1
|
Guzman AL, Mann AN, Hoye TR. Alkynes to (Free) Carbenes to Polycyclic Cyclopropanes. J Am Chem Soc 2024; 146:28642-28647. [PMID: 39383055 DOI: 10.1021/jacs.4c10897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Carbenes and carbenoids are commonly employed for the synthesis of cyclopropane-containing compounds. Here we report the metal-free, intramolecular cyclopropanation of tethered alkenes by free carbenes derived from alkynes to construct structurally unique multicyclic cyclopropanes with perfect atom economy. The nature of the tether influences both the rate of carbene formation and subsequent competing reaction events. Some of the substrates lead to metastable cyclopropane intermediates that further fragment to furnish interesting isomeric products by mechanistically novel processes. A removable siloxane tether can be utilized to achieve formal intermolecular cyclopropanations and to access cyclopropanol derivatives.
Collapse
Affiliation(s)
- Alexander L Guzman
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Alexis N Mann
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Thomas R Hoye
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Tamtaji M, Kwon S, Musgrave CB, Goddard WA, Chen G. Reaction Mechanism of Rapid CO Electroreduction to Propylene and Cyclopropane (C 3+) over Triple Atom Catalysts. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50567-50575. [PMID: 38919050 DOI: 10.1021/acsami.4c06257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The carbon monoxide reduction reaction (CORR) toward C2+ and C3+ products such as propylene and cyclopropane can not only reduce anthropogenic emissions of CO and CO2 but also produce value-added organic chemicals for polymer and pharmaceutical industries. Here, we introduce the concept of triple atom catalysts (TACs) that have three intrinsically strained and active metal centers for reducing CO to C3+ products. We applied grand canonical potential kinetics (GCP-K) to screen 12 transition metals (M) supported by nitrogen-doped graphene denoted as M3N7, where M stands for Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt, and Au. We sought catalysts with favorable CO binding, hydrogen binding, and C-C dimerization energetics, identifying Fe3N7 and Ir3N7 as the best candidates. We then studied the entire reaction mechanism from CO to C3H6 and C2H4 as a function of applied potential via, respectively, 12-electron and 8-electron transfer pathways on Fe3N7 and Ir3N7. Density functional theory (DFT) predicts an overpotential of 0.17 VRHE for Fe3N7 toward propylene and an overpotential of 0.42 VRHE toward cyclopropane at 298.15 K and pH = 7. Also, DFT predicts an overpotential of 0.15 VRHE for Ir3N7 toward ethylene. This work provides fundamental insights into the design of advanced catalysts for C2+ and C3+ synthesis at room temperature.
Collapse
Affiliation(s)
- Mohsen Tamtaji
- Hong Kong Quantum AI Lab Limited, Pak Shek Kok, Hong Kong SAR 999077, China
| | - Soonho Kwon
- Materials and Process Simulation Center (MSC), MC 139-74, California Institute of Technology, Pasadena, California 91125, United States
| | - Charles B Musgrave
- Materials and Process Simulation Center (MSC), MC 139-74, California Institute of Technology, Pasadena, California 91125, United States
| | - William A Goddard
- Materials and Process Simulation Center (MSC), MC 139-74, California Institute of Technology, Pasadena, California 91125, United States
| | - GuanHua Chen
- Hong Kong Quantum AI Lab Limited, Pak Shek Kok, Hong Kong SAR 999077, China
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| |
Collapse
|
3
|
Ni HQ, Alturaifi TM, Rodphon W, Scherschel NF, Yang S, Wang F, McAlpine IJ, Piercey DG, Liu P, Engle KM. Anti-selective Cyclopropanation of Nonconjugated Alkenes with Diverse Pronucleophiles via Directed Nucleopalladation. J Am Chem Soc 2024; 146:24503-24514. [PMID: 39172733 DOI: 10.1021/jacs.4c07039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
A facile approach to obtaining densely functionalized cyclopropanes is described. The reaction proceeds under mild conditions via the directed nucleopalladation of nonconjugated alkenes with readily available pronucleophiles and gives excellent yields and good anti-selectivity using I2 and TBHP as oxidants. Pronucleophiles bearing a diverse collection of electron-withdrawing groups, including -CN, -CO2R, -COR, -SO2Ph, -CONHR, and -NO2, are well tolerated. Internal alkenes, which are generally challenging substrates in other cyclopropanation methods, provide excellent yields and good diastereoselectivity in this methodology, allowing for controlled access to cyclopropanes substituted at all three C atoms. DFT calculations and mechanistic experiments reveal that the major mechanistic pathway involves the initial α-iodination of the nucleophile, followed by anti-carbopalladation and intramolecular C(sp3)-I oxidative addition. Strain-release-promoted C(sp3)-C(sp3) reductive elimination then furnishes the cyclopropanated product.
Collapse
Affiliation(s)
- Hui-Qi Ni
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, California 92037, United States
| | - Turki M Alturaifi
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Warabhorn Rodphon
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, California 92037, United States
| | - Nicholas F Scherschel
- Department of Materials Engineering and Purdue Energetics Research Center, Purdue University, West Lafayette, Indiana 47906, United States
- Department of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Shouliang Yang
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Fen Wang
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Indrawan J McAlpine
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, United States
- Genesis Therapeutics, 11568 Sorrento Valley Rd. Suite 8, San Diego, California 92121, United States
| | - Davin G Piercey
- Department of Materials Engineering and Purdue Energetics Research Center, Purdue University, West Lafayette, Indiana 47906, United States
- Department of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Keary M Engle
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
4
|
Liu S, Zhang C, Han Z, Huang H, Sun J. Organocatalytic enantio- and diastereoselective assembly of cyclopropane-incorporated polycyclic molecules via isobenzopyrylium ions. Chem Sci 2024; 15:d4sc03746d. [PMID: 39246368 PMCID: PMC11378009 DOI: 10.1039/d4sc03746d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/15/2024] [Indexed: 09/10/2024] Open
Abstract
A highly enantio- and diastereoselective organocatalytic formation of cyclopropanes embedded in a complex bridged polycyclic architecture is disclosed. In the presence of a chiral phosphoric acid catalyst, this reaction generates four new stereogenic centers and three new C-C bonds efficiently from isochromene acetals and vinylboronic acids under mild conditions. Different from conventional asymmetric cyclopropanation strategies, this process does not involve carbenes or carbenoids. The complex products can serve as precursors to useful homoenolate equivalents. Mechanistically, DFT studies provided insights into the key transition states of the enantiodetermining [4 + 2] cycloaddition, in which the enantioselectivity is induced by the chiral phosphate counter anion of the isobenzopyrylium intermediate.
Collapse
Affiliation(s)
- Shuxuan Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University Changzhou China
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong SAR China
| | - Chaoshen Zhang
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong SAR China
| | - Zhengyu Han
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University Changzhou China
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University Changzhou China
| | - Jianwei Sun
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong SAR China
| |
Collapse
|
5
|
Tsujihara T, Nishino K, Miura W, Chiba A, Hayashi W, Yoshida C, Takehara T, Suzuki T, Kawano T. Enantioselective One-Pot Synthesis of Cyclopropane-Fused Tetrahydroquinolines via a Ru-Catalyzed Intramolecular Cyclopropanation. Org Lett 2024; 26:6502-6506. [PMID: 39046795 DOI: 10.1021/acs.orglett.4c02416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
A highly enantioselective one-pot synthesis of cyclopropane-fused tetrahydroquinolines bearing carbonyl functionalities, which are difficult to synthesize using conventional methods, is reported. Employing readily accessible alkene-tethered anthranilaldehydes, hydrazone formation and subsequent Ru-catalyzed intramolecular cyclopropanation furnish the desired products in ≤87% yield and ≤95% ee under mild conditions. Various anthranilaldehydes, functionalized alkenes, and N-aryl sulfonyl groups are tolerated, and a series of synthetic transformations were conducted to demonstrate the practical utility.
Collapse
Affiliation(s)
- Tetsuya Tsujihara
- Department of Medicinal and Organic Chemistry, School of Pharmacy, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Koki Nishino
- Department of Medicinal and Organic Chemistry, School of Pharmacy, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Wakaba Miura
- Department of Medicinal and Organic Chemistry, School of Pharmacy, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Ayumi Chiba
- Department of Medicinal and Organic Chemistry, School of Pharmacy, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Wakana Hayashi
- Department of Medicinal and Organic Chemistry, School of Pharmacy, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Chika Yoshida
- Department of Medicinal and Organic Chemistry, School of Pharmacy, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Tsunayoshi Takehara
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka, Ibaraki 567-0047, Japan
| | - Takeyuki Suzuki
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka, Ibaraki 567-0047, Japan
| | - Tomikazu Kawano
- Department of Medicinal and Organic Chemistry, School of Pharmacy, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| |
Collapse
|
6
|
Li S, Zhang D, Purushothaman A, Lv H, Shilpa S, Sunoj RB, Li X, Zhang X. Chemo-, regio- and enantioselective hydroformylation of trisubstituted cyclopropenes: access to chiral quaternary cyclopropanes. Nat Commun 2024; 15:6377. [PMID: 39075045 PMCID: PMC11286865 DOI: 10.1038/s41467-024-50689-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024] Open
Abstract
Catalytic asymmetric synthesis of polysubstituted chiral cyclopropane presents a significant challenge in organic synthesis due to the difficulty in enantioselective control. Here we report a rhodium-catalyzed highly chemo-, regio- and enantioselective hydroformylation of trisubstituted cyclopropenes affording chiral quaternary cyclopropanes. Importantly, the easy made sterically bulky ligand L1 can effectively suppress hydrogenation and decomposition reactions and give quaternary cyclopropanes with high regio- and enantioselectivities for both aryl and alkyl functionalized substrates. Control experiments and computational studies reveal the sterically hindered well-defined chiral pocket instead of the substrates bearing electron-withdrawing diester groups is important for controlling the enantioselectivity and regioselectivity. Scale-up reaction and follow-up diverse transformations are also presented. Density Functional theory (DFT) computations suggest that the regio- and enantio-selectivities originate from the cyclopropene insertion to the Rh-H bond. The high regioselectivity is found to benefit from the presence of more efficient noncovalent interactions (NCIs) manifesting in the form of C-H···Cl, C-H···N, and l.p(Cl)···π contacts.
Collapse
Affiliation(s)
- Shuailong Li
- Department of Chemistry and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, University of Science and Technology, Southern, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - Dequan Zhang
- Department of Chemistry and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, University of Science and Technology, Southern, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - Aiswarya Purushothaman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Hui Lv
- Key Laboratory of Biomedical Polymers of Ministry of Education & College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Sauvage Center for Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, People's Republic of China
| | - Shilpa Shilpa
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Raghavan B Sunoj
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| | - Xiuxiu Li
- Department of Chemistry and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, University of Science and Technology, Southern, 1088 Xueyuan Road, Shenzhen, 518055, China.
| | - Xumu Zhang
- Department of Chemistry and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, University of Science and Technology, Southern, 1088 Xueyuan Road, Shenzhen, 518055, China.
| |
Collapse
|
7
|
Ouyang X, Shi B, Zhao Y, Zhu Z, Li Z, Yang Y, Shu C. Synthesis of constrained bicycloalkanes through bibase-promoted brook rearrangement/radical-polar crossover cyclization. Chem Sci 2024; 15:11092-11098. [PMID: 39027277 PMCID: PMC11253123 DOI: 10.1039/d4sc02532f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024] Open
Abstract
Highly constrained bicyclic scaffolds are ubiquitous and attracting increasing interest in pharmaceutical and biotechnology discoveries owing to the enhanced activities. Herein, we report a protocol to access highly substituted constrained bicycloalkanes from readily accessible α-silyl alcohols and olefins through a bibase-promoted Brook rearrangement/radical-polar crossover cyclization (RPCC) process. Of note, the practical procedure features broad substrate scope and good group tolerance under mild and operationally simple conditions, using an inexpensive organic photocatalyst. Gram-scale preparation and diverse synthetic transformations demonstrate opportunities to rapidly construct molecular complexity. Mechanistic studies have indicated that the transformation involves a bibase-promoted radical transfer rearrangement addition/radical-polar crossover cyclization relay sequence, which differs from traditional solitary RPCC reactions.
Collapse
Affiliation(s)
- Xinke Ouyang
- State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, CCNU-uOttawa Joint Research Centre, College of Chemistry, Central China Normal University (CCNU) 152 Luoyu Road Wuhan Hubei 430079 China
| | - Bingyao Shi
- State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, CCNU-uOttawa Joint Research Centre, College of Chemistry, Central China Normal University (CCNU) 152 Luoyu Road Wuhan Hubei 430079 China
| | - Yuanyuan Zhao
- State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, CCNU-uOttawa Joint Research Centre, College of Chemistry, Central China Normal University (CCNU) 152 Luoyu Road Wuhan Hubei 430079 China
| | - Zhimin Zhu
- State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, CCNU-uOttawa Joint Research Centre, College of Chemistry, Central China Normal University (CCNU) 152 Luoyu Road Wuhan Hubei 430079 China
| | - Ziyang Li
- State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, CCNU-uOttawa Joint Research Centre, College of Chemistry, Central China Normal University (CCNU) 152 Luoyu Road Wuhan Hubei 430079 China
| | - Yuxin Yang
- State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, CCNU-uOttawa Joint Research Centre, College of Chemistry, Central China Normal University (CCNU) 152 Luoyu Road Wuhan Hubei 430079 China
| | - Chao Shu
- State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, CCNU-uOttawa Joint Research Centre, College of Chemistry, Central China Normal University (CCNU) 152 Luoyu Road Wuhan Hubei 430079 China
- Wuhan Institute of Photochemistry and Technology 7 North Bingang Road Wuhan Hubei 430083 China
| |
Collapse
|
8
|
Omar I, Crotti M, Li C, Pisak K, Czemerys B, Ferla S, van Noord A, Paul CE, Karu K, Ozbalci C, Eggert U, Lloyd R, Barry SM, Castagnolo D. Insights into E. coli Cyclopropane Fatty Acid Synthase (CFAS) Towards Enantioselective Carbene Free Biocatalytic Cyclopropanation. Angew Chem Int Ed Engl 2024; 63:e202403493. [PMID: 38662909 DOI: 10.1002/anie.202403493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Indexed: 06/16/2024]
Abstract
Cyclopropane fatty acid synthases (CFAS) are a class of S-adenosylmethionine (SAM) dependent methyltransferase enzymes able to catalyse the cyclopropanation of unsaturated phospholipids. Since CFAS enzymes employ SAM as a methylene source to cyclopropanate alkene substrates, they have the potential to be mild and more sustainable biocatalysts for cyclopropanation transformations than current carbene-based approaches. This work describes the characterisation of E. coli CFAS (ecCFAS) and its exploitation in the stereoselective biocatalytic synthesis of cyclopropyl lipids. ecCFAS was found to convert phosphatidylglycerol (PG) to methyl dihydrosterculate 1 with up to 58 % conversion and 73 % ee and the absolute configuration (9S,10R) was established. Substrate tolerance of ecCFAS was found to be correlated with the electronic properties of phospholipid headgroups and for the first time ecCFAS was found to catalyse cyclopropanation of both phospholipid chains to form dicyclopropanated products. In addition, mutagenesis and in silico experiments were carried out to identify the enzyme residues with key roles in catalysis and to provide structural insights into the lipid substrate preference of ecCFAS. Finally, the biocatalytic synthesis of methyl dihydrosterculate 1 and its deuterated analogue was also accomplished combining recombinant ecCFAS with the SAM regenerating AtHMT enzyme in the presence of CH3I and CD3I respectively.
Collapse
Affiliation(s)
- Iman Omar
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
- Department of Chemistry, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, 7 Trinity Street, SE1 1DB, London, United Kingdom
| | - Michele Crotti
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
- Department of Chemistry, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, 7 Trinity Street, SE1 1DB, London, United Kingdom
| | - Chuhan Li
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
| | - Krisztina Pisak
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
| | - Blazej Czemerys
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
- Department of Chemistry, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, 7 Trinity Street, SE1 1DB, London, United Kingdom
| | - Salvatore Ferla
- Medical School, Faculty of Medicine, Health and Life Science, Swansea University, Swansea, SA2 8PP
| | - Aster van Noord
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft, The, Netherlands
| | - Caroline E Paul
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft, The, Netherlands
| | - Kersti Karu
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
| | - Cagakan Ozbalci
- Department of Chemistry, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, 7 Trinity Street, SE1 1DB, London, United Kingdom
- Randall Centre for Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London, SE1 1UL, United Kingdom
| | - Ulrike Eggert
- Department of Chemistry, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, 7 Trinity Street, SE1 1DB, London, United Kingdom
- Randall Centre for Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London, SE1 1UL, United Kingdom
| | - Richard Lloyd
- DSD Chemistry, GSK Medicines Research Centre, Gunnels, Wood Road, Stevenage, SG1 2NY
| | - Sarah M Barry
- Department of Chemistry, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, 7 Trinity Street, SE1 1DB, London, United Kingdom
| | - Daniele Castagnolo
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
| |
Collapse
|
9
|
Indurmuddam RR, Huang PC, Hong BC, Chien SY. Visible-Light-Photocatalyzed Self-Cyclopropanation Reactions of Dibenzoylmethanes for the Synthesis of Cyclopropanes. Org Lett 2024; 26:5752-5757. [PMID: 38949643 DOI: 10.1021/acs.orglett.4c01875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
A new self-cyclopropanation of 1,3-diphenylpropane-1,3-dione, leading to tetrasubstituted cyclopropane containing three contiguous stereogenic centers with high stereoselectivity, has been achieved through violet-light-emitting diode-irradiated photocatalysis, featuring both cycloaddition and a distinctive rearrangement. Diverging from conventional cyclopropanation pathways, this reaction yields a tetrasubstituted cyclopropane through unprecedented rearrangement and cascade reactions.
Collapse
Affiliation(s)
| | - Pei-Chi Huang
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621, Taiwan ROC
| | - Bor-Cherng Hong
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621, Taiwan ROC
| | - Su-Ying Chien
- Instrumentation Center, National Taiwan University, Taipei 106, Taiwan ROC
| |
Collapse
|
10
|
Boyle BT, Dow NW, Kelly CB, Bryan MC, MacMillan DWC. Unlocking carbene reactivity by metallaphotoredox α-elimination. Nature 2024; 631:789-795. [PMID: 38843825 PMCID: PMC11481160 DOI: 10.1038/s41586-024-07628-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/30/2024] [Indexed: 07/12/2024]
Abstract
The ability to tame high-energy intermediates is important for synthetic chemistry, enabling the construction of complex molecules and propelling advances in the field of synthesis. Along these lines, carbenes and carbenoid intermediates are particularly attractive, but often unknown, high-energy intermediates1,2. Classical methods to access metal carbene intermediates exploit two-electron chemistry to form the carbon-metal bond. However, these methods are usually prohibitive because of reagent safety concerns, limiting their broad implementation in synthesis3-6. Mechanistically, an alternative approach to carbene intermediates that could circumvent these pitfalls would involve two single-electron steps: radical addition to metal to forge the initial carbon-metal bond followed by redox-promoted α-elimination to yield the desired metal carbene intermediate. Here we realize this strategy through a metallaphotoredox platform that exploits iron carbene reactivity using readily available chemical feedstocks as radical sources and α-elimination from six classes of previously underexploited leaving groups. These discoveries permit cyclopropanation and σ-bond insertion into N-H, S-H and P-H bonds from abundant and bench-stable carboxylic acids, amino acids and alcohols, thereby providing a general solution to the challenge of carbene-mediated chemical diversification.
Collapse
Affiliation(s)
- Benjamin T Boyle
- Merck Center for Catalysis, Princeton University, Princeton, NJ, USA
| | - Nathan W Dow
- Merck Center for Catalysis, Princeton University, Princeton, NJ, USA
| | - Christopher B Kelly
- Discovery Process Research, Janssen Research & Development, Spring House, PA, USA
| | - Marian C Bryan
- Therapeutics Discovery, Janssen Research & Development, Spring House, PA, USA
| | | |
Collapse
|
11
|
Yoshioka E, Imoto Y, Yamaoka Y, Ikeda T, Takahashi H, Tanaka R, Hayashi N, Miyabe H. Intramolecular Cyclopropanation of Active Methylene Derivatives Based on FeCl 2 or FeCl 3-Promoted Radical-Polar Crossover Reactions. Chemistry 2024; 30:e202400602. [PMID: 38658317 DOI: 10.1002/chem.202400602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
Radical-polar crossover reactions were studied for the intramolecular cyclopropanation of active methylene derivatives. In the presence of FeCl3 as a stoichiometric oxidant and K2HPO4 as a base, the dehydrogenative cyclopropanation of active methylenes proceeded through the FeCl3-promoted oxidative radical cyclization followed by the ionic cyclization to give the bicyclic cyclopropanes. The use of α-chloro-active methylenes leads the subcatalytic cyclopropanation involving two redox pathways. In the presence of K2HPO4, the redox cyclopropanation proceeded by using FeCl2 (20 mol%) in combination with ligand (20 mol%).
Collapse
Affiliation(s)
- Eito Yoshioka
- School of Pharmacy and Department of Pharmacy, Hyogo Medical University Minatojima, Chuo-ku, Kobe, 650-8530, Japan
| | - Yuuki Imoto
- School of Pharmacy and Department of Pharmacy, Hyogo Medical University Minatojima, Chuo-ku, Kobe, 650-8530, Japan
| | - Yousuke Yamaoka
- School of Pharmacy and Department of Pharmacy, Hyogo Medical University Minatojima, Chuo-ku, Kobe, 650-8530, Japan
| | - Tomoko Ikeda
- School of Pharmacy and Department of Pharmacy, Hyogo Medical University Minatojima, Chuo-ku, Kobe, 650-8530, Japan
| | - Hiroki Takahashi
- School of Pharmacy and Department of Pharmacy, Hyogo Medical University Minatojima, Chuo-ku, Kobe, 650-8530, Japan
| | - Ryousuke Tanaka
- School of Pharmacy and Department of Pharmacy, Hyogo Medical University Minatojima, Chuo-ku, Kobe, 650-8530, Japan
| | - Naoki Hayashi
- School of Pharmacy and Department of Pharmacy, Hyogo Medical University Minatojima, Chuo-ku, Kobe, 650-8530, Japan
| | - Hideto Miyabe
- School of Pharmacy and Department of Pharmacy, Hyogo Medical University Minatojima, Chuo-ku, Kobe, 650-8530, Japan
| |
Collapse
|
12
|
DeMuynck BM, Zhang L, Ralph EK, Nagib DA. Cyclopropanation of unactivated alkenes with non-stabilized iron carbenes. Chem 2024; 10:1015-1027. [PMID: 39070927 PMCID: PMC11281255 DOI: 10.1016/j.chempr.2024.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Cyclopropanes are ubiquitous in medicines, yet robust synthetic access to a wide range of sterically and electronically diverse analogs remains a challenge. To address the synthetic limitations of the most direct strategy, (2+1) cycloaddition, we sought to develop a variant that employs non-stabilized carbenes. We present herein an FeCl2-catalyzed cyclopropanation that uniquely employs aliphatic (enolizable) aldehydes as carbene precursors. A remarkably broad range of alkenes may be coupled with these non-stabilized, alkyl carbenes. This extensive scope enables the synthesis of novel classes of cyclopropanes bearing alkyl, benzyl, allyl, halide, and heteroatom substituents, as well as spirocyclic and fused bicycles. Over 40 examples illustrate the broad generality, efficiency, selectivity, functional group tolerance, and practical utility of this approach. Mechanistic insights, gathered from stereochemical probes and competition experiments, are included to reveal the applicability of this non-stabilized carbene route for novel cyclopropane synthesis.
Collapse
Affiliation(s)
- Bethany M. DeMuynck
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Lumin Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Emma K. Ralph
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - David A. Nagib
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
13
|
Wang C, Zhu D, Wu R, Zhu S. Dirhodium-Catalyzed Enantioselective Synthesis of Difluoromethylated Cyclopropanes via Enyne Cycloisomerization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306404. [PMID: 38087930 PMCID: PMC10870034 DOI: 10.1002/advs.202306404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/05/2023] [Indexed: 02/17/2024]
Abstract
(Difluoromethylated cyclopropane represents an important motif, which is widely found in bioactive and functional molecules. Despite significant progress in modern chemistry, the atom-economic and enantioselective synthesis of difluoromethylated cyclopropanes is still challenging. Herein, an Rh2 (II)-catalyzed asymmetric enyne cycloisomerization is described to construct chiral difluoromethylated cyclopropane derivatives with up to 99% yield and 99% ee in low catalyst loading (0.2 mol%), which can be easily transformed into highly functionalized difluoromethylated cyclopropanes with vicinal all-carbon quaternary stereocenters by ozonolysis. Mechanistic studies and the crystal structures of alkyne-dirhodium complexes reveal that the cooperative weak hydrogen bondings between the substrates and the dirhodium catalyst may play key roles in this reaction.).
Collapse
Affiliation(s)
- Chuntao Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Dong Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Rui Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Shifa Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510640China
- School of Chemistry and Chemical EngineeringZhejiang Sci‐Tech UniversityHangzhou310018China
- State Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071China
| |
Collapse
|
14
|
Teye-Kau JHG, Ayodele MJ, Pitre SP. Vitamin B 12 -Photocatalyzed Cyclopropanation of Electron-Deficient Alkenes Using Dichloromethane as the Methylene Source. Angew Chem Int Ed Engl 2024; 63:e202316064. [PMID: 38015966 DOI: 10.1002/anie.202316064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 11/30/2023]
Abstract
The cyclopropyl group is of great importance in medicinal chemistry, as it can be leveraged to influence a range of pharmaceutical properties in drug molecules. This report describes a Vitamin B12 -photocatalyzed approach for the cyclopropanation of electron-deficient alkenes using dichloromethane (CH2 Cl2 ) as the methylene source. The reaction proceeds in good to excellent yields under mild conditions, has excellent functional group compatibility, and is highly chemoselective. The scope could also be extended to the preparation of D2 -cyclopropyl and methyl-substituted cyclopropyl adducts starting from CD2 Cl2 and 1,1-dichloroethane, respectively.
Collapse
Affiliation(s)
- John Hayford G Teye-Kau
- Department of Chemistry, Oklahoma State University, 107 Physical Sciences, Stillwater, OK 74078, USA
| | - Mayokun J Ayodele
- Weaver Labs LLC, 1110 S. Innovation Way Dr., #130, Stillwater, OK 74074, USA
| | - Spencer P Pitre
- Department of Chemistry, Oklahoma State University, 107 Physical Sciences, Stillwater, OK 74078, USA
| |
Collapse
|
15
|
Suthar S, Mondal KC. Open shell versus closed shell bonding interaction in cyclopropane derivatives: EDA-NOCV analyses. J Comput Chem 2023; 44:2184-2211. [PMID: 37530758 DOI: 10.1002/jcc.27190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 08/03/2023]
Abstract
Cyclopropane ring is a very common motif in organic/bio-organic compounds. The chemical bonding of this strained ring is taught to all chemistry students. This three-membered cyclic, C3 ring is quite reactive which has attracted both, synthetic and theoretical chemists to rationalize/correlate its stability and bonding with its reactivity and physical properties over a century. There are a few bonding models (mainly the Bent-Bond model and Walsh model) of this C3 ring that are debated to date. Herein, we have carried out energy decomposition analysis coupled with natural orbital for chemical valence (EDA-NOCV) to study the two most reactive bonds of cyclopropane rings of 49 different organic compounds containing different functional groups to obtain a much deeper bonding insight toward a more general bonding model of this class of compounds. The EDA-NOCV analyses of fragment orbitals and susequent bond formation revealed that the nature of the CC bond of the cyclopropane (splitting two bonds at a time out of three CC bonds) ring is preferred to form two dative covalent CC bonds (between a singlet olefin-fragment and an excited singlet carbene-fragment with a vacant sp2 orbital and a filled p-orbital) for the majority (37/49) of compounds over two covalent electron sharing bonds in some (7/49) compounds (between an excited triplet olefin and triplet carbene), while a few (5/49) compounds show flexibility to adopt either the electron sharing or dative covalent bond as both are equally possible. The effects of functional groups on the nature of chemical bond in cyclopropane rings have been studied in detail. Our bonding analyses are in line with the QTAIM analyses which produce small negative values of the Laplacian, significantly positive values of bond ellipticity, and accumulation of electron densities around the ring critical point of C3 -rings. These corresponding QTAIM parameters of C3 -rings are quite different for CC single bonds of normal hydrocarbons as expected. The chemical bonding in the majority of cyclopropane rings can be very similar to those of metal-olefin systems.
Collapse
Affiliation(s)
- Sonam Suthar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, India
| | | |
Collapse
|
16
|
Tan L, Wu K, Li G. Rapid Olefin Cyclopropanation Catalyzed by a Bioinspired Cobalt Complex. Chem Asian J 2023:e202300873. [PMID: 37871137 DOI: 10.1002/asia.202300873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 10/25/2023]
Abstract
Cyclopropanes are important structural motifs found in many natural products and are essential to the pharmaceutical and agrochemical industries. Here, we report a bioinspired cobalt catalyst that catalyzes the intermolecular cyclopropanation of various terminal olefins using ethyl diazoacetate (EDA) in high efficiency. This cobalt catalytic system is operationally simple under very mild conditions, enabling the synthesis of cyclopropane products with remarkable yields in short reaction time. Preliminary mechanistic studies suggest the presence of cobalt carbene radical species during the reaction.
Collapse
Affiliation(s)
- Liming Tan
- Department Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, 84322, Logan, Utah, USA
| | - Keyang Wu
- Department Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, 84322, Logan, Utah, USA
| | - Gang Li
- Department Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, 84322, Logan, Utah, USA
| |
Collapse
|
17
|
Bosveli A, Griboura N, Kampouropoulos I, Kalaitzakis D, Montagnon T, Vassilikogiannakis G. The Rapid Synthesis of Colibactin Warhead Model Compounds Using New Metal-Free Photocatalytic Cyclopropanation Reactions Facilitates the Investigation of Biological Mechanisms. Chemistry 2023; 29:e202301713. [PMID: 37452669 DOI: 10.1002/chem.202301713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Herein, we report the synthesis of a series of colibactin warhead model compounds using two newly developed metal-free photocatalytic cyclopropanation reactions. These mild cyclopropanations expand the known applications of eosin within synthesis. A halogen atom transfer reaction mode has been harnessed so that dihalides can be used as the cyclopropanating agents. The colibactin warhead models were then used to provide new insight into two key mechanisms in colibactin chemistry. An explanation is provided for why the colibactin warhead sometimes undergoes a ring expansion-addition reaction to give fused cyclobutyl products while at other times nucleophiles add directly to the cyclopropyl unit (as when DNA adds to colibactin). Finally, we provide some evidence that Cu(II) chelated to colibactin may catalyze an important oxidation of the colibactin-DNA adduct. The Cu(I) generated as a result could then also play a role in inducing double strand breaks in DNA.
Collapse
Affiliation(s)
- Artemis Bosveli
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003, Iraklion, Crete
| | - Nefeli Griboura
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003, Iraklion, Crete
| | | | - Dimitris Kalaitzakis
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003, Iraklion, Crete
| | - Tamsyn Montagnon
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003, Iraklion, Crete
| | | |
Collapse
|
18
|
Smyrnov V, Waser J. Semipinacol Rearrangement of Cyclopropenylcarbinols for the Synthesis of Highly Substituted Cyclopropanes. Org Lett 2023; 25:6999-7003. [PMID: 37707959 DOI: 10.1021/acs.orglett.3c02543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
An electrophile-induced semipinacol rearrangement of cyclopropenylcarbinols is reported. This transformation gives access to various polyfunctionalized cyclopropanes under mild metal-free conditions. The scope of the reaction includes iodine, sulfur and selenium electrophiles, aryl and strained ring migrating groups, and diverse substitution patterns on the cyclopropene. The reaction is particularly efficient for the synthesis of small ring-containing spirocycles, which are important rigid three-dimensional building blocks for medicinal chemistry.
Collapse
Affiliation(s)
- Vladyslav Smyrnov
- Laboratory of Catalysis and Organic Synthesis, Institut des Sciences et Ingénierie Chimique, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Institut des Sciences et Ingénierie Chimique, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
19
|
Feng Z, Riemann L, Guo Z, Herrero D, Simon M, Golz C, Mata RA, Alcarazo M. Pentafluorocyclopropanation of (Hetero)arenes Using Sulfonium Salts: Applications in Late-Stage Functionalization. Angew Chem Int Ed Engl 2023; 62:e202306764. [PMID: 37402213 DOI: 10.1002/anie.202306764] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/06/2023]
Abstract
The evaluation of the pentafluorocyclopropyl group as a chemotype in crop protection and medicinal chemistry has been hampered in the past by the lack of suitable methodologies that enable the practical incorporation of this moiety into advanced synthetic intermediates. Herein, we report the gram-scale synthesis of an unprecedented sulfonium salt, 5-(pentafluorocyclopropyl)dibenzothiophenium triflate, and its use as a versatile reagent for the photoinduced C-H pentafluorocyclopropylation of a broad series of non-previously functionalized (hetero)arenes through a radical mediated mechanism. The scope and potential benefits of the protocol developed are further demonstrated by the late-stage introduction of the pentafluorocyclopropyl unit into biologically relevant molecules and widely used pharmaceuticals.
Collapse
Affiliation(s)
- Zeyu Feng
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| | - Lucas Riemann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| | - Zichen Guo
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| | - David Herrero
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| | - Martin Simon
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| | - Christopher Golz
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| | - Ricardo A Mata
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstr 6, 37077, Göttingen, Germany
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| |
Collapse
|
20
|
He Z, Wang Z, Gao Z, Qian H, Ding W, Jin H, Liu Y, Zhou B. Aryl boronic acid-controlled divergent ring-contraction and ring-opening/isomerization reaction of tert-cyclobutanols enabled by nickel catalysis. Org Biomol Chem 2023; 21:6493-6497. [PMID: 37529886 DOI: 10.1039/d3ob00894k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
In this work, we wish to present a nickel-catalyzed divergent ring-contraction and ring-opening/isomerization reaction of tert-cyclobutanols. The key to control these two different reaction pathways is to choose appropriate boronic acid, where the use of phenylboronic acid and pyrimidin-5-ylboronic acid enables a ring-contraction and ring-opening reaction/isomerization, respectively. Both cyclopropyl aryl methanones and 1-aryl butan-1-ones could be selectively obtained.
Collapse
Affiliation(s)
- Zhichang He
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Zhengwen Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Zhao Gao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Hongwei Qian
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Wangqiannan Ding
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Hongwei Jin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Yunkui Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Bingwei Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
21
|
Mancinelli JP, Kong WY, Guo W, Tantillo DJ, Wilkerson-Hill SM. Borane-Catalyzed C-F Bond Functionalization of gem-Difluorocyclopropenes Enables the Synthesis of Orphaned Cyclopropanes. J Am Chem Soc 2023; 145:17389-17397. [PMID: 37494703 DOI: 10.1021/jacs.3c05278] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Herein, we disclose an approach to synthesize tert-alkyl cyclopropanes by leveraging C-F bond functionalization of gem-difluorocyclopropenes using tris(pentafluorophenyl)borane catalysis. The reaction proceeds through the intermediacy of a fluorocyclopropenium ion, which was confirmed by the isolation of [Ph2(C6D5)C3]+[(C6F5)3BF]-. We found that silylketene acetal nucleophiles were optimal reaction partners with fluorocyclopropenium ion intermediates yielding fully substituted cyclopropenes functionalized with two α-tert-alkyl centers (63-93% yield). The regioselectivity of the addition to cyclopropenium ions is controlled by their steric and electronic properties and enables access to 3,3-bis(difluoromethyl)cyclopropenes in short order. The resulting cyclopropene products are readily reduced to the corresponding orphaned cyclopropanes under hydrogenation conditions. Quantum chemical calculations reveal the nature of the C-F bond cleavage steps and provide evidence for catalysis by boron and not silylated oxonium ions, though Si-F bond formation is the enthalpic driving force for the reaction.
Collapse
Affiliation(s)
- Joseph P Mancinelli
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Wang-Yeuk Kong
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Wentao Guo
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Sidney M Wilkerson-Hill
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
22
|
Abstract
Three-membered-ring scaffolds of carbocycles, namely, cyclopropanes and cyclopropenes, are ubiquitous in natural products and pharmaceutical molecules. These molecules exhibit a peculiar reactivity, and their applications as synthetic intermediates and versatile building blocks in organic synthesis have been extensively studied over the past century. The incorporation of heteroatoms into three-membered cyclic structures has attracted significant attention, reflecting fundamental differences in their electronic/geometric structures and reactivities compared to their carbon congeners and their associated potential for exploitation in applications. Recently, the chemistry of low-valent aluminum species, alumylenes, dialumenes, and aluminyl anions, has dramatically developed, which has allowed access to hitherto unprecedented aluminacycles. This Perspective focuses upon advances in the chemistry of three-membered aluminacycles, including their synthetic protocols, spectroscopic and structural properties, and reactivity toward various substrates and small molecules.
Collapse
Affiliation(s)
- Chenting Yan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637371 Singapore, Singapore
| | - Rei Kinjo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637371 Singapore, Singapore
| |
Collapse
|
23
|
Gabbey AL, Scotchburn K, Rousseaux SAL. Metal-catalysed C-C bond formation at cyclopropanes. Nat Rev Chem 2023:10.1038/s41570-023-00499-6. [PMID: 37217564 DOI: 10.1038/s41570-023-00499-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 05/24/2023]
Abstract
Cyclopropanes are important substructures in natural products and pharmaceuticals. Although traditional methods for their incorporation rely on cyclopropanation of an existing scaffold, the advent of transition-metal catalysis has enabled installation of functionalized cyclopropanes using cross-coupling reactions. The unique bonding and structural properties of cyclopropane render it more easily functionalized in transition-metal-catalysed cross-couplings than other C(sp3) substrates. The cyclopropane coupling partner can participate in polar cross-coupling reactions either as a nucleophile (organometallic reagents) or as an electrophile (cyclopropyl halides). More recently, single-electron transformations featuring cyclopropyl radicals have emerged. This Review will provide an overview of transition-metal-catalysed C-C bond formation reactions at cyclopropane, covering both traditional and current strategies, and the benefits and limitations of each.
Collapse
Affiliation(s)
- Alexis L Gabbey
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Katerina Scotchburn
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Sophie A L Rousseaux
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
24
|
Kim MJ, Wang DJ, Targos K, Garcia UA, Harris AF, Guzei IA, Wickens ZK. Diastereoselective Synthesis of Cyclopropanes from Carbon Pronucleophiles and Alkenes. Angew Chem Int Ed Engl 2023; 62:e202303032. [PMID: 36929023 PMCID: PMC10189787 DOI: 10.1002/anie.202303032] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/18/2023]
Abstract
Cyclopropanes are desirable structural motifs with valuable applications in drug discovery and beyond. Established alkene cyclopropanation methods give rise to cyclopropanes with a limited array of substituents, are difficult to scale, or both. Herein, we disclose a new cyclopropane synthesis through the formal coupling of abundant carbon pronucleophiles and unactivated alkenes. This strategy exploits dicationic adducts derived from electrolysis of thianthrene in the presence of alkene substrates. We find that these dielectrophiles undergo cyclopropanation with methylene pronucleophiles via alkenyl thianthrenium intermediates. This protocol is scalable, proceeds with high diastereoselectivity, and tolerates diverse functional groups on both the alkene and pronucleophile coupling partners. To validate the utility of this new procedure, we prepared an array of substituted analogs of an established cyclopropane that is en route to multiple pharmaceuticals.
Collapse
Affiliation(s)
- Min Ji Kim
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, 53706, United States
| | - Diana J. Wang
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, 53706, United States
| | - Karina Targos
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, 53706, United States
| | - Uriel A. Garcia
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, 53706, United States
| | - Alison F. Harris
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, 53706, United States
| | - Ilia A. Guzei
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, 53706, United States
| | - Zachary K. Wickens
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, 53706, United States
| |
Collapse
|
25
|
Gore BS, Wang JJ. Visible-light-induced oxidant/additive-free atom-economic synthesis of multifunctionalized cyclopropanes via energy transfer. Chem Commun (Camb) 2023; 59:5878-5881. [PMID: 37096547 DOI: 10.1039/d3cc01021j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Herein we describe intramolecular cascade reactions enabling the synthesis of bridged cyclopropanes, via the photoinduced energy-transfer catalysis of tethered conjugated dienes. Photocatalysis affords the efficient synthesis of complex tricyclic compounds that exhibit multiple stereocenters from readily accessible starting materials that would otherwise be difficult to obtain. This single-step reaction is characterized by its broad substrate scope, atom-economy, excellent selectivity, and satisfactory yield, which includes a facile scale-up synthesis and synthetic transformation. An in-depth mechanistic study reveals that the reaction proceeds via an energy-transfer pathway.
Collapse
Affiliation(s)
- Babasaheb Sopan Gore
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Sanmin District, Kaohsiung City, 807, Taiwan.
| | - Jeh-Jeng Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Sanmin District, Kaohsiung City, 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, No. 100, Tzyou 1st Road, Sanmin District, Kaohsiung City, 807, Taiwan
| |
Collapse
|
26
|
Hayashi M, Burtoloso ACB. Organocatalytic Transformations from Sulfur Ylides. Catalysts 2023. [DOI: 10.3390/catal13040689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Sulfur ylides are an important class of organic compounds due to their ability to perform many different transformations that can give diverse and interesting products with a high degree of complexity. Although metal-catalyzed transformations are frequent in this class of compounds, organocatalyzed transformations remain scarce. From initial works, this review aims to show organocatalyzed transformations from sulfur ylides, involving cyclopropanation and formal N–H, S–H, and C–H insertion reactions, including enantioselective versions. The proposed mechanisms and the modes of activation of these organocatalysts will be covered. Furthermore, advances in this area and potential challenges to be circumvented in the near future will also be discussed.
Collapse
Affiliation(s)
- Marcio Hayashi
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos 13563-120, Brazil
| | | |
Collapse
|
27
|
Pang Q, Zuo WF, Zhang Y, Li X, Han B. Recent Advances on Direct Functionalization of Indoles in Aqueous Media. CHEM REC 2023; 23:e202200289. [PMID: 36722727 DOI: 10.1002/tcr.202200289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/15/2023] [Indexed: 02/02/2023]
Abstract
Indoles and their derivatives have dominated a significant proportion of nitrogen-containing heterocyclic compounds and play an essential role in synthetic and medicinal chemistry, pesticides, and advanced materials. Compared with conventional synthetic strategies, direct functionalization of indoles provides straightforward access to construct diverse indole scaffolds. As we enter an era emphasizing green and sustainable chemistry, utilizing environment-friendly solvents represented by water demonstrates great potential in synthesizing valuable indole derivatives. This review aims to depict the critical aspects of aqueous-mediated indoles functionalization over the past decade and discusses the future challenges and prospects in this fast-growing field. For the convenience of readers, this review is classified into three parts according to the bonding modes (C-C, C-N, and C-S bonds), which focus on the diversity of indole derivatives, the prominent role of water in the chemical process, and the types of catalyst systems and mechanisms. We hope this review can promote the sustainable development of the direct functionalization of indoles and their derivatives and the discovery of novel and practical organic methods in aqueous phase.
Collapse
Affiliation(s)
- Qiwen Pang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei-Fang Zuo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
28
|
Ghosh A, Lipisa YB, Fridman N, Szpilman AM. 2-Nitro-cyclopropyl-1-carbonyl Compounds from Unsaturated Carbonyl Compounds and Nitromethane via Enolonium Species. J Org Chem 2023; 88:1977-1987. [PMID: 36749318 DOI: 10.1021/acs.joc.2c02125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
2-Nitrocyclopropanes bearing ketones, amides, esters, and carboxylic acids in the 1 position may be accessed as single diastereoisomers in one operation from the corresponding unsaturated carbonyl compounds. The source of the nitro-methylene component is nitromethane. The reaction proceeds at room temperature under mild conditions. The products may be converted into, e.g., cyclopropyl-amino acids in a single step. Both nitrocyclopropanes and amino-cyclopropanes are unique moieties found in biologically active compounds and natural products.
Collapse
Affiliation(s)
- Asit Ghosh
- Department of Chemical Sciences, Ariel University, Ariel 4070000, Israel
| | - Yuriy B Lipisa
- Department of Chemical Sciences, Ariel University, Ariel 4070000, Israel
| | - Natalia Fridman
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200009, Israel
| | - Alex M Szpilman
- Department of Chemical Sciences, Ariel University, Ariel 4070000, Israel
| |
Collapse
|
29
|
Rybicka-Jasińska K, Szeptuch Z, Kubiszewski H, Kowaluk A. Electrochemical Cycloaddition Reactions of Alkene Radical Cations: A Route toward Cyclopropanes and Cyclobutanes. Org Lett 2023; 25:1142-1146. [PMID: 36786497 PMCID: PMC9972478 DOI: 10.1021/acs.orglett.3c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Herein, we describe a mild and efficient electrochemical method for cycloaddition reactions of alkene radical cations. Anodic oxidation of olefins produces electrophilic alkene radical cations, which further react with either diazo compounds in a [2 + 1] cycloaddition toward cyclopropane synthesis, or styrene derivatives in a [2 + 2] cycloaddition producing cyclobutanes. Both processes are green, metal- and catalyst-free, and scalable and tolerate a broad range of electron-rich olefins.
Collapse
Affiliation(s)
| | - Zuzanna Szeptuch
- Institute
of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland,Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Hubert Kubiszewski
- Institute
of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Agnieszka Kowaluk
- Institute
of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
30
|
Hsueh NC, Wang YH, Chang MY. Sequential condensation and double desulfonylative cyclopropanation of 1,2-bis(sulfonylmethyl)arenes with 3-arylacroleins: access to biscyclopropane-fused tetralins. Org Biomol Chem 2023; 21:1206-1221. [PMID: 36632710 DOI: 10.1039/d2ob02188a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Efficient tBuOK-mediated sequential condensation and double desulfonylative cyclopropanation of readily accessible 1,2-bis(sulfonylmethyl)arenes with 3-arylacroleins is described. This high-yielding, single-step strategy provides a variety of polysubstituted biscyclopropane-fused tetralins with six contiguous stereogenic centers via the construction of five carbon-carbon single bonds. A plausible mechanism is proposed and discussed. In the overall reaction process, water and sulfinic acid salts were generated as the byproducts.
Collapse
Affiliation(s)
- Nai-Chen Hsueh
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Yu-Han Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Meng-Yang Chang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.,NPUST College of Professional Studies, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| |
Collapse
|
31
|
Thai-Savard L, Sayes M, Perreault-Dufour J, Hong G, Wells LA, Kozlowski MC, Charette AB. Organocatalyzed Visible Light-Mediated gem-Borosilylcyclopropanation. J Org Chem 2023; 88:1515-1521. [PMID: 36655845 PMCID: PMC10106276 DOI: 10.1021/acs.joc.2c02535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The borosilylcyclopropanation of styrene derivatives using a (diiodo(trimethylsilyl)methyl)boronic ester carbene precursor is reported herein. The key reagent was synthesized in a 4-step sequence using inexpensive and commercially available starting materials. This method enabled the preparation of novel 1,1,2-tri- and 1,1,2,2-tetrasubstituted borosilylcyclopropanes up to excellent yields and diastereoselectivity. The reaction is organocatalyzed by eosin Y in the presence of visible light. A mechanism consistent with the experimental observations was postulated based on density functional theory calculations. The versatility of these entities was highlighted through post-functionalization reactions.
Collapse
Affiliation(s)
- Léa Thai-Savard
- Centre in Green Chemistry and Catalysis, Centre for Continuous Flow Synthesis, Department of Chemistry, Université de Montréal, 1375, av. Thérèse Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| | - Morgane Sayes
- Centre in Green Chemistry and Catalysis, Centre for Continuous Flow Synthesis, Department of Chemistry, Université de Montréal, 1375, av. Thérèse Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| | - Josiane Perreault-Dufour
- Centre in Green Chemistry and Catalysis, Centre for Continuous Flow Synthesis, Department of Chemistry, Université de Montréal, 1375, av. Thérèse Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| | - Gang Hong
- Centre in Green Chemistry and Catalysis, Centre for Continuous Flow Synthesis, Department of Chemistry, Université de Montréal, 1375, av. Thérèse Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| | - Lucille A. Wells
- Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Marisa C. Kozlowski
- Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - André B. Charette
- Centre in Green Chemistry and Catalysis, Centre for Continuous Flow Synthesis, Department of Chemistry, Université de Montréal, 1375, av. Thérèse Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| |
Collapse
|
32
|
Han D, Sun J, Jin J. Picolinamide Ligands: Nickel-Catalyzed Reductive Cross-Coupling of Aryl Bromides with Bromocyclopropane and Beyond. Chem Asian J 2023; 18:e202201132. [PMID: 36479828 DOI: 10.1002/asia.202201132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
The arylcyclopropane motif as the combination of aryl and cyclopropyl ring systems can be found in an increasing amount of approved and investigational drugs. Herein, we have developed a mild, efficient nickel-catalyzed reductive cross-coupling protocol, featuring a simple Ni(II) precatalyst and a novel picolinamide NN2 pincer ligand. A variety of (hetero)aryl bromides could successfully couple with cyclopropyl bromide to furnish the valued arylcyclopropanes in good to excellent yields. This method is applicable to other alkyl bromides as well. Notably, the reaction is tolerant of a broad range of functionalities including free amines. Furthermore, the synthesis of several significant intermediates of bioactive molecules was achieved in grams, proving the practicability of this method.
Collapse
Affiliation(s)
- Dongyang Han
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jie Sun
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jian Jin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
33
|
Ratnani S, Mahilkar Sonkar S, Kumari R. Strategies for sustainable organic synthesis. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02687-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
34
|
Straub H, Ryabchuk P, Rubina M, Rubin M. Preparation of Chiral Enantioenriched Densely Substituted Cyclopropyl Azoles, Amines, and Ethers via Formal SN2′ Substitution of Bromocylopropanes. Molecules 2022; 27:molecules27207069. [PMID: 36296663 PMCID: PMC9609026 DOI: 10.3390/molecules27207069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Enantiomerically enriched cyclopropyl ethers, amines, and cyclopropylazole derivatives possessing three stereogenic carbon atoms in a small cycle are obtained via the diastereoselective, formal nucleophilic substitution of chiral, non-racemic bromocyclopropanes. The key feature of this methodology is the utilization of the chiral center of the cyclopropene intermediate, which governs the configuration of the two adjacent stereocenters that are successively installed via 1,4-addition/epimerization sequence.
Collapse
Affiliation(s)
- Hillary Straub
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Pavel Ryabchuk
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Marina Rubina
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
- Department of Chemistry, North Caucasus Federal University, 355009 Stavropol, Russia
| | - Michael Rubin
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
- Department of Chemistry, North Caucasus Federal University, 355009 Stavropol, Russia
- Correspondence:
| |
Collapse
|
35
|
Abstract
The various facets of the chemistry of cyclopropane derivatives, the smallest carbocycle, are amazingly diverse and continue to fascinate theoreticians, synthetic or structural chemists having interest in fundamental physical, medicinal chemistry, and natural product synthesis. The challenges generated by this intriguing cyclic arrangement of only three tetravalent carbons represent a wide area of the chemical spectrum. From fundamental aspects of bonding through the synthesis of highly strained molecules, the understanding of the mode of action in biological systems to the selective cleavage into acyclic substrates makes the chemistry of these small rings fascinating. Therefore, efficient routes to prepare differently polysubstituted cyclopropanes have always been of a primordial importance. In the past decade, we and others have expanded the scope of the carbometalation reaction of cyclopropenes as a broad and general method to the formation of stereodefined cyclopropane derivatives. Although cyclopropenes, with their even higher strain energy, easily undergo addition reactions of organometallic reagents, their carbometalation reactions generate new regio-, diastereo-, and enantioselectivity issues that needed to be addressed. These various stereochemical aspects accompanied our research from its origins to today, and we are proposing in this Account, a didactic overview of the different ways by which cyclopropenes can lead to the formation of polysubstituted cyclopropanes or open-products possessing several stereogenic centers as a single regio- and diastereomer.We initially launched our research campaign on the chemistry of these strained three-membered rings by the regio- and diastereoselective copper-catalyzed carbomagnesiation of enantiomerically enriched cyclopropenyl carbinols. The directing alcohol governed both the regio- and diastereoselectivity of the addition and also served as a good leaving group as it undergoes a selective 1,2-elimination reaction to provide enantioenriched alkylidenecyclopropanes in excellent yields and enantiomeric excesses. Then, we turned our attention to the regio- and stereoselective synthesis of stereodefined tri- and tetrasubstituted cyclopropanes through the diastereoselective addition to sp2- monosubstituted cyclopropenyl ester derivatives. With the aim to further expand this concept to the formation of penta- and hexa-substituted cyclopropanes as single isomer, we had first to design the preparation of the required 1,2-disubstituted cyclopropenes that would control the regioselective addition of the organometallic derivatives. The synthesis of penta- and hexa-substituted cyclopropanes was then reported for the first time as a single regio- and diastereomer. It should be noted that the in situ formed cyclopropyl-metal intermediate is configurationally stable and can be subsequently functionalized with pure retention of the configuration by addition of electrophiles. Then, the enantioselective-catalyzed carbometalation reaction of achiral cyclopropenes allowed the synthesis of several new classes of cyclopropane derivatives in high enantiomeric ratios. Finally, by combining the regio- and diastereoselective carbometalation reaction of a cyclopropene with a subsequent reaction of the resulting cyclopropylmetal species, a selective carbon-carbon bond cleavage was observed to lead to the preparation of acyclic substrates possessing several stereocenters including a quaternary carbon stereogenic center. Our original vision of using strain within an embedded double bond in a three-membered ring has provided new routes to the stereoselective synthesis of polysubstituted cyclopropanes and has been extremely successful, as it represents a current new tool for the synthesis of persubstituted cyclopropanes as a single diastereomer.
Collapse
Affiliation(s)
- Yair Cohen
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 32000 Israel
| | - Ilan Marek
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 32000 Israel
| |
Collapse
|
36
|
Salgueiro DC, Chi BK, Guzei IA, García‐Reynaga P, Weix DJ. Control of Redox-Active Ester Reactivity Enables a General Cross-Electrophile Approach to Access Arylated Strained Rings. Angew Chem Int Ed Engl 2022; 61:e202205673. [PMID: 35688769 PMCID: PMC9378488 DOI: 10.1002/anie.202205673] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Indexed: 11/20/2022]
Abstract
Strained rings are increasingly important for the design of pharmaceutical candidates, but cross-coupling of strained rings remains challenging. An attractive, but underdeveloped, approach to diverse functionalized carbocyclic and heterocyclic frameworks containing all-carbon quaternary centers is the coupling of abundant strained-ring carboxylic acids with abundant aryl halides. Herein we disclose the development of a nickel-catalyzed cross-electrophile approach that couples a variety of strained ring N-hydroxyphthalimide (NHP) esters, derived from the carboxylic acid in one step, with various aryl and heteroaryl halides under reductive conditions. The chemistry is enabled by the discovery of methods to control NHP ester reactivity, by tuning the solvent or using modified NHP esters, and the discovery that t-Bu BpyCamCN , an L2X ligand, avoids problematic side reactions. This method can be run in flow and in 96-well plates.
Collapse
Affiliation(s)
| | - Benjamin K. Chi
- Department of ChemistryUniversity of Wisconsin-MadisonMadisonWI 53706USA
| | - Ilia A. Guzei
- Department of ChemistryUniversity of Wisconsin-MadisonMadisonWI 53706USA
| | | | - Daniel J. Weix
- Department of ChemistryUniversity of Wisconsin-MadisonMadisonWI 53706USA
| |
Collapse
|
37
|
Pian J, Chen Q, Luo Y, Zhao Z, Liu J, He L, Li SW. Asymmetric Synthesis of Chiral Cyclopropanes from Sulfoxonium Ylides Catalyzed by a Chiral-at-Metal Rh(III) Complex. Org Lett 2022; 24:5641-5645. [PMID: 35901168 DOI: 10.1021/acs.orglett.2c01724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
An enantioselective cyclopropanation reaction of sulfoxonium ylides with β,γ-unsaturated ketoesters catalyzed by a chiral rhodium catalyst has been realized. A variety of optically pure 1,2,3-trisubstituted cyclopropanes was synthesized in 48-89% yields, with up to 99% ee, and with dr >20:1. Furthermore, research shows that a weak coordination between the chiral rhodium catalyst and β,γ-unsaturated ketoesters was responsible for the high diastereoselectivity and enantioselectivity of the corresponding products.
Collapse
Affiliation(s)
- Jixin Pian
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemitry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, People's Republic of China
| | - Qingqing Chen
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemitry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, People's Republic of China
| | - Yujiao Luo
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemitry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, People's Republic of China
| | - Zhifei Zhao
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemitry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, People's Republic of China
| | - Jichang Liu
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemitry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, People's Republic of China
| | - Lin He
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemitry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, People's Republic of China
| | - Shi-Wu Li
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemitry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, People's Republic of China
| |
Collapse
|
38
|
Prakash M, Rani P, Samanta S. A substrate-dependent reaction of 1-aryl-2-alkyl-1,2-diketones with 2-aroyl-1-chlorocyclopropanecarboxylates: selective access to 2',5'-dicyclopropoxy-1,1':4',1''-teraryls and pentafulvenes. Org Biomol Chem 2022; 20:6445-6458. [PMID: 35894220 DOI: 10.1039/d2ob00971d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An interesting substrate-controlled one-pot approach to highly substituted 2',5'-dicyclopropoxy-1,1':4',1''-teraryls and 6-hydroxypentafulvenes involving various 1,2-diketones and 2-aroyl-1-chlorocyclopropanecarboxylates as 3C Michael acceptors triggered by Cs2CO3 has been developed. We noticed that 1,2-diketones play a decisive role in this reaction to determine the product's selectivity. For example, aryl rings having electron-poor functionalities at the para and meta-positions of 1,2-diketones led to 2,5-diarylhydroquinones selectively via a cyclodimerization/double oxa-Michael process with highly strained cyclopropenes. However, when 1-naphthyl/electron-donating aryl/ortho-aryl-substituted 1,2-diketones were chosen, the Michael-initiated ring expansion reaction (C-C and CC bonds) took place under the same conditions that gave the corresponding pentafulvenes predominately. Moreover, this reaction has several imperative features such as good to high diastereoselectivities, wide substrate scope, good functional group tolerance, transition metal-free process, etc.
Collapse
Affiliation(s)
- Meher Prakash
- Indian Institute of Technology Indore, Discipline of Chemistry, 453552, Indore, India.
| | - Poonam Rani
- Indian Institute of Technology Indore, Discipline of Chemistry, 453552, Indore, India.
| | - Sampak Samanta
- Indian Institute of Technology Indore, Discipline of Chemistry, 453552, Indore, India.
| |
Collapse
|
39
|
Sasane AV, Kuo TC, Cheng MJ, Liu RS. Gold-Catalyzed Rearrangement of α-Carbonyl Cyclopropanes to Form 3-(Cyclopenta-1,3-dien-1-ylmethyl)oxindoles via a Postulated 1,5-Enolate Shift. Org Lett 2022; 24:5220-5225. [PMID: 35816021 DOI: 10.1021/acs.orglett.2c02117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gold-catalyzed stereoselective synthesis of spirocyclopropyl oxindoles from diazooxindoles and 1,2,4-substituted dienes is described. The aim of this work is to report a novel rearrangement of these spirocyclopropyl oxindoles with a gold catalyst to yield 3-(cyclopenta-1,3-dien-1-ylmethyl)oxindoles. Our experimental data exclude a reversible process in the gold-catalyzed cyclopropanation. With DFT calculations, we postulate a rearrangement mechanism involving the formation of complex pairs of gold enolates and 1-methylen-2,3,4-cyclopentadienyl cations, leading to a 1,5-enolate shift.
Collapse
Affiliation(s)
- Amit Vijay Sasane
- Frontier Center for Material Science and Technology and Department of Chemistry, National Tsing-Hua University, Hsinchu 30013, Taiwan, R.O.C
| | - Tung-Chun Kuo
- Department of Chemistry, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Mu-Jeng Cheng
- Department of Chemistry, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Rai-Shung Liu
- Frontier Center for Material Science and Technology and Department of Chemistry, National Tsing-Hua University, Hsinchu 30013, Taiwan, R.O.C
| |
Collapse
|
40
|
Parfenov MV, Ivanov DP, Kharitonov AS, Dubkov KA. Gas-Phase Selective Oxidation of Butenes in the C4 Fraction by Nitrous Oxide. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mikhail V. Parfenov
- Federal Research Center Boreskov Institute of Catalysis SB RAS, Prospect Lavrentieva 5, Novosibirsk 630090, Russia
| | - Dmitry P. Ivanov
- Federal Research Center Boreskov Institute of Catalysis SB RAS, Prospect Lavrentieva 5, Novosibirsk 630090, Russia
| | - Alexander S. Kharitonov
- Federal Research Center Boreskov Institute of Catalysis SB RAS, Prospect Lavrentieva 5, Novosibirsk 630090, Russia
| | - Konstantin A. Dubkov
- Federal Research Center Boreskov Institute of Catalysis SB RAS, Prospect Lavrentieva 5, Novosibirsk 630090, Russia
| |
Collapse
|
41
|
Samultceva SO, Dvorko MY, Shabalin DA, Ushakov IA, Vashchenko AV, Schmidt EY, Trofimov BA. Regio- and stereoselective base-catalyzed assembly of 6-methylene-5-oxaspiro[2.4]heptanones from alkynyl cyclopropyl ketones. Org Biomol Chem 2022; 20:5325-5333. [PMID: 35735091 DOI: 10.1039/d2ob00854h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
6-Methylene-5-oxaspiro[2.4]heptanones have been synthesized via base-catalyzed dimerization of available alkynyl cyclopropyl ketones. The reaction proceeds effectively in the presence of the t-BuOK/t-BuOH/THF catalytic system at room temperature to afford the desired spirocycles in a regio- and stereoselective manner. A wider synthetic utility of alkynyl cyclopropyl ketones as novel building blocks was demonstrated by the synthesis of diverse spirocyclopropanes.
Collapse
Affiliation(s)
- Sofia O Samultceva
- A.E. Favorsky Irkutsk Institute of Chemistry SB RAS, 1 Favorsky St, Irkutsk, 664033, Russian Federation.
| | - Marina Yu Dvorko
- A.E. Favorsky Irkutsk Institute of Chemistry SB RAS, 1 Favorsky St, Irkutsk, 664033, Russian Federation.
| | - Dmitrii A Shabalin
- A.E. Favorsky Irkutsk Institute of Chemistry SB RAS, 1 Favorsky St, Irkutsk, 664033, Russian Federation.
| | - Igor' A Ushakov
- A.E. Favorsky Irkutsk Institute of Chemistry SB RAS, 1 Favorsky St, Irkutsk, 664033, Russian Federation.
| | - Alexander V Vashchenko
- A.E. Favorsky Irkutsk Institute of Chemistry SB RAS, 1 Favorsky St, Irkutsk, 664033, Russian Federation.
| | - Elena Yu Schmidt
- A.E. Favorsky Irkutsk Institute of Chemistry SB RAS, 1 Favorsky St, Irkutsk, 664033, Russian Federation.
| | - Boris A Trofimov
- A.E. Favorsky Irkutsk Institute of Chemistry SB RAS, 1 Favorsky St, Irkutsk, 664033, Russian Federation.
| |
Collapse
|
42
|
Salgueiro DC, Chi BK, Guzei IA, García-Reynaga P, Weix DJ. Control of Redox‐Active Ester Reactivity Enables a General Cross‐Electrophile Approach to Access Arylated Strained Rings. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Benjamin K. Chi
- UW-Madison: University of Wisconsin Madison Chemistry UNITED STATES
| | - Ilia A. Guzei
- UW-Madison: University of Wisconsin Madison Chemistry UNITED STATES
| | | | - Daniel John Weix
- UW-Madison: University of Wisconsin Madison Chemistry 1101 University Avenue 53706 Madison UNITED STATES
| |
Collapse
|
43
|
Lahtigui O, Forster D, Duchemin C, Cramer N. Enantioselective Access to 3-Azabicyclo[3.1.0]hexanes by Cp xRh III Catalyzed C–H Activation and Cp*Ir III Transfer Hydrogenation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01827] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ouidad Lahtigui
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Dan Forster
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Coralie Duchemin
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
44
|
Sahu MK, Jaiswal S, Pattanaik S, Gunanathan C. Base-Catalyzed Traceless Silylation and Deoxygenative Cyclization of Chalcones to Cyclopropanes. J Org Chem 2022; 87:6695-6709. [PMID: 35522975 DOI: 10.1021/acs.joc.2c00374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Development of simple synthetic methods from readily available compounds to complex products is of utmost interest in modern synthesis. Catalytic synthesis of cyclopropanes is important for diverse chemical applications. We present a method for the transformation of readily accessible α,β-unsaturated ketones (chalcones) to cyclopropanes. A simple base, KOH, catalyzed the selective reduction of the enone carbonyl functionality, dehydrogenative silylation, and deoxygenative cyclization of chalcones to provide the cyclopropane products. Chalcones with extended conjugation and 4-chromanone-based substrates also provided the corresponding cyclopropanes. One-pot synthesis of cyclopropanes directly from industrial feedstock compounds such as ketones and aldehydes is also demonstrated using catalytic KOH for both intermolecular condensation and dehydrogenative silylation-deoxygenative intramolecular cyclization cascade.
Collapse
Affiliation(s)
- Manas Kumar Sahu
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar 752050, India
| | - Shubham Jaiswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar 752050, India
| | - Sandip Pattanaik
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar 752050, India
| | - Chidambaram Gunanathan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar 752050, India
| |
Collapse
|
45
|
Ni J, Xia X, Zheng WF, Wang Z. Ti-Catalyzed Diastereoselective Cyclopropanation of Carboxylic Derivatives with Terminal Olefins. J Am Chem Soc 2022; 144:7889-7900. [PMID: 35442655 DOI: 10.1021/jacs.2c02360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cyclopropanols and cyclopropylamines not only serve as important structural motifs in medicinal chemistry but also show diverse reactivities in organic synthesis. Owing to the high ring strain energy, the development of a general protocol from stable and readily available starting materials to afford these cyclopropyl derivatives remains a compelling challenge. Herein, we describe that a Ti-based catalyst can effectively promote the diastereoselective syntheses of cyclopropanols and cyclopropylamines from widely accessible carboxylic derivatives (acids, esters, amides) with terminal olefins. To the best of our knowledge, this method represents the first example of direct converting alkyl carboxylic acids into cyclopropanols. Distinct from conventional studies in Ti-mediated cyclopropanations with reactive alkyl Grignard reagents as nucleophiles or reductants, this protocol utilizes Mg and Me2SiCl2 to turn over the Ti catalyst. Our method exhibits broad substrate scope with good functional group compatibility and is amenable to late-stage synthetic manipulations of natural products and biologically active molecules.
Collapse
Affiliation(s)
- Jiabin Ni
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou 310024, Zhejiang, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Xiaowen Xia
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou 310024, Zhejiang, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Wei-Feng Zheng
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou 310024, Zhejiang, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Zhaobin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou 310024, Zhejiang, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| |
Collapse
|
46
|
Synthesis of Novel C/D Ring Modified Bile Acids. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072364. [PMID: 35408759 PMCID: PMC9000252 DOI: 10.3390/molecules27072364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 11/17/2022]
Abstract
Bile acid receptors have been identified as important targets for the development of new therapeutics to treat various metabolic and inflammatory diseases. The synthesis of new bile acid analogues can help elucidate structure–activity relationships and define compounds that activate these receptors selectively. Towards this, access to large quantities of a chenodeoxycholic acid derivative bearing a C-12 methyl and a C-13 to C-14 double bond provided an interesting scaffold to investigate the chemical manipulation of the C/D ring junction in bile acids. The reactivity of this alkene substrate with various zinc carbenoid species showed that those generated using the Furukawa methodology achieved selective α-cyclopropanation, whereas those generated using the Shi methodology reacted in an unexpected manner giving rise to a rearranged skeleton whereby the C ring has undergone contraction to form a novel spiro–furan ring system. Further derivatization of the cyclopropanated steroid included O-7 oxidation and epimerization to afford new bile acid derivatives for biological evaluation.
Collapse
|
47
|
Sansinenea E, Ortiz A. The Chemistry of Cyclopropanes and New Insight in Organocatalyzed Asymmetric Cyclopropanation. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Aurelio Ortiz
- Benemerita Universidad Autonoma de Puebla Facultad de Ciencias Quimicas 14 sur y av san claudio 72570 Puebla MEXICO
| |
Collapse
|
48
|
Rodrigalvarez J, Reeve LA, Miró J, Gaunt MJ. Pd(II)-Catalyzed Enantioselective C(sp 3)-H Arylation of Cyclopropanes and Cyclobutanes Guided by Tertiary Alkylamines. J Am Chem Soc 2022; 144:3939-3948. [PMID: 35212219 PMCID: PMC9097487 DOI: 10.1021/jacs.1c11921] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Strained aminomethyl-cycloalkanes are a recurrent scaffold in medicinal chemistry due to their unique structural features that give rise to a range of biological properties. Here, we report a palladium-catalyzed enantioselective C(sp3)-H arylation of aminomethyl-cyclopropanes and -cyclobutanes with aryl boronic acids. A range of native tertiary alkylamine groups are able to direct C-H cleavage and forge carbon-aryl bonds on the strained cycloalkanes framework as single diastereomers and with excellent enantiomeric ratios. Central to the success of this strategy is the use of a simple N-acetyl amino acid ligand, which not only controls the enantioselectivity but also promotes γ-C-H activation of over other pathways. Computational analysis of the cyclopalladation step provides an understanding of how enantioselective C-H cleavage occurs and revealed distinct transition structures to our previous work on enantioselective desymmetrization of N-isobutyl tertiary alkylamines. This straightforward and operationally simple method simplifies the construction of functionalized aminomethyl-strained cycloalkanes, which we believe will find widespread use in academic and industrial settings relating to the synthesis of biologically active small molecules.
Collapse
Affiliation(s)
- Jesus Rodrigalvarez
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Luke A Reeve
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Javier Miró
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Matthew J Gaunt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
49
|
Rico L, Li D, Hanessian S. Stereocontrolled Synthesis of 1,3‐Substituted 2‐Oxabicyclo[3.1.0]hexanes as Ring‐Constrained Tetrahydrofuranosyl C‐Glycosides. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lorena Rico
- Department of Chemistry Université de Montréal Station Centre-Ville, C.P. 6128 Montreal QC, H3 C 3 J7 Canada
| | - Da Li
- Department of Chemistry Université de Montréal Station Centre-Ville, C.P. 6128 Montreal QC, H3 C 3 J7 Canada
| | - Stephen Hanessian
- Department of Chemistry Université de Montréal Station Centre-Ville, C.P. 6128 Montreal QC, H3 C 3 J7 Canada
| |
Collapse
|
50
|
Lichtenstein YI, Golovanov IS, Ioffe SL, Tabolin AA. Tandem [3+2]-cycloaddition/homo-Baldwin rearrangement of silyl nitronates and donor-acceptor cyclopropenes. A novel approach to polysubstituted aziridines starting from nitro compounds. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|