1
|
Roya Alizadeh S, Biparva P, Hashemi Z, Ali Ebrahimzadeh M. A colorimetric sensor based on 2,3-bis(6-chloropyridin-2-yl)-6-fluoroquinoxaline for naked-eye detection of Iron (III) and its application in real sample analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 327:125313. [PMID: 39467431 DOI: 10.1016/j.saa.2024.125313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/01/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
Iron ions are crucial for numerous biological processes, and the levels of these ions have a significant impact on human well-being. Hence, it is essential to identify the level of Iron ions using a suitable technique. A new colorimetric sensor, namely "2,3-bis(6-chloropyridin-2-yl)-6-fluoroquinoxaline" (CF), has been introduced to detect Fe3+ through naked-eye observation. The sensor exhibits remarkable specificity towards Fe3+ compared to other metal ions in aqueous environments. Furthermore, it undergoes a substantial color change from colorless to yellow, which is visible without needing additional equipment. The complex formation was proposed to be in 1:1 ratio based on the Job's plot and molar ratio plot. The maximum sensitivity of CF towards Fe3+ was found at pH 6 to 8. Minimal or negligible interference was noticed from different metal ions in the detection of Fe3+. The binding constant using Benesi-Hildebrand was estimated at 1.434 × 104 M-1. Gibbs free energy was determined -23.728 kJ/Mol. The LOD and LOQ were calculated at 0.378 and 1.26 µM, respectively. The probe CF was utilized to recover Fe3+ in tap water, resulting in recovery percentages ranging from 99.44 to 103.61. This indicates that the CF has the ability to identify Fe3+ in environmental samples.
Collapse
Affiliation(s)
- Seyedeh Roya Alizadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Pourya Biparva
- Department of Basic Sciences, Sari University of Agricultural Sciences and Natural Resources, Sari, Iran
| | - Zahra Hashemi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Mohammad Ali Ebrahimzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
2
|
Nandakumar V, Ramasamy SS, Adhigaman K, Ganesan N, Subramani D, Ramasamy S, Nandhakumar R, Thangaraj S. Nitroquinolone Fused Salicyl and Naphthyl Hydrazone Fluorescent Probes for the Detection of Fe 3+and Pb 2+ Ions. J Fluoresc 2024:10.1007/s10895-024-03813-7. [PMID: 38954084 DOI: 10.1007/s10895-024-03813-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/06/2024] [Indexed: 07/04/2024]
Abstract
The application of quinolones stretches over a large umbrella of medicinal field as well as chemosensor due to the presence of privileged heterocyclic aromatic rig system. Salicyl and Naphthyl Hydrazide motifs are also established fluorophore groups. Therefore in this work, we have designed and synthesized Salicyl hydrazide (3a-c) and naphthyl hydrazide fused nitroquinolones (5a-c) investigated for their fluorescent behaviour. Preliminary UV- absorption studies were carried out and the metal selectivity were examined with various metal ion. Among them, it was found that compound 3a was selective towards Fe3+ ions (λex = 330 nm, 1:1 DMF:H2O at pH = 7.4 in HEPES Buffer medium). 3a shows decrease emission intensity in presence of Fe3+ ions. Compound 5a shows enhancement in fluorescence intensity upon addition of Pb2+ ion (λex = 280 nm, 1:1 DMF:H2O at pH = 7.4 in HEPES Buffer medium). Further, the concentration dependence, competitive binding and EDTA reversibility were studied for selected compounds towards the respective cations selectivity. Jobs plot analysis indicate that 1:1 binding of 3a with Fe3+ ion (Ka = 3.17 x104M-1 and Limit Of Detection (LOD) = 5.1 × 10-7 M) whereas 5a showed 1:2 binding mode with Pb2+ ions (Ka = 2.14 × 106 M-1 and Limit Of Detection (LOD) = 2.613 × 10-9 M). Density Function Theoretical studies were performed as support for the experimental results.
Collapse
Affiliation(s)
- Vandana Nandakumar
- School of Chemical Sciences, Department of Chemistry, Bharathiar University, Coimbatore, Tamilnadu, 641046, India
| | - Sentamil Selvi Ramasamy
- School of Chemical Sciences, Department of Chemistry, Bharathiar University, Coimbatore, Tamilnadu, 641046, India
| | - Kaviyarasu Adhigaman
- School of Chemical Sciences, Department of Chemistry, Bharathiar University, Coimbatore, Tamilnadu, 641046, India
| | - Narmatha Ganesan
- Fluorensic Materials Laboratory, Department of Physical Sciences, Karunya Institute of Technology and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore, 641 114, India
| | | | - Shankar Ramasamy
- Department of Physics, Bharathiar University, Coimbatore, 641 046, India
| | - Raju Nandhakumar
- Fluorensic Materials Laboratory, Department of Physical Sciences, Karunya Institute of Technology and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore, 641 114, India
| | - Suresh Thangaraj
- School of Chemical Sciences, Department of Chemistry, Bharathiar University, Coimbatore, Tamilnadu, 641046, India.
| |
Collapse
|
3
|
Dathees TJ, Makarios Paul SP, Sanmugam A, Abiram A, Murugan S, Kumar RS, Almansour AI, Arumugam N, Nandhakumar R, Vikraman D. Naphthalene derived Schiff base as a reversible fluorogenic chemosensor for aluminium ions detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123732. [PMID: 38064962 DOI: 10.1016/j.saa.2023.123732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/17/2023] [Accepted: 12/02/2023] [Indexed: 01/13/2024]
Abstract
Schiff base (HNPD) was achieved by reacting 2-hydroxy-1-naphthaldehyde with N-phenyl-o-phenylenediamine in enthanol medium. The spectroscopic analyses were done to establish the formation of Schiff base apparently. Further, synthesized Schiff base conjugate was successfully used as a fluorogenic chemosensor to detect aluminium ions (Al3+) with high fluorescence amplification among the other interfering various metal ions. The limit of detection of 0.0248 × 10-6 M and a binding constant of 6.19 × 103 M-1 were obtained by the receptor HNPD for Al3+ detection. A high influence of intramolecular charge transfer kinetics was established to realize the selective responsiveness towards Al3+ ions. Density functional theory approximation formulated the band energy modulation and localization and delocalization of electron density for the HNPD and Al3+ complexation. The developed sensor ultimately inspected on the real soil and water samples and ascertained the practical ability of Al3+ ions detection of HNPD chemosensor.
Collapse
Affiliation(s)
- T Johny Dathees
- Fluorensic Materials Laboratory, Department of Physical Sciences, Karunya Institute of Technology and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore 641 114, India
| | - S Prince Makarios Paul
- Department of Physical Sciences, Karunya Institute of Technology and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore 641 114, India
| | - Anandhavelu Sanmugam
- Department of Applied Chemistry, Sri Venkateswara College of Engineering, Pennalur, Sriperumpudur 602 117, India
| | - A Abiram
- Department of Physical Sciences, Karunya Institute of Technology and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore 641 114, India
| | - S Murugan
- Department of Biotechnology, Karunya Institute of Technology and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore 641 114, India
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Natrajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - R Nandhakumar
- Fluorensic Materials Laboratory, Department of Physical Sciences, Karunya Institute of Technology and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore 641 114, India.
| | - Dhanasekaran Vikraman
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea.
| |
Collapse
|
4
|
Datta S, Dey S, Sinha C, Dutta B, Banerjee P, Mir MH. Exploitation of a 1D coordination polymer as a portable kit for an eye-catching fluorometric response towards sensing of trivalent cations. Dalton Trans 2024; 53:2859-2866. [PMID: 38231529 DOI: 10.1039/d3dt03939k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The development and utilization of coordination polymers (CPs) have drawn interest for potential applications in different fields. Detection of metal ions in efficient and selective manners is an important field of research. It paves the way to protect human health by balancing toxic metal ions and biologically active metal ions in the atmosphere. In this regard, a new one-dimensional (1D) 4-(1-naphthylvinyl)pyridine (4-nvp) based CP [Cd(NCS)2(4-nvp)2]n (1) was synthesized and characterized structurally by single-crystal X-ray diffraction. Interestingly, this 1D CP underwent supramolecular aggregation via π⋯π stacking interactions, which specifically generated an environment for a potent "turn on" response in the presence of trivalent cations (Fe3+, Al3+, and Cr3+) in the nanomolar range but remained silent in the presence of other metal ions. Density functional theory (DFT) computations and X-ray photoelectron spectroscopy (XPS) were performed to establish the sensing phenomena. Fascinatingly, utilizing the sensitivity of 1 in an aqueous medium, a hands-on portable cotton swab kit was developed for instant identification of these three important trivalent metal cations.
Collapse
Affiliation(s)
- Sourav Datta
- Department of Chemistry, Aliah University, New Town, Kolkata 700 160, India.
- Electric Mobility & Tribology Research Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713 209, India.
| | - Sunanda Dey
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | | | - Basudeb Dutta
- Department of Chemistry, Aliah University, New Town, Kolkata 700 160, India.
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Priyabrata Banerjee
- Electric Mobility & Tribology Research Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713 209, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | | |
Collapse
|
5
|
Saha S, Alam R. Recent developments in the creation of a single molecular sensing tool for ternary iron (III), chromium (III), aluminium (III) ionic species: A review. LUMINESCENCE 2023; 38:1026-1046. [PMID: 36251318 DOI: 10.1002/bio.4399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/06/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022]
Abstract
Rational design of a molecular sensing tool is an important topic in molecular recognition, signalling, and optoelectronics that has piqued the interest of chemists, biologists, and environmental scientists. Approximately 150 years have passed since the beginning of the fluorescent chemosensor sector. Due to the paramagnetic properties of Cr3+ and Al3+ , it is tough to prepare a photoluminescence plug-in detector. Most dye-based Al3+ sensors must be utilized in organic or mixed solvents for robust hydration of Al3+ in water. The sophisticated molecular design of sensors, conversely, allows for the detection of these metal ions in aqueous medium. The design of chemosensors using various fluorophores and their mechanisms of action have been thoroughly discussed. A literature survey covering the design of chemosensors and their mechanisms of action have been thoroughly discussed covering the period 2010-2022 and that was carried out including innovative and exemplary activities from numerous groups throughout the world that have significantly contributed to this sector. The most important advantages of these probes are their aqueous solubility and quick response with outstanding selectivity and sensitivity for temporal distribution with high fidelity of metals in living cells.
Collapse
Affiliation(s)
- Sudipta Saha
- Department of Chemistry (UG+PG), Triveni Devi Bhalotia College, Raniganj, Paschim Bardhaman, India
| | - Rabiul Alam
- Department of Chemistry, Rabindra Mahavidyalaya, Champadanga, Hooghly, India
| |
Collapse
|
6
|
P K, Unniram Parambil AR, Silswal A, Pramanik A, Koner AL. Trivalent metal ion sensor enabled bioimaging and quantification of vaccine-deposited Al 3+ in lysosomes. Analyst 2023; 148:2425-2437. [PMID: 37194365 DOI: 10.1039/d3an00562c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Extracellular metallic debris is deposited into the well-known 'recycle bins' of the cells named lysosomes. The accumulation of unwanted metal ions can cause dysfunction of hydrolyzing enzymes and membrane rupturing. Thus, herein, we synthesized rhodamine-acetophenone/benzaldehyde derivatives for the detection of trivalent metal ions in aqueous media. In solution, the synthesized probes exhibited a 'turn-on' colorimetric and fluorometric response upon complexation with trivalent metal ions (M3+). Mechanistically, M3+ chelation enables the appearance of a new emission band at approximately 550 nm, which verifies the disruption of the closed ring and the restoration of conjugation on the xanthene core in rhodamine 6G derivatives. Exclusive localization of the biocompatible probes at the lysosomal compartment favored the quantification of deposited Al3+. Moreover, the novelty of the work lies in the detection of Al3+ deposited in the lysosome that originated from hepatitis B vaccines, which shows their efficiency for near future in vivo applications.
Collapse
Affiliation(s)
- Kavyashree P
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| | - Ajmal Roshan Unniram Parambil
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| | - Akshay Silswal
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| | - Anup Pramanik
- Department of Chemistry, Sidho-Kanho-Birsha University, Purulia, 723104, West Bengal, India
| | - Apurba Lal Koner
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| |
Collapse
|
7
|
Ngororabanga JMV, Dembaremba TO, Mama N, Tshentu ZR. Azo-hydrazone tautomerism in a simple coumarin azo dye and its contribution to the naked-eye detection of Cu 2+ and other potential applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 289:122202. [PMID: 36521339 DOI: 10.1016/j.saa.2022.122202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/02/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
A new tailor-made azo dye of coumarin connected to phenolic derivative is presented herein. Azo-hydrazone tautomerism in aqueous solution of the dye was observed and studied using spectroscopic assays such as 1H NMR, absorption and emission assays, and theoretical studies. Tautomerism was attributed to the presence of a labile phenolic hydrogen in the ortho position to the azo functionality and the hydrazone was found to be the more dominant tautomer. Influence of metal ions on the azo-hydrazone chemical equilibrium and how the accompanying colour and spectroscopic changes can be exploited for various functions, especially the detection and quantification of Cu2+ in aqueous environments was explored. The presence of Cu2+ affects the azo-hydrazone equilibrium resulting in visual appearance and spectroscopic changes and the likely binding sites for Cu2+ were evaluated. Cu2+ pushes the azo-hydrazone equilibrium towards the more conjugated form and the presence of other metal ions does not have any perceivable impact on this mechanism. The dye showed potential applications as a sensor in colorimetric and spectroscopic detection and quantification of Cu2+ in domestic and environmental water samples, photo-imprinting and as a logic gate. The limits of detection (LOD) and quantification (LOQ) for Cu2+ were found to be 0.0779 mg/L and 0.236 mg/L, respectively, much lower than the World Health Organization (WHO) guideline limit for Cu2+ levels in drinking water.
Collapse
Affiliation(s)
- Jean Marie Vianney Ngororabanga
- Department of Mathematics, Sciences and Physical Education, University of Rwanda College of Education, Po Box 55 Rwamagana-Eastern Province, Rwanda.
| | - Tendai O Dembaremba
- Department of Chemistry, Nelson Mandela University, Port Elizabeth 6031, South Africa
| | - Neliswa Mama
- Department of Chemistry, Nelson Mandela University, Port Elizabeth 6031, South Africa
| | - Zenixole R Tshentu
- Department of Chemistry, Nelson Mandela University, Port Elizabeth 6031, South Africa
| |
Collapse
|
8
|
Khatun M, Ghorai P, Mandal J, Ghosh Chowdhury S, Karmakar P, Blasco S, García-España E, Saha A. Aza-phenol Based Macrocyclic Probes Design for "CHEF-on" Multi Analytes Sensor: Crystal Structure Elucidation and Application in Biological Cell Imaging. ACS OMEGA 2023; 8:7479-7491. [PMID: 36873024 PMCID: PMC9979245 DOI: 10.1021/acsomega.2c06549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Metal bound macrocyclic compounds found in biological systems inspired us to design and synthesize two Robson-type macrocyclic Schiff-base chemosensors, H 2 L1 (H 2 L1=1,11-dimethyl-6,16-dithia-3,9,13,19-tetraaza-1,11(1,3)-dibenzenacycloicosaphane-2,9,12,19-tetraene-1,11-diol) and H 2 L2 (H 2 L2=1,11-dimethyl-6,16-dioxa-3,9,13,19-tetraaza-1,11(1,3)-dibenzenacycloicosaphane-2,9,12,19-tetraene-1,11-diol). Both the chemosensors have been characterized with different spectroscopic techniques. They act as multianalyte sensor and exhibit "turn-on" fluorescence toward different metal ions in 1X PBS (Phosphate Buffered Saline) solution. In presence of Zn2+, Al3+, Cr3+ and Fe3+ ions, H 2 L1 exhibits ∼6-fold enhancement of emission intensity, while H 2 L2 shows ∼6-fold enhancement of emission intensity in the presence of Zn2+, Al3+ and Cr3+ ions. The interaction between the different metal ion and chemosensor have been examined by absorption, emission, and 1H NMR spectroscopy as well as by ESI-MS+ analysis. We have successfully isolated and solved the crystal structure of the complex [Zn(H 2 L1)(NO3)]NO3 (1) by X-ray crystallography. The crystal structure of 1 shows 1:1 metal:ligand stoichiometry and helps to understand the observed PET-Off-CHEF-On sensing mechanism. LOD values of H 2 L1 and H 2 L2 toward metal ions are found to be ∼10-8 and ∼10-7 M, respectively. Large Stokes shifts of the probes against analytes (∼100 nm) make them a suitable candidate for biological cell imaging studies. Robson type phenol based macrocyclic fluorescence sensors are very scarce in the literature. Therefore, the tuning of structural parameters as the number and nature of donor atoms, their relative locations and presence of rigid aromatic groups can lead to the design of new chemosensors, which can accommodate different charged/neutral guest(s) inside its cavity. The study of the spectroscopic properties of this type of macrocyclic ligands and their complexes might open a new avenue of chemosensors.
Collapse
Affiliation(s)
- Mohafuza Khatun
- Department
of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Pravat Ghorai
- Department
of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Jayanta Mandal
- Department
of Chemistry, Jadavpur University, Kolkata 700032, India
| | | | - Parimal Karmakar
- Department
of Life Science and Biotechnology, Jadavpur
University, Kolkata 700032, India
| | - Salvador Blasco
- Institute
of Molecular Sciences, Universitat de València, C/Catedrático José
Beltrán Martínez, 2, Paterna, Valencia 46980, Spain
| | - Enrique García-España
- Institute
of Molecular Sciences, Universitat de València, C/Catedrático José
Beltrán Martínez, 2, Paterna, Valencia 46980, Spain
| | - Amrita Saha
- Department
of Chemistry, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
9
|
Sang F, Xiong T, Wang W, Pan J, Shi H, Zhao Y. A Simple Schiff Base as Fluorescent Probe for Detection of Al 3+ in Aqueous Media and its Application in Cells Imaging. J Fluoresc 2023; 33:177-184. [PMID: 36323832 DOI: 10.1007/s10895-022-03047-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/17/2022] [Indexed: 02/02/2023]
Abstract
A novel fluorescence probe for the detection of Al3+ was developed based on methionine protected gold nanoclusters (Met-AuNCs). A fluorescent Schiff base (an aldimine) is formed between the aldehyde group of salicylaldehyde (SA) and the amino groups of Met on the AuNCs, and developed for selective detection of Al3+ in aqueous solution. Al3+ can strongly bind with the Schiff base ligands, accompanied by the blue-shift and an obvious fluorescence emission enhancement at 455 nm. The limits of detection (LODs) of the probe are 2 pmol L-1 for Al3+. Moreover, the probe can successfully be used in fluorescence imaging of Al3+ in living cells (SHSY5Y cells), suggesting that the simple fluorescent probe has great potential use in biological imaging.
Collapse
Affiliation(s)
- Fuming Sang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, People's Republic of China.
| | - Tiedan Xiong
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, People's Republic of China
| | - Weijie Wang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, People's Republic of China
| | - Jianxin Pan
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, People's Republic of China
| | - Huahua Shi
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, People's Republic of China
| | - Yan Zhao
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, People's Republic of China
| |
Collapse
|
10
|
Xie L, Wang X, Yao RH, Fan TT, Chen XX, Fan CB, Pu SZ. A Novel “Turn-on” Triphenylamine-Based Fluorescent Probe for Ultrasensitive Detection of Al3+ and Its Application on Test Strips. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022120119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
11
|
Tarai A, Li Y, Liu B, Zhang D, Li J, Yan W, Zhang J, Qu J, Yang Z. A review on recognition of tri-/tetra-analyte by using simple organic colorimetric and fluorometric probes. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214070] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Mahata S, Janani G, Mandal BB, Manivannan V. A coumarin based visual and fluorometric probe for selective detection of Al(III), Cr(III) and Fe(III) ions through “turn-on” response and its biological application. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113340] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
13
|
BODIPY-Pyridylhydrazone Probe for Fluorescence Turn-On Detection of Fe3+ and Its Bioimaging Application. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9070165] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A novel pyridylhydrazone-tethered BODIPY (BODIPY-PH) was synthesized, fully characterized via nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopic (FTIR), and single-crystal X-ray diffraction (SC-XRD) techniques, and developed for the selective detection of Fe3+ through fluorescent enhancement process. This derivative showed 1:1 binding with Fe3+ in an acetonitrile-water mixture (1:9 v/v) with the binding constant (K) of 5.4 × 104 M−1 and the limit of detection of 0.58 µM. The Fe3+ complexation reaction has been proved to be a reversible process and could be effectively repeated up to three cycles. The electronic properties of BODIPY-PH and its Fe3+ complex modeled by the density functional theory (DFT) method suggested the presence of chelation-enhanced fluorescence (CHEF) effect in the Fe3+ binding reaction. The X-ray absorption spectroscopy (XAS) probed at Fe K-edge confirmed the complex formation between BODIPY-PH and the Fe3+ in an octahedral geometry. Finally, bioimaging against human embryonic kidney (Hek293) cell, through confocal fluorescence microscopic technique indicated that the BODIPY-PH displayed good permeability and low toxicity toward the tested cell lines and showed enhanced fluorescent signal in the cells incubated with Fe3+ proving its capability for Fe3+ analysis in cellular matrix.
Collapse
|
14
|
Sahu M, Manna AK, Chowdhury S, Patra GK. A novel dihydro phenylquinazolinone-based two-in-one colourimetric chemosensor for nickel(ii), copper(ii) and its copper complex for the fluorescent colourimetric nanomolar detection of the cyanide anion. RSC Adv 2020; 10:44860-44875. [PMID: 35516234 PMCID: PMC9058604 DOI: 10.1039/d0ra09023a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
Currently, considerable efforts have been devoted to the detection and quantification of hazardous multi-analytes using a single probe. Herein, we have developed a simple, environment-friendly colourimetric sensor for the sensitive, selective and rapid detection of Ni2+ and Cu2+ ions using a simple organic Schiff base ligand L in methanol-Tris-HCl buffer (1 : 1 v/v, 10 mM, pH = 7.2). The probe L exhibited a binding-induced colour change from colourless to yellow and fluorescence quenching in the presence of both Ni2+ and Cu2+ ions. The interactions between L and the respective metal ions were studied by Job's plot, electrospray ionisation-mass spectrometry (ESI-MS), Fourier-transform infrared spectroscopy (FT-IR), density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations. The limit of detection (LOD) of L towards Ni2+ and Cu2+ was calculated to be 7.4 × 10-7 M and 4.9 × 10-7 M, respectively. Furthermore, the L-Cu2+ complex could be used as a new cascade fluorescent-colourimetric sensor to detect CN- ions with a very low level of detection (40 nM). Additionally, L could operate in a wide pH range, and thus was successfully applied for the detection and quantification of Ni2+ and Cu2+ in environmental samples, and for building OR- and IMPLICATION-type logic gates.
Collapse
Affiliation(s)
- Meman Sahu
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya Bilaspur (C.G) India +917587312992
| | - Amit Kumar Manna
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya Bilaspur (C.G) India +917587312992
| | - Shubhamoy Chowdhury
- Department of Chemistry, Gour Banga University Malda West Bengal 732 103 India
| | - Goutam Kumar Patra
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya Bilaspur (C.G) India +917587312992
| |
Collapse
|
15
|
Shi J, Zhang Z. Synthesis and biological application of a water-soluble fluorescent probe for Fe3+ based on sodium benzo[c]chromene-2-sulfonate. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
A Schiff base based on triphenylamine and thiophene moieties as a fluorescent sensor for Cr (III) ions: Synthesis, characterization and fluorescent applications. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119676] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Mahalakshmi G, Kumar PS, Vennila KN, Sivaraman G, Seenivasaperumal M, Elango KP. Multi-site probe for selective turn-on fluorescent detection of Al(III) in aqueous solution: synthesis, cation binding, mode of coordination, logic gate and cell imaging. Methods Appl Fluoresc 2020; 8:035003. [PMID: 32320385 DOI: 10.1088/2050-6120/ab823e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An easy to make organic probe (hereafter called as R) possessing multiple ligating sites have been synthesized and characterized using spectral techniques. The probe exhibits selective and sensitive turn-on fluorescence response with Al(III) in aqueous dimethylformamide (DMF) (1:1 v/v) solution. Fluorescence titration experiment shows that the probe binds with Al(III) with a 1:1 stoichiometry and a binding constant of 6.6 × 104 M-1.The mode of coordination of R with Al(III) has been established suing 27Al and 1H NMR studies and the results suggest formation of an octahedral complex been them. The suggested point of attachment of R with Al(III) corroborates well with Density Functional Theory (DFT) optimized structure and Mulliken charges computed. Chelation-enhanced fluorescence (CHEF) is proposed as the mechanism of enhancement of fluorescence upon addition of Al(III) to R. The probe detects Al(III) in aqueous solution with a detection limit of 0.2 μM, which is much lower than the permissible limit of Al(III) set by the World Health Organization (WHO).The probe works in a wide pH range (4-11) and thus makes it a suitable candidate for environmental and biological applications. The fluorescence signals of R were used to construct an INHIBIT molecular logic gate. The confocal fluorescence microscope experiments show that R could be employed as a fluorescent probe for detecting Al(III) in living cells.
Collapse
Affiliation(s)
- G Mahalakshmi
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram 624 302, India
| | | | | | | | | | | |
Collapse
|
18
|
Chandra R, Sahu M, Manna AK, Rout K, Chowdhury S, Patra GK. Ether based flexible bis Schiff base fluorescent colorimetric chemosensors for selective and sensitive detection of HF2− ion. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Dutta B, Dey S, Pal K, Bera S, Naaz S, Jana K, Sinha C, Mir MH. Supramolecular assembly of a 4-(1-naphthylvinyl)pyridine-appended Zn( ii) coordination compound for the turn-on fluorescence sensing of trivalent metal ions (Fe 3+, Al 3+, and Cr 3+) and cell imaging application. NEW J CHEM 2020. [DOI: 10.1039/d0nj01608j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The as-synthesized Zn(ii) coordination compound exhibited turn-on fluorescence sensing of analytical group-IIIA metal ions (Fe3+, Al3+, and Cr3+) and applications in cell imaging.
Collapse
Affiliation(s)
- Basudeb Dutta
- Department of Chemistry
- Aliah University
- Kolkata 700 156
- India
| | - Sunanda Dey
- Department of Chemistry
- Jadavpur University
- Kolkata 700 032
- India
| | - Kunal Pal
- Department of Life Science and Biotechnology
- Jadavpur University
- Kolkata 700032
- India
- Division of Molecular Medicine and Centre for Translational Research
| | | | - Sanobar Naaz
- Department of Chemistry
- Aliah University
- Kolkata 700 156
- India
| | - Kuladip Jana
- Division of Molecular Medicine and Centre for Translational Research
- Bose Institute
- Kolkata 700056
- India
| | | | | |
Collapse
|
20
|
Barboza CA, Gawrys P, Banasiewicz M, Suwinska K, Sobolewski AL. Photophysical transformations induced by chemical substitution to salicylaldimines. Phys Chem Chem Phys 2020; 22:6698-6705. [DOI: 10.1039/d0cp00110d] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The role of electron-acceptor strength and microenvironment polarity on the photophysical properties of salicylaldimines.
Collapse
Affiliation(s)
| | - Pawel Gawrys
- Physics Institute
- Polish Academy of Sciences
- Warsaw
- Poland
| | | | - Kinga Suwinska
- Faculty of Mathematics and Natural Sciences
- Cardinal Stefan Wyszynski University in Warsaw
- Warsaw
- Poland
| | | |
Collapse
|
21
|
Roy A, Das S, Sacher S, Mandal SK, Roy P. A rhodamine based biocompatible chemosensor for Al 3+, Cr 3+ and Fe 3+ ions: extraordinary fluorescence enhancement and a precursor for future chemosensors. Dalton Trans 2019; 48:17594-17604. [PMID: 31754672 DOI: 10.1039/c9dt03833g] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A rhodamine based chemosensor, 3-(((2-(3',6'-bis(ethylamino)-2',7'-dimethyl-3-oxospiro[isoindoline-1,9'-xanthen]-2-yl)ethyl)imino)methyl)-2-hydroxy-5-methylbenzaldehyde (HL-CHO), has been developed for the detection of Al3+, Cr3+ and Fe3+ ions. The absorbance of HL-CHO at 528 nm increases significantly in HEPES buffer in methanol : water (9 : 1, v/v) (pH 7.4) in the presence of Al3+, Cr3+ and Fe3+ ions with the alteration of solution color from colorless to pink. The fluorescence intensity of the probe at 550 nm enhances by 1465, 588 and 800 fold in the presence of Al3+, Cr3+ and Fe3+ ions, respectively. To the best of our knowledge, this huge increase in fluorescence intensity with Al3+ and Cr3+ has not been observed for other rhodamine based chemosensing systems. The weak fluorescence and no coloration of the probe are due to the existence of a spirolactam ring. The trivalent cations induce the opening of the spirolactam ring and consequently change the color and the fluorescence intensity followed by the 1 : 1 complex formation with HL-CHO which are evident from Job's analysis, ESI mass spectral analysis and elemental analysis. The quantum yield and lifetime of HL-CHO have increased considerably in the presence of the trivalent cations. The high sensitivity of the probe towards all the cations is evident from the nM order of LOD values. This has been used in living cell imaging studies with the human neuroblastoma SH-SY5Y cell line. Having appended -CHO groups for Schiff-base condensation with other amines, HL-CHO could be a potential precursor for future chemosensors.
Collapse
Affiliation(s)
- Ankita Roy
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata 700032, India.
| | | | | | | | | |
Collapse
|
22
|
Naha S, Arshad MK, Velmathi S. A Simple Red Emitting “Turn-On” Optical Relay Detector for Al3+ and CN−. Application in the Real Sample and RAW264.7 Cell Imaging. J Fluoresc 2019; 29:1401-1410. [DOI: 10.1007/s10895-019-02460-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 10/31/2019] [Indexed: 12/19/2022]
|
23
|
Ye F, Wu N, Li P, Liu YL, Li SJ, Fu Y. A lysosome-targetable fluorescent probe for imaging trivalent cations Fe 3+, Al 3+ and Cr 3+ in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 222:117242. [PMID: 31207489 DOI: 10.1016/j.saa.2019.117242] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
An effective morpholine-type naphthalimide chemsensor, N-p-chlorophenyl-4-(2-aminoethyl)morpholine-1,8-naphthalimide (CMN) has been developed as a lysosome-targeted fluorometric sensor for trivalent metal ions (Fe3+, Al3+ and Cr3+). Upon the addition of Fe3+, Al3+ or Cr3+ ions, the probe CMN showed an evident naked-eye color changes which pale yellow solution of CMN turned deepened and it displayed turn-on fluorescence response in methanol. CMN showed a significant selective and sensitive toward Fe3+, Al3+ or Cr3+ ions, while there was no obvious behavior to other monovalent or divalent metal ions from the UV-vis and fluorescence spectrum. Based on the Job's plot analyses the 1:1 coordination mode of CMN with Fe3+, Al3+ or Cr3+ was proposed. The limit of detection (LOD) observed were 0.65, 0.69 and 0.68 μM for Fe3+, Al3+ and Cr3+ ions, respectively. The N-atom of morpholine directly involved in complex formation, CMN emitted fluorescence through inhibition of photoinduced electron transfer (PET). This probe exhibited excellent imaging ability for Fe3+, Al3+and Cr3+ ions in living cells with low cytotoxicity. Significantly, the cellular confocal microscopic research indicated that the lysosome-targeted group of morpholine moiety was introduced which realized the capability of imaging lysosomal trivalent metal ions in living cells for the first time.
Collapse
Affiliation(s)
- Fei Ye
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, PR China; College of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Nan Wu
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, PR China; College of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Ping Li
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, PR China; College of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Yu-Long Liu
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, PR China; College of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Shi-Jie Li
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, PR China; College of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying Fu
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, PR China; College of Life Science, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
24
|
Singha D, Das T, Satyanarayana L, Roy P, Nandi M. Rhodamine functionalized mesoporous silica as a chemosensor for the efficient sensing of Al3+, Cr3+ and Fe3+ ions and their removal from aqueous media. NEW J CHEM 2019. [DOI: 10.1039/c9nj03010g] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rhodamine incorporated mesoporous silica acts as a selective chemosensor for Al3+, Cr3+ and Fe3+ ions and it is used for their separation from an aqueous medium.
Collapse
Affiliation(s)
- Debdas Singha
- Integrated Science Education and Research Centre
- Siksha Bhavana
- Visva-Bharati University
- India
| | - Trisha Das
- Integrated Science Education and Research Centre
- Siksha Bhavana
- Visva-Bharati University
- India
| | - Lanka Satyanarayana
- Analytical Chemistry Department
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
| | - Partha Roy
- Department of Chemistry
- Jadavpur University
- Kolkata-700 032
- India
| | - Mahasweta Nandi
- Integrated Science Education and Research Centre
- Siksha Bhavana
- Visva-Bharati University
- India
| |
Collapse
|
25
|
Manna AK, Chowdhury S, Patra GK. A novel hydrazide-based selective and sensitive optical chemosensor for the detection of Ni2+ ions: applications in live cell imaging, molecular logic gates and smart phone-based analysis. Dalton Trans 2019; 48:12336-12348. [DOI: 10.1039/c9dt02448d] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel hydrazide-based optical sensor for Ni2+ ions was designed, which can be applied for recovery of contaminated water samples, smart phone-based analysis and live cell imaging.
Collapse
Affiliation(s)
- Amit Kumar Manna
- Department of Chemistry
- Guru GhasidasVishwavidyalaya
- Bilaspur (C.G)
- India
| | | | - Goutam K. Patra
- Department of Chemistry
- Guru GhasidasVishwavidyalaya
- Bilaspur (C.G)
- India
| |
Collapse
|
26
|
Rout K, Manna AK, Sahu M, Mondal J, Singh SK, Patra GK. Triazole-based novel bis Schiff base colorimetric and fluorescent turn-on dual chemosensor for Cu2+ and Pb2+: application to living cell imaging and molecular logic gates. RSC Adv 2019; 9:25919-25931. [PMID: 35530070 PMCID: PMC9070313 DOI: 10.1039/c9ra03341f] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/09/2019] [Indexed: 12/23/2022] Open
Abstract
A triazole-based novel bis Schiff base colorimetric and fluorescent chemosensor (L) has been designed, synthesized and characterized by elemental analysis, 1H-NMR, ESI-MS, FTIR spectra and DFT studies. The receptor L showed selective and sensitive colorimetric sensing ability for Cu2+ and Pb2+ ions by changing color from colorless to yellow and light yellow respectively in CH3OH–tris-buffer (1 : 1, v/v). However, it displayed strong fluorescence enhancement upon the addition of both Cu2+ and Pb2+ ions, attributed to the blocking of PET. The fluorometric detection limits for Cu2+ and Pb2+ were found to be 12 × 10−7 M and 9 × 10−7 M and the colorimetric detection limits were 3.7 × 10−6 M and 1.2 × 10−6 M respectively; which are far below the permissible concentration in drinking water determined by WHO. Moreover, it was found that chemosensor L worked as a reversible fluorescence probe towards Cu2+ and Pb2+ ions by the accumulation of S2− and EDTA respectively. Based on the physicochemical and analytical methods like ESI-mass spectrometry, Job plot, FT-IR, 1H-NMR spectra and DFT studies the detection mechanism may be explained as metal coordination, photoinduced electron transfer (PET) as well as an internal charge transfer (ICT) process. The sensor could work in a pH span of 4.0–12.0. The chemosensor L shows its application potential in the detection of Cu2+ and Pb2+ in real samples, living cells and building of molecular logic gate. A novel triazole-based bis Schiff base colorimetric and fluorescent chemosensor (L) has been designed, synthesized and characterized. The chemo-sensor L shows its application potential in the detection of Cu2+ and Pb2+ in living cells and building molecular logic gate.![]()
Collapse
Affiliation(s)
- Kalyani Rout
- Department of Chemistry
- Guru Ghasidas Vishwavidyalaya
- Bilaspur
- India
| | - Amit Kumar Manna
- Department of Chemistry
- Guru Ghasidas Vishwavidyalaya
- Bilaspur
- India
| | - Meman Sahu
- Department of Chemistry
- Guru Ghasidas Vishwavidyalaya
- Bilaspur
- India
| | - Jahangir Mondal
- Department of Chemistry
- Guru Ghasidas Vishwavidyalaya
- Bilaspur
- India
| | - Sunil K. Singh
- Department of Chemistry
- Guru Ghasidas Vishwavidyalaya
- Bilaspur
- India
| | - Goutam K. Patra
- Department of Chemistry
- Guru Ghasidas Vishwavidyalaya
- Bilaspur
- India
| |
Collapse
|