1
|
Sirén H. Research of saccharides and related biocomplexes: A review with recent techniques and applications. J Sep Sci 2024; 47:e2300668. [PMID: 38699940 DOI: 10.1002/jssc.202300668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 05/05/2024]
Abstract
Saccharides and biocompounds as saccharide (sugar) complexes have various roles and biological functions in living organisms due to modifications via nucleophilic substitution, polymerization, and complex formation reactions. Mostly, mono-, di-, oligo-, and polysaccharides are stabilized to inactive glycosides, which are formed in metabolic pathways. Natural saccharides are important in food and environmental monitoring. Glycosides with various functionalities are significant in clinical and medical research. Saccharides are often studied with the chromatographic methods of hydrophilic interaction liquid chromatography and anion exchange chromatograpy, but also with capillary electrophoresis and mass spectrometry with their on-line coupling systems. Sample preparation is important in the identification of saccharide compounds. The cases discussed here focus on bioscience, clinical, and food applications.
Collapse
Affiliation(s)
- Heli Sirén
- Chemicum Building, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Nongkhai SN, Piemthongkham P, Bankeeree W, Punnapayak H, Lotrakul P, Prasongsuk S. Xylooligosaccharides produced from sugarcane leaf arabinoxylan using xylanase from Aureobasidium pullulans NRRL 58523 and its prebiotic activity toward Lactobacillus spp. Heliyon 2023; 9:e22107. [PMID: 38034795 PMCID: PMC10682688 DOI: 10.1016/j.heliyon.2023.e22107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 09/07/2023] [Accepted: 11/04/2023] [Indexed: 12/02/2023] Open
Abstract
In an attempt to enhance the value of sugarcane leaf, xylan was extracted and used for xylooligosaccharide (XO) production via enzymatic hydrolysis using xylanase from the black yeast Aureobasidium pullulans. The xylan was extracted from sugarcane leaf using alkali extraction according to the response surface methodology. The highest xylan yield (99.42 ± 4.05 % recovery) was obtained using 14.32 % (w/v) NaOH, 13.25:1 liquid: solid ratio, at 121 °C and 15 lb.in2 for 32 min. Sugar composition and FTIR spectrum analyses confirmed its structure as arabinoxylan. The extracted arabinoxylan had a relatively high molecular weight compared to previous studies. Crude endoxylanase from A. pullulans NRRL 58523 was selected for enzymatic hydrolysis of the xylan. The enzyme hydrolyzed well at 50 °C, pH 4.0 and was relatively stable under this condition (87.38 ± 1.26 % of the activity remained after 60 h). XOs, especially xylobiose and xylotriose, were obtained at the maximum yield of 237.51 ± 17.69 mg/g xylan via endoxylanase hydrolysis under the optimum conditions (50 °C, pH 4.0, 65.31 U/g xylan, 53 h). XOs exhibited species-specific prebiotic activity toward three strains of Lactobacillus spp. but not toward Bifidobacterium spp.
Collapse
Affiliation(s)
- Sorawit Na Nongkhai
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Plant Biomass Utilization Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Phitchayakon Piemthongkham
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Plant Biomass Utilization Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wichanee Bankeeree
- Plant Biomass Utilization Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Hunsa Punnapayak
- Plant Biomass Utilization Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Biology, Faculty Science and Technology, Airlangga University, Surabaya 60115, Indonesia
| | - Pongtharin Lotrakul
- Plant Biomass Utilization Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sehanat Prasongsuk
- Plant Biomass Utilization Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Biology, Faculty Science and Technology, Airlangga University, Surabaya 60115, Indonesia
| |
Collapse
|
3
|
Caban M, Lewandowska U. Encapsulation of Polyphenolic Compounds Based on Hemicelluloses to Enhance Treatment of Inflammatory Bowel Diseases and Colorectal Cancer. Molecules 2023; 28:molecules28104189. [PMID: 37241929 DOI: 10.3390/molecules28104189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Inflammatory bowel diseases (IBD) and colorectal cancer (CRC) are difficult to cure, and available treatment is associated with troubling side effects. In addition, current therapies have limited efficacy and are characterized by high costs, and a large segment of the IBD and CRC patients are refractive to the treatment. Moreover, presently used anti-IBD therapies in the clinics are primarily aimed on the symptomatic control. That is why new agents with therapeutic potential against IBD and CRC are required. Currently, polyphenols have received great attention in the pharmaceutical industry and in medicine due to their health-promoting properties. They may exert anti-inflammatory, anti-oxidative, and anti-cancer activity, via inhibiting production of pro-inflammatory cytokines and enzymes or factors associated with carcinogenesis (e.g., matrix metalloproteinases, vascular endothelial growth factor), suggesting they may have therapeutic potential against IBD and CRC. However, their use is limited under both processing conditions or gastrointestinal interactions, reducing their stability and hence their bioaccessibility and bioavailability. Therefore, there is a need for more effective carriers that could be used for encapsulation of polyphenolic compounds. In recent years, natural polysaccharides have been proposed for creating carriers used in the synthesis of polyphenol encapsulates. Among these, hemicelluloses are particularly noteworthy, being characterized by good biocompatibility, biodegradation, low immunogenicity, and pro-health activity. They may also demonstrate synergy with the polyphenol payload. This review discusses the utility and potential of hemicellulose-based encapsulations of polyphenols as support for treatment of IBD and CRC.
Collapse
Affiliation(s)
- Miłosz Caban
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland
| | - Urszula Lewandowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland
| |
Collapse
|
4
|
Cunha AEP, Simões RS. Dissolving Kraft Pulp Production and Xylooligosaccharide Coproduction: Effect of Pre-Hydrolysis Conditions. ACS OMEGA 2023; 8:13626-13638. [PMID: 37091417 PMCID: PMC10116639 DOI: 10.1021/acsomega.2c07594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/25/2023] [Indexed: 05/03/2023]
Abstract
Due to cotton's declining sustainability, more lignocellulosic materials are being used to produce dissolving pulp for textile applications. Pre-hydrolysis kraft is one of the main processes used to produce this material. Pre-hydrolysis under conventional conditions removes most of the hemicelluloses, but the majority end up as xylose and furfural, traditionally burned in a recovery boiler. The xylooligosaccharides (XOS), derived from hemicelluloses are a specialty product and can be recovered but requires adapted operative conditions. Thus, the objective was to recover XOS and evaluate the effect of pre-hydrolysis conditions on the final pulp characteristics. A flow-through reactor (FTR) was used to study the pre-hydrolysis, which allowed for modification of the retention time of the xylan in the free liquor after extraction from wood. The results have shown that by changing the fluid retention time in the pre-hydrolysis, the proportion of XOS/xylose/furfural recovered can be strongly changed. The hemicellulose content of the dissolving pulp decreased from 6.8% to about 2.6% using the FTR pretreatment.
Collapse
|
5
|
Henriques PIA, Serrano MDLS, de Sousa APM, Alves AMFB. Green Process for Xylooligosaccharides Production using an Eucalyptus Kraft Pulp. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2022; 31:2005-2013. [PMID: 36569634 PMCID: PMC9758683 DOI: 10.1007/s10924-022-02728-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Xylooligosaccharides (XOS) are oligomers with recognized and important prebiotic properties, whose consumption is associated with several health benefits, including a positive impact on the immune system. In this work, XOS were produced through a green process of enzymatic hydrolysis performed directly on an intermediate product from a pulp and paper industry, Eucalyptus bleached kraft pulp. Focusing on an industrial, sustainable and more economical application, two goals were defined and validated: (i) no pretreatment of the substrate and (ii) the replacement of the commonly used buffer solution as reaction medium for only water. The influence of the most relevant operating conditions on the production of XOS as well as the respective yields obtained were very similar when using either buffer or water as the reaction medium. For the use of water, although the solution pH decreases during the enzymatic reaction, this change did not affect the production of XOS. For the optimized conditions, 80 °C and 100 U/g pulp, a maximum yield of 31.4 ± 2.6% per total xylan in the pulp was obtained, resulting in more than 50 kg of XOS per ton of pulp. The correspondent hydrolysate was mainly composed by xylobiose (66%) and xylotriose (29%), oligomers with the highest prebiotic effect.
Collapse
Affiliation(s)
- Patrícia I. A. Henriques
- Chemical Engineering Department, Instituto Superior Técnico, Avenida Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- Center of Physics and Engineering of Advanced Materials (CeFEMA), Lisbon, Portugal
| | - Maria de Lurdes S. Serrano
- Chemical Engineering Department, Instituto Superior Técnico, Avenida Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- Centro de Recursos Naturais e Ambiente (CERENA), Lisbon, Portugal
| | | | - Ana Maria F. Brites Alves
- Chemical Engineering Department, Instituto Superior Técnico, Avenida Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- Center of Physics and Engineering of Advanced Materials (CeFEMA), Lisbon, Portugal
| |
Collapse
|
6
|
Plant Polysaccharides in Engineered Pharmaceutical Gels. Bioengineering (Basel) 2022; 9:bioengineering9080376. [PMID: 36004901 PMCID: PMC9405058 DOI: 10.3390/bioengineering9080376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Hydrogels are a great ally in the pharmaceutical and biomedical areas. They have a three-dimensional polymeric structure that allows the swelling of aqueous fluids, acting as an absorbent, or encapsulating bioactive agents for controlled drug release. Interestingly, plants are a source of biogels, specifically polysaccharides, composed of sugar monomers. The crosslinking of these polymeric chains forms an architecture similar to the extracellular matrix, enhancing the biocompatibility of such materials. Moreover, the rich hydroxyl monomers promote a hydrophilic behavior for these plant-derived polysaccharide gels, enabling their biodegradability and antimicrobial effects. From an economic point of view, such biogels help the circular economy, as a green material can be obtained with a low cost of production. As regards the bio aspect, it is astonishingly attractive since the raw materials (polysaccharides from plants-cellulose, hemicelluloses, lignin, inulin, pectin, starch, guar, and cashew gums, etc.) might be produced sustainably. Such properties make viable the applications of these biogels in contact with the human body, especially incorporating drugs for controlled release. In this context, this review describes some sources of plant-derived polysaccharide gels, their biological function, main methods for extraction, remarkable applications, and properties in the health field.
Collapse
|
7
|
Wang Y, Lu C, Cao X, Wang Q, Yang G, Chen J. Porous Carbon Spheres Derived from Hemicelluloses for Supercapacitor Application. Int J Mol Sci 2022; 23:ijms23137101. [PMID: 35806106 PMCID: PMC9267052 DOI: 10.3390/ijms23137101] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
With the increasing demand for dissolving pulp, large quantities of hemicelluloses were generated and abandoned. These hemicelluloses are very promising biomass resources for preparing carbon spheres. However, the pore structures of the carbon spheres obtained from biomass are usually poor, which extensively limits their utilization. Herein, the carbon microspheres derived from hemicelluloses were prepared using hydrothermal carbonization and further activated with different activators (KOH, K2CO3, Na2CO3, and ZnCl2) to improve their electrochemical performance as supercapacitors. After activation, the specific surface areas of these carbon spheres were improved significantly, which were in the order of ZnCl2 > K2CO3 > KOH > Na2CO3. The carbon spheres with high surface area of 2025 m2/g and remarkable pore volume of 1.07 cm3/g were achieved, as the carbon spheres were activated by ZnCl2. The supercapacitor electrode fabricated from the ZnCl2-activated carbon spheres demonstrated high specific capacitance of 218 F/g at 0.2 A/g in 6 M KOH in a three-electrode system. A symmetric supercapacitor was assembled in 2 M Li2SO4 electrolyte, and the carbon spheres activated by ZnCl2 showed excellent electrochemical performance with high specific capacitance (137 F/g at 0.5 A/g), energy densities (15.4 Wh/kg), and good cyclic stability (95% capacitance retention over 2000 cycles).
Collapse
Affiliation(s)
- Yuanyuan Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (Y.W.); (C.L.); (Q.W.); (G.Y.)
| | - Chengshuai Lu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (Y.W.); (C.L.); (Q.W.); (G.Y.)
| | - Xuefei Cao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (Y.W.); (C.L.); (Q.W.); (G.Y.)
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
- Correspondence: (X.C.); (J.C.); Tel.: +86-010-62336903 (X.C.)
| | - Qiang Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (Y.W.); (C.L.); (Q.W.); (G.Y.)
| | - Guihua Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (Y.W.); (C.L.); (Q.W.); (G.Y.)
| | - Jiachuan Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (Y.W.); (C.L.); (Q.W.); (G.Y.)
- Correspondence: (X.C.); (J.C.); Tel.: +86-010-62336903 (X.C.)
| |
Collapse
|
8
|
Jiang K, Fu X, Huang R, Fan X, Ji L, Cai D, Liu X, Fu Y, Sun A, Feng C. Production of Prebiotic Xylooligosaccharides via Dilute Maleic Acid-Mediated Xylan Hydrolysis Using an RSM-Model-Based Optimization Strategy. Front Nutr 2022; 9:909283. [PMID: 35619949 PMCID: PMC9127663 DOI: 10.3389/fnut.2022.909283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Xylooligosaccharides (XOS) are functional feed additives that are attracting growing commercial interest owing to their excellent ability to modulate the composition of the gut microbiota. The acid hydrolysis-based processing of xylan-containing materials has been proposed to represent a cost-effective approach to XOS preparation, with organic acids being preferable in this context. As such, in the present study, maleic acid was selected as a mild, edible organic acid for use in the hydrolysis of xylan to produce XOS. A response surface methodology (RSM) approach with a central composite design was employed to optimize maleic acid-mediated XOS production, resulting in a yield of 50.3% following a 15 min treatment with 0.08% maleic acid at 168°C. Under these conditions, the desired XOS degree of polymerization (2-3) was successfully achieved, demonstrating the viability of this using a low acid dose and a high reaction temperature to expedite the production of desired functional products. Moreover, as maleic acid is a relatively stable carboxylic acid, it has the potential to be recycled. These results suggest that dilute maleic acid-based thermal treatment of corncob-derived xylan can achieve satisfactory XOS yields, highlighting a promising and cost-effective approach to XOS production.
Collapse
Affiliation(s)
- Kankan Jiang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Xiaoliang Fu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Rong Huang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Xingli Fan
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Lei Ji
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Damin Cai
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Xiaoxiang Liu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Yixiu Fu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Aihua Sun
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Chenzhuo Feng
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
9
|
Yang X, Liu X, Sheng Y, Yang H, Xu X, Tao Y, Zhang M. Optimization of Different Acid-Catalyzed Pretreatments on Co-Production of Xylooligosaccharides and Glucose from Sorghum Stalk. Polymers (Basel) 2022; 14:830. [PMID: 35215743 PMCID: PMC8963002 DOI: 10.3390/polym14040830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 11/23/2022] Open
Abstract
There is an increasing emphasis on the transformation of lignocellulosic biomass into versatile products. The feasibility of preparing xylooligosaccharides (XOS) by hydrolysis of sorghum stalk (SS) using organic and inorganic acids was studied. The influences of different acids (gluconic acid, acetic acid, sulfuric acid, and oxalic acid), process time and temperature on the hydrolysis of SS were explored. The findings indicated XOS yield can be maintained at a high level under different conditions with organic acid pretreatments. Optimum yield of XOS (39.4%) was obtained using sulfuric acid (pH 2.2) at 170 °C and 75 min of process time. It is suggested when reaction temperature and time were increased, both X5 and X6 are cracked into XOS with lower molecular mass such as X2, X3, and X4. Moreover, the results based on mass balance showed that up to 110 g (XOS) plus 117 g (glucose) can be recovered from 1000 g of SS. Results will give insights into establishing an efficient acid pretreatment of sorghum stalk to coproduction of XOS and glucose.
Collapse
Affiliation(s)
- Xiaocui Yang
- Engineering Training Center, Nanjing Vocational University of Industry Technology, Nanjing 210023, China;
| | - Xiaoliu Liu
- College of Bioscience and Engineering, Hebei University of Economics and Business, Shijiazhuang 050061, China;
| | - Yequan Sheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; (H.Y.); (X.X.)
| | - Hanzhou Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; (H.Y.); (X.X.)
| | - Xinshuai Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; (H.Y.); (X.X.)
| | - Yuheng Tao
- Department of Bioengineering, School of Pharmacy & School of Medicine, Changzhou University, Changzhou 213164, China;
| | - Minglong Zhang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Anhui Hongsen Hi-Tech Forestry Co., Ltd., Bozhou 233600, China
| |
Collapse
|
10
|
Henriques PIA, Brites Alves AMF, Serrano MDLS, Alves SS. Kinetic Modeling of Xylooligosaccharides Production by Acid Hydrolysis of an Eucalyptus globulus Pulp Extract. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Patrícia I. A. Henriques
- Center of Physics and Engineering of Advanced Materials (CeFEMA), Chemical Engineering Department, Instituto Superior Técnico, Avenida Rovisco Pais, 1, 1049-001 Lisbon, Portugal
| | - Ana Maria F. Brites Alves
- Center of Physics and Engineering of Advanced Materials (CeFEMA), Chemical Engineering Department, Instituto Superior Técnico, Avenida Rovisco Pais, 1, 1049-001 Lisbon, Portugal
| | - Maria de Lurdes S. Serrano
- Chemical Engineering Department, Centro de Recursos Naturais e Ambiente (CERENA), Instituto Superior Técnico, Avenida Rovisco Pais, 1, 1049-001 Lisbon, Portugal
| | - Sebastião S. Alves
- Chemical Engineering Department, Centro de Recursos Naturais e Ambiente (CERENA), Instituto Superior Técnico, Avenida Rovisco Pais, 1, 1049-001 Lisbon, Portugal
| |
Collapse
|
11
|
Yuan Q, Liu S, Ma MG, Ji XX, Choi SE, Si C. The Kinetics Studies on Hydrolysis of Hemicellulose. Front Chem 2021; 9:781291. [PMID: 34869229 PMCID: PMC8637159 DOI: 10.3389/fchem.2021.781291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022] Open
Abstract
The kinetics studies is of great importance for the understanding of the mechanism of hemicellulose pyrolysis and expanding the applications of hemicellulose. In the past years, rapid progress has been paid on the kinetics studies of hemicellulose hydrolysis. In this article, we first introduced the hydrolysis of hemicelluloses via various strategies such as autohydrolysis, dilute acid hydrolysis, catalytic hydrolysis, and enzymatic hydrolysis. Then, the history of kinetic models during hemicellulose hydrolysis was summarized. Special attention was paid to the oligosaccharides as intermediates or substrates, acid as catalyst, and thermogravimetric as analyzer method during the hemicellulose hydrolysis. Furthermore, the problems and suggestions of kinetic models during hemicellulose hydrolysis was provided. It expected that this article will favor the understanding of the mechanism of hemicellulose pyrolysis.
Collapse
Affiliation(s)
- Qi Yuan
- Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing, China
| | - Shan Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Ming-Guo Ma
- Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing, China
| | - Xing-Xiang Ji
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Sun-Eun Choi
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Gangwon National University, Chuncheon, South Korea
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
12
|
|
13
|
Xylooligosaccharides: prebiotic potential from agro-industrial residue, production strategies and prospects. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Murlidhar Sonkar R, Savata Gade P, Bokade V, Mudliar SN, Bhatt P. Ozone assisted autohydrolysis of wheat bran enhances xylooligosaccharide production with low generation of inhibitor compounds: A comparative study. BIORESOURCE TECHNOLOGY 2021; 338:125559. [PMID: 34280853 DOI: 10.1016/j.biortech.2021.125559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
In the present study, ozone assisted autohydrolysis (OAAH) was evaluated for enhanced generation of xylooligosaccharide (XOS) from wheat bran. The total XOS yield with optimum ozone dose of 3% (OAAH-3) was found to be 8.9% (w/w biomass) at 110 °C in comparison to 7.96% at 170 °C by autohydrolysis (AH) alone. Although, there was no significant difference in oligomeric composition (DP 2-6), significant decrease in degradation products namely furfural (2.78-fold), HMF (3.15-fold), acrylamide (nil) and acetic acid (1.06-fold), was observed with OAAH-3 as a pretreatment option. There was 1-fold higher xylan to XOS conversion and OAAH-hydrolysate had higher DPPH radical scavenging activity than AH. PCA plots indicated clear enhancement in XOS production and lower generation of inhibitors with decrease in treatment temperature. Results of the study therefore suggest OAAH can be an effective pretreatment option that can further be integrated with downstream processing for concentration and purification of XOS.
Collapse
Affiliation(s)
- Rutuja Murlidhar Sonkar
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India; Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| | - Pravin Savata Gade
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India; Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| | - Vijay Bokade
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India; Catalysis Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Sandeep N Mudliar
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India; Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| | - Praveena Bhatt
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India; Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore 570020, India.
| |
Collapse
|
15
|
Self-assembly behavior and conformation of amphiphilic hemicellulose-graft-fatty acid micelles. Carbohydr Polym 2021; 261:117886. [DOI: 10.1016/j.carbpol.2021.117886] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/18/2021] [Accepted: 02/26/2021] [Indexed: 12/18/2022]
|
16
|
Current status of xylooligosaccharides: Production, characterization, health benefits and food application. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.047] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
17
|
Rashid R, Sohail M. Xylanolytic Bacillus species for xylooligosaccharides production: a critical review. BIORESOUR BIOPROCESS 2021; 8:16. [PMID: 38650226 PMCID: PMC10991489 DOI: 10.1186/s40643-021-00369-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
The capacity of different Bacillus species to produce large amounts of extracellular enzymes and ability to ferment various substrates at a wide range of pH and temperature has placed them among the most promising hosts for the industrial production of many improved and novel products. The global interest in prebiotics, for example, xylooligosaccharides (XOs) is ever increasing, rousing the quest for various forms with expanded productivity. This article provides an overview of xylanase producing bacilli, with more emphasis on their capacity to be used in the production of the XOs, followed by the purification strategies, characteristics and application of XOs from bacilli. The large-scale production of XOs is carried out from a number of xylan-rich lignocellulosic materials by chemical or enzymatic hydrolysis followed by purification through chromatography, vacuum evaporation, solvent extraction or membrane separation methods. Utilization of XOs in the production of functional products as food ingredients brings well-being to individuals by improving defense system and eliminating pathogens. In addition to the effects related to health, a variety of other biological impacts have also been discussed.
Collapse
Affiliation(s)
- Rozina Rashid
- Department of Microbiology, University of Karachi, Karachi, 75270, Pakistan
- Department of Microbiology, University of Balochistan, Quetta, Pakistan
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
18
|
Jiang Y, Wang X, Wu Z, Xu J, Hu L, Lin L. Purification of xylooligosaccharides from bamboo with non-organic solvent to prepare food grade functional sugars. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
19
|
Gérard D, Méline T, Muzard M, Deleu M, Plantier-Royon R, Rémond C. Enzymatically-synthesized xylo-oligosaccharides laurate esters as surfactants of interest. Carbohydr Res 2020; 495:108090. [PMID: 32807358 DOI: 10.1016/j.carres.2020.108090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/12/2020] [Accepted: 07/01/2020] [Indexed: 01/29/2023]
Abstract
Lipase-catalyzed synthesis of xylo-oligosaccharides esters from pure xylobiose, xylotriose and xylotetraose in the presence of vinyl laurate was investigated. The influence of different experimental parameters such as the loading of lipase, the reaction duration or the use of a co-solvent was studied and the reaction conditions were optimized with xylobiose. Under the best conditions, a regioselective esterification occurred to yield a monoester with the acyl chain at the OH-4 of the xylose unit at the non-reducing end. Surface-active properties of these pure xylo-oligosaccharides fatty esters have been evaluated. They display interesting surfactant activities that differ according to the degree of polymerization (DP) of the glycone moiety.
Collapse
Affiliation(s)
- D Gérard
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, 51686, Reims, France; Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, 51687, Reims Cedex, France
| | - T Méline
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, 51686, Reims, France
| | - M Muzard
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, 51687, Reims Cedex, France
| | - M Deleu
- Université de Liège, Gembloux Agro-Bio Tech, Laboratoire de Biophysique Moléculaire Aux Interfaces, 2 Passage des Déportés, B-5030, Gembloux, Belgium
| | - R Plantier-Royon
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, 51687, Reims Cedex, France
| | - C Rémond
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, 51686, Reims, France.
| |
Collapse
|
20
|
Lin Q, Yan Y, Liu X, He B, Wang X, Wang X, Liu C, Ren J. Production of Xylooligosaccharide, Nanolignin, and Nanocellulose through a Fractionation Strategy of Corncob for Biomass Valorization. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Qixuan Lin
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Yuhuan Yan
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Xinxin Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Bei He
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Xiaohui Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Xiaoying Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Chuanfu Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Junli Ren
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| |
Collapse
|
21
|
Guo J, Cao R, Huang K, Xu Y. Comparison of selective acidolysis of xylan and enzymatic hydrolysability of cellulose in various lignocellulosic materials by a novel xylonic acid catalysis method. BIORESOURCE TECHNOLOGY 2020; 304:122943. [PMID: 32086033 DOI: 10.1016/j.biortech.2020.122943] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
An economically-prudent pretreatment is a crucial first step towards realization of the industrial lignocellulosic biorefinery. The aim of this study was to utilize lignocellulosic biomass to co-produce xylo-oligosaccharides (XOS) and glucose starting from a novel self-providing xylonic acid (XA) acidolysis method. Based on the optimization results of main acidolysis pretreatment parameters by uniform design experiments, we found that among various lignocellulosic materials, the highest yield of XOS from xylan was 54.16% with corncob, followed by 39.19% with wheat straw, 29.01% with corn straw and 30.23% with poplar sawdust. By effective degradation and removal of xylan constituents with XA acidolysis, enzymatic hydrolysabilities of inert cellulose constituents of corn cob, corn straw, wheat straw and poplar sawdust were achieved to 100%, 72.94%, 75.35% and 38.97%. Comparative mass balance diagrams of xylan and cellulose reveal that XA acidolysis pretreatment is environmental-friendly and effective for three agricultural residues, apart from woody poplar.
Collapse
Affiliation(s)
- Jianming Guo
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Rou Cao
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Kaixuan Huang
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Yong Xu
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China.
| |
Collapse
|
22
|
Zhou X, Zhao J, Zhang X, Xu Y. An eco-friendly biorefinery strategy for xylooligosaccharides production from sugarcane bagasse using cellulosic derived gluconic acid as efficient catalyst. BIORESOURCE TECHNOLOGY 2019; 289:121755. [PMID: 31301946 DOI: 10.1016/j.biortech.2019.121755] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 05/11/2023]
Abstract
A novel approach was proposed for the production of xylooligosaccharides by direct pre-hydrolysis using gluconic acid as catalyst. Maximum xylooligosaccharides (degree of polymerization 2-6) yield of 53.2% could be obtained in 60 min through 5% gluconic acid hydrolysis of sugarcane bagasse at 150 °C. Furthermore, the yield of glucose from solids following gluconic acid hydrolysis treatment was 86.2% after fed-batch enzymatic hydrolysis with 10% solids loading. Results indicated that gluconic acid pretreatment combined with enzymatic hydrolysis could be successfully applied to sugarcane bagasse substrate. Subsequently, glucose could be efficiently bio-oxidized to gluconic acid by Gluconobacter oxydans ATCC 621H with 93.1% yield, and sugarcane bagasse derived gluconic acid has been proved to be an effective catalyst for xylooligosaccharides production. In this study, xylooligosaccharides production from sugarcane bagasse by gluconic acid hydrolysis demonstrated a great potential with respect to the production of these probiotics around the world.
Collapse
Affiliation(s)
- Xin Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Jianglin Zhao
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Xiaotong Zhang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Yong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China.
| |
Collapse
|
23
|
Zhou X, Xu Y. Integrative process for sugarcane bagasse biorefinery to co-produce xylooligosaccharides and gluconic acid. BIORESOURCE TECHNOLOGY 2019; 282:81-87. [PMID: 30852335 DOI: 10.1016/j.biortech.2019.02.129] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 05/25/2023]
Abstract
An integrated and green process for co-producing xylooligosaccharides (XOS) and gluconic acid (GA), was developed by utilizing sugarcane bagasse as starting material. In this study, the highest XOS yield of 39.1% obtained from the prehydrolysis was achieved with 10% acetic acid at 150 °C for 45 min. Subsequently, 88.6% conversion of cellulose was achieved in a fed-batch enzymatic hydrolysis using a solid loading of 15%. Results of glucose fermentation suggested that inherent regulatory system of strain Gluconobacter oxydans ATCC 621H boosted GA accumulation without the requirement of pH control, leading to a good 96.3% of GA yield. Great performance of this strain offer an economically feasible option for the large-scale sustainable GA production from biomass. Overall, approximately 105 g XOS and 340 g GA were co-produced from 1 kg of dried sugarcane bagasse as feedstock; this integrated process might be a cost-effective option for the comprehensive utilization of sugarcane bagasse.
Collapse
Affiliation(s)
- Xin Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Products, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Yong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Products, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China.
| |
Collapse
|