1
|
Lin X, Peng Y, Guo Z, He W, Guo W, Feng J, Lu L, Liu Q, Xu P. Short-chain fatty acids suppresses astrocyte activation by amplifying Trp-AhR-AQP4 signaling in experimental autoimmune encephalomyelitis mice. Cell Mol Life Sci 2024; 81:293. [PMID: 38976012 PMCID: PMC11335219 DOI: 10.1007/s00018-024-05332-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 07/09/2024]
Abstract
The function of astrocytes in response to gut microbiota-derived signals has an important role in the pathophysiological processes of central nervous system (CNS) diseases. However, the specific effects of microbiota-derived metabolites on astrocyte activation have not been elucidated yet. Experimental autoimmune encephalomyelitis (EAE) was induced in female C57BL/6 mice as a classical MS model. The alterations of gut microbiota and the levels of short-chain fatty acids (SCFAs) were assessed after EAE induction. We observed that EAE mice exhibit low levels of Allobaculum, Clostridium_IV, Clostridium_XlVb, Lactobacillus genera, and microbial-derived SCFAs metabolites. SCFAs supplementation suppressed astrocyte activation by increasing the level of tryptophan (Trp)-derived AhR ligands that activating the AhR. The beneficial effects of SCFAs supplementation on the clinical scores, histopathological alterations, and the blood brain barrier (BBB)-glymphatic function were abolished by intracisterna magna injection of AAV-GFAP-shAhR. Moreover, SCFAs supplementation suppressed the loss of AQP4 polarity within astrocytes in an AhR-dependent manner. Together, SCFAs potentially suppresses astrocyte activation by amplifying Trp-AhR-AQP4 signaling in EAE mice. Our study demonstrates that SCFAs supplementation may serve as a viable therapy for inflammatory disorders of the CNS.
Collapse
MESH Headings
- Animals
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Astrocytes/metabolism
- Astrocytes/drug effects
- Fatty Acids, Volatile/pharmacology
- Fatty Acids, Volatile/metabolism
- Receptors, Aryl Hydrocarbon/metabolism
- Mice
- Mice, Inbred C57BL
- Tryptophan/metabolism
- Tryptophan/pharmacology
- Female
- Signal Transduction/drug effects
- Aquaporin 4/metabolism
- Aquaporin 4/genetics
- Gastrointestinal Microbiome/drug effects
- Blood-Brain Barrier/metabolism
- Blood-Brain Barrier/drug effects
Collapse
Affiliation(s)
- Xiuli Lin
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, Guangdong, China
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yufeng Peng
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, Guangdong, China
| | - Zhimei Guo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, Guangdong, China
| | - Wuhui He
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenyuan Guo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, Guangdong, China
| | - Junmin Feng
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, Guangdong, China
| | - Lin Lu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, Guangdong, China
| | - Qin Liu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, Guangdong, China.
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, Guangdong, China.
| |
Collapse
|
2
|
Zhuang J, Chen Q, Xu L, Qiao D, Chen X. Lycium barbarum polysaccharide mitigated methamphetamine addiction and altered methamphetamine-induced gut microbiota dysbiosis. Electrophoresis 2024; 45:958-969. [PMID: 38528319 DOI: 10.1002/elps.202300190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/23/2024] [Accepted: 02/21/2024] [Indexed: 03/27/2024]
Abstract
Methamphetamine (MA) is a highly addictive mental stimulant, and MA abuse remains a significant public health problem worldwide, while effective treatment options are limited. Lycium barbarum polysaccharide (LBP), a major effective component extracted from Lycium barbarum, has potential health-promoting effects on the nervous system; however, its role in MA dependence remains unclear. In this study, the conditioned place preference (CPP) of MA addiction in adult male mice was established to detect changes in gut microbiota profiles after LBP treatment through 16S rRNA gene sequencing. Our results found that LBP administration could alleviate MA-induced CPP and hyperactivity. Interestingly, LBP improved MA-induced gut microbiota dysbiosis by increasing some beneficial autochthonous genus abundances, such as Allobaculum, Gordonibacter, and Ileibacterium. MA exposure induced the co-occurrence network of intestinal microbiota to become weaker and more unstable when compared with the control group, while LBP changed the above effects when compared with the MA group. Bacterial gene function prediction showed that amphetamine addiction, cocaine addiction, and short-chain fatty acid metabolism were enriched. These findings reveal that LBP might regulate MA-induced gut microbiota and behavior changes, which showed potential therapeutic applicability in treating MA addiction by regulating the gut microbiota.
Collapse
Affiliation(s)
- Jingshen Zhuang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Qianling Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, P. R. China
| | - Luyao Xu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, P. R. China
| | - Dongfang Qiao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, P. R. China
| | - Xuebing Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, P. R. China
| |
Collapse
|
3
|
Liu J, Yuan S, Bremmer A, Hu Q. Convergence of Nanotechnology and Bacteriotherapy for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309295. [PMID: 38358998 PMCID: PMC11040386 DOI: 10.1002/advs.202309295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/01/2024] [Indexed: 02/17/2024]
Abstract
Bacteria have distinctive properties that make them ideal for biomedical applications. They can self-propel, sense their surroundings, and be externally detected. Using bacteria as medical therapeutic agents or delivery platforms opens new possibilities for advanced diagnosis and therapies. Nano-drug delivery platforms have numerous advantages over traditional ones, such as high loading capacity, controlled drug release, and adaptable functionalities. Combining bacteria and nanotechnologies to create therapeutic agents or delivery platforms has gained increasing attention in recent years and shows promise for improved diagnosis and treatment of diseases. In this review, design principles of integrating nanoparticles with bacteria, bacteria-derived nano-sized vesicles, and their applications and future in advanced diagnosis and therapeutics are summarized.
Collapse
Affiliation(s)
- Jun Liu
- Pharmaceutical Sciences Division, School of PharmacyUniversity of Wisconsin, Madison (UW‐Madison)MadisonWI53705USA
- Wisconsin Center for NanoBioSystemsUniversity of Wisconsin, Madison (UW‐Madison)MadisonWI53705USA
- Carbone Cancer Center, School of Medicine and Public HealthUniversity of Wisconsin, Madison (UW‐Madison)MadisonWI53705USA
| | - Sichen Yuan
- Pharmaceutical Sciences Division, School of PharmacyUniversity of Wisconsin, Madison (UW‐Madison)MadisonWI53705USA
- Wisconsin Center for NanoBioSystemsUniversity of Wisconsin, Madison (UW‐Madison)MadisonWI53705USA
- Carbone Cancer Center, School of Medicine and Public HealthUniversity of Wisconsin, Madison (UW‐Madison)MadisonWI53705USA
| | - Alexa Bremmer
- Pharmaceutical Sciences Division, School of PharmacyUniversity of Wisconsin, Madison (UW‐Madison)MadisonWI53705USA
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of PharmacyUniversity of Wisconsin, Madison (UW‐Madison)MadisonWI53705USA
- Wisconsin Center for NanoBioSystemsUniversity of Wisconsin, Madison (UW‐Madison)MadisonWI53705USA
- Carbone Cancer Center, School of Medicine and Public HealthUniversity of Wisconsin, Madison (UW‐Madison)MadisonWI53705USA
| |
Collapse
|
4
|
Gao X, Ren H, Huang Y, Li Y, Shen J. Influence of multi-walled carbon nanotubes on the toxicity of ZnO nanoparticles in the intestinal histopathology, apoptosis, and microbial community of common carp. Comp Biochem Physiol C Toxicol Pharmacol 2024; 276:109790. [PMID: 37951286 DOI: 10.1016/j.cbpc.2023.109790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/25/2023] [Accepted: 11/08/2023] [Indexed: 11/13/2023]
Abstract
In recent years, carbon nanotubes (CNTs) have gained tremendous attention due to their widespread application. Previous research indicated that carbon nanomaterials can affect the toxicity of some pollutants. In this study, we investigated the influence of multi-walled CNTs (MWCNTs) on the toxicity of ZnO nanoparticles (ZnONPs) in the intestine of common carp (Cyprinus carpio). After four-week exposure, histopathological observation and TUNEL assay showed concentration ratio-dependent intestinal lesions and apoptosis, with the most severe in the HSC-ZnONPs group (50 mg L-1 ZnONPs and 2.5 mg L-1 MWCNTs), less severe in the ZnONPs group (50 mg L-1 ZnONPs) and the least in the LSC-ZnONPs group (50 mg L-1 ZnONPs and 0.25 mg L-1 MWCNTs). Furthermore, ICP-OES indicated that intercellular zinc accumulation was significantly decreased by the presence of the MWCNTs, which suggested the varied contribution of ZnONPs to intestine injury in different groups. Moreover, 16 s rDNA sequencing revealed that ZnONPs alone and in combination with MWCNTs significantly altered the microbial community diversity and composition of the gut microbiota compared with controls. In addition, the predominant phylum, class, order, family, and genus were significantly different among these groups. In conclusion, the influence of MWCNTs on the toxicity of ZnONPs was related to the concentration and concentration ratio of the mixture.
Collapse
Affiliation(s)
- Xiaochan Gao
- School of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China.
| | - Hongtao Ren
- School of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Yong Huang
- School of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Yimin Li
- School of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Jiaqi Shen
- School of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| |
Collapse
|
5
|
Wojciechowska O, Costabile A, Kujawska M. The gut microbiome meets nanomaterials: exposure and interplay with graphene nanoparticles. NANOSCALE ADVANCES 2023; 5:6349-6364. [PMID: 38024319 PMCID: PMC10662184 DOI: 10.1039/d3na00696d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
Graphene-based nanoparticles are widely applied in many technology and science sectors, raising concerns about potential health risks. Emerging evidence suggests that graphene-based nanomaterials may interact with microorganisms, both pathogens and commensal bacteria, that dwell in the gut. This review aims to demonstrate the current state of knowledge on the interplay between graphene nanomaterials and the gut microbiome. In this study, we briefly overview nanomaterials, their usage and the characteristics of graphene-based nanoparticles. We present and discuss experimental data from in vitro studies, screening tests on small animals and rodent experiments related to exposure and the effects of graphene nanoparticles on gut microbiota. With this in mind, we highlight the reported crosstalk between graphene nanostructures, the gut microbial community and the host immune system in order to shed light on the perspective to bear on the biological interactions. The studies show that graphene-based material exposure is dosage and time-dependent, and different derivatives present various effects on host bacteria cells. Moreover, the route of graphene exposure might influence a shift in the gut microbiota composition, including the alteration of functions and diversity and abundance of specific phyla or genera. However, the mechanism of graphene-based nanomaterials' influence on gut microbiota is poorly understood. Accordingly, this review emphasises the importance of studies needed to establish the most desirable synthesis methods, types of derivatives, properties, and safety aspects mainly related to the routes of exposure and dosages of graphene-based nanomaterials.
Collapse
Affiliation(s)
- Olga Wojciechowska
- Department of Toxicology, Poznan University of Medical Sciences Rokietnicka 3 Poznan 60-806 Poland
| | - Adele Costabile
- School of Life and Health Sciences, University of Roehampton London SW15 4JD UK
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences Rokietnicka 3 Poznan 60-806 Poland
| |
Collapse
|
6
|
Wang X, Sun Z, Yang T, Lin F, Ye S, Yan J, Li T, Chen J. Sodium butyrate facilitates CRHR2 expression to alleviate HPA axis hyperactivity in autism-like rats induced by prenatal lipopolysaccharides through histone deacetylase inhibition. mSystems 2023; 8:e0041523. [PMID: 37358267 PMCID: PMC10469781 DOI: 10.1128/msystems.00415-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 06/27/2023] Open
Abstract
Short-chain fatty acids (SCFAs, especially butyric acid) have been demonstrated to play a promising role in the development of autism spectrum disorders (ASD). Recently, the hypothalamic-pituitary-adrenal (HPA) axis is also suggested to increase the risk of ASD. However, the mechanism underlying SCFAs and HPA axis in ASD development remains unknown. Here, we show that children with ASD exhibited lower SCFA concentrations and higher cortisol levels, which were recaptured in prenatal lipopolysaccharide (LPS)-exposed rat model of ASD. These offspring also showed decreased SCFA-producing bacteria and histone acetylation activity as well as impaired corticotropin-releasing hormone receptor 2 (CRHR2) expression. Sodium butyrate (NaB), which can act as histone deacetylases inhibitors, significantly increased histone acetylation at the CRHR2 promoter in vitro and normalized the corticosterone as well as CRHR2 expression level in vivo. Behavioral assays indicated ameliorative effects of NaB on anxiety and social deficit in LPS-exposed offspring. Our results imply that NaB treatment can improve ASD-like symptoms via epigenetic regulation of the HPA axis in offspring; thus, it may provide new insight into the SCFA treatment of neurodevelopmental disorders like ASD. IMPORTANCE Growing evidence suggests that microbiota can affect brain function and behavior through the "microbiome-gut-brain'' axis, but its mechanism remains poorly understood. Here, we show that both children with autism and LPS-exposed rat model of autism exhibited lower SCFA concentrations and overactivation of HPA axis. SCFA-producing bacteria, Lactobacillus, might be the key differential microbiota between the control and LPS-exposed offspring. Interestingly, NaB treatment contributed to the regulation of HPA axis (such as corticosterone as well as CRHR2) and improvement of anxiety and social deficit behaviors in LPS-exposed offspring. The potential underlying mechanism of the ameliorative effect of NaB may be mediated via increasing histone acetylation to the CRHR2 promoter. These results enhance our understanding of the relationship between the SCFAs and the HPA axis in the development of ASD. And gut microbiota-derived SCFAs may serve as a potential therapeutic agent to neurodevelopmental disorders like ASD.
Collapse
Affiliation(s)
- Xinyuan Wang
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Zhujun Sun
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Ting Yang
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Fang Lin
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Shasha Ye
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Junyan Yan
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Tingyu Li
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Jie Chen
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| |
Collapse
|
7
|
Evariste L, Mouchet F, Pinelli E, Flahaut E, Gauthier L, Barret M. Gut microbiota impairment following graphene oxide exposure is associated to physiological alterations in Xenopus laevis tadpoles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159515. [PMID: 36270377 DOI: 10.1016/j.scitotenv.2022.159515] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/03/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Graphene-based nanomaterials such as graphene oxide (GO) possess unique properties triggering high expectations for the development of technological applications. Thus, GO is likely to be released in aquatic ecosystems. It is essential to evaluate its ecotoxicological potential to ensure a safe use of these nanomaterials. In amphibians, previous studies highlighted X. laevis tadpole growth inhibitions together with metabolic disturbances and genotoxic effects following GO exposure. As GO is known to exert bactericidal effects whereas the gut microbiota constitutes a compartment involved in host homeostasis regulation, it is important to determine if this microbial compartment constitutes a toxicological pathway involved in known GO-induced host physiological impairments. This study investigates the potential link between gut microbial communities and host physiological alterations. For this purpose, X. laevis tadpoles were exposed during 12 days to GO. Growth rate was monitored every 2 days and genotoxicity was assessed through enumeration of micronucleated erythrocytes. Genomic DNA was also extracted from the whole intestine to quantify gut bacteria and to analyze the community composition. GO exposure led to a dose dependent growth inhibition and genotoxic effects were detected following exposure to low doses. A transient decrease of the total bacteria was noticed with a persistent shift in the gut microbiota structure in exposed animals. Genotoxic effects were associated to gut microbiota remodeling characterized by an increase of the relative abundance of Bacteroides fragilis. The growth inhibitory effects would be associated to a shift in the Firmicutes/Bacteroidetes ratio while metagenome inference suggested changes in metabolic pathways and upregulation of detoxification processes. This work indicates that the gut microbiota compartment is a biological compartment of interest as it is integrative of host physiological alterations and should be considered for ecotoxicological studies as structural or functional impairments could lead to later life host fitness loss.
Collapse
Affiliation(s)
- Lauris Evariste
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| | - Florence Mouchet
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Eric Pinelli
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Emmanuel Flahaut
- CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, UMR CNRS-UPS-INP N°5085, Université Toulouse 3 Paul Sabatier, Bât. CIRIMAT, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Laury Gauthier
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Maialen Barret
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| |
Collapse
|
8
|
Understanding the Role of the Lateral Dimensional Property of Graphene Oxide on Its Interactions with Renal Cells. Molecules 2022; 27:molecules27227956. [PMID: 36432058 PMCID: PMC9697150 DOI: 10.3390/molecules27227956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Renal excretion is expected to be the major route for the elimination of biomedically applied nanoparticles from the body. Hence, understanding the nanomedicine-kidney interaction is crucially required, but it is still far from being understood. Herein, we explored the lateral dimension- (~70 nm and ~300 nm), dose- (1, 5, and 15 mg/kg in vivo and 0.1~250 μg/mL in vitro), and time-dependent (48 h and 7 d in vivo) deposition and injury of PEGylated graphene oxide sheets (GOs) in the kidney after i.v. injection in mice. We specially investigated the cytotoxic effects on three typical kidney cell types with which GO renal excretion is related: human renal glomerular endothelial cells (HRGECs) and human podocytes, and human proximal tubular epithelial cells (HK-2). By using in vivo fluorescence imaging and in situ Raman imaging and spectroscopic analysis, we revealed that GOs could gradually be eliminated from the kidneys, where the glomeruli and renal tubules are their target deposition sites, but only the high dose of GO injection induced obvious renal histological and ultrastructural changes. We showed that the high-dose GO-induced cytotoxicity included a cell viability decrease and cellular apoptosis increase. GO uptake by renal cells triggered cellular membrane damage (intracellular LDH release) and increased levels of oxidative stress (ROS level elevation and a decrease in the balance of the GSH/GSSG ratio) accompanied by a mitochondrial membrane potential decrease and up-regulation of the expression of pro-inflammatory cytokines TNF-α and IL-18, resulting in cellular apoptosis. GO treatments activated Keap1/Nrf2 signaling; however, the antioxidant function of Nrf2 could be inhibited by apoptotic engagement. GO-induced cytotoxicity was demonstrated to be associated with oxidative stress and an inflammation reaction. Generally, the l-GOs presented more pronounced cytotoxicity and more severe cellular injury than s-GOs did, demonstrating lateral size-dependent toxicity to the renal cells. More importantly, GO-induced cytotoxicity was independent of renal cell type. The results suggest that the dosage of GOs in biomedical applications should be considered and that more attention should be paid to the ability of a high dose of GO to cause renal deposition and potential nephrotoxicity.
Collapse
|
9
|
Bantun F, Singh R, Alkhanani MF, Almalki AH, Alshammary F, Khan S, Haque S, Srivastava M. Gut microbiome interactions with graphene based nanomaterials: Challenges and opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154789. [PMID: 35341865 DOI: 10.1016/j.scitotenv.2022.154789] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Rapid growth of nanotechnology has accelerated immense possibility of engineered nanomaterials (ENMs) exposure by human and living organisms. In this context, wide range applications of graphene based nanomaterials (GBNMs) may inevitably cause their release into the environment. Consequently, potential risks to the ecological system and human health is consistently increasing due to the probable ingestion of GBNMs by mean of contaminated water or food sources. Further, gut microbiome is known to play a profound impact on the health status of human being and has been recognized as the most exciting advancement in the biomedical science. Recent studies has shown vital role of ENMs to alter gut microbiome and thereby changed pathological status of organisms. Therefore, in this review results of numerous studies dedicated to explore the impact of GBNMs on gut microbiome and thereby various pathological status have been summarized. Dietary exposure of different types of GBNMs [e.g. graphene, graphene oxide (GO), partially reduced graphene oxide (PRGO), graphene quantum dots (GQDs)] have been evaluated on the gut microbiome through numerous in vitro and in vivo models. Moreover, emphasis has been made to evaluate different physiological responses with the short/long-term exposure of GBNMs, particularly in gastrointestinal tract (GIT) and its correlation with gut microbiome and the health status. It is reviewed that exposure of GBNMs can exert significant impact which alter the composition, diversity and function of gut microbiome. This may further appear in terms of enteric disorder along with numerous pathological changes e.g. IEC (intestinal epithelial cells) colitis, lysosomal dysfunction, inflammation, shortened colon, resorbed embryo, retardation in skeletal development, low weight of fetus, early or late dead of fetus and IBD (inflammatory bowel disease) like symptoms. Finally, potential health risks due to the exposure of GBNMs have been discussed with future perspective.
Collapse
Affiliation(s)
- Farkad Bantun
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah - 24382, Saudi Arabia
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi 110052, India.
| | - Mustfa F Alkhanani
- Emergency Medical Service Department, College of Applied Sciences, AlMaarefa University, Riyadh 11597, Saudi Arabia
| | - Atiah H Almalki
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; Addiction and Neuroscience Research Unit, College of Pharmacy, Taif University, Al-Hawiah, Taif 21944, Saudi Arabia
| | - Freah Alshammary
- Department of Preventive Dental Sciences, College of Dentistry, Hail University, Hail 2440, Saudi Arabia
| | - Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, Hail University, Hail 2440, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Bursa Uludağ University Faculty of Medicine, Görükle Campus, 16059 Nilüfer, Bursa, Turkey
| | - Manish Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India.
| |
Collapse
|
10
|
Peng G, Fadeel B. Understanding the bidirectional interactions between two-dimensional materials, microorganisms, and the immune system. Adv Drug Deliv Rev 2022; 188:114422. [PMID: 35810883 DOI: 10.1016/j.addr.2022.114422] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/13/2022] [Accepted: 07/04/2022] [Indexed: 12/11/2022]
Abstract
Two-dimensional (2D) materials such as the graphene-based materials, transition metal dichalcogenides, transition metal carbides and nitrides (MXenes), black phosphorus, hexagonal boron nitride, and others have attracted considerable attention due to their unique physicochemical properties. This is true not least in the field of medicine. Understanding the interactions between 2D materials and the immune system is therefore of paramount importance. Furthermore, emerging evidence suggests that 2D materials may interact with microorganisms - pathogens as well as commensal bacteria that dwell in and on our body. We discuss the interplay between 2D materials, the immune system, and the microbial world in order to bring a systems perspective to bear on the biological interactions of 2D materials. The use of 2D materials as vectors for drug delivery and as immune adjuvants in tumor vaccines, and 2D materials to counteract inflammation and promote tissue regeneration, are explored. The bio-corona formation on and biodegradation of 2D materials, and the reciprocal interactions between 2D materials and microorganisms, are also highlighted. Finally, we consider the future challenges pertaining to the biomedical applications of various classes of 2D materials.
Collapse
Affiliation(s)
- Guotao Peng
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
11
|
Cebadero-Domínguez Ó, Jos A, Cameán AM, Cătunescu GM. Hazard characterization of graphene nanomaterials in the frame of their food risk assessment: A review. Food Chem Toxicol 2022; 164:113014. [PMID: 35430331 DOI: 10.1016/j.fct.2022.113014] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022]
Abstract
Different applications have been suggested for graphene nanomaterials (GFNs) in the food and feed chain. However, it is necessary to perform a risk assessment before they become market-ready, and when consumer exposure is demonstrated. For this purpose, the European Food Safety Authority (EFSA) has published a guidance that has been recently updated. In this sense, the aim of this study is to identify and characterise toxicological hazards related to GFNs after oral exposure. Thus, existing scientific literature in relation to in vitro degradation studies, in vitro and in vivo genotoxicity, toxicokinetics data, in vivo oral studies, and other in-depth studies such as effects on the microbiome has been revised. The obtained results showed that the investigations performed up to now did not follow internationally agreed-upon test guidelines. Moreover, GFNs seemed to resist gastrointestinal digestion and were able to be absorbed, distributed, and excreted, inducing toxic effects at different levels, including genotoxicity. Also, dose has an important role as it has been reported that low doses are more toxic than high doses because GFNs tend to aggregate in the digestive system, changing the internal exposure scenario. Thus, further studies including a thorough toxicological evaluation are required to protect consumer's safety.
Collapse
Affiliation(s)
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Spain.
| | - Ana M Cameán
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Spain
| | - Giorgiana M Cătunescu
- University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372, Cluj-Napoca, Romania
| |
Collapse
|
12
|
Hao W, Cha R, Wang M, Zhang P, Jiang X. Impact of nanomaterials on the intestinal mucosal barrier and its application in treating intestinal diseases. NANOSCALE HORIZONS 2021; 7:6-30. [PMID: 34889349 DOI: 10.1039/d1nh00315a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The intestinal mucosal barrier (IMB) is one of the important barriers to prevent harmful substances and pathogens from entering the body environment and to maintain intestinal homeostasis. The dysfunction of the IMB is associated with intestinal diseases and disorders. Nanomaterials have been widely used in medicine and as drug carriers due to their large specific surface area, strong adsorbability, and good biocompatibility. In this review, we comprehensively discuss the impact of typical nanomaterials on the IMB and summarize the treatment of intestinal diseases by using nanomaterials. The effects of nanomaterials on the IMB are mainly influenced by factors such as the dosage, size, morphology, and surface functional groups of nanomaterials. There is huge potential and a broad prospect for the application of nanomaterials in regulating the IMB for achieving an optimal therapeutic effect for antibiotics, oral vaccines, drug carriers, and so on.
Collapse
Affiliation(s)
- Wenshuai Hao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing 100190, P. R. China.
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, P. R. China
| | - Ruitao Cha
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing 100190, P. R. China.
| | - Mingzheng Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing 100190, P. R. China.
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, P. R. China
| | - Pai Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing 100190, P. R. China.
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, P. R. China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China.
| |
Collapse
|
13
|
Sun WL, Li XY, Dou HY, Wang XD, Li JD, Shen L, Ji HF. Myricetin supplementation decreases hepatic lipid synthesis and inflammation by modulating gut microbiota. Cell Rep 2021; 36:109641. [PMID: 34469716 DOI: 10.1016/j.celrep.2021.109641] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/13/2021] [Accepted: 08/10/2021] [Indexed: 01/14/2023] Open
Abstract
The relationship between poor in vivo bioavailability and effective pharmacological activity are not yet fully clarified for many flavonoids. The analysis of flavonoids-induced alterations in the gut microbiota represents a promising approach to provide useful clues to elucidate the mechanism of action. Here, we investigate the effect of myricetin supplementation on high-fat-diet (HFD)-induced nonalcoholic fatty liver disease (NAFLD) in rats and explore the associations with the gut microbiota through high-throughput analyses. The 12-week myricetin supplementation and fecal microbiota transplantation outcomes suggest that myricetin significantly slows the development of NAFLD. Meanwhile, the anti-NAFLD effects of myricetin are associated with the modulation of the gut microbiota composition. Myricetin reduces hepatic lipid synthesis and inflammation through modulations in fecal butyric-acid-related gut microbiota and protection of the gut barrier function. This study may facilitate the elucidation of the action mechanism of flavonoids with low bioavailability.
Collapse
Affiliation(s)
- Wen-Long Sun
- Institute of Biomedical Research, Shandong University of Technology, Zibo, 255000, Shandong, People's Republic of China; Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, 255000, Shandong, People's Republic of China
| | - Xin-Yu Li
- Institute of Biomedical Research, Shandong University of Technology, Zibo, 255000, Shandong, People's Republic of China; Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, 255000, Shandong, People's Republic of China
| | - Hao-Yue Dou
- Institute of Biomedical Research, Shandong University of Technology, Zibo, 255000, Shandong, People's Republic of China; Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, 255000, Shandong, People's Republic of China
| | - Xu-Dong Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Jing-Da Li
- College of Life Science, Yangtze University, Jingzhou, 434100, Hubei, People's Republic of China
| | - Liang Shen
- Institute of Biomedical Research, Shandong University of Technology, Zibo, 255000, Shandong, People's Republic of China; Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, 255000, Shandong, People's Republic of China.
| | - Hong-Fang Ji
- Institute of Biomedical Research, Shandong University of Technology, Zibo, 255000, Shandong, People's Republic of China; Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, 255000, Shandong, People's Republic of China.
| |
Collapse
|
14
|
Huang X, Tang M. Review of gut nanotoxicology in mammals: Exposure, transformation, distribution and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145078. [PMID: 33940715 DOI: 10.1016/j.scitotenv.2021.145078] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Nanomaterials are increasingly used in food processing, daily necessities and other fields due to their excellent properties, and increase the environmental contamination. Human beings will inevitably come into contact with these nanomaterials through multiple exposure routes especially oral exposure. The intestine is an important organ for nutrient absorption and physiologic barrier, which may be the main target of nanoparticles (NPs) exposure. However, for a long time, research on the toxicity of NPs has mainly focused on organs such as liver, kidney and brain. There are few assessment data over the intestinal safety. Recently, as reported, NPs can be translocated to the intestinal part in mammals and would be distributed in different substructures of intestines, thus causing damage to the structure and function of the intestine, in which the gut microbiota and its metabolites play important roles. In addition, due to the special physiological environment of gut, nanomaterials will undergo complex transformations that may cause different biological effects from their original form. Therefore, this review aims to assess the potential adverse effects of NPs on intestine and its possible mechanisms through the results of in vivo mammalian experiments. In addition, the exposure pathway, biodistribution and biotransformation of NPs in the intestine are also considered. We hope this review will arouse people's attention to the intestinal nanotoxicology and provide basic information for further related studies.
Collapse
Affiliation(s)
- Xiaoquan Huang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
15
|
Li Y, Liu W, Xu ZZ, Xiao JX, Zong AZ, Qiu B, Jia M, Liu LN, Xu TC. Research on the mechanism of microwave-toughened starch on glucolipid metabolism in mice. Food Funct 2020; 11:9789-9800. [PMID: 33079126 DOI: 10.1039/d0fo02093a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Potato resistant starch (RS) was prepared by microwave-toughening treatment (MTT). This study investigated the beneficial effects of RS on high-fat diet (HFD)-induced hyperlipidemia in C57BL/6J mice by evaluating changes in the gut microbiota. The mice were fed low-fat diet with corn starch, HFD with corn starch, HFD with potato starch (HFP), or HFD with RS (HFR) for 6 weeks. The results showed that the HFR group had lower body weight and total cholesterol, triglyceride, and low-density lipoprotein cholesterol levels compared with the HFP group. Moreover, the brown adipose tissue levels of uncoupling protein 1 (UCP-1), β3-adrenoceptor (β3-AR), peroxisome proliferator-activated receptor-γ (PPAR-γ), and PPAR-γ coactivator-1α (PGC-1α) were increased. Our results showed that RS supplementation increased the Bacteroidetes/Firmicutes ratio and the abundance of short-chain fatty acid-producing Allobaculum, Ruminococcus, and Blautia. Our data suggest that RS prepared by MTT may be used as a prebiotic agent to prevent gut dysbiosis and obesity-related chronic diseases, such as hyperlipidemia, and obesity.
Collapse
Affiliation(s)
- Youdong Li
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Bitounis D, Parviz D, Cao X, Amadei CA, Vecitis CD, Sunderland EM, Thrall BD, Fang M, Strano MS, Demokritou P. Synthesis and Physicochemical Transformations of Size-Sorted Graphene Oxide during Simulated Digestion and Its Toxicological Assessment against an In Vitro Model of the Human Intestinal Epithelium. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907640. [PMID: 32196921 PMCID: PMC7260083 DOI: 10.1002/smll.201907640] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 05/05/2023]
Abstract
In the last decade, along with the increasing use of graphene oxide (GO) in various applications, there is also considerable interest in understanding its effects on human health. Only a few experimental approaches can simulate common routes of exposure, such as ingestion, due to the inherent complexity of the digestive tract. This study presents the synthesis of size-sorted GO of sub-micrometer- or micrometer-sized lateral dimensions, its physicochemical transformations across mouth, gastric, and small intestinal simulated digestions, and its toxicological assessment against a physiologically relevant, in vitro cellular model of the human intestinal epithelium. Results from real-time characterization of the simulated digestas of the gastrointestinal tract using multi-angle laser diffraction and field-emission scanning electron microscopy show that GO agglomerates in the gastric and small intestinal phase. Extensive morphological changes, such as folding, are also observed on GO following simulated digestion. Furthermore, X-ray photoelectron spectroscopy reveals that GO presents covalently bound N-containing groups on its surface. It is shown that the GO employed in this study undergoes reduction. Toxicological assessment of the GO small intestinal digesta over 24 h does not point to acute cytotoxicity, and examination of the intestinal epithelium under electron microscopy does not reveal histological alterations. Both sub-micrometer- and micrometer-sized GO variants elicit a 20% statistically significant increase in reactive oxygen species generation compared to the untreated control after a 6 h exposure.
Collapse
Affiliation(s)
- Dimitrios Bitounis
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave Boston, MA 02115, USA
| | - Dorsa Parviz
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue 66-570b Cambridge, MA 02139, USA
| | - Xiaoqiong Cao
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave Boston, MA 02115, USA
| | - Carlo A. Amadei
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford St Cambridge, MA 02138, USA
| | - Chad D. Vecitis
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford St Cambridge, MA 02138, USA
| | - Elsie M. Sunderland
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford St Cambridge, MA 02138, USA
| | - Brian D. Thrall
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Michael S. Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue 66-570b Cambridge, MA 02139, USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave Boston, MA 02115, USA
| |
Collapse
|