1
|
Liu Y, Zhu X, Zhang Y, Yi Z, Yang X, Fu H. Sodium trifluoromethanesulfinate-mediated photocatalytic aerobic oxidative esterification of aromatic aldehydes and alcohols. Org Biomol Chem 2024; 23:183-187. [PMID: 39527127 DOI: 10.1039/d4ob01476f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A sodium trifluoromethanesulfinate-mediated photocatalytic strategy for the aerobic oxidative esterification of aromatic aldehydes and alcohols has been developed, in which the in situ formed pentacoordinate sulfide derived from readily available and inexpensive sodium trifluoromethanesulfinate and oxygen acts as the photocatalyst, and the corresponding aromatic esters were provided in moderate to good yields. The present method is an economical and environmentally friendly protocol.
Collapse
Affiliation(s)
- Yong Liu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | - Xianjin Zhu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | - Yue Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | - Zhengyi Yi
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | - Xiaobo Yang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, 110034, P. R. China.
| | - Hua Fu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
2
|
Sahoo T, Prasanna DV, Sridhar B, Subba Reddy BV. Novel electron donor-acceptor (EDA) complex promoted arylation of 2-oxo-2 H-chromene-3-carbonitriles under visible light irradiation. Org Biomol Chem 2024; 22:9408-9412. [PMID: 39498500 DOI: 10.1039/d4ob01493f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
An efficient and operationally simple photochemical method has been demonstrated under transition metal-free, photocatalyst-free, and oxidant-free conditions. In recent times, diaryliodonium salts have become one of the most popular arylating sources under photoinduced conditions. Herein, we developed a visible light induced arylation of heterocycles using an EDA complex that is formed in situ from 2,6-lutidine and diaryliodonium triflate. Under light irradiation, the EDA complex generates the aryl radical that undergoes addition with 2-oxo-2H-chromene-3-carbonitriles via an SET process. This method serves as an effective tool to access biologically active and pharmaceutically relevant coumarin scaffolds.
Collapse
Affiliation(s)
- Tanmoy Sahoo
- Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | | | - B Sridhar
- Laboratory of X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - B V Subba Reddy
- Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
3
|
Meher KB, Laha D, Dharpure PD, Bhat RG. Visible-Light-Induced Copper-Catalyzed Radical Reactions of Diazo Arylidene Succinimides to Access the Pyromellitic Diimide (PMDI) Core. Org Lett 2024; 26:10241-10247. [PMID: 39575468 DOI: 10.1021/acs.orglett.4c03604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The synthesis of pyromellitic diimides (PMDIs) through visible-light-promoted copper-catalyzed reaction of diazo arylidene succinimides has been accomplished without the use of external oxidants. This transformation involves a carbon radical from diazo arylidene succinimides with a copper catalyst or photocatalyst via the proton-coupled electron transfer (PCET) process. This approach successfully challenges a long-standing paradigm in the synthesis of PMDIs. Notably, copper complex (CuNCS) formed in situ proved to be playing a pivotal role to drive the reaction via photoinitiation. Additionally, we synthesized a PMDI molecule known for its prominent aggregation-induced emission (AIE) property. For the very first time, we have synthesized unsymmetrical PMDIs by employing the developed protocol.
Collapse
Affiliation(s)
- Kajal B Meher
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
| | - Debasish Laha
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
| | - Pankaj D Dharpure
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
| | - Ramakrishna G Bhat
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
| |
Collapse
|
4
|
Serviou SK, Gkizis PL, Sánchez DP, Plassais N, Gohier F, Cabanetos C, Kokotos CG. Expanding the Use of Benzothioxanthene Imides to Photochemistry: Eco-Friendly Aerobic Oxidation of Sulfides to Sulfoxides. CHEMSUSCHEM 2024; 17:e202400903. [PMID: 38867402 PMCID: PMC11632559 DOI: 10.1002/cssc.202400903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024]
Abstract
The sulfoxide moiety is one of the most commonly utilized groups in pharmaceutical and industrial chemistry. The need for sustainability and easy accessibility to sulfoxide moieties is deemed necessary, due to its ubiquity in natural products and potentially pharmaceutically active compounds. In this context, we report herein a sustainable, aerobic and environmentally friendly photochemical protocol based on the use of a benzothioxathene imide as the photocatalyst to selectively oxidize sulfides under mild irradiation (456 nm), in very low catalyst loading (0.01 mol %) and on water. In addition, to demonstrate the compatibility of our protocol with wide scope of substrates, the latter was successfully applied to the synthesis of the biologically-active Sulforaphane and Modafinil.
Collapse
Affiliation(s)
- Stamatis K. Serviou
- Laboratory of Organic ChemistryDepartment of ChemistryNational and Kapodistrian University of AthensPanepistimiopolis15771AthensGreece
| | - Petros L. Gkizis
- Laboratory of Organic ChemistryDepartment of ChemistryNational and Kapodistrian University of AthensPanepistimiopolis15771AthensGreece
| | | | - Nathan Plassais
- CNRSMOLTECH-ANJOUSFR-MATRIXF-49000AngersFrance
- Department of PhysicsUniversity of Seoul02504SeoulRepublic of Korea
| | | | | | - Christoforos G. Kokotos
- Laboratory of Organic ChemistryDepartment of ChemistryNational and Kapodistrian University of AthensPanepistimiopolis15771AthensGreece
| |
Collapse
|
5
|
Fan H, Fang Y, Yu J. Direct alkene functionalization via photocatalytic hydrogen atom transfer from C(sp 3)-H compounds: a route to pharmaceutically important molecules. Chem Commun (Camb) 2024; 60:13796-13818. [PMID: 39526464 DOI: 10.1039/d4cc05026f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Direct functionalization of alkenes with C(sp3)-H substrates offers unique opportunities for the rapid construction of pharmaceuticals and natural products. Although significant progress has been made over the past decades, the development of green, high step-economy methods to achieve these transformations under mild conditions without the need for pre-functionalization of C(sp3)-H bonds remains a substantial challenge. Therefore, the pursuit of such methodologies is highly desirable. Recently, the direct activation of C(sp3)-H bonds via photocatalytic hydrogen atom transfer (HAT), especially from unactivated alkanes, has shown great promise. Given the potential of this approach to generate a wide range of pharmaceutically relevant compounds, this review highlights the recent advancements in the direct functionalization of alkenes through photocatalytic HAT from C(sp3)-H compounds, as well as their applications in the synthesis and diversification of drugs, natural products, and bioactive molecules, aiming to provide medicinal chemists with a practical set of tools.
Collapse
Affiliation(s)
- Hangqian Fan
- Laboratory of Pharmaceutical Engineering of Zhejiang Province, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yuxin Fang
- Laboratory of Pharmaceutical Engineering of Zhejiang Province, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Jingbo Yu
- Laboratory of Pharmaceutical Engineering of Zhejiang Province, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
6
|
Thombare KR, Parida SK, Meher P, Murarka S. Photoredox-catalyzed arylative and aryl sulfonylative radical cascades involving diaryliodonium reagents: synthesis of functionalized pyrazolones. Chem Commun (Camb) 2024; 60:13907-13910. [PMID: 39503167 DOI: 10.1039/d4cc05086j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
We disclose a photoredox-catalyzed arylative radical cascade between N'-arylidene-N-acryloylhydrazides and diaryliodonium reagents to obtain the corresponding benzylated pyrazolones in good yields. The protocol was extended to three-component coupling involving the 1,4-diazabicyclo[2.2.2]octane bis(sulfur dioxide) (DABSO) adduct as a sulfur dioxide surrogate for the synthesis of arylsulfonylated pyrazolones. Both reactions exhibit broad scope, scalability, and high functional group tolerance.
Collapse
Affiliation(s)
- Karan Ramdas Thombare
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| | - Sushanta Kumar Parida
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| | - Prahallad Meher
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| |
Collapse
|
7
|
Meher P, Parida SK, Mahapatra SK, Roy L, Murarka S. Overriding Cage Effect in Electron Donor-Acceptor Photoactivation of Diaryliodonium Reagents: Synthesis of Chalcogenides. Chemistry 2024; 30:e202402969. [PMID: 39183717 DOI: 10.1002/chem.202402969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 08/27/2024]
Abstract
In recent times, diaryliodonium reagents (DAIRs) have witnessed a resurgence as arylating reagents, especially under photoinduced conditions. However, reactions proceeding through electron donor-acceptor (EDA) complex formation with DAIRs are restricted to electron-rich reacting partners serving as donors due to the well-known cage effect. We discovered a practical and high-yielding visible-light-induced EDA platform to generate aryl radicals from the corresponding DAIRs and use them to synthesize key chalcogenides. In this process, an array of DAIRs and dichalcogenides react in the presence of 1,4 diazabicyclo[2.2.2]octane (DABCO) as a cheap and readily available donor, furnishing a variety of di(hetero)aryl and aryl/alkyl chalcogenides in good yields. The method is scalable, features a broad scope with good yields, and operates under open-to-air conditions. The photoinduced chalcogenation technology is suitable for late-stage functionalizations and disulfide bioconjugations and facilitates access to biologically relevant thioesters, dithiocarbamates, sulfoximines, and sulfones. Moreover, the method applies to synthesizing diverse pharmaceuticals, such as vortioxetine, promazine, mequitazine, and dapsone, under amenable conditions.
Collapse
Affiliation(s)
- Prahallad Meher
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, 342037, India
| | - Sushanta Kumar Parida
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, 342037, India
| | - Sanat Kumar Mahapatra
- IOC Odisha Campus Bhubaneswar, Institute of Chemical Technology Mumbai, Bhubaneswar, 751013, India
| | - Lisa Roy
- IOC Odisha Campus Bhubaneswar, Institute of Chemical Technology Mumbai, Bhubaneswar, 751013, India
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, 342037, India
| |
Collapse
|
8
|
Skolia E, Mountanea OG, Kokotos CG. Photochemical Aerobic Upcycling of Polystyrene Plastics. CHEMSUSCHEM 2024; 17:e202400174. [PMID: 38763906 DOI: 10.1002/cssc.202400174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/28/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Although the introduction of plastics has improved humanity's everyday life, the fast accumulation of plastic waste, including microplastics and nanoplastics, have created numerous problems with recent studies highlighting their involvement in various aspects of our lives. Upcycling of plastics, the conversion of plastic waste to high-added value chemicals, is a way to combat plastic waste that is receiving increased attention. Herein, we describe a novel aerobic photochemical process for the upcycling of real-life polystyrene-based plastics into benzoic acid. A new process employing a thioxanthone-derivative, in combination with N-bromosuccinimide, under ambient air and 390 nm irradiation is capable of upcycling real-life polystyrene-derived products in benzoic acid in yields varying from 24-54 %.
Collapse
Affiliation(s)
- Elpida Skolia
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Olga G Mountanea
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Christoforos G Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| |
Collapse
|
9
|
Niziński S, Varma N, Sikorski M, Tobrman T, Svobodová E, Cibulka R, Rode MF, Burdzinski G. Fast singlet excited-state deactivation pathway of flavin with a trimethoxyphenyl derivative. Sci Rep 2024; 14:24375. [PMID: 39420059 PMCID: PMC11487251 DOI: 10.1038/s41598-024-75239-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Incorporation of the trimethoxyphenyl group at position 7 of flavin can drastically change the photophysical properties of flavin. We show unique fast singlet 1(π,π*) excited state deactivation pathway through nonadiabatic transition to the 1(n,π*) excited- state, and subsequent deactivation to the ground electronic state (S0), closing the photocycle. This mechanism explains the exceptionally weak fluorescence and the short excited-state lifetime for the flavin trimethoxyphenyl derivative and the lack of excited triplet T1 state formation. Full recovery of flavin in its ground state takes place within a 15 ps time window after photoexcitation in a polar solvent such as acetonitrile. According to quantum chemical calculations, the C(2)-O distance elongates by 0.16 Å in the 1(n,π*) state, with respect to the ground state. Intermediate-state structures are predicted by theoretical ab initio calculations and their dynamics are investigated using broadband vis-NIR time-resolved transient absorption and fluorescence up-conversion techniques.
Collapse
Affiliation(s)
- Stanisław Niziński
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany
- Faculty of Physics and Astronomy, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, 61-614, Poznan, Poland
| | - Naisargi Varma
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614, Poznan, Poland
| | - Marek Sikorski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614, Poznan, Poland.
| | - Tomáš Tobrman
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, 16628, Prague, Czech Republic
| | - Eva Svobodová
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, 16628, Prague, Czech Republic
| | - Radek Cibulka
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, 16628, Prague, Czech Republic.
| | - Michał F Rode
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668, Warsaw, Poland.
| | - Gotard Burdzinski
- Faculty of Physics and Astronomy, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, 61-614, Poznan, Poland.
| |
Collapse
|
10
|
Wang R, Sukhanov AA, He Y, Mambetov AE, Zhao J, Escudero D, Voronkova VK, Di Donato M. Electron Spin Dynamics of the Intersystem Crossing in Aminoanthraquinone Derivatives: The Spectral Telltale of Short Triplet Excited States. J Phys Chem B 2024; 128:10189-10199. [PMID: 39364553 DOI: 10.1021/acs.jpcb.4c04242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
We studied the excited state dynamics of two bis-amino substituted anthraquinone (AQ) derivatives, with absorption in the visible spectral region, which results from the attachment of a electron-donating group to the electron-deficient AQ chromophore. Femtosecond transient absorption spectra show that intersystem crossing (ISC) takes place in 190-320 ps, and nanosecond transient absorption spectra demonstrated an unusually short triplet state lifetime (2.06-5.43 μs) for the two AQ derivatives. Pulsed laser-excited time-resolved electron paramagnetic resonance (TREPR) spectra show an inversion of the electron spin polarization (ESP) phase pattern of the triplet state at a longer delay time after laser flash. Spectral simulations show faster decay of the Ty sublevel than the other two sublevels (τx = 15.0 μs, τy = 1.50 μs, τz = 15.0 μs); theoretical computation predicts initial overpopulation of the Ty sublevel, and rationalizes the short T1 state lifetime and the ESP inversion. Theoretical computations taking into account the electron-vibrational coupling, i.e., the Herzberg-Teller effect, successfully rationalize the TREPR experimental observations.
Collapse
Affiliation(s)
- Ruilei Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian 116024, P. R. China
| | - Andrey A Sukhanov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan 420029, Russia
| | - Yue He
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Aidar E Mambetov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan 420029, Russia
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian 116024, P. R. China
| | - Daniel Escudero
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Violeta K Voronkova
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan 420029, Russia
| | - Mariangela Di Donato
- LENS (European Laboratory for Non-Linear Spectroscopy), via N. Carrara 1, Sesto Fiorentino (FI) 50019, Firenze, Italy
- ICCOM-CNR, via Madonna del Piano 10, Sesto Fiorentino (FI) 50019, Italy
| |
Collapse
|
11
|
Huang H, Jiang Y, Yuan W, Lin YM. Modular Assembly of Acridines by Integrating Photo-Excitation of o-Alkyl Nitroarenes with Copper-Promoted Cascade Annulation. Angew Chem Int Ed Engl 2024; 63:e202409653. [PMID: 39039028 DOI: 10.1002/anie.202409653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Acridine frameworks stand as pivotal architectural elements in pharmaceuticals and photocatalytic applications, owing to their chemical adaptability, biological activity, and unique excited-state dynamics. Conventional synthetic routes often entail specialized starting materials, anaerobic or moisture-free conditions, and elaborate multi-stage manipulations for incorporating diverse functionalities. Herein, we present a convergent approach integrating photo-excitation of readily available ortho-alkyl nitroarenes with copper-promoted cascade annulation. This innovative system enables an aerobic, one-pot reaction of o-alkyl nitroarenes with arylboronic acids, thereby streamlining the modular construction of a wide array of acridine derivatives with various functional groups. This encompasses symmetrical, unsymmetrical and polysubstituted varieties, some of which are otherwise exceptionally difficult to synthesize. Furthermore, it significantly improves the production of structurally varied acridinium salts, featuring enhanced photophysical properties, high excited state potentials (E*red=2.08-3.15 V), and exhibiting superior performance in intricate photoredox transformations.
Collapse
Affiliation(s)
- Haichao Huang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yifan Jiang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wei Yuan
- Department of Pharmacy, Xiamen Medical College, Xiamen, 361023, China
| | - Yu-Mei Lin
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
12
|
Bhowmik PK, King D, Chen SL, Principe RCG, Han H, Evlyukhin E, Cifligu P, Jubair A, Kartazaev V, Gayen SK, Killarney ST, Caci JD, Wood KC. Synthesis, Optical Spectroscopy, and Laser and Biomedical Imaging Application Potential of 2,4,6-Triphenylpyrylium Tetrachloroferrate and Its Derivatives. J Phys Chem B 2024; 128:9815-9828. [PMID: 39327892 DOI: 10.1021/acs.jpcb.4c03934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Synthesis, optical spectroscopic properties, two-photon (TP) absorption-induced fluorescence, and laser and bioimaging application potentials of 2,4,6-triphenylpyrylium tetrachloroferrate (1),4-(4-methoxyphenyl)-2,6-diphenylpyrylium tetrachloroferrate (2), 2,6-bis(4-methoxyphenyl)-4-phenylpyrylium tetrachloroferrate (3), and 2,4,6-tris(4-methoxyphenyl)pyrylium tetrachloroferrate (4) are presented. The synthesis involves the conversion of pyrylium tosylates to pyrylium chlorides, followed by transformation into 1-4 on heating to reflux with FeCl3 in acetonitrile. They are characterized using 1H and 13C NMR spectra in CD3OD, and FTIR and Raman spectroscopic techniques. The salts dissolve in organic solvents and water (pH = 7 to 3) even at high concentrations (10-3 M). These solutions absorb light strongly from 500-300 nm. Solutions of 1, 3, and 4 fluoresce with high quantum yield in the 500-700 nm spectral range. Salts 1 and 4 exhibit fluorescence lifetime shortening, line width narrowing, and free-running laser action under intense pulsed laser excitation. Toxicity and cell imaging studies using human cancer cell lines reveal that salts 1 and 3 function as cellular fluorophores in vitro and have no adverse effects on cellular viability at nanomolar ranges. Furthermore, acetonitrile and methanol solutions of salts 1, 3, and 4 exhibit strong two-photon absorption-induced fluorescence, opening potential applications in biomedical imaging and microscopy.
Collapse
Affiliation(s)
- Pradip K Bhowmik
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Box 454003, Las Vegas, Nevada 89154, United States
| | - David King
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Box 454003, Las Vegas, Nevada 89154, United States
| | - Si L Chen
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Box 454003, Las Vegas, Nevada 89154, United States
| | - Ronald Carlo G Principe
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Box 454003, Las Vegas, Nevada 89154, United States
| | - Haesook Han
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Box 454003, Las Vegas, Nevada 89154, United States
| | - Egor Evlyukhin
- Department of Physics and Astronomy, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, United States
| | - Petrika Cifligu
- Department of Physics and Astronomy, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, United States
| | - Ahamed Jubair
- Department of Physics, Center for Discovery and Innovation, The City College of New York, 160 Convent Avenue, New York, New York 10031, United States
- Physics Program, The Graduate Center, City University of New York (CUNY), 365 Fifth Avenue, New York, New York 10016, United States
| | - Vladimir Kartazaev
- Department of Physics, Center for Discovery and Innovation, The City College of New York, 160 Convent Avenue, New York, New York 10031, United States
| | - Swapan K Gayen
- Department of Physics, Center for Discovery and Innovation, The City College of New York, 160 Convent Avenue, New York, New York 10031, United States
- Physics Program, The Graduate Center, City University of New York (CUNY), 365 Fifth Avenue, New York, New York 10016, United States
| | - Shane T Killarney
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27705, United States
| | - Julia D Caci
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27705, United States
| | - Kris C Wood
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27705, United States
| |
Collapse
|
13
|
Fukuzumi S, Lee YM, Nam W. Functional molecular models of photosynthesis. iScience 2024; 27:110694. [PMID: 39286498 PMCID: PMC11404225 DOI: 10.1016/j.isci.2024.110694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
This perspective focuses on functional models of photosynthesis to achieve molecular photocatalytic systems that mimic photosystems I and II (PSI and PSII). A long-lived and high-energy electron-transfer state of 9-mesityl-10-methylacridinium ion (Acr+-Mes) has been attained as a simple and useful model of the photosynthetic reaction center. Acr+-Mes has been used as an effective photoredox catalyst for photocatalytic hydrogen evolution and regioselective reduction of NAD(P)+ from plastoquinone analogs as a molecular functional model of PSI. A functional molecular model system to mimic the function of PSII has also been developed to oxidize water by plastoquinone analogs to produce O2 and plastoquinol analogs. The PSI molecular models have finally been integrated with the PSII molecular models to achieve production of a solar fuel (hydrogen) and NAD(P)H and its analogs from water by use of solar energy as a molecular artificial photosynthesis.
Collapse
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- Research Institute for Basic Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| |
Collapse
|
14
|
Koli M, Gamre S, Ghosh R, Wadawale AP, Ghosh A, Ghanty TK, Mula S. BODIPY-Helicene Based Heavy-Atom-Free Photocatalyst for Oxidative Coupling of Amines and Photooxidation of Sulfides. Chem Asian J 2024:e202400975. [PMID: 39246097 DOI: 10.1002/asia.202400975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/10/2024]
Abstract
To develop heavy-atom-free triplet photosensitizers (PSs) based photocatalysts, we designed and synthesized two BODIPY-helicene dyes by fusing the BODIPY core and modified [5]helicene structures. These BODIPY-helicenes structures are twisted and their twisting angles are increased by the developed synthetic method. The BODIPY-helicenes have broad absorption bands over UV-visible region with high triplet conversions and long triplet lifetimes as compared to planar BODIPY dye, PM567. Consequently, these dyes are also highly efficient in generating 1O2 by transferring their triplet energy to 3O2. All these are confirmed by dye-sensitised photooxidation reaction, nanosecond transient absorption spectroscopy study, phosphorescence measurement and DFT calculations. Finally, photocatalytic activity of the highest 1O2 generating BODIPY-helicene (4 b) was checked. 4 b is highly efficient in photocatalytic oxidative coupling of differently substituted amines through aerobatic oxidation using 1O2 generated by its photosensitization. It is also highly efficient photocatalyst for aerobatic oxidation of sulfides to sulfoxides. Importantly, the photocatalyst could be quantitatively recovered and reused for several cycles. All these results confirmed the potential use of the BODIPY-helicenes as PSs for photocatalytic organic reactions and the design strategy will be useful for the future development of heavy-atom-free photocatalyst.
Collapse
Affiliation(s)
- Mrunesh Koli
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Sunita Gamre
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Rajib Ghosh
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - A P Wadawale
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Ayan Ghosh
- Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Tapan K Ghanty
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
- Bio-Science Group, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Soumyaditya Mula
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| |
Collapse
|
15
|
Ma WY, Leone M, Derat E, Retailleau P, Reddy CR, Neuville L, Masson G. Photocatalytic Asymmetric Acyl Radical Truce-Smiles Rearrangement for the Synthesis of Enantioenriched α-Aryl Amides. Angew Chem Int Ed Engl 2024; 63:e202408154. [PMID: 38887967 DOI: 10.1002/anie.202408154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
The radical Truce-Smiles rearrangement is a straightforward strategy for incorporating aryl groups into organic molecules for which asymmetric processes remains rare. By employing a readily available and non-expensive chiral auxiliary, we developed a highly efficient asymmetric photocatalytic acyl and alkyl radical Truce-Smiles rearrangement of α-substituted acrylamides using tetrabutylammonium decatungstate (TBADT) as a hydrogen atom-transfer photocatalyst, along with aldehydes or C-H containing precursors. The rearranged products exhibited excellent diastereoselectivities (7 : 1 to >98 : 2 d.r.) and chiral auxiliary was easily removed. Mechanistic studies allowed understanding the transformation in which density functional theory (DFT) calculations provided insights into the stereochemistry-determining step.
Collapse
Affiliation(s)
- Wei-Yang Ma
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Matteo Leone
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Etienne Derat
- Sorbonne Université, Faculté des Sciences et Ingénierie, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 place Jussieu, 75005, Paris, France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry CSIR-, Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Luc Neuville
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
- HitCat, Seqens-CNRS joint laboratory, Seqens'lab, 8 rue de Rouen, 78440, Porcheville, France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
- HitCat, Seqens-CNRS joint laboratory, Seqens'lab, 8 rue de Rouen, 78440, Porcheville, France
| |
Collapse
|
16
|
Mountanea OG, Skolia E, Kokotos CG. Photochemical Aerobic Upcycling of Polystyrene Plastics via Synergistic Indirect HAT Catalysis. Chemistry 2024; 30:e202401588. [PMID: 38837489 DOI: 10.1002/chem.202401588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/22/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Plastic pollution constitutes an evergrowing urgent environmental problem, since overaccumulation of plastic waste, arising from the immense increase of the production of disposable plastic products, overcame planet's capacity to properly handle them. Chemical upcycling of polystyrene constitutes a convenient method for the conversion of plastic waste into high-added value chemicals, suggesting an attractive perspective in dealing with the environmental crisis. We demonstrate herein a novel, easy-to-perform organocatalytic photoinduced aerobic protocol, which proceeds via synergistic indirect hydrogen atom transfer (HAT) catalysis under LED 390 nm Kessil lamps as the irradiation source. The developed method employs a BrCH2CN-thioxanthone photocatalytic system and was successfully applied to a variety of everyday-life plastic products, leading to the isolation of benzoic acid after simple base-acid work up in yields varying from 23-49 %, while a large-scale experiment was successfully performed, suggesting that the photocatalytic step is susceptible to industrial application.
Collapse
Affiliation(s)
- Olga G Mountanea
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Elpida Skolia
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Christoforos G Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| |
Collapse
|
17
|
Pérez-Aguilar MC, Entgelmeier LM, Herrera-Luna JC, Daniliuc CG, Consuelo Jiménez M, Pérez-Ruiz R, García Mancheño O. Unlocking Photocatalytic Activity of Acridinium Salts by Anion-Binding Co-Catalysis. Chemistry 2024; 30:e202400541. [PMID: 38739757 DOI: 10.1002/chem.202400541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/17/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
The in situ generation of active photoredox organic catalysts upon anion-binding co-catalysis by making use of the ionic nature of common photosensitizers is reported. Hence, the merge of anion-binding and photocatalysis permitted the modulation of the photocatalytic activity of simple acridinium halide salts, building an effective anion-binding - photoredox ion pair complex able to promote a variety of visible light driven transformations, such as anti-Markovnikov addition to olefins, Diels-Alder and the desilylative C-C bond forming reactions. Anion-binding studies, together with steady-state and time-resolved spectroscopy analysis, supported the postulated ion pair formation between the thiourea hydrogen-bond donor organocatalyst and the acridinium salt, which proved essential for unlocking the photocatalytic activity of the photosensitizer.
Collapse
Affiliation(s)
- María C Pérez-Aguilar
- Institute of Organic Chemistry, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Lukas-M Entgelmeier
- Institute of Organic Chemistry, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Jorge C Herrera-Luna
- Departamento de Química, Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022, Valencia, Spain
- Current address: Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, CC 229, 75252, Paris Cedex 05, France
| | - Constantin G Daniliuc
- Institute of Organic Chemistry, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - M Consuelo Jiménez
- Departamento de Química, Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022, Valencia, Spain
| | - Raúl Pérez-Ruiz
- Departamento de Química, Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022, Valencia, Spain
| | - Olga García Mancheño
- Institute of Organic Chemistry, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| |
Collapse
|
18
|
Hota SK, Singh G, Murarka S. Direct C-H alkylation of 3,4-dihydroquinoxaline-2-ones with N-(acyloxy)phthalimides via radical-radical cross coupling. Chem Commun (Camb) 2024; 60:6268-6271. [PMID: 38808396 DOI: 10.1039/d4cc01837k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
We present an organophotoredox-catalyzed direct Csp3-H alkylation of 3,4-dihydroquinoxalin-2-ones employing N-(acyloxy)pthalimides to provide corresponding products in good yields. A broad spectrum of NHPI esters (1°, 2°, 3°, and sterically encumbered) participates in the photoinduced alkylation of a variety of 3,4-dihydroquinoxalin-2-ones. In general, mild conditions, broad scope with good functional group tolerance, and scalability are the salient features of this direct alkylation process.
Collapse
Affiliation(s)
- Sudhir Kumar Hota
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| | - Gulshan Singh
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| |
Collapse
|
19
|
Xu J, Liu B. Metal Free Functionalization of Saturated Heterocycles with Vinylarenes and Pyridine Enabled by Photocatalytic Hydrogen Atom Transfer. Chemistry 2024; 30:e202400612. [PMID: 38566284 DOI: 10.1002/chem.202400612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/04/2024]
Abstract
Saturated heterocycles are important class of structural scaffolds in small-molecule drugs, natural products, and synthetic intermediates. Here, we disclosed a metal free, mild, and scalable functionalization of saturated heterocycles using vinylarenes as a linchpin approach. Key to success of this transformation is the employing of simple and cheap benzophenone as a hydrogen atom transfer (HAT) catalyst. This operationally robust process was used for the making of diverse functionalized saturated heterocycles. Furthermore, aldehydes, alkane, and alcohol have been functionalized under the optimized conditions. The potential pharmaceutical utility of the procedure has also been demonstrated by late-stage functionalization of bioactive natural compounds and pharmaceutical molecules. Initial mechanism studies and control experiments were performed to elucidate the mechanism of the reactions.
Collapse
Affiliation(s)
- Junhua Xu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Bin Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| |
Collapse
|
20
|
Panda SP, Dash R, Hota SK, Murarka S. Photodecarboxylative Radical Cascade Involving N-(Acyloxy)phthalimides for the Synthesis of Pyrazolones. Org Lett 2024; 26:3667-3672. [PMID: 38656123 DOI: 10.1021/acs.orglett.4c01176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
We disclose N'-arylidene-N-acryloyltosylhydrazides as novel skeletons for the synthesis of biologically relevant alkylated pyrazolones through a photoinduced radical cascade with N-(acyloxy)pthalimides as readily available alkyl surrogates. The reaction proceeds through the formation of a photoactivated electron donor-acceptor (EDA) complex between alkyl N-(acyloxy)phthalimide (NHPI) esters and LiI/PPh3 as a commercially available donor system. The reaction exhibits a broad scope and scalability, thereby enabling synthesis of a broad spectrum of functionally orchestrated alkylated pyrazolones under mild and transition-metal-free conditions.
Collapse
Affiliation(s)
- Satya Prakash Panda
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037 Rajasthan, India
| | - Rupashri Dash
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037 Rajasthan, India
| | - Sudhir Kumar Hota
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037 Rajasthan, India
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037 Rajasthan, India
| |
Collapse
|
21
|
Ren X, Zhang T, Wang B, Jin W, Xia Y, Wu S, Liu C, Zhang Y. Visible-Light-Driven Bifunctional Photocatalytic Radical-Cascade Selenocyanation/Cyclization of Acrylamides with KSeCN. J Org Chem 2024; 89:5783-5796. [PMID: 38591967 DOI: 10.1021/acs.joc.4c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
A visible-light-induced radical-cascade selenocyanation/cyclization of N-alkyl-N-methacryloyl benzamides, 2-aryl-N-acryloyl indoles, and N-methacryloyl-2-phenylbenzimidazoles with potassium isoselenocyanate (KSeCN) was developed. The reactions were carried out with inexpensive KSeCN as a selenocyanation reagent, potassium persulfate as an oxidant, 2,4,6-triphenylpyrylium tetrafluoroborate as a bifunctional catalyst for phase-transfer catalysis, and photocatalysis. A library of selenocyanate-containing isoquinoline-1,3(2H,4H)-diones, indolo[2,1-a]isoquinoline-6(5H)-ones, and benzimidazo[2,1-a]isoquinolin-6(5H)-ones were achieved in moderate to excellent yields at room temperature under visible-light and ambient conditions. Importantly, the present protocol features mild reaction conditions, large-scale synthesis, simple manipulation, product derivatization, good functional group, and heterocycle tolerance.
Collapse
Affiliation(s)
- Xinxin Ren
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Tao Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Bin Wang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Weiwei Jin
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Yu Xia
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Shaofeng Wu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Chenjiang Liu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Yonghong Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| |
Collapse
|
22
|
Rrapi M, Batsika CS, Nikitas NF, Tappin NDC, Triandafillidi I, Renaud P, Kokotos CG. Photochemical Synthesis of Lactones, Cyclopropanes and ATRA Products: Revealing the Role of Sodium Ascorbate. Chemistry 2024; 30:e202400253. [PMID: 38324672 DOI: 10.1002/chem.202400253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/09/2024]
Abstract
Light-mediated processes have received significant attention, since they have re-surfaced unconventional reactivity platforms, complementary to conventional polar chemistry. γ-Lactones and cyclopropanes are prevalent moieties, found in numerous natural products and pharmaceuticals. Among various methods for their synthesis, light-mediated protocols are coming to the spotlight, although these are contingent upon the use of photoorgano- or metal-based catalysts. Herein, we introduce a novel photochemical activation of iodo-reagents via the use of cheap sodium ascorbate or ascorbic acid to enable their homolytic scission and addition onto double bonds. The developed protocol was applied successfully to the formal [3+2] cycloaddition for the synthesis of γ-lactones, traditional atom transfer radical addition (ATRA) reactions and the one-pot two-step conversion of alkenes to cyclopropanes. In all cases, the desired products were obtained in good to high yields, while the reaction mechanism was thoroughly investigated. Depending on the nature of the iodo-reagent, a halogen or a hydrogen-bonded complex is formed, which initiates the process.
Collapse
Affiliation(s)
- Marie Rrapi
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 15771, Greece
| | - Charikleia S Batsika
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 15771, Greece
| | - Nikolaos F Nikitas
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 15771, Greece
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Nicholas D C Tappin
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Ierasia Triandafillidi
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 15771, Greece
| | - Philippe Renaud
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Christoforos G Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 15771, Greece
| |
Collapse
|
23
|
Pan Y, Zhu Y, Li S, Li G, Ma Z, Qian Y, Huang W. Photoinduced arylation or alkylation of 1,2,4-triazine-3,5(2 H,4 H)-diones with hydrazines. Chem Commun (Camb) 2024. [PMID: 38451150 DOI: 10.1039/d3cc05937e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
A light-induced method is developed for synthesizing azauracils. This method is independent from traditional methodology. Remarkably, this reaction can also be powered by sunlight. The applicability of this method is further demonstrated through its successful implementation in large-scale reactions and its use in synthesizing derivatives.
Collapse
Affiliation(s)
- Youlu Pan
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, PR China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, PR China
| | - Yingchen Zhu
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, PR China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, PR China
| | - Shuangshuang Li
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, PR China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, PR China
| | - Gangjian Li
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, PR China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, PR China
| | - Zhen Ma
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, PR China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, PR China
| | - Yong Qian
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, PR China
| | - Wenhai Huang
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, PR China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, PR China
| |
Collapse
|
24
|
Kolagkis PX, Galathri EM, Kokotos CG. Green and sustainable approaches for the Friedel-Crafts reaction between aldehydes and indoles. Beilstein J Org Chem 2024; 20:379-426. [PMID: 38410780 PMCID: PMC10896228 DOI: 10.3762/bjoc.20.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/07/2024] [Indexed: 02/28/2024] Open
Abstract
The synthesis of indoles and their derivatives, more specifically bis(indolyl)methanes (BIMs), has been an area of great interest in organic chemistry, since these compounds exhibit a range of interesting biological and pharmacological properties. BIMs are naturally found in cruciferous vegetables and have been shown to be effective antifungal, antibacterial, anti-inflammatory, and even anticancer agents. Traditionally, the synthesis of BIMs has been achieved upon the acidic condensation of an aldehyde with indole, utilizing a variety of protic or Lewis acids. However, due to the increased environmental awareness of our society, the focus has shifted towards the development of greener synthetic technologies, like photocatalysis, organocatalysis, the use of nanocatalysts, microwave irradiation, ball milling, continuous flow, and many more. Thus, in this review, we summarize the medicinal properties of BIMs and the developed BIM synthetic protocols, utilizing the reaction between aldehydes with indoles, while focusing on the more environmentally friendly methods developed over the years.
Collapse
Affiliation(s)
- Periklis X Kolagkis
- Laboratory of Organic Chemistry, Department of Organic Chemistry, National and Kapodistrian University of Athens, Athens, 15771, Greece
| | - Eirini M Galathri
- Laboratory of Organic Chemistry, Department of Organic Chemistry, National and Kapodistrian University of Athens, Athens, 15771, Greece
| | - Christoforos G Kokotos
- Laboratory of Organic Chemistry, Department of Organic Chemistry, National and Kapodistrian University of Athens, Athens, 15771, Greece
| |
Collapse
|
25
|
Huo SC, Indurmuddam RR, Hong BC, Lu CF, Chien SY. The hamburger-shape photocatalyst: thioxanthone-based chiral [2.2]paracyclophane for enantioselective visible-light photocatalysis of 3-methylquinoxalin-2(1 H)-one and styrenes. Org Biomol Chem 2023; 21:9330-9336. [PMID: 37987508 DOI: 10.1039/d3ob01580g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
A new thioxanthone-based photocatalyst with a [2.2]paracyclophane skeleton and planar chirality has been developed. The catalyst has been successfully applied in the visible light-mediated enantioselective aza Paternò-Büchi reactions of quinoxalinone and styrenes to produce azetidines. The structures of the catalyst derivatives were unequivocally determined by their single crystal X-ray crystallography analysis.
Collapse
Affiliation(s)
- Shou-Chih Huo
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 621, Taiwan.
| | | | - Bor-Cherng Hong
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 621, Taiwan.
| | - Chuan-Fu Lu
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 621, Taiwan.
| | - Su-Ying Chien
- Instrumentation Center, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
26
|
Hota SK, Murarka S. Visible Light-Induced Imide Alkylation of Azauracils with Aryl Diazoesters. Chem Asian J 2023:e202301027. [PMID: 38052726 DOI: 10.1002/asia.202301027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
A visible light-induced green and sustainable N-H functionalization of (aza)uracils with α-diazo esters leading to imide alkylation is described. The reaction does not require any catalyst or additive and proceeds under mild conditions. Moreover, an intriguing three component coupling was observed when (aza)uracils were allowed to react with α-diazo esters in cyclic ethers (e. g. 1,4-dioxane, THF) as a solvent. Both the insertion and three-component coupling features broad scope with good to excellent yields and appreciable functional group tolerance. Notably, the divergent method enables modification of natural products and pharmaceuticals, thereby facilitates access to potentially biologically active compounds.
Collapse
Affiliation(s)
- Sudhir Kumar Hota
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037, Rajasthan, India
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037, Rajasthan, India
| |
Collapse
|
27
|
Meher P, Panda SP, Mahapatra SK, Thombare KR, Roy L, Murarka S. A General Electron Donor-Acceptor Photoactivation Platform of Diaryliodonium Reagents: Arylation of Heterocycles. Org Lett 2023; 25:8290-8295. [PMID: 37962249 DOI: 10.1021/acs.orglett.3c03365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
We report a photoredox system comprising sodium iodide, triphenyl phosphine, and N,N,N',N'-tetramethylethylenediamine (TMEDA) that can form a self-assembled tetrameric electron donor-acceptor (EDA) complex with diaryliodonium reagents (DAIRs) and furnish aryl radicals upon visible light irradiation. This practical mode of activation of DAIRs enables arylation of an array of heterocycles under mild conditions to provide the respective heteroaryl-(hetero)aryl assembly in moderate to excellent yields. Detailed mechanistic investigations comprising photophysical and DFT studies provided insight into the reaction mechanism.
Collapse
Affiliation(s)
- Prahallad Meher
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| | - Satya Prakash Panda
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| | - Sanat Kumar Mahapatra
- Institute of Chemical Technology Mumbai, IOC Odisha Campus Bhubaneswar, Bhubaneswar 751013, India
| | - Karan Ramdas Thombare
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai, IOC Odisha Campus Bhubaneswar, Bhubaneswar 751013, India
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| |
Collapse
|
28
|
Senapati S, Parida SK, Karandikar SS, Murarka S. Organophotoredox-Catalyzed Arylation and Aryl Sulfonylation of Morita-Baylis-Hillman Acetates with Diaryliodonium Reagents. Org Lett 2023; 25:7900-7905. [PMID: 37882475 DOI: 10.1021/acs.orglett.3c03146] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
We report an organophotoredox-catalyzed stereoselective allylic arylation of MBH acetates with a palette of diaryliodonium triflates (DAIRs) to provide the corresponding trisubstituted alkenes in moderate to good yields. The method could be extended to three-component coupling involving 1,4-diazabicyclo[2.2.2]octane bis(sulfur dioxide) adduct (DABSO) as a sulfur dioxide surrogate for the synthesis of biologically relevant allylic sulfones. Both of these reactions were carried out under mild conditions featuring broad scope, robustness, and appreciable functional group tolerance.
Collapse
Affiliation(s)
- Sudip Senapati
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India
| | - Sushanta Kumar Parida
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India
| | - Sayali Sunil Karandikar
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India
| |
Collapse
|
29
|
Constantinou CT, Gkizis PL, Lagopanagiotopoulou OTG, Skolia E, Nikitas NF, Triandafillidi I, Kokotos CG. Photochemical Aminochlorination of Alkenes without the Use of an External Catalyst. Chemistry 2023; 29:e202301268. [PMID: 37254681 DOI: 10.1002/chem.202301268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/01/2023]
Abstract
The niche field of photochemistry offers opportunities that are not found in "traditional" ground state chemical pathways. Aminochlorinated derivatives are an interesting family of 1,2-difunctionalised compounds that provide access to a variety of natural products and pharmaceutical active substances. A practical, catalyst-free chloroamination protocol is described herein, providing access to intermediates of great importance, utilising mild and photochemical reaction conditions (370 nm), where N-chlorosulfonamides are used as both nitrogen and chlorine sources. A wide variety of olefins, decorated with a plethora of functional groups, was tested providing excellent results (28 examples, 18-88 % yield). Mechanistic studies (UV-Vis, control experiments and quantum yield measurement) were also performed.
Collapse
Affiliation(s)
- Constantinos T Constantinou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771, Panepistimiopolis, Athens, Greece
| | - Petros L Gkizis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771, Panepistimiopolis, Athens, Greece
| | - Olga Thomais G Lagopanagiotopoulou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771, Panepistimiopolis, Athens, Greece
| | - Elpida Skolia
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771, Panepistimiopolis, Athens, Greece
| | - Nikolaos F Nikitas
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771, Panepistimiopolis, Athens, Greece
| | - Ierasia Triandafillidi
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771, Panepistimiopolis, Athens, Greece
| | - Christoforos G Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771, Panepistimiopolis, Athens, Greece
| |
Collapse
|
30
|
Zhu W, Wu Y, Zhang Y, Sukhanov AA, Chu Y, Zhang X, Zhao J, Voronkova VK. Preparation of Xanthene-TEMPO Dyads: Synthesis and Study of the Radical Enhanced Intersystem Crossing. Int J Mol Sci 2023; 24:11220. [PMID: 37446398 DOI: 10.3390/ijms241311220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
We prepared a rhodamine-TEMPO chromophore-radical dyad (RB-TEMPO) to study the radical enhanced intersystem crossing (REISC). The visible light-harvesting chromophore rhodamine is connected with the TEMPO (a nitroxide radical) via a C-N bond. The UV-vis absorption spectrum indicates negligible electron interaction between the two units at the ground state. Interestingly, the fluorescence of the rhodamine moiety is strongly quenched in RB-TEMPO, and the fluorescence lifetime of the rhodamine moiety is shortened to 0.29 ns, from the lifetime of 3.17 ns. We attribute this quenching effect to the intramolecular electron spin-spin interaction between the nitroxide radical and the photoexcited rhodamine chromophore. Nanosecond transient absorption spectra confirm the REISC in RB-TEMPO, indicated by the detection of the rhodamine chromophore triplet excited state; the lifetime was determined as 128 ns, which is shorter than the native rhodamine triplet state lifetime (0.58 μs). The zero-field splitting (ZFS) parameters of the triplet state of the chromophore were determined with the pulsed laser excited time-resolved electron paramagnetic resonance (TREPR) spectra. RB-TEMPO was used as a photoinitiator for the photopolymerization of pentaerythritol triacrylate (PETA). These studies are useful for the design of heavy atom-free triplet photosensitizers, the study of the ISC, and the electron spin dynamics of the radical-chromophore systems upon photoexcitation.
Collapse
Affiliation(s)
- Wenhui Zhu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian 116024, China
| | - Yanran Wu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian 116024, China
| | - Yiyan Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian 116024, China
| | - Andrey A Sukhanov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan 420029, Russia
| | - Yuqi Chu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian 116024, China
| | - Xue Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian 116024, China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian 116024, China
| | - Violeta K Voronkova
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan 420029, Russia
| |
Collapse
|
31
|
Zhang X, Liu L, Li W, Wang C, Wang J, Fang WH, Chen X. Extended Single-Electron Transfer Model and Dynamically Associated Energy Transfer Event in a Dual-Functional Catalyst System. JACS AU 2023; 3:1452-1463. [PMID: 37234115 PMCID: PMC10206599 DOI: 10.1021/jacsau.3c00098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023]
Abstract
Organic photocatalysis has been developed flourishingly to rely on bimolecular energy transfer (EnT) or oxidative/reductive electron transfer (ET), promoting a variety of synthetic transformations. However, there are rare examples to merge EnT and ET processes rationally within one chemical system, of which the mechanistic investigation still remains in its infancy. Herein, the first mechanistic illustration and kinetic assessments of the dynamically associated EnT and ET paths were conducted for realizing the C-H functionalization in a cascade photochemical transformation of isomerization and cyclization by using the dual-functional organic photocatalyst of riboflavin. An extended single-electron transfer model of transition-state-coupled dual-nonadiabatic crossings was explored to analyze the dynamic behaviors in the proton transfer-coupled cyclization. This can also be used to clarify the dynamic correlation with the EnT-driven E → Z photoisomerization that has been kinetically evaluated by using Fermi's golden rule with the Dexter model. The present computational results of electron structures and kinetic data contribute to a fundamental basis for understanding the photocatalytic mechanism of the combined operation of EnT and ET strategies, which will guide the design and manipulation for the implementation of multiple activation modes based on a single photosensitizer.
Collapse
Affiliation(s)
- Xiaorui Zhang
- Department
of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing 100875, China
| | - Lin Liu
- Department
of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing 100875, China
| | - Weijia Li
- Department
of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing 100875, China
| | - Chu Wang
- Department
of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing 100875, China
| | - Juanjuan Wang
- College
of Nuclear Science and Technology, Beijing
Normal University, Xin-wai-da-jie
No. 19, Beijing 100875, China
- Laboratory
of Beam Technology and Energy Materials, Advanced Institute of Natural
Science, Beijing Normal University, Zhuhai 519087, China
| | - Wei-Hai Fang
- Department
of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing 100875, China
| | - Xuebo Chen
- Department
of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing 100875, China
| |
Collapse
|
32
|
Panda SP, Hota SK, Dash R, Roy L, Murarka S. Photodecarboxylative C-H Alkylation of Azauracils with N-(Acyloxy)phthalimides. Org Lett 2023; 25:3739-3744. [PMID: 37184284 DOI: 10.1021/acs.orglett.3c01210] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We disclose a transition-metal-free NaI/PPh3-mediated direct C-H alkylation of azauracils using N-(acyloxy)pthalimides (NHPIs) as readily available alkyl surrogates under visible light irradiation. Detailed mechanistic studies reveal formation of a photoactivated electron donor-acceptor (EDA) complex between NaI/PPh3, TMEDA, and alkyl NHPI ester and establish the crucial role of TMEDA in increasing the activity of the photoredox system. The reaction demonstrates a broad scope, scalability, and appreciable functional group tolerance. A variety of azauracils are shown to undergo alkylation by primary, secondary, and tertiary NHPI esters under mild conditions, furnishing the desired products in good to excellent yields.
Collapse
Affiliation(s)
- Satya Prakash Panda
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| | - Sudhir Kumar Hota
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| | - Rupashri Dash
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai, IOC Odisha Campus Bhubaneswar, Bhubaneswar, Odisha 751013, India
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| |
Collapse
|
33
|
Meher P, Samanta RK, Manna S, Murarka S. Visible light photoredox-catalyzed arylative cyclization to access benzimidazo[2,1- a]isoquinolin-6(5 H)-ones. Chem Commun (Camb) 2023; 59:6092-6095. [PMID: 37128950 DOI: 10.1039/d3cc00605k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A photoredox-catalyzed arylative radical cascade involving N-acryloyl-2-arylbenzoimidazoles and diaryliodonium triflates leading to the formation of a broad array of pharmaceutically important arylated-benzimidazo[2,1-a]isoquinolin-6(5H)-ones is described. Importantly, the synthesized benzimidazoisoquinolinones are amenable for further synthetic manipulation and allowed efficient access to benzimidazo-fused polycyclic heterocycles.
Collapse
Affiliation(s)
- Prahallad Meher
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| | - Raj Kumar Samanta
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| | - Sourav Manna
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| |
Collapse
|
34
|
Stini NA, Poursaitidis ET, Nikitas NF, Kartsinis M, Spiliopoulou N, Ananida-Dasenaki P, Kokotos CG. Light-accelerated "on-water" hydroacylation of dialkyl azodicarboxylates. Org Biomol Chem 2023; 21:1284-1293. [PMID: 36645430 DOI: 10.1039/d2ob02204d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The hydroacylation of dialkyl azodicarboxylates has received a lot of attention lately due to the great importance of acyl hydrazides in organic chemistry. Herein, we report an inexpensive and green photochemical approach, where light irradiation (390 nm) significantly accelerates the reaction between dialkyl azodicarboxylates and aldehydes, while water is employed as the solvent. A variety of aromatic and aliphatic aldehydes were converted into their corresponding acyl hydrazides in good to excellent yields in really short reaction times (15-210 min) and the reaction mechanism was also studied. Applications of this reaction in the syntheses of Vorinostat and Moclobemide were demonstrated.
Collapse
Affiliation(s)
- Naya A Stini
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis 15771, Athens, Greece.
| | - Efthymios T Poursaitidis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis 15771, Athens, Greece.
| | - Nikolaos F Nikitas
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis 15771, Athens, Greece.
| | - Michail Kartsinis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis 15771, Athens, Greece.
| | - Nikoleta Spiliopoulou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis 15771, Athens, Greece.
| | - Phoebe Ananida-Dasenaki
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis 15771, Athens, Greece.
| | - Christoforos G Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis 15771, Athens, Greece.
| |
Collapse
|
35
|
Meier A, Badalov SV, Biktagirov T, Schmidt WG, Wilhelm R. Diquat Based Dyes: A New Class of Photoredox Catalysts and Their Use in Aerobic Thiocyanation. Chemistry 2023; 29:e202203541. [PMID: 36700523 DOI: 10.1002/chem.202203541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
A series of new organic donor-π-acceptor dyes incorporating a diquat moiety as a novel electron-acceptor unit have been synthesized and characterized. The analytical data were supported by DFT calculations. These dyes were explored in the aerobic thiocyanation of indoles and pyrroles. Here they showed a high photocatalytic activity under visible light, giving isolated yields of up to 97 %. In addition, the photocatalytic activity of standalone diquat and methyl viologen through formation of an electron donor acceptor complex is presented.
Collapse
Affiliation(s)
- Armin Meier
- Institute of Organic Chemistry, Clausthal University of Technology, Leibnizstr. 6, 38678, Clausthal-Zellerfeld, Germany
| | - Sabuhi V Badalov
- Lehrtuhl für Theoretische Materialphysik, Universität Paderborn, 33095, Paderborn, Germany
| | - Timur Biktagirov
- Lehrtuhl für Theoretische Materialphysik, Universität Paderborn, 33095, Paderborn, Germany
| | - Wolf Gero Schmidt
- Lehrtuhl für Theoretische Materialphysik, Universität Paderborn, 33095, Paderborn, Germany
| | - René Wilhelm
- Institute of Organic Chemistry, Clausthal University of Technology, Leibnizstr. 6, 38678, Clausthal-Zellerfeld, Germany
| |
Collapse
|
36
|
Kim M, Hong S, Jeong J, Hong S. Visible-Light-Active Coumarin- and Quinolinone-Based Photocatalysts and Their Applications in Chemical Transformations. CHEM REC 2023:e202200267. [PMID: 36627191 DOI: 10.1002/tcr.202200267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/16/2022] [Indexed: 01/12/2023]
Abstract
Organic dyes have been actively studied as useful photocatalysts because they allow access to versatile structural flexibility and green synthetic applications. The identification of a new class of robust organic chromophores is, therefore, in high demand to increase structural diversity and variability. Although coumarins and quinolinones have long been acknowledged as organic chromophores, their ability to participate in photoinduced transformations is somewhat less familiar. Fascinated by their chromophoric features and adaptable platform, our group is interested in the identification of fluorescent bioactive molecules and in the development of new photoinduced synthetic methods using coumarins and quinolinones as photocatalysts. This account provides an overview of our recent progress in the discovery and application of light-absorbing coumarin and quinolinone derivatives in photochemistry and medicinal chemistry.
Collapse
Affiliation(s)
- Myojeong Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seonghyeok Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jinwook Jeong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
37
|
Čubiňák M, Varma N, Oeser P, Pokluda A, Pavlovska T, Cibulka R, Sikorski M, Tobrman T. Tuning the Photophysical Properties of Flavins by Attaching an Aryl Moiety via Direct C-C Bond Coupling. J Org Chem 2023; 88:218-229. [PMID: 36525315 DOI: 10.1021/acs.joc.2c02168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Palladium-catalyzed Suzuki reactions of brominated flavin derivatives (5-deazaflavins, alloxazines, and isoalloxazines) with boronic acids or boronic acid esters that occur readily under mild conditions were shown to be an effective tool for the synthesis of a broad range of 7/8-arylflavins. In general, the introduction of an aryl/heteroaryl group by means of a direct C-C bond has been shown to be a promising approach to tuning the photophysical properties of flavin derivatives. The aryl substituents caused a bathochromic shift in the absorption spectra of up to 52 nm and prolonged the fluorescence lifetime by up to 1 order of magnitude. Moreover, arylation of flavin derivatives decreased their ability to generate singlet oxygen.
Collapse
Affiliation(s)
- Marek Čubiňák
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28Prague 6, Czech Republic
| | - Naisargi Varma
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614Poznań, Poland
| | - Petr Oeser
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28Prague 6, Czech Republic
| | - Adam Pokluda
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28Prague 6, Czech Republic
| | - Tetiana Pavlovska
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28Prague 6, Czech Republic
| | - Radek Cibulka
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28Prague 6, Czech Republic
| | - Marek Sikorski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614Poznań, Poland
| | - Tomáš Tobrman
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28Prague 6, Czech Republic
| |
Collapse
|
38
|
Galathri EM, Di Terlizzi L, Fagnoni M, Protti S, Kokotos CG. Friedel-Crafts arylation of aldehydes with indoles utilizing arylazo sulfones as the photoacid generator. Org Biomol Chem 2023; 21:365-369. [PMID: 36512428 DOI: 10.1039/d2ob02214a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A versatile, inexpensive and sustainable protocol for the preparation of valuable bis-indolyl methanes via visible light-mediated, metal-free Friedel-Crafts arylation has been developed. The procedure, that exploits the peculiar behavior of arylazo sulfones as non-ionic photoacid generators (PAGs), was applied to the conversion of a variety of aliphatic and aromatic aldehydes into diarylmethanes in good to highly satisfactory yields, employing a low-catalyst loading (0.5 mol%) and irradiation at 456 nm.
Collapse
Affiliation(s)
- Eirini M Galathri
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece.
| | - Lorenzo Di Terlizzi
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Christoforos G Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece.
| |
Collapse
|
39
|
García Mancheño O, Waser M. Recent Developments and Trends in Asymmetric Organocatalysis. European J Org Chem 2023; 26:e202200950. [PMID: 37065706 PMCID: PMC10091998 DOI: 10.1002/ejoc.202200950] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/13/2022] [Indexed: 11/11/2022]
Abstract
Asymmetric organocatalysis has experienced a long and spectacular way since the early reports over a century ago by von Liebig, Knoevenagel and Bredig, showing that small (chiral) organic molecules can catalyze (asymmetric) reactions. This was followed by impressive first highly enantioselective reports in the second half of the last century, until the hype initiated in 2000 by the milestone publications of MacMillan and List, which finally culminated in the 2021 Nobel Prize in Chemistry. This short Perspective aims at providing a brief introduction to the field by first looking on the historical development and the more classical methods and concepts, followed by discussing selected advanced recent examples that opened new directions and diversity within this still growing field.
Collapse
Affiliation(s)
- Olga García Mancheño
- Organic Chemistry InstituteUniversity of MünsterCorrensstrasse 3648149MünsterGermany
| | - Mario Waser
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstrasse 694040LinzAustria
| |
Collapse
|
40
|
Lopat’eva ER, Krylov IB, Lapshin DA, Terent’ev AO. Redox-active molecules as organocatalysts for selective oxidative transformations - an unperceived organocatalysis field. Beilstein J Org Chem 2022; 18:1672-1695. [PMID: 36570566 PMCID: PMC9749543 DOI: 10.3762/bjoc.18.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Organocatalysis is widely recognized as a key synthetic methodology in organic chemistry. It allows chemists to avoid the use of precious and (or) toxic metals by taking advantage of the catalytic activity of small and synthetically available molecules. Today, the term organocatalysis is mainly associated with redox-neutral asymmetric catalysis of C-C bond-forming processes, such as aldol reactions, Michael reactions, cycloaddition reactions, etc. Organophotoredox catalysis has emerged recently as another important catalysis type which has gained much attention and has been quite well-reviewed. At the same time, there are a significant number of other processes, especially oxidative, catalyzed by redox-active organic molecules in the ground state (without light excitation). Unfortunately, many of such processes are not associated in the literature with the organocatalysis field and thus many achievements are not fully consolidated and systematized. The present article is aimed at overviewing the current state-of-art and perspectives of oxidative organocatalysis by redox-active molecules with the emphasis on challenging chemo-, regio- and stereoselective CH-functionalization processes. The catalytic systems based on N-oxyl radicals, amines, thiols, oxaziridines, ketone/peroxide, quinones, and iodine(I/III) compounds are the most developed catalyst types which are covered here.
Collapse
Affiliation(s)
- Elena R Lopat’eva
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Igor B Krylov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Dmitry A Lapshin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Alexander O Terent’ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| |
Collapse
|
41
|
Skolia E, Kokotos CG. Photochemical [2 + 2] Cycloaddition of Alkenes with Maleimides: Highlighting the Differences between N-Alkyl vs N-Aryl Maleimides. ACS ORGANIC & INORGANIC AU 2022; 3:96-103. [PMID: 37035280 PMCID: PMC10080724 DOI: 10.1021/acsorginorgau.2c00053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
Throughout the last 15 years, there has been increased research interest in the use of light promoting organic transformations. [2 + 2] Cycloadditions are usually performed photochemically; however, literature precedent on the reaction between olefins and maleimides is limited to a handful of literature examples, focusing mainly on N-aliphatic maleimides or using metal catalysts for visible-light driven reactions of N-aromatic maleimides. Herein, we identify the differences in reactivity between N-alkyl and N-aryl maleimides. For our optimized protocols, in the case of N-alkyl maleimides, the reaction with alkenes proceeds under 370 nm irradiation in the absence of an external photocatalyst, leading to products in high yields. In the case of N-aryl maleimides, the reaction with olefins requires thioxanthone as the photosensitizer under 440 nm irradiation.
Collapse
Affiliation(s)
- Elpida Skolia
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis 15771, Athens, Greece
| | - Christoforos G. Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis 15771, Athens, Greece
| |
Collapse
|
42
|
Pálvölgyi ÁM, Ehrschwendtner F, Schnürch M, Bica-Schröder K. Photocatalyst-free hydroacylations of electron-poor alkenes and enones under visible-light irradiation. Org Biomol Chem 2022; 20:7245-7249. [PMID: 36073152 PMCID: PMC9491158 DOI: 10.1039/d2ob01364a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/30/2022] [Indexed: 01/30/2024]
Abstract
Herein we present a photocatalyst- and additive-free radical hydroacylation of electron-poor double bonds under mild reaction conditions. Using 4-acyl-Hantzsch ester radical reservoirs, various Michael acceptors, enones and para-quinone methide substrates could be used. The protocol enabled further derivatizations and it could also be extended to a few unactivated alkenes. Moreover, the nature of the radical process was also investigated.
Collapse
Affiliation(s)
| | | | - Michael Schnürch
- Institute of Applied Synthetic Chemistry, TU Wien, 1060 Vienna, Austria.
| | | |
Collapse
|
43
|
Gorbachev D, Smith E, Argent SP, Newton GN, Lam HW. Synthesis of New Morphinan Opioids by TBADT-Catalyzed Photochemical Functionalization at the Carbon Skeleton. Chemistry 2022; 28:e202201478. [PMID: 35661287 PMCID: PMC9544987 DOI: 10.1002/chem.202201478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Indexed: 11/11/2022]
Abstract
The synthesis of new morphinan opioids by the addition of photochemically generated carbon-centered radicals to substrates containing an enone in the morphinan C-ring, is described. Using tetrabutylammonium decatungstate (TBADT) as a hydrogen atom transfer photocatalyst, diverse radical donors can be used to prepare a variety of C8-functionalized morphinan opioids. This work demonstrates the late-stage modification of complex, highly functionalized substrates.
Collapse
Affiliation(s)
- Dmitry Gorbachev
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamJubilee Campus, Triumph RoadNottinghamNG7 2TUUK
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Elliot Smith
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamJubilee Campus, Triumph RoadNottinghamNG7 2TUUK
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Stephen P. Argent
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Graham N. Newton
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamJubilee Campus, Triumph RoadNottinghamNG7 2TUUK
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Hon Wai Lam
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamJubilee Campus, Triumph RoadNottinghamNG7 2TUUK
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| |
Collapse
|
44
|
Nongbe MC, Abollé A, Coeffard V, Felpin FX. Rose Bengal Immobilized on Cellulose Paper for Sustainable Visible‐Light Photocatalysis. Chempluschem 2022; 87:e202200242. [DOI: 10.1002/cplu.202200242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/18/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Medy C Nongbe
- Université Jean Lorougnon Guédé: Universite Jean Lorougnon Guede Laboratoire des Sciences et Technologies de l’Environnement (LSTE) COTE D'IVOIRE
| | - Abollé Abollé
- Universite Nangui Abrogoua Laboratoire de Thermodynamique et de Physico-Chimie du Milieu COTE D'IVOIRE
| | - Vincent Coeffard
- Nantes University: Universite de Nantes Department of Chemistry FRANCE
| | - Francois-Xavier Felpin
- Nantes University: Universite de Nantes UFR Sciences et Techniques, UMR CNRS 6230, CEISAM 2 Rue de la Houssiniere 44322 Nantes FRANCE
| |
Collapse
|
45
|
Pavlovska T, Král Lesný D, Svobodová E, Hoskovcová I, Archipowa N, Kutta RJ, Cibulka R. Tuning Deazaflavins Towards Highly Potent Reducing Photocatalysts Guided by Mechanistic Understanding - Enhancement of the Key Step by the Internal Heavy Atom Effect. Chemistry 2022; 28:e202200768. [PMID: 35538649 PMCID: PMC9541856 DOI: 10.1002/chem.202200768] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 11/11/2022]
Abstract
Deazaflavins are well suited for reductive chemistry acting via a consecutive photo-induced electron transfer, in which their triplet state and semiquinone - the latter is formed from the former after electron transfer from a sacrificial electron donor - are key intermediates. Guided by mechanistic investigations aiming to increase intersystem crossing by the internal heavy atom effect and optimising the concentration conditions to avoid unproductive excited singlet reactions, we synthesised 5-aryldeazaflavins with Br or Cl substituents on different structural positions via a three-component reaction. Bromination of the deazaisoalloxazine core leads to almost 100 % triplet yield but causes photo-instability and enhances unproductive side reactions. Bromine on the 5-phenyl group in ortho position does not affect the photostability, increases the triplet yield, and allows its efficient usage in the photocatalytic dehalogenation of bromo- and chloroarenes with electron-donating methoxy and alkyl groups even under aerobic conditions. Reductive powers comparable to lithium are achieved.
Collapse
Affiliation(s)
- Tetiana Pavlovska
- Department of Organic ChemistryUniversity of Chemistry and Technology, PragueTechnická 5166 28Prague 6Czech Republic
| | - David Král Lesný
- Department of Organic ChemistryUniversity of Chemistry and Technology, PragueTechnická 5166 28Prague 6Czech Republic
| | - Eva Svobodová
- Department of Organic ChemistryUniversity of Chemistry and Technology, PragueTechnická 5166 28Prague 6Czech Republic
| | - Irena Hoskovcová
- Department of Inorganic ChemistryUniversity of Chemistry and Technology, PragueTechnická 5166 28Prague 6Czech Republic
| | - Nataliya Archipowa
- Institute for Biophysics and Physical BiochemistryUniversity of RegensburgD-93053RegensburgGermany
| | - Roger Jan Kutta
- Institute of Physical and Theoretical ChemistryUniversity of RegensburgD-93053RegensburgGermany
| | - Radek Cibulka
- Department of Organic ChemistryUniversity of Chemistry and Technology, PragueTechnická 5166 28Prague 6Czech Republic
| |
Collapse
|
46
|
Prathibha E, Rangasamy R, Sridhar A, Lakshmi K. Rose Bengal Anchored Silica-Magnetite Nanocomposite as Photosensitizer for Visible- Light-Mediated Oxidation of Thioethers. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02338-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
47
|
Samanta RK, Meher P, Murarka S. Visible Light Photoredox-Catalyzed Direct C-H Arylation of Quinoxalin-2(1 H)-ones with Diaryliodonium Salts. J Org Chem 2022; 87:10947-10957. [PMID: 35925769 DOI: 10.1021/acs.joc.2c01234] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A photoredox-catalyzed direct arylation of quinoxalin-2-(1H)-ones using diaryliodonium triflates as the convenient, stable, and cheap aryl source is described. A broad variety of quinoxalin-2-(1H)-ones are shown to react with structurally and electronically diverse diaryliodonium triflates, allowing efficient access to a wide variety of pharmaceutically important 3-arylquinoxalin-2-(1H)-ones. The presented method is attractive with regard to operational simplicity, mild conditions, broad scope, scalability, and high functional group tolerance.
Collapse
Affiliation(s)
- Raj K Samanta
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| | - Prahallad Meher
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| |
Collapse
|
48
|
Skolia E, Gkizis PL, Kokotos CG. A sustainable photochemical aerobic sulfide oxidation: access to sulforaphane and modafinil. Org Biomol Chem 2022; 20:5836-5844. [PMID: 35838682 DOI: 10.1039/d2ob01066f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Sulfoxide-containing molecules are an important class of compounds in the pharmaceutical industry and many efforts have been made to develop new and green protocols, targeting the chemoselective transformation of sulfides into sulfoxides. Photochemistry is a rapidly expanding research field employing light as the energy source. Photochemical aerobic processes possess additional advantages to photochemistry and may find applications in the chemical industries. Herein, a 370 nm catalyst-free aerobic protocol was developed, using 2-Me-THF as the green solvent. At the same time, two low-catalyst-loading anthraquinone-based processes (under a CFL lamp or 427 nm irradiation) in 2-Me-THF were developed. Furthermore, a broad range of substrates was tested. We also implemented our protocols towards the synthesis of the pharmaceutical active ingredients (APIs) sulforaphane and modafinil.
Collapse
Affiliation(s)
- Elpida Skolia
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis 15771, Athens, Greece. .,Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Panepistimiopolis 15771, Athens, Greece
| | - Petros L Gkizis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis 15771, Athens, Greece. .,Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Panepistimiopolis 15771, Athens, Greece
| | - Christoforos G Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis 15771, Athens, Greece. .,Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Panepistimiopolis 15771, Athens, Greece
| |
Collapse
|
49
|
Saway J, Pierre AF, Badillo JJ. Photoacid-catalyzed acetalization of carbonyls with alcohols. Org Biomol Chem 2022; 20:6188-6192. [PMID: 35876112 DOI: 10.1039/d2ob00435f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this report, we demonstrate that visible light photoactivation of 6-bromo-2-naphthol facilitates the photoacid-catalyzed acetalization of carbonyls with alcohols. We also demonstrate that 2-naphthol when coupled to a photosensitizer provides acetals from electron-deficient aldehydes. In addition, the S1 excited state pKa for 6-bromo-2-naphthol in water was determined and shown to have increased excited-state acidity relative to 2-naphthol.
Collapse
Affiliation(s)
- Jason Saway
- Department of Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, NJ, 07079, USA.
| | - Abigail F Pierre
- Department of Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, NJ, 07079, USA.
| | - Joseph J Badillo
- Department of Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, NJ, 07079, USA.
| |
Collapse
|
50
|
Wang H, Ni J, Wang H, Zhang Y. An efficient free radical ester synthesis through a visible light-induced hydrogen atom transfer process. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|