engineering and Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
- Heart Research Institute, Newtown, NSW 2042, Australia
| | - Chao Mi
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Fan Wang
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Dayong Jin
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
- UTS-SUStech Joint Research Centre for Biomedical Materials & Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
27
|
Pominova D, Romanishkin I, Proydakova V, Grachev P, Moskalev A, Ryabova A, Makarov V, Linkov K, Kuznetsov S, Voronov V, Uvarov OV, Loschenov V. Optimization of upconversion luminescence excitation mode for deeper in vivo bioimaging without contrast loss or overheating. Methods Appl Fluoresc 2020; 8:025006. [DOI: 10.1088/2050-6120/ab7782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
28
|
Loo JFC, Chien YH, Yin F, Kong SK, Ho HP, Yong KT. Upconversion and downconversion nanoparticles for biophotonics and nanomedicine. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213042] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|